
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-019-01465-7
Arch. Rational Mech. Anal. 236 (2020) 113–143

C∞ Smoothing for Weak Solutions of the
Inhomogeneous Landau Equation

Christopher Henderson & Stanley Snelson

Communicated by C. Mouhot

Abstract

We consider the spatially inhomogeneous Landau equation with initial data that
is bounded by a Gaussian in the velocity variable. In the case of moderately soft
potentials, we show that weak solutions immediately become smooth, and remain
smooth as long as the mass, energy, and entropy densities remain under control. For
very soft potentials, we obtain the same conclusion with the additional assumption
that a sufficiently high moment of the solution in the velocity variable remains
bounded. Our proof relies on the iteration of local Schauder-type estimates.

1. Introduction

The Landau equation from plasma physics models the evolution of a particle
density f (t, x, v) � 0 in phase space, see e.g. [4,16]. In spatial dimension d, the
equation is given by

∂t f + v · ∇x f = QL( f, f )

:= ∇v ·
(∫

Rd
a(v − w)[ f (w)∇ f (v) − f (v)∇ f (w)] dw

)
,

(1.1)

a(z) = ad,γ |z|γ+2
(
I − z

|z| ⊗ z

|z|
)

. (1.2)
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Here, t ∈ [0, T0], x ∈ R
d , v ∈ R

d , γ � −d, and ad,γ > 0 is a physical
constant. The Landau equation arises as the limit of the Boltzmann equation as
grazing collisions predominate [1].We are interested in both the case ofmoderately
soft potentials, γ ∈ (−2, 0) and very soft potentials, γ ∈ [−d,−2]. The case
d = 3, γ = −3 corresponds to Coulomb interaction between particles at small
scales.

As opposed to the Boltzmann collision operator, which is a purely integro-
differential operator of fractional order, QL is an operator of diffusion type whose
coefficients depend nonlocally on f . In particular, the Landau equation (1.1) can
be written in divergence form

∂t f + v · ∇x f = ∇v · [a(t, x, v)∇v f ] + b(t, x, v) · ∇v f + c(t, x, v) f, (1.3)

or in nondivergence form

∂t f + v · ∇x f = tr
[
a(t, x, v)D2

v f
]

+ c(t, x, v) f, (1.4)

with the coefficients a(t, x, v) ∈ R
d×d , b(t, x, v) ∈ R

d , and c(t, x, v) ∈ R defined
by

a(t, x, v) := ad,γ

∫
Rd

(
I − w

|w| ⊗ w

|w|
)

|w|γ+2 f (t, x, v − w) dw, (1.5)

b(t, x, v) := bd,γ

∫
Rd

|w|γ w f (t, x, v − w) dw, (1.6)

c(t, x, v) := cd,γ

∫
Rd

|w|γ f (t, x, v − w) dw, (1.7)

for some constants ad,γ , bd,γ , and cd,γ . When γ = −d, the expression for c
must be replaced by cd,γ f . We use both formulations (1.3) and (1.4), which are
equivalent as long as, say, f ∈ C2

v,loc and f has enough decay so that a, b, and c
are well-defined.

We make the following assumptions on the mass density, energy density, and
entropy density:

0 < m0 �
∫
Rd

f (t, x, v) dv � M0, (1.8)
∫
Rd

|v|2 f (t, x, v) dv � E0, and (1.9)
∫
Rd

f (t, x, v) log f (t, x, v) dv � H0, (1.10)

uniformly in t � 0 and x ∈ R
d . In the spatially homogeneous case, i.e. when f is

assumed to be independent of x , themass and energy are conserved, and the entropy
is monotonically decreasing; hence, in this case, it would suffice to assume that the
initial data have finite mass, energy, and entropy. It is not currently known whether
these hydrodynamic quantities stay under control for t > 0 in the inhomogeneous
case, so we include (1.8), (1.9), and (1.10) as a priori assumptions.

We are interested in the regularity of weak solutions to (1.1). We use the fol-
lowing notion of weak solution, which is implicitly used in [9] and [3]:
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Definition 1.1. We say f : [0, T0] ×R
d ×R

d → R+ is a weak solution of (1.3) if
f ,∇v f , ∂t f +v ·∇x f ∈ L2

loc(R
2d+1), the coefficients a, b, and c are well-defined,

and ∫
R2d+1

(∂t f + v · ∇x f )φ dv dx dt

=
∫
R2d+1

(−〈a∇v f,∇vφ〉 + (b · ∇v f + c f )φ
)
dv dx dt

for all φ ∈ H1
0 (R2d+1).

Our main result states that weak solutions immediately become smooth, for any
initial data that is bounded by a Gaussian and regular enough for a weak solution
to exist:

Theorem 1.2. Let γ ∈ (−2, 0), and let f : [0, T0]×R
d ×R

d → R+ be a bounded
weak solution of the Landau equation (1.1) satisfying the bounds (1.8), (1.9), and
(1.10). There exists μ0 > 0 depending on d, γ , m0, M0, E0, and H0 such that if
the initial data fin satisfies

fin(x, v) � C0e
−μ|v|2

for some C0 > 0 and μ > 0, then f ∈ C∞((0, T0] × R
d × R

d), and for any μ′ <

min{μ0, μ}, any integer j � 0, and any multi-indices β and η with non-negative
integer coordinates, the partial derivatives of f satisfy the pointwise estimates

|∂ j
t ∂β

x ∂η
v f (t, x, v)| � C

(
1 + t−q) e−μ′|v|2 . (1.11)

The constants C, q � 0 depend on d, γ , m0, M0, E0, H0, μ′, j , |β|, |η|, and C0.
For γ ∈ [−d,−2], if we make the additional assumption that for all t ∈ [0, T0]

and x ∈ R
d , ∫

Rd
|v|p f (t, x, v) dv � P0, (1.12)

where p is the smallest integer such that p >
d|γ |

2 + γ + d
, then the same conclusion

holds, with all constants depending additionally on P0 and ‖ f ‖L∞([0,T0]×Rd×Rd ).
If γ � −d/2 − 1, the constants also depend on T0.

The question of global-in-time existence of smooth solutions to (1.1) for non-
perturbative initial data remains a challenging open problem. In the case of mod-
erately soft potentials, Theorem 1.2 implies a physically meaningful continuation
criterion: any loss of smoothness of f can be detected at the macroscopic level by
a breakdown of the bounds on the mass, energy, or entropy density.

Our proof of Theorem 1.2 relies on three elements:

1. The local Hölder continuity of solutions to (1.1), which was established in [23]
and [9].
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2. Decay of the solution f for large velocities, and corresponding decay in the
local estimates, which is needed to pass regularity of f to regularity of the
coefficients a and c in (1.4).

3. Local Schauder-type estimates for kinetic Fokker-Planck equationswithHölder
continuous coefficients, which we prove in Section 2 and apply iteratively in
Section 3.

The second point is where our assumption that fin is bounded by a Gaussian comes
in. In [3], it was shown that this upper bound is propagated for all t ∈ (0, T0]
when γ ∈ (−2, 0). We extend this to γ ∈ [−d,−2] in Theorem 3.4, under more
restrictive assumptions; however, if we could guarantee by any other method that
sufficiently high moments of the solution are finite (as in the hypotheses of [5] and
[17], see below), our proof would still go through. It was shown in [3] that solutions
of (1.1) satisfying the hydrodynamic bounds (1.8), (1.9), and (1.10) satisfy a priori
pointwise decay proportional to (1+ |v|)−1 for arbitrary initial data, but this is not
strong enough for our purposes because of the slowly decaying kernels in (1.5) and
(1.7). It was also shown in [3] that a priori Gaussian decay cannot hold without
any decay assumption on fin(x, v).

