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Abstract

We consider the non-local Fisher-KPP equation modeling a population with individuals competing with each other for resources
with a strength related to their distance, and obtain the asymptotics for the position of the invasion front starting from a localized
population. Depending on the behavior of the competition kernel at infinity, the location of the front is either 2t — (3/2) logz + O(1),
as in the local case, or 2t — O(t’3 ) for some explicit B € (0, 1). Our main tools here are a local-in-time Harnack inequality and an
analysis of the linearized problem with a suitable moving Dirichlet boundary condition. Our analysis also yields, for any g € (0, 1),
examples of Fisher-KPP type non-linearities fg such that the front for the local Fisher-KPP equation with reaction term fz is at
2t — 0 (tP).
© 2019 Published by Elsevier Masson SAS.

Résumé

Dans cet article, nous considérons 1’équation de Fisher-KPP non locale, qui modélise la dynamique d’une population ou la force
de compétition pour les ressources dépend de la distance entre les individus. Nous obtenons une asymptotique précise en temps long
de la position d’une population qui est initialement localisée en espace. Selon la décroissance a I’infini du noyau de compétition,
la position du front est soit 2t — (3/2)logt + O (1), comme dans le cas de I’équation locale, soit 2t — oh), pour un 8 € (0, 1)
calculé explicitement. Les outils les plus importants utilisés dans cet article sont une version locale en temps d’une inégalité de
Harnack parabolique ainsi qu’une analyse fine du probleme linéarisé avec une condition de bord de Dirichlet dynamique. Notre
analyse donne aussi, pour tout 8 € (0, 1), des exemples de non-linéarités de type Fisher-KPP pour lesquelles le front se trouve en
2t — 0(tP).
© 2019 Published by Elsevier Masson SAS.
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1. Introduction

The Fisher-KPP equation

U =uyy +u(l —u) (1.1)

is one of the simplest models for population spreading, accounting for a competition for resources. However, (1.1) only
accounts for a local competition between individuals. When this competition is non-local, one is led to the non-local
Fisher-KPP equation

Uy —uyy =u(l —pxu), t>0,xekR,

1.2
u(0, ) = uop. 1-2)

Here, ¢ is a probability density that represents the strength of the competition between individuals a given distance
apart. Equation (1.2) has garnered much interest recently, mostly for two reasons. First, it does not admit a comparison
principle, leading to inherent technical difficulties — even proving a uniform upper bound on u is non-trivial [19].
Second, unusual behavior may occur, such as the existence of oscillating wave trains behind the front [12-14,21].

Our interest is in the spreading of the solutions of (1.2) when the initial density ug is localized. To motivate our
work, we recall the known results for the local Fisher-KPP equation (1.1). Going back to the work of Bramson, it is
known that if u¢ is compactly supported, the front of u is located at

3
X (1) =21 — > logt +so. (1.3)

where so is a shift depending only on ug [5,6], with less precise asymptotics obtained earlier by Uchiyama [27].
These proofs have been simplified in recent years [17,26], with some refinements in [23,24], and also extended to the
spatially periodic case [18]. One may think of X (r) = 2t as the position of a traveling wave, and d(r) = (3/2)log?
as the delay due to the fact that the initial condition u¢ is compactly supported, so that the solution lags behind the
traveling wave.

In the non-local case considered in the present paper, we show that the front position depends on the rate of decay
of the kernel ¢ at infinity. When ¢ decays fast enough, solutions of (1.2) spread as those of the local equation: the
front is at a position as in (1.3), up to a constant order error. However, when ¢ decays slowly, and the competition at
large distances is relatively strong, the delay behind the traveling wave position 2¢ is not logarithmic but algebraic, of
the order O(t#), with 8 depending only on the rate of decay of ¢.

We now make our assumptions more precise. First, we assume that ¢ is an even, continuous, and bounded proba-
bility density:

/qb(x)dx =1, and ¢((x)=¢(—x)forall x e R. (1.4)
R

In addition, ¢ has some “mass” near the origin, that is, there exists o > 0 such that

¢ (x) = 0pl[—04.04]- (1.5

The behavior of u depends strongly on the tail behavior of ¢. Here we make two different assumptions, that are helpful
for the upper and lower bounds, respectively. The first assumption, an upper bound on the tail of ¢, is that there exists
Ay > 0andr > 1 such that, forall R > 1,

/¢(x)dx < ApR™HL. (1.6)
R

Sometimes we will need to complement this with a lower bound on the tail: for all R > 1, we have

/¢(x)dx > Ay R (1.7)
R
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Roughly, (1.6) and (1.7) mean that ¢ ~ x~" for x > 1.
For the initial condition, we assume that u is localized to the left of some point xg:

O0<ug=<l, dxo such that ug(x) =0 forall x >x9, and liminfug(x) > 0. (1.8)
X—>—0Q

We expect our results to hold when u( has “fast” exponential decay, that is, up(x)elt9* — 0asx — 0 forsome e > 0,
rather than compactly supported on the right. However, we recall that the front position asymptotics for solutions of
(1.1) with ug that has a sufficiently slow exponential tail on the right is different from (1.3), see [5,6].

The main result of this paper is the following.

Theorem 1.1. Suppose that u satisfies (1.2) and (1.8) with ¢ satisfying (1.4), (1.5), and (1.6). If r > 3, then the solution
u propagates with a logarithmic delay:

3
liminfinfu(t,Zt— 51ogt+x) >0, (1.9)

t—>00 x<0

and

3
lim limsup sup u(t,Zt — S logs +x) —0. (1.10)

L—o0 t— 00 sz

If r =3, then the solution u propagates with a larger logarithmic delay: there exists Sy > s¢ > 3/2 such that

liminfinfu(t,2t—S¢logt+x)>0, (1.11)
t—>00 x<0
and
lim supu(l,Zl—s¢logt+x>=O. (1.12)
1=00, 50

Ifr € (1, 3), then the delay is algebraic: there exists Cy > 0, depending only on r, o4, and Ay, such that

liminf inf u
t—o0 x<0

(r.2r = Cpt T +x) >0, (1.13)
and, if additionally (1.7) holds, then there exists cy € (0, Cy), depending only on oy, r, and Ay, such that

lim supu(t,2t — c¢t% +x) =0. (1.14)

l—)OOXzO

As we discuss later in greater detail, heuristically, the competition term ¢ x u acts on the scale 1V, with y =
2/(1 4+ r). Note that

3_
"oy 1, (1.15)
1+r

and that, when r > 3,y < 1/2, which, in turn, suggests that the competition scale is smaller than the diffusive scale /7.
This is one way to see that there is a phase transition at r = 3.
As a by-product of our analysis, we also obtain results for the local Fisher-KPP equation

U =uyy + fu). (1.16)

Let us assume that f is of the KPP class: f(u)/u is decreasing in u near 0, f € C', and f'(0) = 1. A natural question
is whether these assumptions are sufficient to ensure that the front location is given by the logarithmic Bramson
correction in (1.3). We show, roughly, the following: if

1—r
EACES (log (1)) with 7 > 1,
u u

then the conclusion of Theorem 1.1 holds, with the logarithmic delay for » > 3 and an algebraic delay of the order
O (tB=/0+41) for 1 < r < 3. These non-linearities are not purely mathematical curiosities: they are regularly used in
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biology and are known as Gompertz models, see [8] and the vast body of literature around it. The statement and proof
of this result are contained in Section 6.

Let us mention a few related works. The model (1.2) considered here was first introduced by Britton [7] and
has a quite involved history, see the introduction of [1] for a brief overview. The non-local term ¢ % u has different
effects depending on whether one is studying the behavior of u behind the front or at the front. Behind the front,
there is a possible Turing instability of the steady state of the local Fisher-KPP equation u = 1, which complicates
the behavior. For example, wave trains have been constructed by Faye and Holzer [12] and, in a related setting,
in [21]. Such wave trains have also been observed numerically by Genieys, Volpert, and Auger in [13]. As a result,
without finer assumptions on ¢, one cannot hope for a stronger result than the lower bounds in Theorem 1.1. As
far as the behavior at the front is concerned, the main result in this direction is that traveling waves of speed ¢ = 2
exist [10,14] and solutions to the Cauchy problem with compact initial data or which satisfy (1.8) propagate with
speed c(t) =2+ o(l) ast = +oo [19].

