
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 37 (2020) 51–77
www.elsevier.com/locate/anihpc

The Bramson delay in the non-local Fisher-KPP equation

Emeric Bouin a, Christopher Henderson b,∗, Lenya Ryzhik c

a CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
b Department of Mathematics, University of Arizona, Tucson, AZ 85721, United States of America
c Department of Mathematics, Stanford University, Stanford, CA 94305, United States of America

Received 9 October 2017; received in revised form 6 March 2019; accepted 13 July 2019
Available online 30 July 2019

Abstract

We consider the non-local Fisher-KPP equation modeling a population with individuals competing with each other for resources 
with a strength related to their distance, and obtain the asymptotics for the position of the invasion front starting from a localized 
population. Depending on the behavior of the competition kernel at infinity, the location of the front is either 2t −(3/2) log t +O(1), 
as in the local case, or 2t − O(tβ) for some explicit β ∈ (0, 1). Our main tools here are a local-in-time Harnack inequality and an 
analysis of the linearized problem with a suitable moving Dirichlet boundary condition. Our analysis also yields, for any β ∈ (0, 1), 
examples of Fisher-KPP type non-linearities fβ such that the front for the local Fisher-KPP equation with reaction term fβ is at 
2t − O(tβ).
© 2019 Published by Elsevier Masson SAS.

Résumé

Dans cet article, nous considérons l’équation de Fisher-KPP non locale, qui modélise la dynamique d’une population ou la force 
de compétition pour les ressources dépend de la distance entre les individus. Nous obtenons une asymptotique précise en temps long 
de la position d’une population qui est initialement localisée en espace. Selon la décroissance à l’infini du noyau de compétition, 
la position du front est soit 2t − (3/2) log t + O(1), comme dans le cas de l’équation locale, soit 2t − O(tβ), pour un β ∈ (0, 1)

calculé explicitement. Les outils les plus importants utilisés dans cet article sont une version locale en temps d’une inégalité de 
Harnack parabolique ainsi qu’une analyse fine du problème linéarisé avec une condition de bord de Dirichlet dynamique. Notre 
analyse donne aussi, pour tout β ∈ (0, 1), des exemples de non-linéarités de type Fisher-KPP pour lesquelles le front se trouve en 
2t − O(tβ).
© 2019 Published by Elsevier Masson SAS.
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1. Introduction

The Fisher-KPP equation

ut = uxx + u(1 − u) (1.1)

is one of the simplest models for population spreading, accounting for a competition for resources. However, (1.1) only 
accounts for a local competition between individuals. When this competition is non-local, one is led to the non-local 
Fisher-KPP equation

ut − uxx = u(1 − φ � u), t > 0, x ∈ R,

u(0, ·) = u0.
(1.2)

Here, φ is a probability density that represents the strength of the competition between individuals a given distance 
apart. Equation (1.2) has garnered much interest recently, mostly for two reasons. First, it does not admit a comparison 
principle, leading to inherent technical difficulties – even proving a uniform upper bound on u is non-trivial [19]. 
Second, unusual behavior may occur, such as the existence of oscillating wave trains behind the front [12–14,21].

Our interest is in the spreading of the solutions of (1.2) when the initial density u0 is localized. To motivate our 
work, we recall the known results for the local Fisher-KPP equation (1.1). Going back to the work of Bramson, it is 
known that if u0 is compactly supported, the front of u is located at

X(t) = 2t − 3

2
log t + s0, (1.3)

where s0 is a shift depending only on u0 [5,6], with less precise asymptotics obtained earlier by Uchiyama [27]. 
These proofs have been simplified in recent years [17,26], with some refinements in [23,24], and also extended to the 
spatially periodic case [18]. One may think of X̄(t) = 2t as the position of a traveling wave, and d(t) = (3/2) log t

as the delay due to the fact that the initial condition u0 is compactly supported, so that the solution lags behind the 
traveling wave.

In the non-local case considered in the present paper, we show that the front position depends on the rate of decay 
of the kernel φ at infinity. When φ decays fast enough, solutions of (1.2) spread as those of the local equation: the 
front is at a position as in (1.3), up to a constant order error. However, when φ decays slowly, and the competition at 
large distances is relatively strong, the delay behind the traveling wave position 2t is not logarithmic but algebraic, of 
the order O(tβ), with β depending only on the rate of decay of φ.

We now make our assumptions more precise. First, we assume that φ is an even, continuous, and bounded proba-
bility density:∫

R

φ(x)dx = 1, and φ(x) = φ(−x) for all x ∈ R. (1.4)

In addition, φ has some “mass” near the origin, that is, there exists σφ > 0 such that

φ(x) ≥ σφ1[−σφ,σφ ]. (1.5)

The behavior of u depends strongly on the tail behavior of φ. Here we make two different assumptions, that are helpful 
for the upper and lower bounds, respectively. The first assumption, an upper bound on the tail of φ, is that there exists 
Aφ > 0 and r > 1 such that, for all R ≥ 1,

∞∫
R

φ(x)dx ≤ AφR−r+1. (1.6)

Sometimes we will need to complement this with a lower bound on the tail: for all R ≥ 1, we have

∞∫
φ(x)dx ≥ A−1

φ R−r+1. (1.7)
R
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Roughly, (1.6) and (1.7) mean that φ ∼ x−r for x � 1.
For the initial condition, we assume that u0 is localized to the left of some point x0:

0 ≤ u0 ≤ 1, ∃x0 such that u0(x) = 0 for all x ≥ x0, and lim inf
x→−∞u0(x) > 0. (1.8)

We expect our results to hold when u0 has “fast” exponential decay, that is, u0(x)e(1+ε)x → 0 as x → 0 for some ε > 0, 
rather than compactly supported on the right. However, we recall that the front position asymptotics for solutions of 
(1.1) with u0 that has a sufficiently slow exponential tail on the right is different from (1.3), see [5,6].

The main result of this paper is the following.

Theorem 1.1. Suppose that u satisfies (1.2) and (1.8) with φ satisfying (1.4), (1.5), and (1.6). If r > 3, then the solution 
u propagates with a logarithmic delay:

lim inf
t→∞ inf

x≤0
u
(
t,2t − 3

2
log t + x

)
> 0, (1.9)

and

lim
L→∞ lim sup

t→∞
sup
x≥L

u
(
t,2t − 3

2
log t + x

)
= 0. (1.10)

If r = 3, then the solution u propagates with a larger logarithmic delay: there exists Sφ > sφ > 3/2 such that

lim inf
t→∞ inf

x≤0
u
(
t,2t − Sφ log t + x

)
> 0, (1.11)

and

lim
t→∞ sup

x≥0
u
(
t,2t − sφ log t + x

)
= 0. (1.12)

If r ∈ (1, 3), then the delay is algebraic: there exists Cφ > 0, depending only on r , σφ , and Aφ , such that

lim inf
t→∞ inf

x≤0
u
(
t,2t − Cφt

3−r
1+r + x

)
> 0, (1.13)

and, if additionally (1.7) holds, then there exists cφ ∈ (0, Cφ), depending only on σφ , r , and Aφ , such that

lim
t→∞ sup

x≥0
u
(
t,2t − cφt

3−r
1+r + x

)
= 0. (1.14)

As we discuss later in greater detail, heuristically, the competition term φ � u acts on the scale tγ , with γ =
2/(1 + r). Note that

3 − r

1 + r
= 2γ − 1, (1.15)

and that, when r > 3, γ < 1/2, which, in turn, suggests that the competition scale is smaller than the diffusive scale
√

t . 
This is one way to see that there is a phase transition at r = 3.

As a by-product of our analysis, we also obtain results for the local Fisher-KPP equation

ut = uxx + f (u). (1.16)

Let us assume that f is of the KPP class: f (u)/u is decreasing in u near 0, f ∈ C1, and f ′(0) = 1. A natural question 
is whether these assumptions are sufficient to ensure that the front location is given by the logarithmic Bramson 
correction in (1.3). We show, roughly, the following: if

1 − f (u)

u
∼

(
log

(
1

u

))1−r

with r > 1,

then the conclusion of Theorem 1.1 holds, with the logarithmic delay for r ≥ 3 and an algebraic delay of the order 
O(t(3−r)/(1+r)) for 1 < r < 3. These non-linearities are not purely mathematical curiosities: they are regularly used in 
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biology and are known as Gompertz models, see [8] and the vast body of literature around it. The statement and proof 
of this result are contained in Section 6.

Let us mention a few related works. The model (1.2) considered here was first introduced by Britton [7] and 
has a quite involved history, see the introduction of [1] for a brief overview. The non-local term φ � u has different 
effects depending on whether one is studying the behavior of u behind the front or at the front. Behind the front, 
there is a possible Turing instability of the steady state of the local Fisher-KPP equation u ≡ 1, which complicates 
the behavior. For example, wave trains have been constructed by Faye and Holzer [12] and, in a related setting, 
in [21]. Such wave trains have also been observed numerically by Genieys, Volpert, and Auger in [13]. As a result, 
without finer assumptions on φ, one cannot hope for a stronger result than the lower bounds in Theorem 1.1. As 
far as the behavior at the front is concerned, the main result in this direction is that traveling waves of speed c = 2
exist [10,14] and solutions to the Cauchy problem with compact initial data or which satisfy (1.8) propagate with 
speed c(t) = 2 + o(1) as t → +∞ [19].

As far as algebraic delays are concerned, we point to the work of Fang and Zeitouni [11] and Maillard and 
Zeitouni [20], as well as [22] where a Fisher-KPP model with a diffusivity that changes slowly in time was stud-
ied, and a delay, roughly, of order t1/3 was obtained. However, both the set-up and the mechanism for the large delay 
are quite different in these papers than in the present work. Finally, we also mention the recent paper of Ducrot [9] in 
which he constructs a class of non-linearities f (x, u), which tend to u(1 −u) as |x| → ∞, such that if the nonlinearity 
u(1 − u) in (1.1) is replaced by f (x, u), then the front is at 2t − λ log(t) for any λ ≥ 3/2.