1.1. Related Work

In [5], the authors show that classical solutions of (1.1) defined on a three-
dimensional torus are C∞ in all three variables, provided that infinitely many mo-
ments of the solution and its first eight derivatives in x and v remain bounded
uniformly in time and provided that the solution remains bounded away from vac-
uum. A corresponding result for solutions defined on R3 was shown in [17], in the
case γ ∈ [−3,−2). Our Theorem 1.2 extends these results in the case where fin is
bounded by a Gaussian. The assumptions (1.8), (1.9), and (1.10) are much weaker
than the a priori regularity hypotheses of [5] and [17], and are defined in terms of
physically relevant hydrodynamic quanitites. At least in the case γ ∈ (−2, 0), our
estimates do not depend quantitatively on the L∞ norm of f .

Local Hölder estimates for kinetic equations with rough coefficients were
proven by Wang–Zhang [23] and Golse–Imbert–Mouhot–Vasseur [9], and
this is the starting point for the application of our Schauder estimates. The first
global regularity estimates for (1.1) in this setting (weak solutions with bounded
mass, energy, and entropy) were established in [3]. The ellipticity constants of the
diffusion operator QL degenerate as |v| → ∞ in a non-isotropic way (see “Ap-
pendix A”). To deal with this, we use a change of variables derived in [3] to obtain
an equation with universal ellipticity constants in a small cylinder (see Lemma 3.1).

Regarding the existence theory for (1.1), global-in-time classical solutions have
only been constructed in the close-to-equilibrium setting: see the work of Guo
[10] in the x-periodic case, and Mouhot–Neumann [19] in the whole space. For
general initial data,Villani [21] constructed so-called renormalized solutions with
defect measure for the Landau equation. More recently,He–Yang [12] established
the short-time existence of spatially periodic classical solutions to (1.1) in the
Coulomb case (γ = −d) with initial data in a weighted H7

x,v space, by taking the
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grazing collisions limit in their estimates on the Boltzmann collision operator. They
assume that the mass density of the initial data is uniformly bounded away from
zero. Since this lower bound along with the bounds (1.8), (1.9), (1.10), and (1.12)
can be shown to propagate for a short time, our Theorem 1.2 combined with [12]
provides a C∞ solution to the Cauchy problem for suitable initial data. However,
on physical grounds, the equation should be expected to be well-posed even with
vacuum regions in the initial data. We explore this issue, as well as short-time
existence for a broader range of γ , in a forthcoming paper.

For the spatially homogeneous Landau equation, C∞ smoothing was estab-
lished in [6] in the case γ > 0 and [22] in the γ = 0 case. For γ ∈ (−2, 0),
the upper bounds of [20] also imply smoothing via parabolic regularity theory. For
γ ∈ [−d,−2], the result of Theorem 1.2 is new even in the space homogeneous
case, to the best of our knowledge.

1.2. Schauder Estimates

Our main technical tools are local Schauder-type estimates for linear kinetic
Fokker-Planck equations of the form

∂t u + v · ∇xu = tr(AD2
vu) + g, (1.13)

with A and g Hölder continuous (see Theorem 2.12 below). Schauder estimates
have been established in the more general setting of ultraparabolic equations by
Manfredini [18],DiFrancesco–Polidoro [7], and Bramanti–Brandolini [2],
among others. However, there are two complications involved in bootstrapping
regularity estimates in this context: based on the natural scaling of the equation,
Schauder estimates should be expected to bound two derivatives in v, one derivative
in t , and two-thirds of a derivative in x (i.e. the 2

3 -Hölder norm in x) of u, which
is not enough to directly conclude u is a classical solution. Even worse, Schauder
estimates do not provide Cα estimates on ∂t u, but rather on ∂t u + v · ∇xu. This
is related to the non-symmetric Lie group structure of the equation, which shows
up in the representation formula (2.3) of the solution. To get around this, we prove
a second estimate that bounds ∂t u and ∇xu in terms of the C1+α-norm of g. We
give elementary proofs of the estimates we need, using the explicit fundamental
solution for constant-coefficient equations.

1.3. Organization of the Paper

In Section 2, we prove regularity estimates for kinetic equations with Hölder
continuous coefficients. In Section 3, we apply these estimates iteratively to weak
solutions of the Landau equation. In “Appendix A”, we review the bounds on the
coefficients a, b, and c in (1.4).

1.4. Notation

We let z = (t, x, v) denote a point inR+ ×R
d ×R

d . For any z0 = (t0, x0, v0),
define the Galilean transformation

Sz0(t, x, v) := (t0 + t, x0 + x + tv0, v0 + v).
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We also have

S−1
z0 (t, x, v) := (t − t0, x − x0 − (t − t0)v0, v − v0).

For r > 0, define the scaling δr by

δr (t, x, v) = (r2t, r3x, rv).

The class of equations of the form (1.13) is invariant under Sz0 and δr . We also
define the quasimetric

ρ(z, z′) := ‖S−1
z z′‖ = |t ′ − t |1/2 + |x ′ − x − (t ′ − t)v|1/3 + |v′ − v|,

where

‖z − z′‖ := |t − t ′|1/2 + |x − x ′|1/3 + |v − v′|.
For any r > 0 and z0 = (t0, x0, v0), let

Qr (z0) := (t0 − r2, t0] × {x : |x − x0 − (t − t0)v0| < r3} × Br (v0),

and Qr = Qr (0, 0, 0).
We say a constant is universal if it depends only on γ , d, m0, M0, E0, and

H0 when γ ∈ (−2, 0). When γ ∈ [−d,−2], we also allow universal constants to
depend on P0 and ‖ f ‖L∞([0,T0]×Rd×Rd ). The notation A � B means that A � CB
for a constant C that depends on the quantities listed in the statement of the given
lemma or theorem, and A ≈ B means that A � B and B � A.

2. Schauder Estimates for Linear Kinetic Equations

In this section, we obtain regularity estimates for equations of the form (1.13).
We begin by defining Hölder norms and semi-norms that correspond to ρ.

Definition 2.1. Let Q ⊆ R
2d+1. For u : Q → R, define

[u]α,Q := sup
z,z′∈Q,
z 
=z′

|u(z) − u(z′)|
ρ(z, z′)α

[u]α,x,Q := sup
(t,x,v),(t,x ′,v)∈Q,

x 
=x ′

|u(t, x, v) − u(t, x ′, v)|
|x − x ′|α ,

[u]α,t,Q := sup
(t,x,v),(t ′,x,v)∈Q,

t 
=t ′

|u(t, x, v) − u(t ′, x, v)|
|t − t ′|α + |(t ′ − t)v|2α/3

|u|0,Q := sup
z∈Q

|u(z)|

|u|α,Q := |u|0,Q + [u]α,Q

[u]1+α,Q := [∇vu]α,Q1 + [u](1+α)/2,t,Q + [u](1+α)/3,x,Q

|u|1+α,Q := |u|0,Q + |∇vu|0,Q + [u]1+α,Q

[u]2+α,Q := [D2
vu]α,Q + [∂t u]α,Q + [u](2+α)/3,x,Q

|u|2+α,Q := |u|0,Q + |∂t u|0,Q + |∇vu|0,Q + |D2
vu|0,Q + [u]2+α,Q .
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For β ∈ (0, 3), if |u|β,Q < ∞, we say u ∈ Cβ(Q).

If u is in Cα(Q) by this definition, then in particular, u is α
3 -Hölder continuous in

the Euclidean metric on R
2d+1. We use the following lemma repeatedly:

Lemma 2.2. (Interpolation Inequalities) Let Q = Qr (z0) for some z0 ∈ R
2d+1

and r > 0, and let u ∈ C2+α(Q). There exists a constant C, depending only on the
dimension, such that for any ε > 0,

[u]α,Q � ε2[u]2+α,Q + Cε−α|u|0,Q,

|∂t u|0,Q � εα[∂t u]α,Q + Cε−2|u|0,Q,

|∇vu|0,Q � ε1+α[u]2+α,Q + Cε−1|u|0,Q,

[∇vu]α,Q � ε[u]2+α,Q + Cε−(1+α)|u|0,Q,

|D2
vu|0,Q � εα[u]2+α,Q + Cε−2|u|0,Q .