As far as algebraic delays are concerned, we point to the work of Fang and Zeitouni [11] and Maillard and
Zeitouni [20], as well as [22] where a Fisher-KPP model with a diffusivity that changes slowly in time was stud-
ied, and a delay, roughly, of order 7'/3 was obtained. However, both the set-up and the mechanism for the large delay
are quite different in these papers than in the present work. Finally, we also mention the recent paper of Ducrot [9] in
which he constructs a class of non-linearities f(x, #), which tend to u(1 —u) as |x| — o0, such that if the nonlinearity
u(l —u)in (1.1) is replaced by f(x, u), then the front is at 2t — X log(z) for any A > 3/2.

While in the final stages of preparing this paper, we learned of a very recent probabilistic study of the delay term
by Penington [25]. In our notation, she obtains the log delay up to an error term O (loglog(z)), when r > 3, and an
algebraic delay tG~")/(1+1%€ for any € > 0 for r € (1, 3). Penington’s assumptions on ¢ are the same as ours when
r > 3. However, her assumptions are weaker when r € (1,3): the R~"~D term in (1.6) is replaced by R==D/2,
at the expense of a slightly less precise power in the correction. The proofs in [25] are probabilistic, involving the
Feynman-Kac formula and an in-depth study of the trajectories of Brownian motion. Overall, our work and [25] are
quite different and reveal different features of the equation.

1.1. Heuristics and methods of proof

The upper bound (1.10) is obtained by a rather direct adaptation of the arguments in [17]. Let us outline a heuristic
argument leading to the upper bound (1.14) for r € (1, 3). It also explains how the exponent (3 —r)/(1 + r) comes
about. Let the front have a delay d(¢) behind 2¢, so that

inf  u(t,x)> 8, (1.17)
x<2t—d(t)

with some &g > 0. We expect that the solution looks like an exponential to the right of x = 2¢ — d(¢) and until the
“front edge” at x = 2t + e(f):

u(t, x) ~ exp{—(x — 2t +d(1))}, forx e (2t —d(t),2t +e(t)). (1.18)

The diffusive Gaussian decay dominates the exponential “traveling wave” decay for x > 2¢ 4 e(¢). Using (1.17) and
then (1.7), one may estimate ¢ * u(¢, x) when x € (2t — d(t), 2t + e(t)) as

2t—d(t)
¢ xu(t,x) > / d(x —y)dy = (x — 2t —d(®))' ™ = (e(t) +d ()"

—00

Thus, in order for the exponential in (1.18) to be a super-solution to (1.2) inside (2t — d(¢), 2t 4 e(t)), we need

(e(t) +d)'™" 2 d'(1). (1.19)

We also need the exponential to be above u(z, x) at the front edge. To control u there, we use that, letting h =e~"u, h
is a sub-solution to the heat equation. In other words,

he < hyx
and, hence, for all x > 1,
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x— *\2

— ey Vi
e ut,x)=ht,x)< [ e F up(y)dy < —e 4. (1.20)
x
Thus, for u to sit below the exponential super-solution at x = 2¢ + e(t), we require

2
exp [t~ HEEN < expitey +d ),
that is,
e(t)? > 41d(1). (1.21)
Since e(t) should be o(t), we get

im M =0. (1.22)
t—+o0 e(t)

Combining (1.19), (1.21) and (1.22) gives, for ¢ large,
AN Se) " S17dw) T

and thus necessarily
(1) < (B-n/1+)

We deduce also e(z) =, with y as in (1.15).

A way to estimate the solution from below, to get the lower bounds, is to study the linearized Fisher-KPP equation
with a Dirichlet boundary condition at 2¢ + e(¢), as in [17]. The problem that comes up after removing the exponential
factor is

=2 +€ )z —2), t>0,x>0,

z(t,0) =0. (123)

Once again, the case r > 3 is treated similarly to [17]. In particular, while the term ¢’()z is important and is responsible
for the 3/2 pre-factor in the logarithmic correction, the drift ¢’(r)z, is negligible. Roughly, we estimate z(f, x) at x ~
J/t, and use a “tracing back to a shifted traveling wave” argument, to construct a sub-solution for u.

When r < 3, we choose e(t) =t”. Since now y > 1/2, the drift ¢/(¢)z, can no longer be neglected, and the choice
of the exact exponent y is necessary to get matching asymptotics. We explicitly construct a sub-solution of u to
estimate the solution at the far edge, and then perform a “tracing back™ argument with a traveling wave.

Lastly, in the case when r = 3, the diffusive scale and the induced drift have the same order. Here, the balance of
these two scales causes a somewhat larger delay.

1.2. The local in time Harnack inequality

The main tool that allows us to get “reasonably sharp” asymptotics for the front position is a local-in-time Harnack
inequality that is of an independent interest.

Proposition 1.2. Suppose that u € L*°([0, T] x R) is a non-negative function that solves

ur =uyx +c(t,x)u,
on [0, T] x R withc € L*°([0,T] x R) and T > 0. Then, for any p € (1, 00), there exist positive constants «, B, and
C, that depend only on ||c|| L= (0, 71xR) and p, such that, for all x,y e R and t € (0, T'], we have

1

1-1 1 B2
(T, x +y) < Cllull oy 7y g (T X) 7€ (1.24)

This inequality is an indispensable tool to obtain “reasonably sharp” results for non-local problems. We have used a
less precise form of it to obtain the logarithmic delay for solutions of the cane toads equation in [4], and it has also been
used to establish a precise lower bound on the propagation speed of solutions of a Keller-Segel-Fisher system [16]. As
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far as we know, [4] is the only other non-local context where a delay asymptotics has been established. It allows us to
bound solutions of the non-local Fisher-KPP equation (1.2) in terms of the solutions of a local Fisher-KPP equation
with a local time-dependent nonlinearity g(¢, u), that is logarithmic in # (Gompertz type). This equation has inherent
difficulties coming from the time dependence and the logarithmic behavior near zero, but it is much more tractable
because it admits a comparison principle.

The rest of the paper is organized as follows. In Section 2, we present the proofs of the upper bounds (1.10) and
(1.14). Section 3 is where the proofs of the lower bounds (1.9), (1.11) and (1.13) are given. In order to complete the
proof of the lower bounds, some estimates on linearized problems with moving Dirichlet boundary conditions are
obtained in Section 4 and Section 5. In Section 6, we state and prove the result concerning the local KPP equation
with logarithmic nonlinearity. The Harnack inequality is proved in Section 7.

Acknowledgments The authors thank Nicolas Champagnat for the reference [8]. EB was supported by “INRIA Pro-
gramme Explorateur”. LR was supported by NSF grants DMS-1311903 and DMS-1613603. Part of this work was
performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’ Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency
(ANR). In addition, CH has received funding from the European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation program (grant agreement No 639638) and was partially supported by the NSF
RTG grant DMS-1246999 and DMS-1907853.

2. Upper bounds on the location of the front

In this section, we prove the upper bounds (1.10) and (1.14) in Theorem 1.1.
2.1. The upper bound when r > 3

The case r > 3 is very close to the local Fisher-KPP equation. The (3/2) log¢ delay is the best case scenario — in
fact, the delay has to be at least that large for any r, so the bound is a quite straightforward application of bounds

obtained in [17].

Proof of (1.10). Take 7o > 0 to be determined later. Working in the moving frame with the logarithmic correction, the
function

3 t
umov(t,x)=u(t,2t— —]og(] + _) _l’_x)’
2 1o

satisfies
(Umov)r < (2 - E —)(umov)x + (Umov)xx + Umov, forallr > 0,x e R,
t+1
Umoy (0, x) = up(x), for all x € R.

We construct a super-solution u as in [17]. Let v be the solution to the boundary value problem

301
v,z(z_§t+t0)ax+v”+ﬁ, forallz > 0and x > 0,

v(t,0) =0, forall t > O,
v(0,x) =12 (x) for all x > 0.

Then [17, Lemma 2.1] implies that, provided that ¢ is sufficiently large, there exists Ag > 1 such that for all r > 0,
we have

u(t, 1) > Ayl

We also have the following uniform bound on the solutions to (1.2).