While in the final stages of preparing this paper, we learned of a very recent probabilistic study of the delay term 
by Penington [25]. In our notation, she obtains the log delay up to an error term O(log log(t)), when r > 3, and an 
algebraic delay t (3−r)/(1+r)±ε for any ε > 0 for r ∈ (1, 3). Penington’s assumptions on φ are the same as ours when 
r ≥ 3. However, her assumptions are weaker when r ∈ (1, 3): the R−(r−1) term in (1.6) is replaced by R−(r−1)/2, 
at the expense of a slightly less precise power in the correction. The proofs in [25] are probabilistic, involving the 
Feynman-Kac formula and an in-depth study of the trajectories of Brownian motion. Overall, our work and [25] are 
quite different and reveal different features of the equation.

1.1. Heuristics and methods of proof

The upper bound (1.10) is obtained by a rather direct adaptation of the arguments in [17]. Let us outline a heuristic 
argument leading to the upper bound (1.14) for r ∈ (1, 3). It also explains how the exponent (3 − r)/(1 + r) comes 
about. Let the front have a delay d(t) behind 2t , so that

inf
x≤2t−d(t)

u(t, x) ≥ δ0, (1.17)

with some δ0 > 0. We expect that the solution looks like an exponential to the right of x = 2t − d(t) and until the 
“front edge” at x = 2t + e(t):

u(t, x) ∼ exp{−(x − 2t + d(t))}, for x ∈ (2t − d(t),2t + e(t)). (1.18)

The diffusive Gaussian decay dominates the exponential “traveling wave” decay for x > 2t + e(t). Using (1.17) and 
then (1.7), one may estimate φ � u(t, x) when x ∈ (2t − d(t), 2t + e(t)) as

φ � u(t, x) ≥ δ0

2t−d(t)∫
−∞

φ(x − y)dy � (x − (2t − d(t)))1−r � (e(t) + d(t))1−r .

Thus, in order for the exponential in (1.18) to be a super-solution to (1.2) inside (2t − d(t), 2t + e(t)), we need

(e(t) + d(t))1−r � d ′(t). (1.19)

We also need the exponential to be above u(t, x) at the front edge. To control u there, we use that, letting h = e−t u, h
is a sub-solution to the heat equation. In other words,

ht ≤ hxx

and, hence, for all x � 1,
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e−t u(t, x) = h(t, x) ≤
∫

e− |x−y|2
4t u0(y)dy �

√
t

x
e− x2

4t . (1.20)

Thus, for u to sit below the exponential super-solution at x = 2t + e(t), we require

exp
{
t − (2t + e(t))2

4t

}
� exp{−(e(t) + d(t))},

that is,

e(t)2 ≥ 4td(t). (1.21)

Since e(t) should be o(t), we get

lim
t→+∞

d(t)

e(t)
= 0. (1.22)

Combining (1.19), (1.21) and (1.22) gives, for t large,

d ′(t) � e(t)1−r � t
1−r

2 d(t)
1−r

2 ,

and thus necessarily

d(t) � t (3−r)/(1+r).

We deduce also e(t) � tγ , with γ as in (1.15).
A way to estimate the solution from below, to get the lower bounds, is to study the linearized Fisher-KPP equation 

with a Dirichlet boundary condition at 2t + e(t), as in [17]. The problem that comes up after removing the exponential 
factor is

zt = zxx + e′(t)(zx − z), t > 0, x > 0,

z(t,0) = 0.
(1.23)

Once again, the case r > 3 is treated similarly to [17]. In particular, while the term e′(t)z is important and is responsible 
for the 3/2 pre-factor in the logarithmic correction, the drift e′(t)zx is negligible. Roughly, we estimate z(t, x) at x ∼√

t , and use a “tracing back to a shifted traveling wave” argument, to construct a sub-solution for u.
When r < 3, we choose e(t) = tγ . Since now γ > 1/2, the drift e′(t)zx can no longer be neglected, and the choice 

of the exact exponent γ is necessary to get matching asymptotics. We explicitly construct a sub-solution of u to 
estimate the solution at the far edge, and then perform a “tracing back” argument with a traveling wave.

Lastly, in the case when r = 3, the diffusive scale and the induced drift have the same order. Here, the balance of 
these two scales causes a somewhat larger delay.

1.2. The local in time Harnack inequality

The main tool that allows us to get “reasonably sharp” asymptotics for the front position is a local-in-time Harnack 
inequality that is of an independent interest.

Proposition 1.2. Suppose that u ∈ L∞([0, T ] ×R) is a non-negative function that solves

ut = uxx + c(t, x)u,

on [0, T ] ×R with c ∈ L∞([0, T ] ×R) and T > 0. Then, for any p ∈ (1, ∞), there exist positive constants α, β , and 
C, that depend only on ‖c‖L∞([0,T ]×R) and p, such that, for all x, y ∈ R and t ∈ (0, T ], we have

u(T , x + y) ≤ C‖u‖1− 1
p

L∞([t,T ])×Ru(T , x)
1
p eαt+ βy2

t . (1.24)

This inequality is an indispensable tool to obtain “reasonably sharp” results for non-local problems. We have used a 
less precise form of it to obtain the logarithmic delay for solutions of the cane toads equation in [4], and it has also been 
used to establish a precise lower bound on the propagation speed of solutions of a Keller-Segel-Fisher system [16]. As 
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far as we know, [4] is the only other non-local context where a delay asymptotics has been established. It allows us to 
bound solutions of the non-local Fisher-KPP equation (1.2) in terms of the solutions of a local Fisher-KPP equation 
with a local time-dependent nonlinearity g(t, u), that is logarithmic in u (Gompertz type). This equation has inherent 
difficulties coming from the time dependence and the logarithmic behavior near zero, but it is much more tractable 
because it admits a comparison principle.

The rest of the paper is organized as follows. In Section 2, we present the proofs of the upper bounds (1.10) and 
(1.14). Section 3 is where the proofs of the lower bounds (1.9), (1.11) and (1.13) are given. In order to complete the 
proof of the lower bounds, some estimates on linearized problems with moving Dirichlet boundary conditions are 
obtained in Section 4 and Section 5. In Section 6, we state and prove the result concerning the local KPP equation 
with logarithmic nonlinearity. The Harnack inequality is proved in Section 7.

Acknowledgments The authors thank Nicolas Champagnat for the reference [8]. EB was supported by “INRIA Pro-
gramme Explorateur”. LR was supported by NSF grants DMS-1311903 and DMS-1613603. Part of this work was 
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2. Upper bounds on the location of the front

In this section, we prove the upper bounds (1.10) and (1.14) in Theorem 1.1.

2.1. The upper bound when r > 3

The case r > 3 is very close to the local Fisher-KPP equation. The (3/2) log t delay is the best case scenario – in 
fact, the delay has to be at least that large for any r , so the bound is a quite straightforward application of bounds 
obtained in [17].

Proof of (1.10). Take t0 > 0 to be determined later. Working in the moving frame with the logarithmic correction, the 
function

umov(t, x) = u
(
t,2t − 3

2
log

(
1 + t

t0

)
+ x

)
,

satisfies

(umov)t ≤
(

2 − 3

2

1

t + t0

)
(umov)x + (umov)xx + umov, for all t > 0, x ∈ R,

umov(0, x) = u0(x), for all x ∈ R.

We construct a super-solution u as in [17]. Let v be the solution to the boundary value problem

vt =
(

2 − 3

2

1

t + t0

)
vx + vxx + v, for all t > 0 and x > 0,

v(t,0) = 0, for all t > 0,

v(0, x) = 1(0,2)(x) for all x > 0.

Then [17, Lemma 2.1] implies that, provided that t0 is sufficiently large, there exists A0 ≥ 1 such that for all t ≥ 0, 
we have

v(t,1) ≥ A−1
0 .

We also have the following uniform bound on the solutions to (1.2).

Lemma 2.1. [19, Theorem 1.2] Suppose that u satisfies (1.2) with initial data u0 satisfying (1.8). Then there exists 
M > 0 such that, u(t, x) ≤ M for all t > 0 and x ∈R.



E. Bouin et al. / Ann. I. H. Poincaré – AN 37 (2020) 51–77 57
Let us now define ū(t, x) as

u(t, x) = M
(

1x≤x0 + min
(

1,A0v(t, x − x0 + 1)
)

1x≥x0

)
,

where M is as in Lemma 2.1. By construction, u is a super-solution to umov, and by our assumptions on u0 (1.8), we 
also have u(0, x) ≥ umov(0, x) for all x ∈ R. In addition, [17, Lemma 2.1] implies that there exists T0 such that, for 
all z and all t ≥ T0,

v(t, z) ≤ A0ze
−z. (2.1)

We are now in a position to conclude the proof. Indeed, as u ≤ u, the upper bound in (2.1) implies

lim sup
L→∞

lim sup
t→∞

sup
x≥L

u
(
t,2t − 3

2
log t + x

)
= lim sup

L→∞
lim sup
t→∞

sup
x≥L

umov(t, x)

≤ lim sup
L→∞

lim sup
t→∞

sup
x≥L

u(t, x) ≤ lim
L→∞MA0Le−L = 0,

(2.2)

which concludes the proof. �
2.2. The upper bound when r = 3

In this section, we show how to derive the upper bound on the location of the front assuming the lower bound on 
the location of the front. In other words, we prove (1.12) assuming (1.11), which we prove in the next section.

Proof of (1.12) assuming (1.11). Our proof proceeds similarly as in the previous subsection. Set s̃φ < Sφ to be de-
termined. Using (1.11) and (1.7), we find L > 0 such that, for all x ≥ 0 and t ≥ L,

φ � u(t, x + 2t − s̃φ log(t)) ≥ 1

LAφ

(
x + (Sφ − s̃φ) log(t) + L

)−2
. (2.3)

Next, we use the following result that is proved in Appendix A.