If D3
vu,∇xu ∈ Cα(Q), we also have

|D3
vu|0,Q � εα[D3

vu]α,Q + Cε−3|u|0,Q
|∇xu|0,Q � εα[∇xu]α,Q + Cε−3|u|0,Q .

The method of proving inequalities of this type is standard. (See, for example, [18]
or [14, Theorem 8.8.1]). Briefly, it suffices to prove the case ε = 1 by scaling. To
prove the first inequality, one estimates |u(z) − u(z′)| by writing z − z′ as a sum of
segments parallel to the coordinate axes, and applying the mean value inequality.
The details are omitted.

Finally, we define the non-scale-invariant Hölder seminorms that correspond to
our regularity estimates as follows:

Definition 2.3. For Q ⊆ R
2d+1, u : Q → R, and α, β ∈ (0, 1), define

[u]′2+α,β,Q : = [D2
vu]α,Q + [u](2+α)/3,x,Q + [u]β,t,Q,

[u]′′3+α,Q := [∂t u]α,Q + [∇xu]α,Q + [D3
vu]α,Q .

2.1. Constant Coefficients

Consider the equation

ut + v · ∇xu − �vu = g (2.1)

in (−1, 0] × R
d × R

d with zero initial data at t = −1. The explicit fundamental
solution for this equation is given by

�(z) :=
⎧⎨
⎩
Cd

t2d
exp

(
−|v|2

t
− 3v · x

t2
− 3|x |2

t3

)
, t > 0,

0, t � 0,
(2.2)
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where Cd = (
√
3/(2π))d . More precisely, if g is, say, continuous, bounded, and

has support contained in {t > −1} then (2.1) is uniquely solved by

u(z) =
∫
R2d+1

�
(
S−1

ζ z
)
g(ζ ) dζ, (2.3)

where ζ = (s, y, w) and S−1
ζ z = (t−s, x− y−(t−s)w, v−w). The fundamental

solution� is a special case of the solution constructed byHörmander [13] formore
general hypoelliptic equations. (See also [15,18].) The following lemma provides
a useful characterization of the homogeneity of the fundamental solution:

Lemma 2.4. For any partial derivative ∂
j
t ∂

β
x ∂

η
v � of�, withβ amulti-index of order

k � 0 and η a multi-index of order � � 0, there exists a constant C = C(d, j, k, �)
such that for all t > 0 and p, q � 0,∫

Rd

∫
Rd

|∂ j
t ∂β

x ∂η
v �(t + ξ1, y + ξ2, w + ξ3)||y|p|w|q dw dy

� Ct−(�/2+ j+3k/2)+3p/2+q/2.

Further, if ξ ∈ [0, 1] × R
d × R

d and ‖ξ‖ � t1/2/2, then∫
Rd

∫
Rd

|∂ j
t ∂β

x ∂η
v �(z + ξ)||y|p|w|q dw dy � Ct−(�/2+ j+3k/2)+3p/2+q/2,

where z = (t, x, v).

Proof. It is straightforward to show by induction that every partial derivative of �

can be written

∂
j
t ∂β

x ∂η
v �(t, y, w) = Pj,β,η

(
1

t1/2
,
y1
t2

, . . . ,
yd
t2

,
w1

t
, . . . ,

wd

t

)
�(t, y, w),

with Pj,β,η a homogeneous polynomialwhere each term is of degree exactly �+2 j+
3k. Since exp(−|w|2/t−3w · y/t2−3|y|2/t3) � exp(−|w|2/(16t)−3|y|2/(5t3)),
formula (2.2) for � implies∫

Rd

∫
Rd

|∂ j
t ∂β

x ∂η
v �(t, y, w)||y|p|w|q dw dy

= Cd

t2d

∫
Rd

∫
Rd

∣∣∣∣Pj,β,η

(
1

t1/2
,
y1
t2

, . . . ,
yd
t2

,
w1

t
, . . . ,

wd

t

)

�(t, y, w)| |y|p|w|q dw dy

� Cd

∫
Rd

∫
Rd

∣∣∣∣Pj,β,η

(
1

t1/2
,
y1
t1/2

, . . . ,
yd
t1/2

,
w1

t1/2
, . . . ,

wd

t1/2

)

× exp

(
−|w|2

16
− 3|y|2

5

)∣∣∣∣ t3p/2+q/2|y|p|w|q dw dy

�
(

1

t1/2

)�+2 j+3k

t3p/2+q/2,

where w = w/t1/2 and y = y/t3/2. The proof of the second claim is almost
identical, using the fact that t � t + ξt � t , where ξ := (ξt , ξx , ξv). ��
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We now prove our main regularity estimates in the constant-coefficient case.

Lemma 2.5. Suppose that g ∈ Cα(Q1) has compact support in Q1, for some
α ∈ (0, 1). Then the solution u of (2.1) in Q1 satisfies

[D2
vu]α,Q1 + [u](2+α)/3,x,Q1 � [g]α,Q1,

where the implied constant depends only on α and the dimension d. We also have
[u]β,t,Q1 � [g]α,Q1 for any β ∈ (0, 1), so that

[u]′2+α,β,Q1
� [g]α,Q1,

with [·]2+α,β,Q1 as in Definition 2.3. In particular, [u]1+β,Q1 � [g]α,Q1 for any
β ∈ (0, 1).

Proof. First, we estimate [D2
vu]α,Q1 . Since g has compact support in Q1, (2.3)

implies that, for any (t, x, v) ∈ Q1,

∂viv j u(z)

=
∫ t

−1

∫
Rd

∫
Rd

∂viv j �(t − s, x − y − (t − s)w, v − w)g(s, y, w) dw dy ds

=
∫ 1+t

0

∫
Rd

∫
Rd

∂viv j �(s, y, w)g(t − s, x − y − s(v − w), v − w) dw dy ds,

for 1 � i, j � d. Let z = (t, x, v) and z′ = (t ′, x ′, v′) be fixed points in Q1 with
t � t ′. Further, let h = ρ(z, z′) and fix any i, j ∈ {1, . . . , d}. We write

∂viv j u(z) − ∂viv j u(z′)

=
(∫ 2h2

0
+

∫ 1+t

2h2

)∫
Rd

∫
Rd

∂viv j �(s, y, w)δg(s, y, w) dw dy ds

−
∫ 1+t ′

1+t

∫
Rd

∫
Rd

∂viv j �(s, y, w)g(t ′−s, x ′−y−s(v′ − w), v′ − w) dw dy ds

=: I1 + I2 + I3,

where

δg(s, y, w) := g(t − s, x − y − s(v − w), v − w)

−g(t ′ − s, x ′ − y − s(v′ − w), v′ − w).

We make the convention that if 2h2 � 1 + t , then I2 = 0.
Since spt(g) ⊂ Q1, we have |δg(s, y, w)−δg(s, y, 0)| � 2[g]α,Q1((s|w|)α/3+

|w|α). Observe that for any s > 0, y ∈ R
d ,

∫
Rd

∂viv j �(s, y, w) dw = 0.
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This allows us to estimate I1 as follows:

|I1| =
∣∣∣∣∣
∫ 2h2

0

∫
Rd

∫
Rd

∂viv j �(s, y, w)[δg(s, y, w) − δg(s, y, 0)] dw dy ds

∣∣∣∣∣
� 2[g]α,Q1

∫ 2h2

0

∫
Rd

∫
Rd

|∂viv j �(s, y, w)|((s|w|)α/3 + |w|α) dw dy ds

� [g]α,Q1

∫ 2h2

0
sα/2−1 ds � [g]α,Q1h

α,

where the second-to-last inequality follows from Lemma 2.4.
Changing variables in I2 and adding and subtracting a term, we have

I2 =
∫ t−2h2

−1

∫
Rd

∫
Rd

[∂viv j �(t − s, x − y, v − w)g(s, y − (t − s)w,w)

− ∂viv j �(t ′ − s, x ′ − y, v′ − w)g(s, y − (t ′ − s)w,w)] dw dy ds

=
∫ t−2h2

−1

∫
Rd

∫
Rd

∂viv j �(t − s, x − y, v − w)

× [g(s, y − (t − s)w,w) − g(s, y − (t ′ − s)w,w)] dw dy ds

+
∫ t−2h2

−1

∫
Rd

∫
Rd

[∂viv j �(t − s, x − y, v − w)

− ∂viv j �(t ′ − s, x ′ − y, v′ − w)]
× g(s, y − (t ′ − s)w,w) dw dy ds

=: I ′
2 + I ′′

2 .