Lemma 2.1. [ 19, Theorem 1.2] Suppose that u satisfies (1.2) with initial data ug satisfying (1.8). Then there exists
M > 0 such that, u(t,x) < M forall t > 0 and x € R.
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Let us now define u (¢, x) as
(1, x) = M (Lizsq +min (1, 4070, x = 0+ D) Lz ).

where M is as in Lemma 2.1. By construction, % is a super-solution to #moy, and by our assumptions on uq (1.8), we
also have u(0, x) > umoy (0, x) for all x € R. In addition, [17, Lemma 2.1] implies that there exists 7y such that, for
all z and all ¢t > T,

v(t,z) < Agze ~. (2.1)

We are now in a position to conclude the proof. Indeed, as u <u, the upper bound in (2.1) implies

3
lim sup lim sup sup u (t, 2t — —logt + x) = lim sup lim sup sup umoy (%, x)
Lsoo (=00 x>L 2 Lsco (=00 x>L 2.2)

<limsuplimsup sup (7, x) < lim MAgLe L =0,
L—>oo [—>00 x>L L—oo

which concludes the proof. O
2.2. The upper bound when r =3

In this section, we show how to derive the upper bound on the location of the front assuming the lower bound on
the location of the front. In other words, we prove (1.12) assuming (1.11), which we prove in the next section.

Proof of (1.12) assuming (1.11). Our proof proceeds similarly as in the previous subsection. Set 54 < Sy to be de-
termined. Using (1.11) and (1.7), we find L > 0 such that, forallx > Oand t > L,

~ 1 - -
¢ *u(t,x +2t —54log(t)) > TA. (x + (Sg — S¢) log(t) + L) 2 (2.3)
¢
Next, we use the following result that is proved in Appendix A.

Lemma 2.2. There exists v, 54 > 3/2, and L such that

Vr > Uy +0(1 —v(t, x — (2t = 5g log(t + 1)), t>L,x>2t—sglog(t+1)+ L,

24
v(L,x)>u(L,x), x>2L —Sglog(L+ 1))+ L, 4

v(t, L +2t —54log(t)) > M + 1 forallt > L, and v(t, x + 2t — 54 log(t)) — 0 as x — oo uniformly int > L.

With Lemma 2.2 in hand, we now conclude. Notice that, (2.3) implies that v is a super-solution of u in {(¢, x) €
[L,00) x R:x >2t —54log(t) + L}. Let

7. %) M+1, if x <2t — 54 log(t) + L,
u 7‘x = . .
min{M + 1, v(¢, x)} if x > 2t — 54 log(t) + L.

As in the previous case r > 3, the comparison principle implies that > u on [L, co) x R. The result then follows
taking sy € (5¢,3/2). O

2.3. The upper bound when r € (1, 3)

In this section, we show how to derive the upper bound on the location of the front from the lower bound on the
location of the front. In other words, we prove (1.14) assuming (1.13), which we prove in the next section.

Proof of the upper bound (1.14) assuming the lower bound (1.13). Note that, by (2.2), we have

lim sup u(t,x)=0.
100 5014ty
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As a consequence, taking into account (1.15), it suffices to show that

lim sup u(t,x)=0.
t—>oox€(2t—c¢t27/’1,21+ty)

We do this by creating a relevant super-solution to u on the interval (2¢ — c¢t27’_1, 2t +t7). Note that the constant
¢y 1s still to be determined at this stage. Define, for any 7 > 0 and Cy as in (1.13), the space-time domain (recall that
y>1/2forl <r <3):

Pr o= {(z,x) (e (T, 00).x €@t —Cyt™ 1, 2 +ﬂ)},
and, for (¢, x) € Pr, the function
v(t,x):=B exp{ - (x —2t+ 2c¢,t27’_1) }
On Pr, the function v satisfies
Ty = Tx + 6(1 — 242y — l)ﬂ’(l*’)). (2.5)

The rest of the proof is devoted to showing that u is, indeed, a subsolution to (2.5) when the various constants
above are suitably chosen: specifically, we show that

uy — gy —u(l —2cy Ry — Dt*17") < 0in Pr, (2.6)
and
u(t,x) <v(,x), ondPr. 2.7

First, we show that (2.6) holds. It follows from (1.13) that there exist Cy and 4, depending only on ¢, and Ty such
that, for all r > Ty,

inf u(t,x)>0dg. (2.8)

x<2t—Cgyt2r—1

Using (2.8), we can estimate ¢ » u from below, for > Ty and x > 2t — C¢t2V_l:

2t —Cpt? ™!
pout= [ -yuenayz [ o utydy
R —00
2t—Cyt?r 1 +00
> 8¢ / d(x —y)dy =25 / ¢(z)dz (2.9)
—00 x—2t4+Cgyt2r 1
+o00 5 :
> 5547 g =—"’( _2%4C t2y_1> -
=% / SR WP 1
x—21+Cyt?r 1
Note that, as r > 1, we have
) 1 3—r . 1—r
—1= = — <.
v 1+r Vs Y

Further increasing T, if necessary, the right-hand side in (2.9) can be estimated, for t > T, as

3 I=r 1) 1—r
I (x—arr e ) T 2 ()
Ap(r—1) Ap(r—1)

8¢ L\ 1=r 8¢ L\ I=r
=—" (1 C [l+r) [(1 r)y>4<1 C T1+r) [(1 ry
A¢(r—1)< +Cy 2 (1 (2.10)

2]7r8¢

(1=r)y y(1-r)
—_—t > 2cy(2 1)t ,
= ¢(r D = C¢( 14 )
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as long as ¢y is sufficiently small. Now, (2.6) follows from (1.2), (2.9) and (2.10).
To show (2.7), first, we consider the right spatial boundary x = 2¢ 4+ t¥, ¢t > T. As this point is at the far edge of
the front, it is natural to use the linearized problem

ﬁtzﬁxx+ﬁ, t>O,X€R,
ut =0, ) =up.

Then, with xq as in (1.8), we can write for ¢ > T':

(1,2t +17) <u(t,2t +17) e _(2t+r4Vav)2 (dy < (2,+,y V)zd
ek =uf, = e A ug(y)dy < y
\/4711R At
; +00 . .
2t —x
= / oy < SOV Gi? @.11)
'\/E 2t + [V —_ _xO
2t4+1Y —xq
241

1
< Coexp[ -tV — thy_l} < Bexp{ -tV — 26¢t2”_1} =v(t,2t +17),

so long as B > Cy. Above, we have increased T and decreased ¢y if necessary. The constant Cy depends only on y
and xg. Thus, (2.7) holds at x =2¢ +¢t¥ for all t > T as long as B > Cy.
At the left boundary x =21 — C¢12V_1, we have

(1,2 — Cyt™ 1) = Bexp {(c¢ —2ep)t? ] } >M> u(t, 2% — c(,,rZV*‘), 2.12)

as long as 2cy < Cy and B > M. Here, M is the upper bound in Lemma 2.1.
Lastly, we check that (2.7) holds at t = T, for 2T — C(;,TZV’1 <x<2T+T7:

o(T,x)= Bexp{ — (x —-2T +26¢T27’_1)} > Bexp{ -7V — 20¢T2”_1].
As long as B > M exp ETV + 26¢T2V_1 } we have that, for all x € [2T — C¢T2V_1, 2T +T7]

v(T,x) =M >u(T, x), (2.13)

and (2.7) holds on all of 9Pr.
It follows from (2.6) and (2.7) that, with 7" and B sufficiently large, and cy sufficiently small, we have

lim sup u(t,x) < lim sup v(t,x) < lim Bexp[ — (2c¢ — c¢)t27’_1} =0,
I—WOXZZI—C(;)IZV’I l_)ooxz2t—c¢12}’*1 =00
which finishes the proof of the upper bound. O

3. Lower bounds on the location of the front

The proofs of the lower bounds in Theorem 1.1 are much more involved. They hinge on estimating ¢ * u in terms
of u in a local way, and then deriving precise heat kernel type estimates on the resulting local equation.