Lemma 2.2. There exists v, s̃φ > 3/2, and L such that

vt ≥ vxx + v(1 − ν(t, x − (2t − s̃φ log(t + t0))), t > L,x > 2t − sφ log(t + t0) + L,

v(L,x) ≥ u(L,x), x > 2L − s̃φ log(L + t0) + L,
(2.4)

v(t, L + 2t − s̃φ log(t)) ≥ M + 1 for all t ≥ L, and v(t, x + 2t − s̃φ log(t)) → 0 as x → ∞ uniformly in t ≥ L.

With Lemma 2.2 in hand, we now conclude. Notice that, (2.3) implies that v is a super-solution of u in {(t, x) ∈
[L, ∞) ×R : x ≥ 2t − s̃φ log(t) + L}. Let

u(t, x) =
{

M + 1, if x ≤ 2t − sφ log(t) + L,

min{M + 1, v(t, x)} if x ≥ 2t − sφ log(t) + L.

As in the previous case r > 3, the comparison principle implies that u ≥ u on [L, ∞) × R. The result then follows 
taking sφ ∈ (s̃φ, 3/2). �
2.3. The upper bound when r ∈ (1, 3)

In this section, we show how to derive the upper bound on the location of the front from the lower bound on the 
location of the front. In other words, we prove (1.14) assuming (1.13), which we prove in the next section.

Proof of the upper bound (1.14) assuming the lower bound (1.13). Note that, by (2.2), we have

lim
t→∞ sup

γ

u(t, x) = 0.

x≥2t+t
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As a consequence, taking into account (1.15), it suffices to show that

lim
t→∞ sup

x∈(2t−cφt2γ−1,2t+tγ )

u(t, x) = 0.

We do this by creating a relevant super-solution to u on the interval (2t − cφt2γ−1, 2t + tγ ). Note that the constant 
cφ is still to be determined at this stage. Define, for any T > 0 and Cφ as in (1.13), the space-time domain (recall that 
γ > 1/2 for 1 < r < 3):

PT :=
{
(t, x) : t ∈ (T ,∞), x ∈ (2t − Cφt2γ−1,2t + tγ )

}
,

and, for (t, x) ∈ PT , the function

v(t, x) := B exp
{

−
(
x − 2t + 2cφt2γ−1

)}
.

On PT , the function v satisfies

vt = vxx + v
(

1 − 2cφ(2γ − 1)tγ (1−r)
)
. (2.5)

The rest of the proof is devoted to showing that u is, indeed, a subsolution to (2.5) when the various constants 
above are suitably chosen: specifically, we show that

ut − uxx − u(1 − 2cφ(2γ − 1)tγ (1−r)) ≤ 0 in PT , (2.6)

and

u(t, x) ≤ v(t, x), on ∂PT . (2.7)

First, we show that (2.6) holds. It follows from (1.13) that there exist Cφ and δφ , depending only on φ, and T0 such 
that, for all t ≥ T0,

inf
x≤2t−Cφt2γ−1

u(t, x) ≥ δφ. (2.8)

Using (2.8), we can estimate φ � u from below, for t ≥ T0 and x > 2t − Cφt2γ−1:

φ � u(t, x) =
∫
R

φ(x − y)u(t, y) dy ≥
2t−Cφt2γ−1∫

−∞
φ(x − y)u(t, y) dy

≥ δφ

2t−Cφt2γ−1∫
−∞

φ(x − y)dy = δφ

+∞∫
x−2t+Cφt2γ−1

φ(z) dz

≥ δφA−1
φ

+∞∫
x−2t+Cφt2γ−1

z−r dz = δφ

Aφ(r − 1)

(
x − 2t + Cφt2γ−1

)1−r

.

(2.9)

Note that, as r > 1, we have

2γ − 1 = 3 − r

1 + r
= γ + 1 − r

1 + r
< γ.

Further increasing T , if necessary, the right-hand side in (2.9) can be estimated, for t ≥ T , as

δφ

Aφ(r − 1)

(
x − 2t + Cφt2γ−1

)1−r ≥ δφ

Aφ(r − 1)

(
tγ + Cφt2γ−1

)1−r

= δφ

Aφ(r − 1)

(
1 + Cφt

1−r
1+r

)1−r

t (1−r)γ ≥ δφ

Aφ(r − 1)

(
1 + CφT

1−r
1+r

)1−r

t (1−r)γ

≥ 21−r δφ

A (r − 1)
t(1−r)γ ≥ 2cφ(2γ − 1)tγ (1−r),

(2.10)
φ
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as long as cφ is sufficiently small. Now, (2.6) follows from (1.2), (2.9) and (2.10).
To show (2.7), first, we consider the right spatial boundary x = 2t + tγ , t ≥ T . As this point is at the far edge of 

the front, it is natural to use the linearized problem

ut = uxx + u, t > 0, x ∈R,

u(t = 0, ·) = u0.

Then, with x0 as in (1.8), we can write for t ≥ T :

u(t,2t + tγ ) ≤ u(t,2t + tγ ) = et

√
4πt

∫
R

e− (2t+tγ −y)2

4t u0(y)dy ≤ et

√
4πt

x0∫
−∞

e− (2t+tγ −y)2

4t dy

= et

√
π

+∞∫
2t+tγ −x0

2
√

t

e−y2
dy ≤ Cet

√
t

2t + tγ − x0
e− (2t+tγ −x0)2

4t

≤ C0 exp
{

− tγ − 1

4
t2γ−1

}
≤ B exp

{
− tγ − 2cφt2γ−1

}
= v(t,2t + tγ ),

(2.11)

so long as B ≥ C0. Above, we have increased T and decreased cφ if necessary. The constant C0 depends only on γ
and x0. Thus, (2.7) holds at x = 2t + tγ for all t ≥ T as long as B ≥ C0.

At the left boundary x = 2t − Cφt2γ−1, we have

v(t,2t − Cφt2γ−1) = B exp
{
(Cφ − 2cφ)t2γ−1

}
≥ M ≥ u

(
t,2t − Cφt2γ−1

)
, (2.12)

as long as 2cφ ≤ Cφ and B ≥ M . Here, M is the upper bound in Lemma 2.1.
Lastly, we check that (2.7) holds at t = T , for 2T − CφT 2γ−1 ≤ x ≤ 2T + T γ :

v(T , x) = B exp
{

−
(
x − 2T + 2cφT 2γ−1

)}
≥ B exp

{
− T γ − 2cφT 2γ−1

}
.

As long as B ≥ M exp
{
T γ + 2cφT 2γ−1

}
, we have that, for all x ∈ [2T − CφT 2γ−1, 2T + T γ ]

v(T , x) ≥ M ≥ u(T , x), (2.13)

and (2.7) holds on all of ∂PT .
It follows from (2.6) and (2.7) that, with T and B sufficiently large, and cφ sufficiently small, we have

lim
t→∞ sup

x≥2t−cφt2γ−1
u(t, x) ≤ lim

t→∞ sup
x≥2t−cφt2γ−1

v(t, x) ≤ lim
t→∞B exp

{
−

(
2cφ − cφ

)
t2γ−1

}
= 0,

which finishes the proof of the upper bound. �
3. Lower bounds on the location of the front

The proofs of the lower bounds in Theorem 1.1 are much more involved. They hinge on estimating φ � u in terms 
of u in a local way, and then deriving precise heat kernel type estimates on the resulting local equation.

3.1. Estimating the non-local term by a local counterpart

To begin, we estimate the convolution term φ � u in terms of u under the assumptions of Theorem 1.1. The as-
sumptions of these two theorems differ only in the range of r . In this section, we assume only that r > 1 so our 
computations apply to all cases.

Lemma 3.1. There exists Cconv > 0, depending only on φ, such that, for all t ≥ 1 and all x ∈R,

φ � u(t, x) ≤ Cconv max
{

1,
[1

t
log

( M

u(t, x)

)] r−1
2

}
log

(
M

u(t, x)

)1−r

. (3.1)
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Proof. It is here that the local-in-time Harnack inequality is used crucially. Fix any time t ≥ 1 and x, y ∈R. Proposi-
tion 1.2 with p = 2 implies that there exists α > 0 so that

u(t, x + y) ≤ C
√

u(t, x) exp
{
αt ′ + αy2

t ′
}
, for all t ′ ∈ (0, t], . (3.2)

Above, we absorbed the uniform bound M of ‖u‖∞ given by Lemma 2.1 into the constant C. By increasing M
if necessary, we may assume that M ≥ ‖u‖∞ + 1, which allows us to simplify notation in the sequel. Using (1.6)
and (3.2), we obtain, for R > 0 and t ′ ∈ (0, t] to be determined,

φ � u(t, x) ≤
∫
R

φ(y)u(t, x − y)dy ≤ C

∫
BR

φ(y)
√

u(t, x)e
αt ′+ αR2

t ′ dy + M

∫
Bc

R

φ(y)dy

≤ C
√

u(t, x)R exp
{
αt ′ + αR2

t ′
}

+ CMR−r+1.

(3.3)

The constant C changes line-by-line for the remainder of the proof and depends only on φ and α.
We now optimize the right-hand side in (3.3) with respect to t ′ ∈ (0, t] and R > 0. If t ′ = R, then

φ � u(t, x) ≤ C
√

u(t, x)Re2αR + CMR−r+1. (3.4)

To roughly balance the two terms in the right side of (3.4), we choose

R = 1

8α
log

( M

u(t, x)

)
, (3.5)

the most important point being that R should be of order logu. As we have set t ′ = R in (3.4), and we need to have 
0 ≤ t ′ ≤ t , the choice (3.5) is possible only if

t ≥ 1

8α
log

( M

u(t, x)

)
. (3.6)

With this, we find, from (3.4):

φ � u(t, x) ≤ C
√

u(t, x) log
( M

u(t, x)

)
exp

{
− 1

4
log

(u(t, x)

M

)}
+ C

(
log

( M

u(t, x)

))1−r

≤ C
(
u(t, x)1/4

(
log

( M

u(t, x)

))r + 1
)(

log
( M

u(t, x)

))1−r ≤ C
(

log
( M

u(t, x)

))1−r

.