Re-defining δg(s, y, w) := g(s, y − (t − s)w,w) − g(s, y − (t ′ − s)w,w), we
have

|δg(s, y, w) − δg(s, y, v)|
� [g]α,Q1

(
(|t − s|1/3 + |t ′ − s|1/3)|v − w|1/3 + 2|v − w|

)
,

which implies

|I ′
2| =

∣∣∣∣∣
∫ t−2h2

−1

∫
Rd

∫
Rd

∂viv j �(t − s, x − y, v − w)[δg(s, y, w)

− δg(s, y, v)] dw dy ds|

� [g]α,Q1

∫ 1+t

2h2

∫
Rd

∫
Rd

|∂viv j �(s, y, w)|

×
((

sα/3 + |t ′ − t + s|α/3
)

|w|α/3 + |w|α
)
dw dy ds

� [g]α,Q1

∫ 1+t

2h2
s−1

(
sα/2 + h2α/3sα/6

)
ds � [g]α,Q1h

α,
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by Lemma 2.4. For I ′′
2 , first note that

I ′′
2 =

∫ t−2h2

−1

∫
Rd

∫
Rd

[∂viv j �(t − s, x − y, v − w) − �(t ′ − s, x ′ − y, v′ − w)]
× [g(s, y − (t ′ − s)w,w) − g(s, y − (t ′ − s)v, v)] dw dy ds.

We next note that, with ζ = (s, y, w),

|∂viv j �(t − s, x − y, v − w) − ∂viv j �(t ′ − s, x ′ − y, v′ − w)|
� max

‖ξ‖�h,ξ1�0

(
h2|∂t∂viv j �(z − ζ + ξ)|

+ h3|∇x∂viv j �(z − ζ + ξ)| + h|∇v∂viv j �(z − ζ + ξ)|
)

,

where we denote ξ = (ξ1, ξ2, ξ3) ∈ R × R
d × R

d .
Using these two facts along with the second half of Lemma 2.4, we have

|I ′′
2 | � [g]α,Q1

∫ 1+t

2h2

∫
Rd

∫
Rd

max
‖ξ‖�h,ξ1�0

[
h2|∂t∂viv j �(ζ + ξ)|

+ h3|∇x∂viv j �(ζ + ξ)| + h|∇v∂viv j �(ζ + ξ)|](
|t ′ − t + s + ξ1|α/3|w − ξ3|α/3 + |w − ξ3|α

)
dw dy ds

� [g]α,Q1

∫ 1+t

2h2

∫
Rd

∫
Rd

max
‖ξ‖�h,ξ1�0

[
h2|∂t∂viv j �(ζ + ξ)|

+ h3|∇x∂viv j �(ζ + ξ)|
+ h|∇v∂viv j �(ζ + ξ)|] (

(h2 + s)α/3(|w| + h)α/3 + |w|α + hα
)
dw dy ds

� [g]α,Q1h
α.

Proceeding as in our estimate of I1, with g(t ′ − s, x ′ − y − s(v′ − w), v′ − w)

playing the role of δg(s, y, w), we obtain

|I3| � [g]α,Q1

(
(1 + t ′)α/2 − (1 + t)α/2

)
� [g]α,Q1 |t ′ − t |α/2 � [g]α,Q1h

α,

completing the estimate of [D2
vu]α,Q1 .

To estimate the C (2+α)/3 norm of u in the x variable, we define h = |x ′ − x |
and write

u(t, x ′, v) − u(t, x, v)

=
(∫ h2/3

0
+

∫ 1+t

h2/3

)∫
Rd

∫
Rd

�(s, y, w)

× [g(t − s, x ′ − y − s(v − w), v − w)

− g(t − s, x − y − s(v − w), v − w)] dw dy ds

=: J1 + J2.
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Since
∫
Rd

∫
Rd �(s, y, w) dw dy = 1 for any s > 0, we have

|J1| � [g]α,Q1h
α/3

∫ h2/3

0

∫
Rd

∫
Rd

�(s, y, w) dw dy ds

� [g]α,Q1h
(2+α)/3.

For J2, we use a change of variables and then the fact that

∫
Rd

∫
Rd

�(s, x ′ − y, w) dy dw =
∫
Rd

∫
Rd

�(s, x − y, w) dy dw

to rewrite the convolution as follows:

|J2| =
∣∣∣∣
∫ 1+t

h2/3

∫
Rd

∫
Rd

[�(s, x ′ − y, w) − �(s, x − y, w)]
× g(t − s, y − s(v − w), v − w) dy dw ds|

=
∣∣∣∣
∫ 1+t

h2/3

∫
Rd

∫
Rd

[�(s, x ′ − y, w) − �(s, x − y, w)]
× [g(t − s, y − s(v − w), v − w)

− g(t − s, x − s(v − w), v − w)] dy dw ds
∣∣∣

� [g]α,Q1h
∫ 1+t

h2/3

∫
Rd

∫
Rd

(
max
|ξ |�h

|∇x�(s, x − y + ξ,w)|
)

× |x − y|α/3 dy dw ds

� [g]α,Q1h max
|ξ |�h

∫ 1+t

h2/3

(
s−3/2+α/2 + s−3/2|ξ |α/3

)
ds � [g]α,Q1h

(2+α)/3,

using Lemma 2.4, that |ξ | � h, and that h � s3/2 on the domain of integration.
The proof that [u]β,t,Q1 � [g]α,Q1 follows a similar outline, and is omitted. ��

Lemma 2.6. With g and u as in Lemma 2.5, assume in addition that g ∈ C1+α(Q1)

for some α ∈ (0, 1). Then u satisfies

[u]′′3+α,Q1
= [∂t u]α,Q1 + [∇xu]α,Q1 + [D3

vu]α,Q1 � C[g]1+α,Q1,

where the constant depends on α and d.

Proof. First, we show the estimate [∇xu]α,Q1 � C[g]1+α,Q1 . We proceed as in the
previous lemma, taking advantage of the regularity of g in x . We have

∂xi u(z) =
∫ 1+t

0

∫
Rd

∫
Rd

∂xi �(s, y, w)g(t − s, x − y − s(v − w), v − w) dw dy ds
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for 1 � i � d. Let z, z′ ∈ Q1 with t � t ′, and let h = ρ(z, z′). We write

∂xi u(z) − ∂xi u(z′)

=
(∫ 2h2

0
+

∫ 1+t

2h2

) ∫
Rd

∫
Rd

∂xi �(s, y, w)δg(s, y, w) dw dy ds

−
∫ 1+t ′

1+t

∫
Rd

∫
Rd

∂xi �(s, y, w)g(t ′ − s, x ′ − y − s(v′ − w), v′ − w) dw dy ds

=: I1 + I2 + I3,

where

δg(s, y, w) := g(t − s, x − y − s(v − w), v − w)

−g(t ′ − s, x ′ − y − s(v′ − w), v′ − w).

We make the convention that if 2h2 � 1 + t , then I2 = 0.
Since spt(g) ⊂ Q1, we have |δg(s, y, w) − δg(s, 0, w)| � 2[g]α,Q1 |y|(1+α)/3.

Observe that for any s > 0, y ∈ R
d ,∫

Rd
∂xi �(s, y, w) dy = 0.