3.1. Estimating the non-local term by a local counterpart
To begin, we estimate the convolution term ¢ * u# in terms of u under the assumptions of Theorem 1.1. The as-
sumptions of these two theorems differ only in the range of . In this section, we assume only that r > 1 so our

computations apply to all cases.

Lemma 3.1. There exists Ccony > 0, depending only on ¢, such that, for all t > 1 and all x € R,

é*u(t, x) < Coony max[l, [; log (u(fx))]% ] log (u(fx))]r . 3.1)
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Proof. It is here that the local-in-time Harnack inequality is used crucially. Fix any time # > 1 and x, y € R. Proposi-
tion 1.2 with p = 2 implies that there exists « > 0 so that
2
u(t, x +y) < Cy/ult, x) exp {at/ + %} forall ¢’ € (0, 1], . 3.2)

Above, we absorbed the uniform bound M of |||« given by Lemma 2.1 into the constant C. By increasing M
if necessary, we may assume that M > ||u||oo + 1, which allows us to simplify notation in the sequel. Using (1.6)
and (3.2), we obtain, for R > 0 and ¢’ € (0, ¢] to be determined,

! o 2
¢ xult,x) < /¢<y)u<r,x —ydy < c/¢>(y>¢u<r,x i Ay M/¢(y>dy
R B B, (3.3)
’ O‘Rz —r+1
= CVuttwRexp far' + =} + CMR™.

The constant C changes line-by-line for the remainder of the proof and depends only on ¢ and «.
We now optimize the right-hand side in (3.3) with respect to ¢’ € (0, ] and R > 0. If #/ = R, then

G xult,x) < Cyu(t,x)Re**R + CMR™, (3.4)
To roughly balance the two terms in the right side of (3.4), we choose
R= “log (), (35)
8a u(t,x)

the most important point being that R should be of order logu. As we have set ¢’ = R in (3.4), and we need to have
0 <t <1, the choice (3.5) is possible only if

1 M
= glog(u(m)). (3.6)

With this, we find, from (3.4):

dxu(t,x) < leog (u(]t‘j[x))exp[ - %10g<“(;’4x))} + C<10g(u(1t‘jlx)>)lir

, ., ., (3.7)
5C<“(I’x)l/4<l°g<%>) +1)(10g(u(?,4x))>1 5C<1°g<u(?j[x)>)l '
When (3.6) does not hold, so that
= élog@(ﬁ))’ 68

we choose ' = ¢ and set

k= (é log (u(fx)))lﬂ’

in (3.3), leading to

¢ *u(t, x) < Cy/u(t, x)/tlog"/? (u(?j[x))eXp [at * é] g(u(f X))] i
<citoe ()1 (5 e (55))

—(r=1)

< Cu(t, x)"*10g (%) +c(: 1og(u(fx))) ? (3.9)

< C(l + u(t, x)1/4 log (%) (r log <M(?j1x))> %1) (t log (M(i\j[x) )) ~=D

(r—1) 1—r

= C<u(t’x)l/4(10g <u(1t‘,4x))>r + 1)<t log (u(fx))) E = C(tlog (M(?jlx)»T.

C( tlo g(w x)))__
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We used (3.8) several times above, as well as the upper bound u(¢, x) < M in the last inequality. The combination
of (3.7) and (3.9) concludes the proof of the lemma. O

3.2. A local equation and related bounds

In view of Lemma 3.1, it is natural to introduce the following nonlinearity. Fix r > 1, and for any positive constants
0, and Ag, set O, := 0, eX[){—A;/(r_l)} and define g € C%! on (0, ©,) as

= Agman |1 [ (14 477) 1o ()] 7 1o ()7 irue (0.0, G.10

Outside [0, ©,] we set g(z,u) =0 for u < 0 and g(¢,u) = 1 for u > ®,. By construction, g(z, -) is continuous. The
“A i,/ =D» term in the second part of the maximum in the definition of g does not affect the analysis in any way. In
fact, any other choice of g that preserves the asymptotics as u and ¢ tend to zero would have the desired properties
that we prove in the sequel.

We will make use of the local equation with a moving boundary at the front edge:

wr = wyy + w1l — g, w)), inPyg, = {(t,x) t>0,x>2t+ (t +19)Y — tg},
w(t, 26+ (1 +19)Y —1])=0, forallz >0, G.1D
w(0, x) = wo(x) for all x > 0.

The following proposition contains the crucial lower bounds for the solutions of (3.11) we will need.

Proposition 3.2. Assume that there exists 8,, > 0 and x,, € R such that the initial condition wo(x) for (3.11) satisfies
wo(x) > 8y 1(0,x,,) (X)

1. If r > 3, then there exists X, and Ty such that if x,, > X, and ty > Ty then there exists a positive constant Bj,
depending only on x, 8y, to, v, and g, such that, for all t sufficiently large, we have

w(t, 2t + 17 + /1) = By 1=l VI

2. If r =3, then set o = 1. There exists N > 0 such that if x,, > 1 then there exists a positive constant B», depending
only on N, 8y, v, and g, such that, for all t sufficiently large, we have

w(t, 2t +2\/Z) > Bz_lflfﬁe“/?.

3. If r € (1, 3), then set tg = 1. There exists Bz > 0, depending only on 8,, and g, such that if x,, > 1 then, for all
t > 1, we have

w(t’zt_{_ty_i_\/;)zB;le—«/?—tV—B_gﬂrfl‘

We delay the proof of this proposition until Section 4 and now continue the proof of the lower bounds of Theo-
rem 1.1. Having reduced the problem to estimating a delay for a local equation, we now transfer known bounds of
Theorem 1.1 on w to bounds on u.

3.3. From a bound on w to a bound on u

Let us take 8 = M and Ay, = Ccopy in the definition (3.10) of g(¢,u) and let the initial condition in (3.11) be
wo(x) = e Mug(x). A combination of Lemma 3.1 and Proposition 3.2 implies that u is a super-solution for w for
t > 1. Further, it follows from considerations as in [4, Section 3], that w(1l, x) < u(1, x) for all x € R due to the e M
pre-factor in the definition of wg. The maximum principle then implies that w(z, x) < u(t,x) for all + > 1 and all
x eR.

Using the assumptions on the initial data (1.8), we can, up to translating u(, and thus wg as well, assume that wg
satisfies the hypothesis x,, = xg > Xy, in Proposition 3.2. Translating further and using parabolic regularity we may
remove the dependence on fy. As a direct consequence, we have established:
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Corollary 3.3. Suppose that u satisfies (1.2) and (1.8) with ¢ satisfying (1.4), (1.5), and (1.6). Then there exists So,
depending only on ug and ¢, such that:

1. Ifr > 3, then there exists a positive constant By, depending only on uy and ¢ such that, for all t sufficiently large,
we have

w(t, 2t +1" + /1 —So) = By 17TV
2. Ifr =3, then there exist positive constants N, and Bo such that, for all t sufficiently large, we have
w(t, 2t + 21 — So) = By L~ (1HN) =21
3. Ifr € (1, 3), then there exists a positive constant B3z, depending only on uo and ¢, such that, for all t > 1, we have

w(t, 2t + 17 + /i — Sy = By e BT
3.4. From a bound on u on the right to the location of the front

We are now in a position to obtain the lower bounds (1.9), (1.11), and (1.13). Thanks to Corollary 3.3, we fit a
suitable translate of a traveling wave solution for (3.11) underneath u, for x <2t 4+t + /t.
Fix any Ay > Ccony and let V be a traveling wave solution of

oV = v+ v(1—Aylog (X V(—o0o)=Mexp| — AV D and vi+oo) =0
- \%4 g V ) — p \% = V.

The existence, uniqueness up to translation, and monotonicity of V is given by, for example, [2]. We also recall
(see [15,3]) the fact that there exists B, 4, > 0, depending only on r and Ay, and x > 0 such that, as § — oo

KEe™S, ifr>3,

V(&) {K51+ﬂ’=3’AV€_E, if r =3, (3.12)
and, if r € (1, 3),

log(V(§)) +§&

—gar Brav: (3.13)
Define v as

3
v(t,x):V(x—2t+§logt+so>, ifr >3,
3 - B
v(t,x):V(x—Zt—i—(E—i-N—l—/Br_;’Av>logt—|—s0>, ifr=3,
vt x) =V (x — 20+ (2B3 + Bra ¥ ! —I—so) , if r e (1,3),

where the shift s is to be determined below and X is as in Proposition 3.2 and Corollary 3.3.