(3.7)

When (3.6) does not hold, so that

t ≤ 1

8α
log

( M

u(t, x)

)
, (3.8)

we choose t ′ = t and set

R =
( t

8α
log

( M

u(t, x)

))1/2
,

in (3.3), leading to

φ ∗ u(t, x) ≤ C
√

u(t, x)
√

t log1/2
( M

u(t, x)

)
exp

{
αt + 1

8
log

( M

u(t, x)

)}
+ C

(
t log

( M

u(t, x)

))− (r−1)
2

≤ C
√

u(t, x) log
( M

u(t, x)

)
exp

{1

4
log

( M

u(t, x)

)}
+ C

(
t log

( M

u(t, x)

))−(r−1)
2

≤ Cu(t, x)1/4 log
( M

u(t, x)

)
+ C

(
t log

( M

u(t, x)

))−(r−1)
2

≤ C
(

1 + u(t, x)1/4 log
( M

u(t, x)

)(
t log

( M

u(t, x)

)) r−1
2

)(
t log

( M

u(t, x)

))−(r−1)
2

≤ C
(
u(t, x)1/4

(
log

( M ))r + 1
)(

t log
( M ))−(r−1)

2 ≤ C
(
t log

( M )) 1−r
2

.

(3.9)
u(t, x) u(t, x) u(t, x)
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We used (3.8) several times above, as well as the upper bound u(t, x) ≤ M in the last inequality. The combination 
of (3.7) and (3.9) concludes the proof of the lemma. �
3.2. A local equation and related bounds

In view of Lemma 3.1, it is natural to introduce the following nonlinearity. Fix r > 1, and for any positive constants 
θg and Ag , set �g := θg exp{−A

1/(r−1)
g } and define g ∈ C0,1 on (0, �g) as

g(t, u) := Ag max
{

1,
[(

t + A
1

r−1
g

)−1
log

(θg

u

)] r−1
2

}
log

(θg

u

)1−r

, if u ∈
(

0,�g

)
. (3.10)

Outside [0, �g] we set g(t, u) = 0 for u < 0 and g(t, u) = 1 for u > �g . By construction, g(t, ·) is continuous. The 

“A1/(r−1)
g ” term in the second part of the maximum in the definition of g does not affect the analysis in any way. In 

fact, any other choice of g that preserves the asymptotics as u and t tend to zero would have the desired properties 
that we prove in the sequel.

We will make use of the local equation with a moving boundary at the front edge:

wt = wxx + w(1 − g(t,w)), in Pg,γ :=
{
(t, x) : t > 0, x > 2t + (t + t0)

γ − t
γ

0

}
,

w(t,2t + (t + t0)
γ − t

γ

0 ) = 0, for all t > 0,

w(0, x) = w0(x) for all x > 0.

(3.11)

The following proposition contains the crucial lower bounds for the solutions of (3.11) we will need.

Proposition 3.2. Assume that there exists δw > 0 and xw ∈ R+ such that the initial condition w0(x) for (3.11) satisfies 
w0(x) ≥ δw1(0,xw)(x).

1. If r > 3, then there exists Xw and T0 such that if xw ≥ Xw and t0 ≥ T0 then there exists a positive constant B1, 
depending only on xw, δw , t0, γ , and g, such that, for all t sufficiently large, we have

w(t,2t + tγ + √
t) ≥ B−1

1 t−1e−√
t−tγ .

2. If r = 3, then set t0 = 1. There exists N̄ > 0 such that if xw ≥ 1 then there exists a positive constant B2, depending 
only on N̄ , δw , γ , and g, such that, for all t sufficiently large, we have

w(t,2t + 2
√

t) ≥ B−1
2 t−1−N̄ e−√

t .

3. If r ∈ (1, 3), then set t0 = 1. There exists B3 > 0, depending only on δw and g, such that if xw ≥ 1 then, for all 
t ≥ 1, we have

w(t,2t + tγ + √
t) ≥ B−1

3 e−√
t−tγ −B3t

2γ−1
.

We delay the proof of this proposition until Section 4 and now continue the proof of the lower bounds of Theo-
rem 1.1. Having reduced the problem to estimating a delay for a local equation, we now transfer known bounds of 
Theorem 1.1 on w to bounds on u.

3.3. From a bound on w to a bound on u

Let us take θg = M and Ag = Cconv in the definition (3.10) of g(t, u) and let the initial condition in (3.11) be 
w0(x) = e−Mu0(x). A combination of Lemma 3.1 and Proposition 3.2 implies that u is a super-solution for w for 
t ≥ 1. Further, it follows from considerations as in [4, Section 3], that w(1, x) ≤ u(1, x) for all x ∈ R due to the e−M

pre-factor in the definition of w0. The maximum principle then implies that w(t, x) ≤ u(t, x) for all t ≥ 1 and all 
x ∈R.

Using the assumptions on the initial data (1.8), we can, up to translating u0, and thus w0 as well, assume that w0
satisfies the hypothesis xw = x0 ≥ Xw in Proposition 3.2. Translating further and using parabolic regularity we may 
remove the dependence on t0. As a direct consequence, we have established:
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Corollary 3.3. Suppose that u satisfies (1.2) and (1.8) with φ satisfying (1.4), (1.5), and (1.6). Then there exists S0, 
depending only on u0 and φ, such that:

1. If r > 3, then there exists a positive constant B1, depending only on u0 and φ such that, for all t sufficiently large, 
we have

u(t,2t + tγ + √
t − S0) ≥ B−1

1 t−1e−√
t−tγ .

2. If r = 3, then there exist positive constants N̄ , and B2 such that, for all t sufficiently large, we have

u(t,2t + 2
√

t − S0) ≥ B−1
2 t−

(
1+N̄

)
e−2

√
t .

3. If r ∈ (1, 3), then there exists a positive constant B3, depending only on u0 and φ, such that, for all t ≥ 1, we have

u(t,2t + tγ + √
t − S0) ≥ B−1

3 e−tγ −B3t
2γ−1

.

3.4. From a bound on u on the right to the location of the front

We are now in a position to obtain the lower bounds (1.9), (1.11), and (1.13). Thanks to Corollary 3.3, we fit a 
suitable translate of a traveling wave solution for (3.11) underneath u, for x ≤ 2t + tγ + √

t .
Fix any AV > Cconv and let V be a traveling wave solution of

−2V ′ = V ′′ + V
(

1 − AV log
(M

V

)1−r)
, V (−∞) = M exp

{
− A

1/(r−1)
V

}
and V (+∞) = 0.

The existence, uniqueness up to translation, and monotonicity of V is given by, for example, [2]. We also recall 
(see [15,3]) the fact that there exists βr,Av > 0, depending only on r and AV , and κ > 0 such that, as ξ → ∞

V (ξ) ∼
{

κξe−ξ , if r > 3,

κξ1+βr=3,AV e−ξ , if r = 3,
(3.12)

and, if r ∈ (1, 3),

log(V (ξ)) + ξ

ξ (3−r)/2
∼ βr,AV

. (3.13)

Define v as

v(t, x) = V

(
x − 2t + 3

2
log t + s0

)
, if r > 3,

v(t, x) = V

(
x − 2t +

(3

2
+ N̄ + βr=3,AV

2

)
log t + s0

)
, if r = 3,

v(t, x) = V
(
x − 2t + (2B3 + βr,AV

)t2γ−1 + s0

)
, if r ∈ (1,3),

where the shift s0 is to be determined below and λ is as in Proposition 3.2 and Corollary 3.3.

Lemma 3.4. There exists T1 > 0 and s0 such that if s0 ≥ s0, then v(t, x) ≤ u(t, x) if r �= 3, t ≥ T1, and x ≤ 2t + tγ +√
t − S0 where S0 is the shift given in Corollary 3.3.

Proof. We prove the lemma for r > 3, so that γ < 1/2, the proof being the same in the other cases up to situational 
modifications. We use the parabolic maximum principle. First, we note that, up to increasing s0 and AV , we may 
ensure that

v(T1, x) ≤ u(T1, x) for all x ≤ 2T1 + √
T 1 + T

γ

1 − S0.

Second, we claim that, up to increasing s0, we have

v(t,2t + √
t + tγ − S0) ≤ u(t,2t + √

t + tγ − S0) for all t ≥ T1.
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Indeed, for t sufficiently large, (3.12) implies, as γ < 1/2:

v(t,2t + √
t + tγ − S0) = V

(√
t + tγ + 3

2
log t + s0 − S0

)
(3.14)

≤ 2κ
(√

t + tγ + 3

2
log t + s0 − S0

)
exp

{
−

(√
t + tγ + 3

2
log t + s0 − S0

)}
≤ 4κ

√
t t−3/2 exp

{
− √

t − tγ − s0 + S0

}
≤ 4κt−1 exp

{
− √

t − tγ − s0 + S0

}
.

It follows that

v(t,2t + √
t + tγ − S0) ≤ 4κeS0−s0B1u(t,2t + √

t + tγ − S0) ≤ u(t,2t + √
t + tγ − S0),

for T1 sufficiently large and all s0 ≥ S0 + log(4κB1).
Third, up to increasing AV , the ordering holds true near −∞. Indeed, using Lemma 3.1 and the assumptions (1.8)

on u0, it is easy to see that there exists δ > 0, depending only on u0 and φ such that, for any x < 0 with |x| is 
sufficiently large, the function

u(x) = δ cos((x − x)/100)

is a sub-solution for u for all t ≥ 1, so that δ = u(x) ≤ u(t, x) for all t ≥ 1. Thus, increasing AV , if necessary, we have 
that, for all t > 0,

lim
x→−∞v(t, x) < Me−A

1/(r−1)
V < δ ≤ inf

t≥1
lim inf
x→−∞u(t, x).