This allows us to estimate I1 as follows:

|I1| =
∣∣∣∣∣
∫ 2h2

0

∫
Rd

∫
Rd

∂xi �(s, y, w)[δg(s, y, w) − δg(s, 0, w)] dy dw ds

∣∣∣∣∣
� 2[g]α,Q1

∫ 2h2

0

∫
Rd

∫
Rd

|∂xi �(s, y, w)||y|(1+α)/3 dy dw ds

� [g]α,Q1

∫ 2h2

0
s−3/2+(1+α)/2 ds � [g]α,Q1h

α,

by Lemma 2.4.
Changing variables in I2, we have

I2 =
∫ t−2h2

−1

∫
Rd

∫
Rd

[∂xi �(t − s, x − y, v − w)g(s, y − (t − s)w,w)

− ∂xi �(t ′ − s, x ′ − y, v′ − w)g(s, y − (t ′ − s)w,w)] dy dw ds

=
∫ t−2h2

−1

∫
Rd

∫
Rd

∂xi�(t − s, x − y, v − w)

× [g(s, y − (t − s)w,w) − g(s, y − (t ′ − s)w,w)] dy dw ds

+
∫ t−2h2

−1

∫
Rd

∫
Rd

[∂xi �(t − s, x − y, v − w)

− ∂xi �(t ′ − s, x ′ − y, v′ − w)]
× g(s, y − (t ′ − s)w,w) dy dw ds

=: I ′
2 + I ′′

2 .



126 Christopher Henderson & Stanley Snelson

Re-defining δg(s, y, w) := g(s, y − (t − s)w,w) − g(s, y − (t ′ − s)w,w), we
have

|δg(s, y, w) − δg(s, x, w)| � 2[g]1+α,Q1 |x − y|(1+α)/3,

which implies

|I ′
2| =

∣∣∣∣∣
∫ t−2h2

−1

∫
Rd

∫
Rd

∂xi �(t − s, x − y, v − w)[δg(s, y, w)

− δg(s, x, w)] dy dw ds|

� [g]α,Q1

∫ 1+t

2h2

∫
Rd

∫
Rd

|∂xi�(s, y, w)||y|(1+α)/3 dy dw ds

� [g]α,Q1

∫ 1+t

2h2
s−3/2+(1+α)/2 ds � [g]α,Q1h

α,

by Lemma 2.4. For I ′′
2 , first note that with ζ = (s, y, w),

|∂xi �(t − s, x − y, v − w) − ∂xi �(t ′ − s, x ′ − y, v′ − w)|
� max

‖ξ‖�h

(
h2|∂t∂xi �(z − ζ + ξ)|

+ h3|∇x∂xi �(z − ζ + ξ)| + h|∇v∂xi �(z − ζ + ξ)|
)

.

By applying Lemma 2.4 again and arguing as in the proof of Lemma 2.5, we have

|I ′′
2 | =

∣∣∣∣∣
∫ t−2h2

−1

∫
Rd

∫
Rd

[∂xi�(t − s, x−y, v−w)−∂xi �(t ′ − s, x ′ − y, v′ − w)]

× [g(s, y − (t ′ − s)w,w) − g(s, x − (t ′ − s)w,w)] dy dw ds
∣∣∣

� [g]1+α,Q1

∫ 1+t

2h2

∫
Rd

∫
Rd

max
‖ξ‖�h

[h2|∂t∂xi�(s, y, w)| + h3|∇x∂xi �(s, y, w)|

+ h|∇v∂xi �(s, y, w)|]|y − ξ2|(1+α)/3 dy dw ds

� [g]1+α,Q1h
α.

Proceeding as in our estimate of I1, with g(t ′ − s, x ′ − y − s(v′ − w), v′ − w)

playing the role of δg(s, y, w), we obtain

|I3| � C[g]1+α,Q1

(
(1 + t ′)α/2 − (1 + t)α/2

)

� C[g]1+α,Q1 |t ′ − t |α/2 � C[g]1+α,Q1h
α,

and the proof of the estimate on [∇xu]α,Q1 is complete.
Equation (2.1) andLemma2.5 imply the estimate on [∂t u]α,Q1 .We complete the

proof by differentiating (2.1) in v and applying Lemma 2.5 to estimate [D3
vu]α,Q1 ,

using our already-established estimate on ∇xu. ��
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Next, let A0 be a (constant) symmetric, strictly positive definite, d × d matrix.
Assume that σ(A0) ⊂ [λ,�] where 0 < λ < �.

Lemma 2.7. If g ∈ Cα(Q1) for some α ∈ (0, 1), and g has compact support in
Q1, then the solution u of

∂t u + v · ∇xu − tr(A0D
2
vu) = g

satisfies

[u]′2+α,β,Q1
� C[g]α,Q1,

for any β ∈ (0, 1). If, in addition, g ∈ C1+α(Q1), then

[u]′′3+α,Q1
� C[g]1+α,Q1 .

The constants C depend on d, α, β, λ, and �.

Proof. Let P be such that P2 = A0, and define uP (t, x, v) := u(t, Px, Pv).
Notice that σ(P) ⊂ [√λ,

√
�]. Then

∂t uP + v · ∇xuP − �vuP = (∂t u + v · ∇xu − �vu)(t, Px, Pv)

= g(t, Px, Pv) =: gP(t, x, v),

and we can apply Lemma 2.5 to uP =
∫

�(S−1
ζ z)gP(ζ ) dζ to obtain

[u]2+α,P(Q1) � C(P)[g]α,P(Q1),

where P(Q1) := (−1, 0]× P(B1)× P(B1). To get an estimate on Q1, we replace
u with u(R2t, R3x, Rv), where R > 0 depends only on λ and �. Similarly, if
D3

vu,∇xu, ∂t u ∈ Cα(Q1), we apply Lemma 2.6 to uP . ��

2.2. Variable Coefficients

Let L be an operator of the form

Lu = tr(A(z)D2
vu),

where A ∈ Cα(Q1), and 0 < λI � A(z) � �I for all z ∈ Q1. We now study
equations of the form

∂t u + v · ∇xu − Lu = g. (2.4)

As is standard, we extend Lemma 2.7 to solutions of (2.4) by freezing the coeffi-
cients at a point z and taking advantage of the closeness of L to L(z) in a small
cylinder around z, where L(z) refers to the operator tr(A(z)D2

vu) with z “frozen”.
We also remove the assumption that u has compact support, which requires tracking
how interior estimates on Qr scale for r ∈ (0, 1]. For this, we need the following
technical lemma:
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Lemma 2.8. Let ω(r) � 0 be bounded in [r0, r1] with r0 � 0. Suppose for r0 �
r < R � r1, we have

ω(r) � μω(R) + A

(R − r)p
+ B

for some μ ∈ [0, 1) and A, B, p � 0. Then for any r0 � r < R � r1, there holds

ω(r) �
(

A

(R − r)p
+ B

)
,

where the implied constant depends only on μ and p.

Proof. See [11, Lemma 4.3]. ��
Theorem 2.9. Fix α ∈ (0, 1). Suppose that, [u]′2+α,β,Q1

< ∞ for all β ∈ (0, 1),
and A ∈ Cα(Q1). Then

[u]′2+α,β,Q1/2
�

(
[g]α,Q1 + |A|3+α+2/α

α,Q1
|u|0,Q1

)
,

where g := ∂t u + v · ∇xu − Lu. The implied constant depends only on d, α, β, λ,
and �.

Proof. For r ∈ (0, 1], recall that
[u]′2+α,β,Qr

= [D2
vu]α,Qr + [u](2+α)/3,x,Qr + [u]β,t,Qr .

Let r ∈ [ 14 , 3
4 ] be arbitrary. For 1 � i, j � d, pick z, z′ ∈ Qr such that

|∂viv j u(z) − ∂viv j u(z′)|
ρ(z, z′)α

� 1

2
[∂viv j u]α,Qr .

Let θ ∈ (0, 1/8) be a constant, to be chosen later. If ρ(z, z′) � θ , then by the
interpolation inequalities in Lemma 2.2,

[∂viv j u]α,Qr � 2θ−α|D2
vu|0,Qr � 1

12d2
[u]′2+α,β,Qr

+ Cθ−2|u|0,Qr . (2.5)

On the other hand, if ρ(z, z′) < θ , let χ be a smooth cutoff such that χ(z̃) = 1 if
ρ(z̃, z′) < θ and χ(z̃) = 0 if ρ(z̃, z′) � 2θ . We can choose χ such that

|∇vχ |0,Q1 � θ−1, [∇vχ ]0,Q1 � θ−1−α, |∂tχ + v · ∇xχ |0,Q1

+ |D2
vχ |0,Q1 � θ−2,

and [∂tχ + v · ∇xχ ]α,Q1 + [D2
vχ ]α,Q1 � θ−2−α.