Lemma 3.4. There exists T\ > 0 and s, such that if so > s, then v(t, x) <u(t,x) ifr #3,t > Ty, and x <2t + 1V +
1t — So where Sy is the shift given in Corollary 3.3.

Proof. We prove the lemma for r > 3, so that y < 1/2, the proof being the same in the other cases up to situational
modifications. We use the parabolic maximum principle. First, we note that, up to increasing so and Ay, we may
ensure that

u(Ti,x) <u(Ty,x) forallx <27y +~Ti + T} — S
Second, we claim that, up to increasing sg, we have

v(t, 2t + 1+t —8o) <u(t,2t +~/t+1" —Sy) forallz>Tj.
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Indeed, for ¢ sufficiently large, (3.12) implies, as y < 1/2:
v(t,2t+\/2+t”—So)=V<\/;+tV+%logt+so—So) (3.14)
§2K<\/;+ty + %10gt+so—50>exp{ — (x/;+t7’ + %logt+so — So>}
§4K«/?t*3/zexp[ — =t —so—i—So} <4yt exp{ — =t —so—i—So}.
It follows that

V(t, 2t + T+ 17 — So) < 4keS0TO0Bu(t, 2t + Nt +17 — So) <u(t,2t + 1 +17 — Sp),

for T sufficiently large and all sg > Sp + log(4x By).

Third, up to increasing Ay, the ordering holds true near —oo. Indeed, using Lemma 3.1 and the assumptions (1.8)
on ug, it is easy to see that there exists § > 0, depending only on u#( and ¢ such that, for any x < 0 with |x] is
sufficiently large, the function

u(x) = 8 cos((x — x)/100)

is a sub-solution for u for all # > 1, so that § = u(x) < u(¢,x) for all # > 1. Thus, increasing Ay, if necessary, we have
that, for all ¢ > 0,

. _Ale=D PO
lim v(t,x) <Me Ay < < infliminfu(z, x).
X—>—00 t>1x—>—00

Now, assume for the sake of a contradiction that there exists a first touching time (#g, xf) such that
tr > Ti, X < 25+ /Ir + 1], — So,

and
u (e, xe) = v (s X)),

and u(t,x) > v(t, x) forall t € [Ty, t) and x < 2t + +/t +17 — Sy. Our goal is to obtain a contradiction by estimating
¢ * u and looking at the equation satisfied by u — v.
First, we estimate ¢  u(tg, xg) using Lemma 3.1. By increasing s if necessary, we obtain

3
0(t, 2t + T+ 17 — Sp) = V(ﬁ+tV n 51og(z)+so—so)

K 3 3
- Y2 B _ , .3 B
22(‘/;“ + 5 logt 450 So)exp | — (Vi +1 + 5 log +50 )} @)
« 3
Z21‘3/2 <ﬂ+ty+§10gt+50_so>exp{_\/;—Zy—S()+So}.

1
Since V is monotonic, y < 1, and xf < 2fg + tff + tg: — 8o, it follows that up to increasing 77, we have that

u (g, X)) = v, Xp) > Me™ ™,

which, in turn, implies that

N G V| M -5
jog (L) s o (L)
u(tg, xfr) u(te, Xft)

In view of the bound on ¢ » u obtained in Lemma 3.1, we have that, at (¢g, xg),
M\ —@=1) M\N\1-r
e — iy —u(l —Avlog(—) )z (AV —Ccom,)u<10g (-)) >0, (3.16)
u u

where we used the fact that Ay > Cgopny in the last inequality. In addition, we note that
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M\ —-@=1)
vt—vxx—v(l—Avlog(—) )
v

(—3 z)v’ V" v(l Ayl (M)f(rfl)) 3 yi<o
= - - - - (0] — =
20+ 1) voey 2041

Hence, setting ¢ =u — v, (3.16) and (3.17), imply that

(3.17)

Wz—%x—cw>0,

where we define

—(r=1) —(r=1)
u(l—Avlog(%) )—v(]—Avlog(%> )

u—v

C =

—(r=1
Notice that, due to the Lipschitz continuity of w > w <l — Ay log (M ) ) on compact subsets of [0, M), c €

w
L®°. On the other hand, using that # is the first time that v touches zero and xy is the location of a minimum of v,
we have that

Y — Yy —cf <0.

This yields a contradiction, finishing the proof. O
The lower bounds now follow easily.

Proof of (1.9), (1.11), and (1.13). We conclude the proof by noticing that, for all # > T7,
inf ) = inf u(t,x + 2 2 () = inf o(r,x+21 2 ()
in = in —=1lo inf v —=lo

x§2t—(3/2)logtu - x§0u o 2 £ ~x<0 o 2 £
(3.18)
= inf V(x + s0> =V (s0),
x<0
which means that (1.9) holds. The proofs of (1.13) and (1.11) are similar and, thus, omitted. O
4. Proof of Proposition 3.2

To obtain estimates on the solution of (3.11), we consider the corresponding linearized problem with the Dirichlet
boundary condition:

Uy =Dy + 0, on{(t,x):1>0,x>2t+(t+10)" — 1]},
0(t, 2t + (t +19)” — 1)) =0, forallz > 0, 4.1)
v(0, x) = wo(x), for all x > 0,

where wy is as in Proposition 3.2.
4.1. The caser >3

The following key lemma about solutions to (4.1) allows us to prove Proposition 3.2 when r > 3. We prove this
lemma in Section 5.1.

Lemma 4.1. Assume r > 3. If ty and x,, are sufficiently large, depending only on y, there exist positive constants T
and B, depending only on wo and to, such that, for all t > T, we have ||0(t, -)|loo < Be™"" and

0(t, 2t +17 + 1) > B_lt_lexp{ —\/f—ﬂ’}.
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We now finish the proof of Proposition 3.2. Let v be as in Lemma 4.1. We may assume, without loss of generality,
that 7 > 1, and set

s=min{B", B*lege*f‘zl/“*”,e*T}.
We also take a continuous function a(¢) < 1 for all + > 0, to be determined, and set

v(t, x) =3d8a(t)v(t, x). 4.2)
Using (4.1), we obtain

v, — v, —v(l —g(t,v)) = 8a'D + 8ad; — Sabyy — dab + Sabdg(t, sab) = 55(a’ +ag(t, 8aﬁ)>. 4.3)
Thus, v is a sub-solution of w for ¢t > T as long as

a +ag(t,dav) <0.

Using the upper bound on v along with the definition of §, we see that this inequality would hold if

1\ -1 1 =1 1 1—r
/ r—1
a —i—aAgmax{l, [(t—}—Ag ) log (m)] }log (W) <0. 4.4

A lengthy but straightforward computation using, in particular, that Ag > 1, shows that (4.4) is satisfied if we take

a) =exp{[@+ D1 -]},

with a suitable g > 0.

Hence v is a sub-solution of w. Further, arguing as in [4, Section 3] and using the choice of § and a, we have that
v(T,x) <w(T,x) forall x > 2T + (T + ty)¥ — tg. The maximum principle then implies that v(¢, x) < w(z, x) for
allt > T and x > 2f + (¢t +t9)Y — tg . The conclusion of the proposition follows immediately from Lemma 4.1 since
2 +17 =20+ (1 +10) — 1]

4.2. The caser =3
We follow here the same strategy as for r > 3, but the estimates on v are obtained differently.

Lemma 4.2. For r =3 and t sufficiently large, there exist . and B > 0 such that

15(t, )loo < Be 7,

and
9,2t +24/1) = Bl 1 exp{ - 2\/2}.