Now, assume for the sake of a contradiction that there exists a first touching time (tft, xft) such that

tft ≥ T1, xft ≤ 2tft + √
tft + t

γ

ft − S0,

and

u(tft, xft) = v(tft, xft),

and u(t, x) > v(t, x) for all t ∈ [T1, tft) and x < 2t +√
t + tγ −S0. Our goal is to obtain a contradiction by estimating 

φ � u and looking at the equation satisfied by u − v.
First, we estimate φ � u(tft, xft) using Lemma 3.1. By increasing s0 if necessary, we obtain

v(t,2t + √
t + tγ − S0) = V

(√
t + tγ + 3

2
log(t) + s0 − S0

)
≥ κ

2

(√
t + tγ + 3

2
log t + s0 − S0

)
exp

{
−

(√
t + tγ + 3

2
log t + s0 − S0

)}
≥ κ

2t3/2

(√
t + tγ + 3

2
log t + s0 − S0

)
exp

{
− √

t − tγ − s0 + S0

}
.

(3.15)

Since V is monotonic, γ < 1, and xft ≤ 2tft + t
1
2

ft + t
γ

ft − S0, it follows that up to increasing T1, we have that

u(tft, xft) = v(tft, xft) ≥ Me−tft,

which, in turn, implies that

log
( M

u(tft, xft)

)−(r−1) ≥ t
− r−1

2
ft log

( M

u(tft, xft)

)− r−1
2

.

In view of the bound on φ � u obtained in Lemma 3.1, we have that, at (tft, xft),

ut − uxx − u
(

1 − AV log
(M

u

)−(r−1)) ≥
(
AV − Cconv

)
u
(

log
(M

u

))1−r

> 0, (3.16)

where we used the fact that AV > Cconv in the last inequality. In addition, we note that
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vt−vxx − v
(

1 − AV log
(M

v

)−(r−1))
=

( 3

2(t + 1)
− 2

)
V ′ − V ′′ − V

(
1 − AV log

(M

V

)−(r−1)) = 3

2(t + 1)
V ′ ≤ 0.

(3.17)

Hence, setting ψ = u − v, (3.16) and (3.17), imply that

ψt − ψxx − cψ > 0,

where we define

c :=
u

(
1 − AV log

(
M
u

)−(r−1)
)

− v

(
1 − AV log

(
M
v

)−(r−1)
)

u − v
.

Notice that, due to the Lipschitz continuity of w �→ w

(
1 − AV log

(
M
w

)−(r−1)
)

on compact subsets of [0, M), c ∈
L∞. On the other hand, using that tft is the first time that ψ touches zero and xft is the location of a minimum of ψ , 
we have that

ψt − ψxx − cψ ≤ 0.

This yields a contradiction, finishing the proof. �
The lower bounds now follow easily.

Proof of (1.9), (1.11), and (1.13). We conclude the proof by noticing that, for all t ≥ T1,

inf
x≤2t−(3/2) log t

u(t, x) = inf
x≤0

u
(
t, x + 2t − 3

2
log t

)
≥ inf

x≤0
v
(
t, x + 2t − 3

2
log t

)
= inf

x≤0
V

(
x + s0

)
= V (s0),

(3.18)

which means that (1.9) holds. The proofs of (1.13) and (1.11) are similar and, thus, omitted. �
4. Proof of Proposition 3.2

To obtain estimates on the solution of (3.11), we consider the corresponding linearized problem with the Dirichlet 
boundary condition:

ṽt = ṽxx + ṽ, on {(t, x) : t > 0, x > 2t + (t + t0)
γ − t

γ

0 },
ṽ(t,2t + (t + t0)

γ − t
γ

0 ) = 0, for all t > 0,

ṽ(0, x) = w0(x), for all x > 0,

(4.1)

where w0 is as in Proposition 3.2.

4.1. The case r > 3

The following key lemma about solutions to (4.1) allows us to prove Proposition 3.2 when r > 3. We prove this 
lemma in Section 5.1.

Lemma 4.1. Assume r > 3. If t0 and xw are sufficiently large, depending only on γ , there exist positive constants T
and B , depending only on w0 and t0, such that, for all t ≥ T , we have ‖ṽ(t, ·)‖∞ ≤ Be−tγ and

ṽ(t,2t + tγ + √
t) ≥ B−1t−1 exp

{
− √

t − tγ
}
.
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We now finish the proof of Proposition 3.2. Let ṽ be as in Lemma 4.1. We may assume, without loss of generality, 
that T ≥ 1, and set

δ = min
{
B−1,B−1θge

−A
1/(r−1)
g , e−T

}
.

We also take a continuous function a(t) ≤ 1 for all t ≥ 0, to be determined, and set

v(t, x) = δa(t)ṽ(t, x). (4.2)

Using (4.1), we obtain

vt − vxx − v(1 − g(t, v)) = δa′ṽ + δaṽt − δaṽxx − δaṽ + δaṽg(t, δaṽ) = δṽ
(
a′ + ag(t, δaṽ)

)
. (4.3)

Thus, v is a sub-solution of w for t ≥ T as long as

a′ + ag(t, δaṽ) ≤ 0.

Using the upper bound on ṽ along with the definition of δ, we see that this inequality would hold if

a′ + aAg max
{

1,
[(

t + A
1

r−1
g

)−1
log

( 1

ae−tγ

)] r−1
2

}
log

( 1

ae−tγ

)1−r ≤ 0. (4.4)

A lengthy but straightforward computation using, in particular, that Ag ≥ 1, shows that (4.4) is satisfied if we take

a(t) = exp
{
β
[
(t + 1)2γ−1 − 1

]}
,

with a suitable β > 0.
Hence v is a sub-solution of w. Further, arguing as in [4, Section 3] and using the choice of δ and a, we have that 

v(T , x) ≤ w(T , x) for all x ≥ 2T + (T + t0)
γ − t

γ

0 . The maximum principle then implies that v(t, x) ≤ w(t, x) for 
all t > T and x > 2t + (t + t0)

γ − t
γ

0 . The conclusion of the proposition follows immediately from Lemma 4.1 since 
2t + tγ ≥ 2t + (t + t0)

γ − t
γ

0 .

4.2. The case r = 3

We follow here the same strategy as for r > 3, but the estimates on ṽ are obtained differently.

Lemma 4.2. For r = 3 and t sufficiently large, there exist λ and B > 0 such that

‖ṽ(t, ·)‖∞ ≤ Be−√
t ,

and

ṽ(t,2t + 2
√

t) ≥ B−1t−1−λ exp
{

− 2
√

t
}
.

With this lemma, proved in Section 5.2, one may repeat the argument for r > 3, building a sub-solution v(t, x) as 
in (4.2), with δ > 0 sufficiently small, and a(t) such that

a′ + aAg max
{

1,
(
t + √

Ag

)−1
log

( e
√

t

Cδa

)}
log

( e
√

t

Cδa

)−2 ≤ 0.

The above inequality is satisfied with a(t) = (t + √
Ag)

−N for all t ≥ 1 so long as δ is chosen small enough and N is 
chosen large enough, depending only on Ag and C.
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4.3. The estimate when r ∈ (1, 3)

Here we directly construct a sub-solution of w. We seek a sub-solution ṽ solving

ṽt ≤ ṽxx + ṽ, for t > 0, x > 2t + (t + 1)γ − 1,

ṽ(t,2t + (t + 1)γ − 1) = 0, for t > 0.
(4.5)

Recall that t0 = 1 in parts 2 and 3 of Proposition 3.2. Given a > 0, set

v(t, x) = x

(1 + t)3 exp
{

− x − γ

2
x
(

1 + t
)γ−1 −

(
1 + t

)γ −
[ γ 2

4(2γ − 1)
+ a

]
(1 + t)2γ−1 − x2

2(1 + t)

}
. (4.6)

Here, the key computation is the following:

Lemma 4.3. There exists a0 > 0 such that if a ≥ a0 then ṽ(t, x) = v(t, x − (2t + (t + 1)γ − 1)) solves (4.5).

We delay the proof of Lemma 4.3 until Section 5.3 and proceed with the proof of Proposition 3.2.

A bound for small times Unfortunately, v is not compactly supported at t = 0, so we need to “fit it under” w at a later 
time. To do this, we first obtain a preliminary lower bound on w at time 1 by using the infinite speed of propagation 
of the heat equation. Recall that w0 ≥ δw1(−∞,xw) and 1 − g(t, w) ≥ 0. Hence, we have

wt − wxx ≥ 0,

so that w is a super-solution to the heat equation with a Dirichlet boundary condition fixed at

x0 := 2 · 2 + (2 + t0)
γ − t

γ

0 = 3γ + 3,

on the time interval [0, 2]. It follows that

w(2, x + x0) ≥ 1√
8π

∞∫
0

w0(y+x0)
[
e−|x−y|2/8 − e−|x+y|2/8

]
dy

≥ δwe−x2/8

√
8π

xw−x0∫
0

e−y2/8
[
exy/4 − e−xy/4

]
dy

≥ δwe−x2/8−(xw−x0)
2/8

√
8π

2

x

(
cosh

(x(xw − x0)

4

)
− 1

)
≥ x

C
δwe−x2/8,

(4.7)

for some C independent of all parameters, as long as xw ≥ x0 + 1. We used here that cosh(x) − 1 ≥ x2/C for some 
universal C > 0. On the other hand, from the explicit expression (4.6) for v, we get

v(2, x − x̄0) ≤ C(x − x0) exp
{

− x − x
γ

2
3γ−1 − x2

6
+ xx0

3

}
.