Using Lemma 2.7, we now have

[∂viv j u]α,Qr

� 2[χu]′2+α,β,Qr+2θ

� [∂t (χu) + v · ∇x (χu) − L(z′)(χu)]α,Qr+2θ

� [∂t (χu) + v · ∇x (χu) − L(χu)]α,Qr+2θ + [(L − L(z′))(χu)]α,Qr+2θ .
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Let R = r + 2θ . To estimate the first term on the last line, note that

∂t (χu) + v · ∇x (χu) − L(χu) = χg + u(∂t + v · ∇x − L)χ − 2(A(z)∇vu) · ∇vχ.

By the interpolation inequalities in Lemma 2.2,

[∂t (χu) + v · ∇x (χu) − L(χu)]α,QR

� ([g]α,QR + (1 + |A|0,Q1)(θ
−2[u]α,QR + θ−1[∇vu]α,QR ))

� [g]α,QR + (1 + |A|0,Q1)
(
θα[u]′2+α,β,QR

+ Cθ−2−α(2+α)|u|0,QR

)
.

(2.6)

For the second term, note that (L − L(z′))(χu) = tr((A(z̃) − A(z′))D2
v(χu)) for

all z̃ ∈ Q1. Since spt(χ) ⊂ {z̃ : ρ(z̃, z′) � 2θ}, we have
[(L − L(z′))(χu)]α,QR � [A]α,Q1θ

α
(
[D2

vu]α,QR + |D2
vu|0,QR

)

� [A]α,Q1θ
α

(
[u]′2+α,β,QR

+ θ−2|u|0,QR

)
,

(2.7)

using the interpolation inequalities again. Combining (2.6) and (2.7), we obtain,
when ρ(z, z′) < θ ,

[∂viv j u]α,Qr � |A|α,Q1θ
α

(
[u]′2+α,β,QR

+ [g]α,QR + θ−p|A|α,Q1 |u|0,Q1

)
, (2.8)

with p = 2 + α(2 + α).
The combination of (2.5) and (2.8) implies that, for any fixed θ ∈ (0, 1/8),

[∂viv j u]α,Qr �
(
C |A|α,Q1θ

α + 1

12d2

)
[u]′2+α,β,QR

+C[g]α,QR + Cθ−p|A|α,Q1 |u|0,Q1 .

Summing over i and j , and applying a similar argument to [u](2+α)/3,x,Qr and
[u]β,t,Qr , we obtain

[u]′2+α,β,Qr
�

(
C |A|α,Q1θ

α + 1

4

)
[u]′2+α,β,QR

+ C[g]α,QR

+Cθ−p|A|α,Q1 |u|0,Q1 .

Fix θ0 > 0 such that C |A|α,Q1θ
α < 1/4 for all θ ∈ (0, θ0). Then, for each

R ∈ (r, r + 2θ0), we have

[u]′2+α,β,Qr
� 1

2
[u]′2+α,β,QR

+ C[g]QR + C(R − r)−p|A|α,Q1 |u|0,Q1 .

Recall that r ∈ [ 14 , 3
4 ] was arbitrary. Lemma 2.8 with ω(s) = [u]′2+α,β,Qs

,
r0 = 1/2, and r1 = 1/2 + 2θ0 implies

[u]′2+α,β,Qr
� C([g]α,Q1 + (R − r)−p|A|α,Q1 |u|0,Q1),

for each 1
2 � r < R � 1

2 + 2θ0. Choose r = 1
2 and R = 1

2 + θ0, and the proof is
complete. ��
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Next, we extend the estimate of Lemma 2.6 to the variable-coefficient case.
Here, we need to assume A(z) in the operator L is in C1+α(Q1).

Theorem 2.10. Assume that D3
vu,∇xu, ∂t u ∈ Cα(Q1). Then

[u]′′3+α,Q1/2
� C

(
|g|1+α,Q1 + |A|5+α+6/α

1+α,Q1
|u|0,Q1

)
,

where g := ∂t u + v · ∇xu − tr(AD2
vu). The constant C depends on d, α, λ, and �.

Proof. For r ∈ (0, 1], recall
[u]′′3+α,Qr

= [∂t u]α,Qr + [∇xu]α,Qr + [D3
vu]α,Qr .

With r , θ , and R as in the proof of Theorem 2.9, we can follow the argument of
that proof to show

[u]′′3+α,Qr
�

(
C |A|1+α,Q1θ

α + 1

4

)
[u]′′3+α,QR

+ C |g|1+α,QR

+Cθα(4+α)+6|A|1+α,Q1 |u|0,Q1 .

The conclusion of the proof is the same as Theorem 2.9. ��
In the previous theorems, we assumed that solutions exist. This is verified by

the following theorem:

Proposition 2.11. Given g ∈ Cα((−1, 0]×R
d ×R

d)with compact support in Q1,
then there exists a unique weak solution u in C2+α|((−1, 0] × R

d × R
d) of (2.4).

Furthermore, [u]′2+α,β,Q1
< ∞. If g ∈ C1+α(Q1), the same conclusion holds with

[u]′′3+α,Q1
< ∞, where [·]′2+α,β,Q1

and [·]′′3+α,Q1
are as in Definition 2.3.

Proof. Fix any β ∈ (0, 1) and assume that the matrix A is uniformly bounded and
coercive on R × R

d × R
d . Define the norm

‖u‖B := max
{|u|α,Q1(z0) + [u]2+α,β,Q1(z0) + [∂t u + v · ∇xu]α,Q1(z0) : z0

= (0, x0, v0), x0, v0 ∈ R
d
}

,

and the Banach space

B := {u ∈ C2+α([−1, 0] × R
d × R

d) : ‖ · ‖B < ∞},
endowed with ‖ · ‖B, and

V := {u ∈ Cα([−1, 0] × R
d × R

d) : u(−1, ·, ·) ≡ 0},
endowed with the obvious norm.

For any θ ∈ [0, 1], define the operator Eθ : B → V by

Eθu := ut + v · ∇xu − (1 − θ)�vu − θLu.
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From Theorem 2.9, we see that

‖u‖B � ‖Eθu‖V
for all u ∈ B. Linearity and the above inequality imply that Eθ is injective. Also,
from (2.2), we see that E0 is onto. Applying the method of continuity as in [8,
Theorem 5.2], we obtain that E1 is onto as well. Hence, E1 is invertible.

This finishes the first claim. The same argument applies in the second casewhen
g has one more derivative, using Theorem 2.10. ��

We collect all estimates above and use the equation that u solves in order to
derive an estimate on (∂t + v · ∇x )u to obtain the following theorem:

Theorem 2.12. Let u be such that

∂t u + v · ∇xu − Lu = g

in Q1, with L = tr(AD2
vu) and λI � A ≤ �I .

(a) If g, A ∈ Cα(Q1) for some α ∈ (0, 1), we have the estimate

[D2
vu]α,Q1/2 + [u](2+α)/3,x,Q1/2 + [u]β,t,Q1/2 + [(∂t + v · ∇x )u]α,Q1/2

� ([g]α,Q1 + |A|pα,Q1
|u|0,Q1),

for any β ∈ (0, 1).
(b) If g, A ∈ C1+α(Q1) for some α ∈ (0, 1), then

[∂t u]α,Q1/2 + [∇xu]α,Q1/2 + [D3
vu]α,Q1/2 � (|g|1+α,Q1 + |A|q1+α,Q1

|u|0,Q1).

The implied constants depend on d, α, β, λ, and�. The exponents p, q > 0 depend
only on α.