With this lemma, proved in Section 5.2, one may repeat the argument for r > 3, building a sub-solution v(z, x) as
in (4.2), with § > O sufficiently small, and a(¢) such that

a’ +aAgmax{1, (t + \/Zg)_l log (é—i)}log<é§;)_2 =

The above inequality is satisfied with a(¢) = (# + \/Zg)’N for all + > 1 so long as § is chosen small enough and N is
chosen large enough, depending only on A, and C.
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4.3. The estimate when r € (1, 3)

Here we directly construct a sub-solution of w. We seek a sub-solution v solving

Uy < Uyx + 0, fort>0,x>2t+@+1)Y —1, “5)
0(t,2t 4+t +1)Y —1)=0, for t > 0. ’
Recall that ) = 1 in parts 2 and 3 of Proposition 3.2. Given a > 0, set
2 2
; () () = [y a0 - 5]
tx)=—= —x—=x(1+¢ —(14+t) —|———— 1+1¢ — . (4.6
v(t, x) (l+t)3eXp{ o0t + 10y -1 T4aEn a1l 4O

Here, the key computation is the following:
Lemma 4.3. There exists ag > 0 such that if a > ag then v(t,x) = v(t,x — 2t + (t + 1)¥ — 1)) solves (4.5).
We delay the proof of Lemma 4.3 until Section 5.3 and proceed with the proof of Proposition 3.2.

A bound for small times  Unfortunately, v is not compactly supported at ¢ = 0, so we need to “fit it under” w at a later
time. To do this, we first obtain a preliminary lower bound on w at time 1 by using the infinite speed of propagation
of the heat equation. Recall that wg > 8,y 1(—c0,x,) and 1 — g(¢, w) > 0. Hence, we have

Wy — Wyy >0,
so that w is a super-solution to the heat equation with a Dirichlet boundary condition fixed at
X0:=2-2+Q+1)" —1] =3" +3,

on the time interval [0, 2]. It follows that

oo
1 2 2
w(2, x +Xo) > —/wo( +fo)[e*‘*>" 8 gt /S]d
o J y y

5 efx2/8 Xu—X0 . 4.7
T V8
2 %n)2 ¥,
A E(cosh <x(xw —X0)> _ 1) > X5 8
— - v '
V8 X 4 ¢

for some C independent of all parameters, as long as x,, > Xo + 1. We used here that cosh(x) — 1 > x2 /C for some
universal C > 0. On the other hand, from the explicit expression (4.6) for v, we get
2 —
V(2 x — To) < Cx —Yo)exp{ _x —x%SV_l - % + ’%}

Thus, there exists € > 0 such that

€v(2,x) =€v(2,x —Xp) < w (2, x) for x > kg =3" + 3.

The subsolution We now follow the same strategy as before, constructing a sub-solution of the form v(z,x) =
da(t)v(t, x) on
P:={t,x):t>1,x>2t+ 1+ —1}.

Another lengthy but straightforward computation shows that v(z, x) is a sub-solution for w on P if we choose a(t) =
exp{ — ,8t2”’1] for a suitable 8 and § sufficiently small.
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Note also that v and w satisfy the same boundary conditions at x = 2¢ + (1 +¢)¥ — 1. Finally, choosing § < € and
using the computation (4.7) and the discussion following it, we see that
v(2,x) <w(2,x) forall x >3+ 37.
The conclusion of the proposition when r € (1, 3) follows by simply using the explicit form of v(¢, x).

5. Estimates on the linearized KPP equation

In this section, we adopt the convention that any constant denoted C may chance line-by-line but depends only on
¢ and ug.

5.1. The case r > 3: the proof of Lemma 4.1

The key observation is that < 1/2 when r > 3. Thus, the ¥ term is of a lower order than the diffusive scale /7.
This allows us to use the strategy in [17], obtaining energy estimates in self-similar variables. Since the present proof
is similar to that in [17], we provide a rather brief treatment.

Proof of Lemma 4.1. We begin by removing an exponential factor from v and changing to the moving frame: let

2(t,x) =€ 0(t, 2t + (t +10)Y — 1} +x), x> 0.

This function satisfies

Zt=Zxx+)/(t+l‘())y_l<Zx—Z>, fort > 0,x >0,
z(¢,0)=0, fort > 0, 5.1
z(0, x) = e*wo(x), for x > 0.

We now turn to self-similar variables, which are natural for the diffusive process. Let

t
t:log(l—i—t—), y=(t+t0)71/2x,
0

1

and ¢(t,y) = z(to(er -1, t0/2e’/2y). Then ¢ satisfies the equation

Y _
(o= Loy 36+ T4y i0e") 20 — (14 v 0e™)” )z
We remove the integrating factor above, setting
_ 14 T_ -
S(ry) =TT y),
so that ¢ satisfies
fo=LE+yi) " P71 (5.2)
with
a2, Y
L:= 8y+§3y+1. (5.3)

It is now heuristically clear that the last term in (5.2) should be not important due to the eV =1/D7T term and the fact
that y < 1/2. The following lemma is proved in Appendix A.

Lemma 5.1. Let ¢ solve
L =L +eeV12Tg

with initial data E(r =0,)= Eo. There exists gy > 0 such that for all compact subsets K C R there exists Cx > 0
such that for all € < g,
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—y/4

- e
‘e =x(57

forall y >0, T >0, and such that |h(t, Y| <Ck forallt>0andyecK.

( f E80(6)dE + 0(©)) + ¢ P7h(z, ),
0

Undoing the various changes of variable, we get

t X
= v _ ¥ Y — ¥ r
B2+t +10) —1] +x) = 2(t,x) =¢ {(10g(1+t0),(t+t0)1/2) (5.4)
xe_"toe_((tﬂ(’)y_toy) e_% i £ y—3 I\Y—3
_ TESEE ( NG (/Ee wo(\/gé)dS—FO(to )>~I—(l+%) h(t,x)),
0

where h(z, x) = h(log (1 + %), (t + to)*%x).

First, notice that the L°° bound on v in Lemma 4.1 follows immediately from the expression above on sets of the
form [2¢ 417, 2t +t¥ 4+ 0 +/t]. To obtain bounds on sets of the form [2f 4 1V 4+ o +/1, 00), we simply use that e~/ 7 is
a sub-solution to the heat equation on R (see, e.g., (1.20)). Hence, we obtain that, for x > 0,

Cet 2t + 17 r 2
0(t,2t4+1" + ot +x) < —eexp{ _ @At toyid ) } <Ce Vi,
Jt 4t
where C is some constant depending only on the initial data and y.
Second, we have

(5.5)

1/2

00 Xu/ty
/éegwo(fé/zé)dé+0(t§_7)zaw / gefds + 04 Y.
0 0

Choosing first x,, > v/t and #o >> 1 so that the first two terms in the parentheses in (5.4) are positive and then choosing
Ty large depending on 7y and o, we have that, for all 0 < x </t + 9 and ¢t > T,

¥ efxf((H»to)Vftg)

0(t,2t + (t + 1) —t7 A
u(t, 2t + (t + 1) 0+x)_c TETREE

The lower bound on (¢, 2t 4+t + /1) is immediate after evaluating at x =7 — ((t +t9)Y — t&') +4/t. This concludes
the proof. O

5.2. The case r = 3: the proof of Lemma 4.2

Note that in this case y = 1/2. As a consequence, the drift induced by the moving boundary has the same order as
the diffusion. It is thus useful to modify the ¥ term in the moving boundary by a small multiplicative factor.

Proof of Lemma 4.2. To begin, fix € > 0. Work in the moving frame 2¢ + [(t + Y2 — 1] and remove an exponential
factor, as previously:

2(t,x) =50t x + 2t + [(1 + 1) /2 = 1]).
Passing then to self-similar coordinates

t=log(t+1) and y=(+ 1)*1/2x,
so that

¢(r,y) = z(e’ - 1,et/2y),

we see that ¢ satisfies
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1 L .,
¢o=Ls+ 56— (143¢7)e.
with L as in (5.3). Finally, pulling out the zeroth order factor

t(ry)=e Tz (T, y),

we see that ¢ solves

- 1
(r=L¢+ Efy (5.6)

We finish using the following lemma, proved in Appendix A. This result falls outside of [17] and Lemma 5.1
because the ¢, term in (5.6) is no longer a remainder term.

Lemma 5.2. Let E solve (5.6), then it can be represented as

Ey=exp| - %2 2 [ vt ) w e+ vice e ). 5.7)
R+

Here, i > 1 >0, |[¥]l2 =1, and ¥ and h(t, y) are bounded on all compact subsets of [0, 00). Also, for every compact
set K C [0, 00), there exists Cx > 0 such that CEly <y¥(y) <Ckgy, forall y e K.