Thus, there exists ε > 0 such that

εṽ(2, x) = εv(2, x − x̄0) ≤ w(2, x) for x ≥ x̄0 = 3γ + 3.

The subsolution We now follow the same strategy as before, constructing a sub-solution of the form v(t, x) =
δa(t)ṽ(t, x) on

P := {(t, x) : t ≥ 1, x > 2t + (1 + t)γ − 1}.
Another lengthy but straightforward computation shows that v(t, x) is a sub-solution for w on P if we choose a(t) =
exp

{
− βt2γ−1

}
for a suitable β and δ sufficiently small.
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Note also that ṽ and w satisfy the same boundary conditions at x = 2t + (1 + t)γ − 1. Finally, choosing δ ≤ ε and 
using the computation (4.7) and the discussion following it, we see that

v(2, x) ≤ w(2, x) for all x > 3 + 3γ .

The conclusion of the proposition when r ∈ (1, 3) follows by simply using the explicit form of v(t, x).

5. Estimates on the linearized KPP equation

In this section, we adopt the convention that any constant denoted C may chance line-by-line but depends only on 
φ and u0.

5.1. The case r > 3: the proof of Lemma 4.1

The key observation is that γ < 1/2 when r > 3. Thus, the tγ term is of a lower order than the diffusive scale 
√

t . 
This allows us to use the strategy in [17], obtaining energy estimates in self-similar variables. Since the present proof 
is similar to that in [17], we provide a rather brief treatment.

Proof of Lemma 4.1. We begin by removing an exponential factor from ṽ and changing to the moving frame: let

z(t, x) := exṽ(t,2t + (t + t0)
γ − t

γ

0 + x), x > 0.

This function satisfies

zt = zxx + γ (t + t0)
γ−1

(
zx − z

)
, for t > 0, x > 0,

z(t,0) = 0, for t > 0,

z(0, x) = exw0(x), for x > 0.

(5.1)

We now turn to self-similar variables, which are natural for the diffusive process. Let

τ = log
(

1 + t

t0

)
, y = (t + t0)

−1/2x,

and ζ(τ, y) = z
(
t0(e

τ − 1), t1/2
0 eτ/2y

)
. Then ζ satisfies the equation

ζτ = ζyy + y

2
ζy + 1 + γ (t0e

τ )γ−1/2ζy −
(

1 + γ (t0e
τ )γ

)
ζ.

We remove the integrating factor above, setting

ζ(τ, y) = e−(τ+t
γ
0 (eγ τ −1))ζ̄ (τ, y),

so that ζ̄ satisfies

ζ̄τ = Lζ̄ + γ t
γ−1/2
0 e(γ−1/2)τ ζ̄y, (5.2)

with

L := ∂2
y + y

2
∂y + 1. (5.3)

It is now heuristically clear that the last term in (5.2) should be not important due to the e(γ−1/2)τ term and the fact 
that γ < 1/2. The following lemma is proved in Appendix A.

Lemma 5.1. Let ζ̄ solve

ζ̄τ = Lζ̄ + εe(γ−1/2)τ ζ̄y,

with initial data ζ̄ (τ = 0, ·) = ζ̄0. There exists ε0 > 0 such that for all compact subsets K ⊂ R+ there exists CK > 0
such that for all ε < ε0,
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ζ̄ (τ, y) = y
(e−y2/4

2
√

π

( ∞∫
0

ξ ζ̄0(ξ)dξ + O(ε)
)

+ e(γ−1/2)τ h̄(τ, y)
)
,

for all y > 0, τ > 0, and such that |h̄(τ, y)| ≤ CK for all τ > 0 and y ∈ K .

Undoing the various changes of variable, we get

ṽ(t,2t + (t + t0)
γ − t

γ

0 + x) = e−xz(t, x) = e−xζ
(

log
(

1 + t

t0

)
,

x

(t + t0)1/2

)
(5.4)

= xe−xt0e
−((t+t0)

γ −t
γ
0 )

(t + t0)3/2

(e
− x2

4(t+t0)

2
√

π

( ∞∫
0

ξeξw0(
√

t0ξ)dξ + O
(
t
γ− 1

2
0

))
+

(
1 + t

t0

)γ− 1
2
h(t, x)

)
,

where h(t, x) = h̄
(

log
(

1 + t
t0

)
, (t + t0)

− 1
2 x

)
.

First, notice that the L∞ bound on ṽ in Lemma 4.1 follows immediately from the expression above on sets of the 
form [2t + tγ , 2t + tγ + σ

√
t]. To obtain bounds on sets of the form [2t + tγ + σ

√
t, ∞), we simply use that e−t ṽ is 

a sub-solution to the heat equation on R (see, e.g., (1.20)). Hence, we obtain that, for x ≥ 0,

ṽ(t,2t + tγ + σ
√

t + x) ≤ Cet

√
t

exp
{

− (2t + tγ + σ
√

t + x)2

4t

}
≤ Ce−√

t−tγ , (5.5)

where C is some constant depending only on the initial data and γ .
Second, we have

∞∫
0

ξeξw0(t
1/2
0 ξ)dξ + O(t

γ− 1
2

0 ) ≥ δw

xw/t
1/2
0∫

0

ξeξ dξ + O(t
γ− 1

2
0 ).

Choosing first xw ≥ √
t0 and t0 � 1 so that the first two terms in the parentheses in (5.4) are positive and then choosing 

T0 large depending on t0 and α, we have that, for all 0 ≤ x ≤ √
t + t0 and t ≥ T0,

ṽ(t,2t + (t + t0)
γ − t

γ

0 + x) ≥ x

C

e−x−((t+t0)
γ −t

γ
0 )

(t + t0)3/2 .

The lower bound on ṽ(t, 2t + tγ +√
t) is immediate after evaluating at x = tγ −

(
(t + t0)

γ − t
γ

0

)
+√

t . This concludes 
the proof. �
5.2. The case r = 3: the proof of Lemma 4.2

Note that in this case γ = 1/2. As a consequence, the drift induced by the moving boundary has the same order as 
the diffusion. It is thus useful to modify the tγ term in the moving boundary by a small multiplicative factor.

Proof of Lemma 4.2. To begin, fix ε > 0. Work in the moving frame 2t +[(t + 1)1/2 − 1] and remove an exponential 
factor, as previously:

z(t, x) := exṽ(t, x + 2t + [(1 + t)1/2 − 1]).
Passing then to self-similar coordinates

τ = log(t + 1) and y = (t + 1)−1/2x,

so that

ζ(τ, y) := z
(
eτ − 1, eτ/2y

)
,

we see that ζ satisfies
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ζτ = Lζ + 1

2
ζy −

(
1 + 1

2
eτ/2

)
ζ,

with L as in (5.3). Finally, pulling out the zeroth order factor

ζ(τ, y) = e−τ−(eτ/2−1)ζ̄ (τ, y),

we see that ζ̄ solves

ζ̄τ = Lζ + 1

2
ζy. (5.6)

We finish using the following lemma, proved in Appendix A. This result falls outside of [17] and Lemma 5.1
because the ζ̄y term in (5.6) is no longer a remainder term.

Lemma 5.2. Let ζ̄ solve (5.6), then it can be represented as

ζ̄ (τ, y) = exp
{

− y2

8
− y

4

}(( ∫
R+

ψ(y)e
y2

8 + y
4 ζ̄ (0, y) dy

)
ψ(y)e−λτ + yh̄(τ, y)e−μτ

)
. (5.7)

Here, μ > λ > 0, ‖ψ‖2 = 1, and ψ and h(τ, y) are bounded on all compact subsets of [0, ∞). Also, for every compact 
set K ⊂ [0, ∞), there exists CK > 0 such that C−1

K y ≤ ψ(y) ≤ CKy, for all y ∈ K .

We are now able to establish the upper bound on ṽ for all x ∈ [2t + ((1 + t)1/2 − 1), 2t + 2
√

t]. Indeed, returning 
to the original variables in (5.7), we find

|ṽ(t, x)| = e−(1+t)1/2yζ(τ, y) = e−(1+t)1/2y−τ−(eτ/2−1)ζ̄ (τ, y)

≤ Ce−(1+t)1/2y−τ−(eτ/2−1)− y2

8 − y
4
(
ψ(y)e−λτ + h(τ, y)e−μτ

) ≤ Ce−√
t .

(5.8)

In fact, the estimate (5.8) holds for all x ≥ 2t + [(1 + t)1/2 − 1] since, as above, ṽ may be estimated for x ∈
[2t + 2

√
t, ∞) using the same approach as in (5.5) (see also (1.20)). Indeed,

ṽ(t, x) ≤ C
√

t

x
et− x2

2t ≤ C√
t
et− (2t+2

√
t)2

4t = C√
t
e−2

√
t−1 ≤ Ce−√

t .

We now establish the lower bound from (5.7). Taking t sufficiently large and evaluating at x = 2t + 2
√

t , we see 
that

ṽ(t,2t + 2
√

t) ≥ α

t1+λ
e−2

√
t ,

for some α depending only on u0. This concludes the proof. �
5.3. The case r ∈ (1, 3): the proof of Lemma 4.3

To motivate some of the steps in the following proof, we briefly discuss a heuristic. In the stationary frame, as we 
did in (1.20), we may always estimate ṽ above by ignoring the Dirichlet boundary condition and using the fact that 
e−t ṽ solves the heat equation. Thus,

ṽ(t, x + 2t + tγ ) � t−1/2 exp
{
t − (x + 2t + tγ )2

4t

}
= t−1/2 exp

{
− x − x2

4t
− x√

t

tγ−1/2

2
− tγ − t2(γ−1/2)

4

}
.