3. Smoothing for Weak Solutions of the Landau Equation

In this section, we apply the estimates of Section 2 to the Landau equation.
The diffusion operator tr(a(z)D2

v f ) (or in divergence form, ∇v · (a(z)∇v f )) is
uniformly elliptic in any bounded set, but the ellipticity constants degenerate as
|v| → ∞. (See “Appendix A”.) To deal with this, we apply a change of variables in
a small cylinder around a given point z0, which yields an equation with ellipticity
constants that are independent of z0. In the sequel, we undo this transformation to
explicitly see the dependence of the estimates on |v|.

The following lemma was first proven in [3] in the case of moderately soft
potentials:

Lemma 3.1. Let z0 = (t0, x0, v0) ∈ R+ × R
d × R

d be such that |v0| � 2, and let
T be the linear transformation such that

T e =
{

|v0|1+γ /2e, e · v0 = 0

|v0|γ /2e, e · v0 = |v0|.
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Let T̃ (t, x, v) = (t, T x, T v), and define

Tz0(t, x, v) := Sz0 ◦ T̃ (t, x, v)

= (t0 + t, x0 + T x + tv0, v0 + T v).

Then:

(a) There exists a constant C > 0 independent of v0 ∈ R
d\B2 such that for all

v ∈ B1,

C−1|v0| � |v0 + T v| � C |v0|.
(b) Let f be a weak solution of the Landau equation (1.3) satisfying (1.8), (1.9),

and (1.10), and if γ < −2, assume that f satisfies (1.12). Then there exists a
radius

r1 = c1|v0|−(1+γ /2)+ min
(
1,

√
t0/2

)
,

with c1 universal, such that for any r ∈ (0, r1], the function fz0(t, x, v) :=
f (Tz0(r2t, r3x, rv)) satisfies

∂t fz0 + v · ∇x fz0 = ∇v · (
A(z)∇v fz0

) + B(z) · ∇v fz0 + C(z) fz0 , (3.1)

or equivalently,

∂t fz0 + v · ∇x fz0 = tr
(
A(z)D2

v fz0
)

+ C(z) fz0 , (3.2)

in Q1, and the coefficients

A(z) = T−1a(Tz0(δr (z)))T−1, B(z) = rT−1b(Tz0(δr (z))), and

C(z) = r2c(Tz0(δr (z)))

satisfy

λI � A(z) � �I,

|B(z)| �

⎧⎪⎨
⎪⎩
1, −1 � γ < 0,

|v0|min{1+γ /2,0} (
1 + ‖ f (t, x, ·)‖L∞(Bθ (v))

)−(γ+1)/d
, −2 � γ < −1,

|v0|−γ /2−2−2(γ+1)/d
(
1 + ‖ f (t, x, ·)‖L∞(Bθ (v))

)−(γ+1)/d
, −d � γ < −2,

|C(v)| �

⎧⎪⎨
⎪⎩

|v0|−2
(
1 + ‖ f (t, x, ·)‖L∞(Bθ (v))

)−γ /d
,

−2d

d + 2
� γ < 0,

|v0|−(2+γ )+−2−2γ /d
(
1 + ‖ f (t, x, ·)‖L∞(Bθ (v))

)−γ /d
, −d < γ <

−2d

d + 2
,

with λ and � universal, and θ � 1 + |v0|−2/d .

Proof. For γ ∈ (−2, 0), this lemma is proven in [3, Lemma 4.1]. In fact, that
proof does not use γ > −2 in an essential way. The necessary ingredients are the
upper and lower bounds of Proposition A.1 and Lemma A.3 from the “Appendix”,
which hold under our assumptions on f . The bounds on B and C come from
Proposition A.2 and Lemma A.3. ��
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The coefficients A, B, and C are dependent on z0, which we refer to as the
“base point,” and r .

For any z0 = (t0, x0, v0) with |v0| � 2, we define fz0(z) = f (Sz0δr1 z), with
r1 as in Lemma 3.1(b). Note that in the notation of [3], our fz0(t, x, v) is equal
to fT (r21 t, r

3
1 x, r1v). The following proposition shows how the regularity of f

depends on the regularity of fz0 .

Proposition 3.2. Let f : [0, T0]×R
d×R

d → R+ for some T0 > 0. If fz0 is defined

with base point z0 ∈ (0, T0] ×R
d ×R

d , and some partial derivative ∂
j
t ∂

β
x ∂

η
v fz0 of

order M = 2 j + 3|β| + |η| exists in Cα(Q1) for some α ∈ (0, 1), then

|∂ j
t ∂β

x ∂η
v f |α,Qr1 (z0) � r−M−α

1 (1 + |v0|)−γα/2|∂ j
t ∂β

x ∂η
v fz0 |α,Q1

�
(
1 + t−(M+α)/2

0

)
(1 + |v0|)M(1+γ /2)+α|∂ j

t ∂β
x ∂η

v fz0 |α,Q1 ,

with r1 as in Lemma 3.1.

Proof. Let ∂ = ∂
j
t ∂

β
x ∂

η
v . For z, z′ ∈ Qr1(z0) with |v0| � 2, we have

|∂ f (z) − ∂ f (z′)| = r−M
1 |∂ fz0(δ−1

r1 S−1
z0 T̃−1z) − ∂ fz0(δ

−1
r1 S−1

z0 T̃−1z′)|
� [∂ fz0 ]α,Q1r

−M
1 ρ(δ−1

r1 S−1
z0 T̃−1z, δ−1

r1 S−1
z0 T̃−1z′)α

= [∂ fz0 ]α,Q1r
−M−α
1 ρ(S−1

z0 T̃−1z,S−1
z0 T̃−1z′)α

� [∂ fz0 ]α,Q1r
−M−α
1 ρ(T̃−1z, T̃−1z′)α

� [∂ fz0 ]α,Q1r
−M−α
1 |v0|−γα/2ρ(z, z′)α.

In the case |v0| � 2, we have f (z) = fz0(δ
−1
r1 S−1

z0 z), and a similar calculation
applies. ��

Next, we show that if the regularity estimates of fz0 decay sufficiently quickly
as |v| → ∞, they imply regularity of the coefficients of (3.2). Although it is enough
to show that partial derivatives of A and C grow at most polynomially, we derive
explicit rates for the sake of concreteness.

Lemma 3.3. Let fz0 be as in Lemma 3.1. Assume that some partial derivative

∂
j
t ∂

β
x ∂

η
v fz0 of order M = j + |β| + |η| exists in Cα(Q1) for every z0 ∈ (0, T0] ×

R
d × R

d , and satisfies

[∂ j
t ∂β

x ∂η
v fz0 ]α,Q1 � C0

(
1 + t−p

0

)
(1 + |v0|)−q

for some p � 0 and q > d +2+γ (1−α/2)+α/3. Then A(t, x, v) and C(t, x, v)

enjoy the same regularity as fz0 , and for any z0 ∈ (0, T0] × R
d × R

d , one has[
∂
j
t ∂β

x ∂η
v A

]
2α/3,Q1

�
(
1 + t−M/2−p

0

)
(1 + |v0|)(M+α/3)(1+γ /2)++2+α+αγ/3

[
∂
j
t ∂β

x ∂η
vC

]
2α/3,Q1

�
(
1 + t−M/2−p+1

0

)
(1 + |v0|)(M+α/3−2)(1+γ /2)++α+αγ/3,

where A and C are defined with base point z0, and r1 is as in Lemma 3.1. The
implied constant depends on d, γ , q, and C0.
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Proof. Let ∂ = ∂
j
t ∂

β
x ∂

η
v . For some base point z0 with |v0| � 2, fix z, z′ ∈ Q1 and

let z̃ = (t̃, x̃, ṽ) = Tz0(δr1 z) and z̃′ = Tz0(δr1 z′), with r1 as in Lemma 3.1. For
w ∈ R

d , Proposition 3.2 implies

|∂ f (t̃, x̃, ṽ − w) − ∂ f (t̃ ′, x̃ ′, ṽ′ − w)|
� [∂ f ]α,Qr1 (t0,x0,v0−w)ρ((t̃, x̃, ṽ − w), (t̃ ′, x̃ ′, ṽ′ − w))α

� (1 + t−p
0 )r−M−α

1 (1 + |v0 − w|)−q−γα/2(ρ(z̃, z̃′)α + |w|α/3ρ(z̃, z̃′)2α/3).