We are now able to establish the upper bound on v for all x € [27 + ((1 + NHY2 — 1), 2t + 24/1]. Indeed, returning
to the original variables in (5.7), we find

- _ I/2 _ I/2 ST 1/2_ -

10(t, x)| = eI g (1, y) = oD == =Dg (7 ) 58
V2 y :

< Cem D=t =D —% (y ()¢ ™ 4 h(z, y)e ) < Ce V.

In fact, the estimate (5.8) holds for all x > 2 + [(1 + £)!/2 — 1] since, as above, ¥ may be estimated for x €
[2f 4 24/t, 00) using the same approach as in (5.5) (see also (1.20)). Indeed,

t x2 24212
5(t7 x) S iet_ﬁ 5 261_% = Ee_z\ﬁ_l S Ce_\ﬂ.
X \/; \/;

We now establish the lower bound from (5.7). Taking ¢ sufficiently large and evaluating at x = 2¢ + 2./, we see
that

- a
v(t,2t +2\/;) > me 2ﬁ,

for some o« depending only on ug. This concludes the proof. 0O
5.3. The case r € (1, 3): the proof of Lemma 4.3

To motivate some of the steps in the following proof, we briefly discuss a heuristic. In the stationary frame, as we
did in (1.20), we may always estimate v above by ignoring the Dirichlet boundary condition and using the fact that
e~ '1 solves the heat equation. Thus,

_M}:t—mexp{ L xrr _M}
4t 4  Jr 2 4
Recalling that y > 1/2, we see that on the diffusive scale x ~ /7, the Gaussian term x2/4¢ and the ~'/2 in front are
(much) lower order and, thus, negligible, but all other terms are large. Hence, our sub-solution should contain all such
terms to be reasonably sharp. In particular, while the x¢¥~! term appears small at first glance since y < 1, it is not
negligible in the diffusive scale x ~ /7. While the terms depending only on ¢ show up as obvious integrating factors,
this term will not. Hence, the key to the proof below is in carefully taking account of this term. Note that here we see

the effect of y > 1/2.

U(t,x +2t+17) ,St_l/zexp{t
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Proof of Lemma 4.3. We show how to “guess” the form of the sub-solution v. We begin by removing an exponential
from © and changing to the moving frame. Define, for x € R,
z(t,x) = 0(t,2t + (t + 1)Y — 1 +x),
so that (4.5) becomes
<z v+ @ -2, 1>0,x>0,
2(¢,0) =0, (5.9)
2(0, x) = e*wo (x).
Turning to self-similar variables,

T/2

t=log(1+1), y=@+1)""2x, and ¢(z,y)=z(" —1,e"%y),

we wish to construct ¢ that satisfies the inequality
Y _
Go Gy + 50 +ye TP —yelte (5.10)

As y > 1/2, the drift in (5.10) is not a perturbation anymore. The heuristic discussion preceding this proof indicates
that we should consider

—ayer =1/

Y (T, ),

with o € R to be determined. Then we require

t(r,y)=e

Ve L+ (v = 200e7 7y — (1 a(y —0e® D7 £ ye™ Yy —a(l = p)ye? DTy, (s

with L as in (5.3). To remove the drift term, we set @ = y /2. Then (5.11) becomes

2
Vo= L+ (14 2@ 07y ey 21— y)ye 12y <o,
Further, writing

)/2

W(T,y)ZeXP{—T—é’yr—m

o@r=Dr }\p(,, ),

we arrive at
1
Ve — LY+ Sy —y)yeV"VDTw <. (5.12)

To deal with the last term in (5.12), let a, a’, b > 0 be constants to be determined and define
yz
W(z,y) = yexp { —ae™@ =V _q4'r — ?}.

By a direct computation, we see that

W LW+ %(1 —p)yer 12Ty

5.13)
2 4 6 3\ y(—yp) (
N Y R Y r<2y71>_y_(__1) <___> (V*]/z)f]\y.
[“a“’)e p\p )T ) T
It is clear that to have (5.12), we must choose b < 4. For simplicity, we take b =2, and

, 6 3 3

a = - — - =,

b 2 2

so that (5.13) becomes

1— 2
U, L4 %(1 e 1DTy = [—a(Zy et %W(V—lﬂ)r _ y?]q,
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The choice
2(1 _ 12
g 4=y
T 82y -1
ensures that (5.12) holds. Returning to our original variables, we see that
v(t,2) = 08,2+ (1 + 1) = 1+x) =e "¢ (log(1 +0), (¢t + D7/2x)
= e e DTy log(1 41, (14 )7 2)

_ b 1 y_r2a4nr! L

- I_Hexp{ X 2x(1+t) (1+1) Yo ]\I!(log(l+t),(t+1) X)
2 2

__r .Y y—1_ y _[Y y-1_ _ X

- o exp{ x—Zx(l4+1) (1+1) [4(2)/_1) +a](1+r> 2(1+I)}.

This concludes the proof. O
6. The Fisher-KPP equation with a Gompertz non-linearity

A side effect of our analysis gives the asymptotics for a related local equation:
ur — Au = fr(u). (6.1)
Here, we assume that f, € C ye (1, 00), and there exist positive constants 67, § 7, and A ¢ such that
fr(0) =0, f,(u)>0forallue(0,0f), f(0f)=0, fr(w)=0forallu=>0y, (6.2)

and
u<1 — Ay log (5)14) < () < u(l — 47" log G)H), 6.3)
foru € (0,6).

Theorem 6.1. Suppose that the initial condition ug(x) for (6.1) is as in (1.8). If r > 3, then the solution u(t, x)
propagates with a logarithmic delay:

3
lim limsup sup u(t, 2t — —logt + x) =0, (6.4)
L—- t—>o00 x>L 2

and

3
lim limsup sup ‘u(l,Zl— E1ogt+x) —ef‘ —0. (6.5)

L—oo t—o00 x<—L

If r =3, u(t, x) propagates with a larger logarithmic delay: there exists S4 > s4 > 3/2 such that

liminfsup |u (t, 2% — Sylogt + x) . ef‘ —0, 6.6)
t—00 x<0

and
lim supu(t,Zt —salogt +x) =0. (6.7)
100,

Ifr € (1, 3), then the delay is algebraic: there exist Cy > ¢y > 0, depending only on f,, such that

lim supu(t, 2t — cf't% + x) =0, (6.8)
l—)OOxzo

and
Tim suplu(r, 26 = €175 +x) = 0;| =0. 6.9)
—>00

x<0
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The proof of (6.4) follows directly from Section 3. The proofs of (6.5), (6.6), and (6.9) follow from what was
done in Section 4, combined with a standard argument saying that the convergence is necessarily to the steady state
O (see, e.g., [17]). The bounds (6.7) and (6.8) need additional ingredients; the work is similar so we only detail the
computations for (6.8). Indeed, since our non-linearity is local, we cannot “pull” information from the front as we did
above when we used the value of u at the front to bound ¢ x u far ahead of the front. In order to get around this, we
state a weak lower bound on u.

Lemma 6.2. Let the hypotheses of Theorem 6.1 be satisfied. Then there exists § y > 0, depending only on f, such that
u(t,x) > exp{—38t”}

for all t sufficiently large and all x <2t +tV, where we again define y =2/(1 +r).

Such a bound follows from the analysis of the lower bound in part (3) of Proposition 3.2 and requires no new ideas.
As such, we omit the proof.

The main point in the proof of Theorem 6.1 is to use the lower bound in Lemma 6.2 on u along with the form of
the non-linearity to replace the estimate of ¢ x u that we used in the proof of the upper bound in Theorem 1.1 when
re(l,3).

Proof of (6.8) assuming Lemma 6.2. We use a super-solution
v(t,x):=B exp{ - (x —2t+ 2cﬂ2y—1> },

with ¢y > 0 to be determined. Then v satisfies
Ty = Tye + 6(1 — 2y — 1);2V—2).