Recalling that γ > 1/2, we see that on the diffusive scale x ∼ √
t , the Gaussian term x2/4t and the t−1/2 in front are 

(much) lower order and, thus, negligible, but all other terms are large. Hence, our sub-solution should contain all such 
terms to be reasonably sharp. In particular, while the xtγ−1 term appears small at first glance since γ < 1, it is not 
negligible in the diffusive scale x ∼ √

t . While the terms depending only on t show up as obvious integrating factors, 
this term will not. Hence, the key to the proof below is in carefully taking account of this term. Note that here we see 
the effect of γ > 1/2.
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Proof of Lemma 4.3. We show how to “guess” the form of the sub-solution v. We begin by removing an exponential 
from ṽ and changing to the moving frame. Define, for x ∈ R+,

z(t, x) := exṽ(t,2t + (t + 1)γ − 1 + x),

so that (4.5) becomes

zt ≤ zxx + γ (t + 1)γ−1(zx − z), t > 0, x > 0,

z(t,0) = 0,

z(0, x) = exw0(x).

(5.9)

Turning to self-similar variables,

τ = log(1 + t), y = (t + 1)−1/2x, and ζ(τ, y) = z(eτ − 1, eτ/2y),

we wish to construct ζ that satisfies the inequality

ζτ ≤ ζyy + y

2
ζy + γ e(γ−1/2)τ ζy − γ eγ τ ζ. (5.10)

As γ > 1/2, the drift in (5.10) is not a perturbation anymore. The heuristic discussion preceding this proof indicates 
that we should consider

ζ(τ, y) = e−αye(γ−1/2)τ

ψ(τ, y),

with α ∈R to be determined. Then we require

ψτ ≤ Lψ + (γ − 2α)e(γ−1/2)τψy −
(

1 + α(γ − α)e(2γ−1)τ + γ eτγ
)
ψ − α(1 − γ )ye(γ−1/2)τψ, (5.11)

with L as in (5.3). To remove the drift term, we set α = γ /2. Then (5.11) becomes

ψτ − Lψ +
(

1 + γ 2

4
e(2γ−1)τ + γ eτγ

)
ψ + γ

2
(1 − γ )ye(γ−1/2)τψ ≤ 0.

Further, writing

ψ(τ, y) = exp
{

− τ − eγ τ − γ 2

4(2γ − 1)
e(2γ−1)τ

}
�(τ, y),

we arrive at

�τ − L� + 1

2
γ (1 − γ )ye(γ−1/2)τ� ≤ 0. (5.12)

To deal with the last term in (5.12), let a, a′, b > 0 be constants to be determined and define

�(τ, y) = y exp
{

− aeτ(2γ−1) − a′τ − y2

b

}
.

By a direct computation, we see that

�τ−L� + γ

2
(1 − γ )ye(γ−1/2)τ�

=
[
− a′ − a(2γ − 1)eτ(2γ−1) − y2

b

(4

b
− 1

)
+

(6

b
− 3

2

)
+ γ (1 − γ )

2
ye(γ−1/2)τ

]
�.

(5.13)

It is clear that to have (5.12), we must choose b < 4. For simplicity, we take b = 2, and

a′ = 6

b
− 3

2
= 3

2
,

so that (5.13) becomes

�τ − L� + γ
(1 − γ )ye(γ−1/2)τ� =

[
− a(2γ − 1)eτ(2γ−1) + γ (1 − γ )

ye(γ−1/2)τ − y2 ]
�.
2 2 2
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The choice

a ≥ γ 2(1 − γ )2

8(2γ − 1)

ensures that (5.12) holds. Returning to our original variables, we see that

v(t, x) = ṽ(t,2t + (t + 1)γ − 1 + x) = e−xζ(log(1 + t), (t + 1)−1/2x)

= e−xe−α(t+1)−1/2x(1+t)γ−1/2
ψ(log(1 + t), (t + 1)−1/2x)

= 1

1 + t
exp

{
− x − γ

2
x
(

1 + t
)γ−1 − (1 + t)γ − γ 2(1 + t)2γ−1

4(2γ − 1)

}
�(log(1 + t), (t + 1)−1/2x)

= x

(1 + t)3 exp
{

− x − γ

2
x(1 + t)γ−1 − (1 + t)γ −

[ γ 2

4(2γ − 1)
+ a

]
(1 + t)2γ−1 − x2

2(1 + t)

}
.

This concludes the proof. �
6. The Fisher-KPP equation with a Gompertz non-linearity

A side effect of our analysis gives the asymptotics for a related local equation:

ut − �u = fr(u). (6.1)

Here, we assume that fr ∈ C1, r ∈ (1, ∞), and there exist positive constants θf , δf , and Af such that

fr(0) = 0, fr (u) > 0 for all u ∈ (0, θf ), fr(θf ) = 0, fr (u) = 0 for all u ≥ θf , (6.2)

and

u
(

1 − Af log
( 1

u

)1−r) ≤ fr(u) ≤ u
(

1 − A−1
f log

(1

u

)1−r)
, (6.3)

for u ∈ (0, δf ).

Theorem 6.1. Suppose that the initial condition u0(x) for (6.1) is as in (1.8). If r > 3, then the solution u(t, x)

propagates with a logarithmic delay:

lim
L→∞ lim sup

t→∞
sup
x≥L

u
(
t,2t − 3

2
log t + x

)
= 0, (6.4)

and

lim
L→∞ lim sup

t→∞
sup

x≤−L

∣∣∣u(
t,2t − 3

2
log t + x

)
− θf

∣∣∣ = 0. (6.5)

If r = 3, u(t, x) propagates with a larger logarithmic delay: there exists SA > sA > 3/2 such that

lim inf
t→∞ sup

x≤0

∣∣∣u(
t,2t − SA log t + x

)
− θf

∣∣∣ = 0, (6.6)

and

lim
t→∞ sup

x≤0
u
(
t,2t − sA log t + x

)
= 0. (6.7)

If r ∈ (1, 3), then the delay is algebraic: there exist Cf > cf > 0, depending only on fr , such that

lim
t→∞ sup

x≥0
u
(
t,2t − cf t

3−r
1+r + x

)
= 0, (6.8)

and

lim
t→∞ sup

x≤0

∣∣∣u(
t,2t − Cf t

3−r
1+r + x

)
− θf

∣∣∣ = 0. (6.9)
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The proof of (6.4) follows directly from Section 3. The proofs of (6.5), (6.6), and (6.9) follow from what was 
done in Section 4, combined with a standard argument saying that the convergence is necessarily to the steady state 
θf (see, e.g., [17]). The bounds (6.7) and (6.8) need additional ingredients; the work is similar so we only detail the 
computations for (6.8). Indeed, since our non-linearity is local, we cannot “pull” information from the front as we did 
above when we used the value of u at the front to bound φ � u far ahead of the front. In order to get around this, we 
state a weak lower bound on u.

Lemma 6.2. Let the hypotheses of Theorem 6.1 be satisfied. Then there exists δf > 0, depending only on f , such that

u(t, x) ≥ exp{−δf tγ }
for all t sufficiently large and all x ≤ 2t + tγ , where we again define γ = 2/(1 + r).

Such a bound follows from the analysis of the lower bound in part (3) of Proposition 3.2 and requires no new ideas. 
As such, we omit the proof.

The main point in the proof of Theorem 6.1 is to use the lower bound in Lemma 6.2 on u along with the form of 
the non-linearity to replace the estimate of φ � u that we used in the proof of the upper bound in Theorem 1.1 when 
r ∈ (1, 3).

Proof of (6.8) assuming Lemma 6.2. We use a super-solution

v(t, x) := B exp
{

−
(
x − 2t + 2cf t2γ−1

)}
,

with cf > 0 to be determined. Then v satisfies

vt = vxx + v
(

1 − 2cf (2γ − 1)t2γ−2
)
.

On the other hand, using the bound on f (6.3) along with Lemma 6.2, we have that, for all t sufficiently large and 
x ≤ 2t + tγ ,

ut − uxx = fr(u) ≤ u
(

1 − Af log
( 1

u(t, x)

)1−r) ≤ u
(

1 − Af δ1−r
f tγ (1−r)

)
.

Recalling 2γ − 2 = γ (1 − r), and choosing cf such that Af δr−1
f ≥ 2cf (2γ − 1), we see that v is a super-solution 

for u. �
7. The local-in-time Harnack inequality: Proposition 1.2

Proof of Proposition 1.2. Up to a shift in time, we may assume that t = 0. We may also assume that c ≡ 0. Indeed, 
let

u±(t, x) = e±t‖c‖L∞([0,T ]×R)w(t, x),

where w solves the heat equation

wt = wxx,

with the initial condition w(t = 0, x) = u(t = 0, x). Then u+ is a super-solution to u while u− is a sub-solution to u. 
Hence, we have

u(T , x + y)

‖u−‖1−1/p
L∞ u(T , x)1/p

≤ u+(T , x + y)

‖u−‖1−1/p
L∞ u−(T , x)1/p

≤ e2‖c‖L∞T w(T , x + y)

‖w‖1−1/p
L∞ w(T ,x)1/p

.

In view of this inequality, it is enough to prove the claim for w, that is, solutions to the heat equation.
Let G be the one-dimensional heat kernel G(t, x) = (4πt)−1/2e−x2/(4t). Fix s = (p + 1)/2p, notice that s ∈ (0, 1)

and sp > 1, and let q be the dual exponent of p. Then we have
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w(T ,x + y) =
∫
R

w(0, z)G(T , x + y − z)dz

≤ ‖w‖1−1/p∞
∫
R

w(0, z)1/pG(T , x + y − z)sG(T , x + y − z)1−sdz

≤ ‖w‖1−1/p∞
(∫
R

w(0, z)G(T , x + y − z)spdz
)1/p∥∥∥G1−s(T , ·)

∥∥∥
q

≤ CpT
s
2 − 1

2p ‖w‖1−1/p∞
(∫
R

w(0, z)G(T , x + y − z)spdz
)1/p

.

(7.1)

Above, we have used that

∥∥∥G1−s(T , ·)
∥∥∥

q
= (4πT )−

1
2 (1−s)

⎛
⎝∫
Rn

e−q(1−s) x2
4T dx

⎞
⎠

1
q

= (4πT )−
1
2 (1−s)

((
4T π

q(1 − s)

) 1
2
) 1

q

= CpT
1

2q
− 1

2 (1−s) = CpT
s
2 − 1

2p .

We now seek a bound on G(T , x + y − z)sp in terms of G(T , x − z). To this end, we recall that sp > 1, let x ′ = x − z

and we compute

G(T ,x′ + y)sp

G(T ,x′)
= (4πT )

(1−sp)
2 exp

{
− sp(x′ + y)2

4T
+ |x′|2

4T

}

= (4πT )
(1−sp)

2 exp
{

− sp|x′|2
4T

− spx′y
2T

− spy2

4T
+ |x′|2

4T

}

= (4πT )
(1−sp)

2 exp
{

− (sp − 1)|x′|2
4T

− spx′y
2T

− spy2

4T

}

≤ (4πT )
(1−sp)

2 exp
{

− (sp − 1)|x′|2
4T

+ (sp − 1)|x′|2
4T

+ (sp)2y2

4T (sp − 1)
− spy2

4T

}

= (4πT )
(1−sp)

2 exp
{ (sp)2y2

4T (sp − 1)
− spy2

4T

}
= (4πT )

(1−sp)
2 exp

{ spy2

4T (sp − 1)

}
.

Define β = sp
4(sp−1)

. Using the above bound in (7.1), we obtain

w(t, x + y) ≤ Cpe
βy2

T T
s
2 − 1

2p
+ (1−sp)

2p ‖w‖1−1/p∞
(∫
R

w(0, z)G(T , x − z)dz
)1/p

= Ceβy2/T ‖w‖1−1/p∞ w(t, x)1/p.

In the second line we used the explicit choice of s to simplify the exponent of T . This concludes the proof. �
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Appendix A. Proofs of Lemmas 2.2, 5.1 and 5.2

Proof of Lemma 5.1. The proof of this lemma is similar to that of a corresponding estimate in [17]. However, the 
proof there only deals with moving boundary conditions of the form 2t+r log(t). Hence, for completeness, we provide 
a streamlined proof. Recall that ζ̄ solves
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ζ̄τ = Lζ̄ + εe(γ−1/2)τ ζ̄y .

To rectify the fact that the operator L is not self-adjoint, we remove a Gaussian term. Let

ζ̄ (τ, y) = e−y2/8ζ ∗(τ, y),

then ζ ∗ satisfies

ζ ∗
τ + Mζ ∗ = εe(γ−1/2)τ

(
ζ̄ ∗
y − y

4
ζ̄ ∗), (A.1)

where

Mζ ∗ := −ζ ∗
yy +

(y2

16
− 3

4

)
ζ ∗.

The principle eigenvalue of M is associated to the eigenfunction

ψ(y) := (2
√

π)−1/2ye−y2/8.

Define the non-negative quadratic form

Q(f ) := 〈Mf,f 〉 =
∫
R

(
f 2

y +
(y2

16
− 3

4

)
f 2

)
dy,

for all f ∈ H 1(0, ∞) such that yf ∈ L2(R+).
Multiplying (A.1) by ζ ∗ and integrating, we obtain

∂τ ‖ζ ∗‖2
L2(R+)

+ 2Q(ζ ∗) = −2εe(γ−1/2)τ

∞∫
0

y

4
(ζ ∗)2dy ≤ 0.

Hence ζ ∗ is bounded uniformly in L2 independently of τ . Next, let ζ ∗
1 = 〈ψ, ζ ∗〉. We have

|∂τ ζ
∗
1 | ≤ εe−(γ−1/2)τ (|〈(−ψy), ζ

∗〉| + |ζ ∗
1 |) � εe−(γ−1/2)τ‖ζ ∗‖2. (A.2)

Integrating this inequality in τ and using the L2 bound above, we obtain

|ζ ∗
1 (τ ) − ζ ∗

1 (0)| � ε‖ζ̄ (0, ·)‖2. (A.3)

We now show that the component of ζ ∗ that is orthogonal to ψ decays in time. Let

ζ ∗⊥ := ζ ∗ − ζ ∗
1 ψ,

then

Q(ζ ∗⊥) ≥ 1

2
‖ζ ∗⊥‖2

2.

Using (A.1), we obtain

∂τ‖ζ ∗⊥‖2
L2(R+)

+ 2Q(ζ ∗⊥) � εe−(γ−1/2)τ‖ζ ∗(0, ·)‖2‖ζ ∗⊥‖2,

from which we deduce that

‖ζ̄⊥(τ, ·)‖2 � e−(γ−1/2)τ‖ζ̄ (0, ·)‖2.

Gathering all estimates concludes the proof. �
Proof of Lemma 5.2. Recall that ζ̄ solves

ζ̄τ = Lζ̄ + 1

2
ζ̄y .

To pass to a self-adjoint form, write
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ζ̄ (τ, y) = exp
{

− y2

8
− y

4

}
ζ ∗(τ, y),

so that ζ ∗ solves

ζ ∗
τ + M1ζ

∗ = 0,

where,

M1ζ
∗ := −ζ ∗

yy +
[(y2

16
− 3

4

)
+

(y

8
+ 1

16

)]
ζ ∗ = Mζ ∗ +

(y

8
+ 1

16

)
ζ ∗.

This operator is now self-adjoint with a compact resolvent. Let ψ and λ be the principal eigenfunction and eigenvalue 
of the operator above satisfying the boundary condition ψ(0) = 0 and the normalization ‖ψ‖L2(R+) = 1.

Observe that

Q(f ) := 〈Mf,f 〉 = 〈Mf,f 〉 +
〈(y

8
+ 1

16

)
f,f

〉
≥ 0,

and thus λ > 0.
Write

ζ ∗ := 〈ψ,ζ ∗〉ψ + ζ ∗⊥,

so that

Q(ζ ∗⊥) ≥ μ‖ζ ∗⊥‖2
2, (A.4)

where μ is the second eigenvalue of M . After a time differentiation we have

〈ψε, ζ
∗〉(τ ) = 〈ψ,ζ ∗〉(0)e−λτ ,

and as a consequence of (A.4), that

‖ζ ∗⊥‖2(τ ) ≤ ‖ζ ∗⊥‖2(0)e−μτ .

Then, locally we have ‖ζ ∗⊥‖∞(τ ) � e−μτ by parabolic regularity. This yields

ζ̄ := exp
{

− y2

8
− y

4

}(( ∫
R+

ψ(y) exp
{y2

8
+ y

4

}
ζ̄ (0, y) dy

)
ψ(y)e−λτ + h̄(τ, y)e−μτ

)
, (A.5)

where h̄ is bounded in τ , locally in y. To finish, we simply note that, by elliptic regularity theory, for any compact set 
K ⊂ [0, ∞), there exists CK > 0 such that

y

C−1
K

≤ ψ(y) ≤ CKy for all y ∈ K

since ψ(0) = 0. This concludes the proof. �
Proof of Lemma 2.2. As before, we pass to the moving frame and remove an exponential: let

v(t, x) = e−x+(2t−s̃φ log(t+t0))v(t, x − (2t − s̃φ log(t + t0))).

Then, we want

v̄t ≥ v̄xx − v̄x

s̃φ

t + t0
+ v̄

(
s̃φ

t + t0
− ν

)
.

Changing now to self-similar variables and recalling the definition ε = t
−1/2
0 , let

τ = log

(
1 + t

t0

)
, y = x√

t + t0
, ζ(τ, y) = v̄

(
t0(e

τ − 1), t
1/2
0 eτ/2y

)
,

and N(τ, y) := t0e
τ ν̄

(
t0(e

τ − 1), t
1/2
0 eτ/2y

)
= 1

CA
(
y + εe−τ/2((S − s̃ )(τ + log(t )) + L)

)2 .
φ φ φ 0
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The important point here is that N(∞, ·) is neither infinity nor zero as it would be for another choice of r . This is 
what induces the larger delay.

Then we must find ζ that satisfies:

ζτ − Lζ + (
1 − s̃φ + N(0, y)

)
ζ ≥ s̃φεe−τ/2ζy + ζ (N(0, y) − N(τ, y)) .

We have changed the order to emphasize that the right hand side is a small error.
Let ζ̄ = e−τ/2ey2/8ζ . The above yields

ζ̄τ + Mζ̄ +
(

3

2
− s̃φ + N(0, y)

)
ζ ≥ s̃φεe−τ/2ζ̄y − y

4
s̃φεe−τ/2ζ̄ + ζ̄ (N(0, y) − N(τ, y)) . (A.6)

We now define ζ̄ . As above M + N(0, ·) is self-adjoint with a compact resolvent. Let ζ̄0 and λ0 be its principle 
eigenelements. Using the Rayleigh quotient and testing with ye−y2/8, we see immediately that λ0 > 0. We need only 
verify that ζ̄ satisfies (A.6); indeed, setting s̃φ = 3/2 + λ0/2,

ζ̄τ + Mζ̄ +
(

3

2
− s̃φ + N(0, y)

)
ζ − s̃φεe−τ/2ζ̄y + y

4
s̃φεe−τ/2ζ̄ − ζ̄ (N(0, y) − N(τ, y))

= λ0

2
ζ̄ − s̃φεe−τ/2ζ̄y + y

4
s̃φεe−τ/2ζ̄ − ζ̄ (N(0, y) − N(τ, y)) .

The first, third, and fourth terms are all positive. A simple maximum principle argument yields that −ζ̄y is positive for 
all y ≥ y0 for some y0 > 0. The Hopf maximum principle implies (λ0/2)ζ̄ − s̃φεe−τ/2ζ̄y > 0 for all y > e−τ/2/C for 
some C > 0. Thus, ζ̄ satisfies (A.6) on [e−τ/2/C, ∞), which, after translating back to physical variables, concludes 
the proof. �
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