On the other hand, using the bound on f (6.3) along with Lemma 6.2, we have that, for all ¢ sufficiently large and

x <2t+1t7,
1—r
) ) su(1-apsier0n),

Recalling 2y — 2 =y (1 —r), and choosing ¢y such that AfSSJ] > 2cy(2y — 1), we see that v is a super-solution
foru. O

U — uxxy = fr(u) 514(1 _Af10g<u(l X)

7. The local-in-time Harnack inequality: Proposition 1.2

Proof of Proposition 1.2. Up to a shift in time, we may assume that r = 0. We may also assume that ¢ = 0. Indeed,
let

uy(t, x) = et'leleeqorixr y (s, x),
where w solves the heat equation
Wt = Wyxx,

with the initial condition w(t =0, x) = u(t =0, x). Then u is a super-solution to # while u_ is a sub-solution to u.
Hence, we have

u(T,x+y) - us(T,x +y) < 2lclooT w(T,x +y)
1-1 — 1-1 — 1-1 .
M1y Pu T, )P ™ ||y Pu (T, x)V/P lwll =/ Pw(T, x)!/P

In view of this inequality, it is enough to prove the claim for w, that is, solutions to the heat equation.

Let G be the one-dimensional heat kernel G (¢, x) = (4nt)_1/2e_x2/(4’). Fix s = (p +1)/2p, notice that s € (0, 1)
and sp > 1, and let g be the dual exponent of p. Then we have
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w(T,x+y)= f w(0,2)G(T,x +y—2)dz

R
<llwls l/pfw(O,z)l/pG(T,x+y—Z)SG(T,x+y—z)l_sdz
R 1 (7.1)
1-1/p _\SP P 1
< lwlloo w(0,2)G(T,x +y—2)tdz G (T,
q
R
s_ L 1-1/p sp 1/p
=Gl ([ wO.9GT x+y—2)7dz) .

R
Above, we have used that

Q=

2
l'=a. -)Hq = (4nT)" 209 /e—q“—”ﬁ dx

1

N
= (@drT)" 30 (( ?IT—N ))2) _c, b i
g(l—s

We now seek a bound on G(T, x + y — z)*? in terms of G(T, x — z). To this end, we recall that sp > 1,letx' =x — z
and we compute
G(T,x + y)sl’
G(T,x')

sp(x +y>2 N |x/|2]
AT

V]))

=An T) exp

_F

{ SPIx |2 _spx'y spy? IX’IZ}
2T 4T 4T

(sp— 1)|x > spx'y spy?
2T 4T ]
_ p— 1)|x P, p=DI Gp B Spyz}
4T AT (sp — 1) 4T
{ (sp)zy2 _spy? — )" oxp i y? }
4T (sp — 1) AT 4T(p—1)

exp
)2y?

Define g = Using the above bound in (7.1), we obtain

sp
4(sp—1)"
2

s 1 (147
w(t, x +y) <c,,e%T7—z—p+ ||w||1 1/”(/w(0,z)G(T,x—z)dz)
R
=CeP T w5 Pw(t, )P

In the second line we used the explicit choice of s to simplify the exponent of 7. This concludes the proof. O

1/p
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Appendix A. Proofs of Lemmas 2.2, 5.1 and 5.2
Proof of Lemma 5.1. The proof of this lemma is similar to that of a corresponding estimate in [17]. However, the

proof there only deals with moving boundary conditions of the form 27 +r log(z). Hence, for completeness, we provide
a streamlined proof. Recall that ¢ solves
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Cr=LE eV
To rectify the fact that the operator L is not self-adjoint, we remove a Gaussian term. Let

T, y)=e " Bx,y),

then ¢* satisfies

N (VR Vo) L R
L+ M =¢ge” ’(;;* 45*), (A.1)
where
2
Mg = gVy>'+<16 4)4'

The principle eigenvalue of M is associated to the eigenfunction

Y = QI ye

Define the non-negative quadratic form

0pr=0nf. 1) = [ (124 (= 2)2)a
R

for all f € H'(0, 00) such that yf € L>(R™).
Multiplying (A.1) by ¢* and integrating, we obtain

o0
e 16 g, +20(57) = —26er 112 / > ¢y <0.
0

Hence ¢* is bounded uniformly in L? independently of 7. Next, let ¢ = (¥, ¢*). We have

18671 < ee” VTVATAU(=) OV 1g D S ee” TV . (A2)
Integrating this inequality in 7 and using the L? bound above, we obtain

12(0) = O S €120, ) 2. (A.3)
We now show that the component of ¢* that is orthogonal to v decays in time. Let

F=t gy,
then

0@ = e B,
Using (A.1), we obtain

Ol 17 2 gy +20C*H) See” Y TATEHO, ) 2 llE* 2,
from which we deduce that

1+ @ 2 S eSO, ) o

Gathering all estimates concludes the proof. O

Proof of Lemma 5.2. Recall that ¢ solves
_ - 1-
&=L+ Eé“ ¥

To pass to a self-adjoint form, write
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Ey=exp| - %2 L))
so that £* solves
tE+ Mgt =0,
where,
Mig* = =g, + [({—Z - Z) + (% + %)];* — M+ (g N %)g*.

This operator is now self-adjoint with a compact resolvent. Let i and A be the principal eigenfunction and eigenvalue
of the operator above satisfying the boundary condition ¥ (0) = 0 and the normalization [|{|| 2 g+ = 1.
Observe that

0= s, = s N +{(3+2) 7 5) =0,
and thus A > 0.

Write
¢ = (Y, SN+ o
so that
Q™) = plig*H3, (A4)

where p is the second eigenvalue of M. After a time differentiation we have

(e, C*) (1) = (¥, £*)(0)e 7,
and as a consequence of (A.4), that
g l2() < llg*H 2(0)e ™.

Then, locally we have ||¢* | (T) < e 7 by parabolic regularity. This yields

Emexp| -2 -2 (( / Frexp ]2+ 220 dy )0 + e, e ). (AS5)
R+

where / is bounded in 7, locally in y. To finish, we simply note that, by elliptic regularity theory, for any compact set
K C [0, 00), there exists Cx > 0 such that

2o<y()<Cry  forallyek
CK

since ¥ (0) = 0. This concludes the proof. O
Proof of Lemma 2.2. As before, we pass to the moving frame and remove an exponential: let
v(t, x) = e " TS logUHN Ty — (21 — 5y log(t + 10))).

Then, we want

U, >0 v §¢ +v §¢ v
I t+to :

Changing now to self-similar variables and recalling the definition & =1, Y 2, let

t X _ 1/2 ¢/2
T=10g<1+%>’ yzma §(TyY)=U(t0(€T_1),t0 e‘[/ }’),

1
and  N(z,y):=1toe"D (to(e’ —1, tg/zef/zy) =

CAg (v + e 7/2((Sy — 55)(x +log(t0)) + L))
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The important point here is that N (oo, -) is neither infinity nor zero as it would be for another choice of r. This is
what induces the larger delay.
Then we must find ¢ that satisfies:

G = Le 4 (1 =35+ N0, 1)) ¢ = 5pee” 26y + ¢ (N0, y) = N(T. ).
We have changed the order to emphasize that the right hand side is a small error.
Let ¢ = e"/zey2/8§. The above yields

_ _ 3 _ _ _
e+ MC+ (5 —§p + N(O, y)) ¢ >5pee” %, — %Ed,ee_’/zé' +Z(N@©,y)—N(z,y)). (A.6)

We now define ¢. As above M + N (0, -) is self-adjoint with a compact resolvent. Let o and Ao be its principle

eigenelements. Using the Rayleigh quotient and testing with ye™” 2/ 8 we see immediately that Ao > 0. We need only
verify that ¢ satisfies (A.6); indeed, setting 54 =3/2 4 Ao/2,

Ce+MC+ G —§p + N(O, y)) ¢ —5pee 0y + %mﬁﬂz —Z(N(0,y) — N(z,))

Ao - _ _
= 7% —Spee T2, + §s¢ee—f/2; —Z(N(0,y) — N(z.)).

The first, third, and fourth terms are all positive. A simple maximum principle argument yields that —Ey is positive for
all y > yo for some yp > 0. The Hopf maximum principle implies (A0/2)¢ — §¢ee_f/ Zgy >0 forall y > e~%/?/C for
some C > 0. Thus, ¢ satisfies (A.6) on [e~7/%/C, 00), which, after translating back to physical variables, concludes
the proof. O
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