Recall A(z) = T−1a(Tz0(δr1 z))T−1. The formula (1.5) for a implies

|∂A(z) − ∂A(z′)| � |v0|−γ

∫
Rd

|w|γ+2|∂ f (t̃, x̃, ṽ − w) − ∂ f (t̃ ′, x̃ ′, ṽ′ − w)| dw
� (1 + t−p

0 )|v0|−γ r−M−α
1 ρ(z̃, z̃′)2α/3

×
∫
Rd

|w|γ+2+α/3(1 + |v0 − w|)−q−γα/2 dw

� (1 + t−p
0 )r−M−α

1 ρ(z̃, z̃′)2α/3|v0|2+α/3

� (1 + t−p
0 )r−M−α/3

1 ρ(z, z′)2α/3|v0|2+α+αγ/3,

where we have used ρ(z̃, z̃′) � |v0|1+γ /2r1ρ(z, z′). A similar calculation ap-
plies to C(z) = r21 c(Tz0δr1 z). In the borderline case γ = −d, we have C(z) =
cd,γ r21 fz0(z), and the conclusion of the lemma follows from the even stronger decay
of ∂ fz0 . ��
Remark. The decay in the estimates of Lemma 3.3 can be improved when |η| > 0
by integrating by parts in w. However, this would still not grant us enough decay
to conclude f ∈ C∞ without any decay assumption on the initial data.

Next, we show that Gaussian bounds in the initial data are propagated. This
result was established in the case γ ∈ (−2, 0) in [3, Theorem 1.2] , under the
assumption that the hydrodynamic bounds (1.8), (1.9), and (1.10) hold. To prove
such a result when γ ∈ [−d,−2], we also need a priori bounds on ‖ f ‖L∞ and on
sufficiently high moments of f .

Theorem 3.4. Let γ ∈ [−d,−2], and let f be a bounded weak solution of the
Landau equation (1.4) satisfying the hydrodynamic bounds (1.8), (1.9), and (1.10).
Assume, in addition, that

∫
Rd

|v|p f (v) dv � P0,

where p is the smallest integer such that p >
d|γ |

2 + γ + d
. Then there exists μ0 > 0

such that if

fin(x, v) � C0e
−μ|v|2
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for all x ∈ R
d , v ∈ R

d and μ > 0, then

f (t, x, v) � e−min{μ0,μ}|v|2 , (3.3)

where μ0 and the implied constant in (3.3) depend on C0, M0, E0, and
‖ f ‖L∞([0,T0]×Rd×Rd ). If γ � −d/2 − 1, then the implied constant in (3.3) also
depends on the time of existence T0.

Proof. First, assume that γ ∈ (−d/2 − 1,−2]. Fix μ0 > 0 to be determined and
let μ = min{μ,μ0}. Proceeding as in the proof of [3, Theorem 1.2], we claim that
φ(t, x, v) = e−μ|v|2 is a supersolution to the linear Landau equation

∂tφ + v · ∇xφ = tr(aD2
vφ) + cφ, (3.4)

for |v| large, where a and c are defined in terms of f . Since φ is radial in v, we
have

∂vi ∂v j φ = ∂rrφ

|v|2 viv j + ∂rφ

|v|
(

δi j − viv j

|v|2
)

=
[
4μ2|v|2 − 2μ

|v|2 viv j − 2μ

(
δi j − viv j

|v|2
)]

e−μ|v|2 .

Proposition A.1 and Lemma A.3 from the appendix imply

ai j∂vi ∂v j φ �
[
(4μ2(1 + |v|)2 − 2μ)C1(1 + |v|)γ − 2μC2(1 + |v|)γ+2

]
e−μ|v|2

=
(
(4μ2C1 − 2μC2)(1 + |v|)γ+2 − 2μC1(1 + |v|)γ

)
e−μ|v|2

� −C(1 + |v|)γ+2φ(v),

for |v| sufficiently large, provided that we choose μ0 < C2/(2C1), where we use
the convention that repeated indices are summed over. With the bound on c from
Lemma A.3, this implies

ai j∂vi ∂v j φ + cφ �
[
−C(1 + |v|)γ+2 + C(1 + |v|)γ+2−ε

]
φ(v).

The first term on the right-hand side dominates for large |v|, and we have

ai j∂vi ∂v j φ + cφ � −C |v|γ+2φ (3.5)

for |v| � R0 for some large R0. Choose C f such that C f φ(t, x, v) > ‖ f ‖L∞ for
all |v| � R0 and such that C f φ(0, x, v) > f (0, x, v) for all (x, v) ∈ R

d × R
d . In

the second inequality we used that μ � μ. Define the function

g(t, x, v) := [ f (t, x, v) − C f φ(t, x, v)]+.

If |v| � R0, then g(t, x, v) = 0 by our choice of C1. If |v| > R0, then by
(3.5), φ is a supersolution to (3.4). We conclude g(t, x, v) is a subsolution of
∂t g + v · ∇x g � ai j∂viv j g + cg in its entire domain; hence, by the maximum
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principle [3, LemmaA.2], we have g � 0 for all t > 0, so f (t, x, v) � C1φ(t, x, v)

for all t > 0 for which f is defined.
If γ � −d/2 − 1, the above argument does not apply because we do not have

enough a priori decay in c to conclude (3.5). For this case, we define h(t, x, v) =
f (t, x, v)eμ|v|2 . From the equation (1.4) for f , we have

∂t h + v · ∇xh = eμ|v|2 (
tr

[
aD2

v(e
−μ|v|2h)

]
+ ce−μ|v|2h

)

= tr
[
aD2

vh
]

− 4μv · (a∇vh) +
(
c − 2μ tr(a) + 4μ2ai jviv j

)
h.

Lemma A.3 implies that ‖c − 2μ tr(a) + 4μ2ai jviv j‖L∞([0,T0]×R2d ) � C0 for

some C0, so that h̃(t, x, v) = e−C0t h(t, x, v) is a supersolution of ∂t h̃ + v · ∇x h̃ =
tr(aD2

v h̃)+ b̃ ·∇v h̃ with bounded drift b̃ j = −4μvi ai j . The maximum principle for
this class of equations (see for example [3, Proposition A.1]) implies h(t, x, v) �
eC0t fin(x, v)eμ|v|2 , which is uniformly bounded on any finite time interval. Note
that, since ‖ f ‖L∞([0,T0]×Rd×Rd ) is finite, this argument also applies in the case
γ = −d. ��

We are now in a position to prove our main result.

Proof of Theorem 1.2. Let f be a weak solution of the Landau equation (1.3) such
that fin(x, v) = f (0, x, v) � e−μ|v|2 for some μ > 0. Without loss of generality,
we may assume μ � μ0, with μ0 as in the statement of the theorem. By applying
[3, Theorem 1.2] if γ ∈ (−2, 0) or Theorem 3.4 if γ ∈ [−d,−2], we see that, for
all (t, x, v) ∈ [0, T0] × R

d × R
d ,

f (t, x, v) � e−μ|v|2 , (3.6)

where the implied constant is independent of T0 if γ > −d/2−1. The dependence
of the implied constant in (3.6) on T0 in the case γ � −d/2−1 propagate to the rest
of our estimates. Throughout this proof, as we absorb algebraic-in-v factors into
factors with Gaussian decay in v, μ′ denotes a changing, positive constant, with
μ′ < μ � μ0. The constant μ′ changes only finitely many times, by an arbitrarily
small amount, so the final conclusion is valid for any μ′ < μ.

Let fz0 be as in Lemma 3.1 with base point z0 ∈ [0, T0] × R
d × R

d . Since
Lemma 3.1 locally controls the coefficients in the equation for fz0 (3.1), we may
apply [9, Theorem 2] to obtain:

| fz0 |α,Q1/2 � ‖ fz0‖L2(Q1)
+ |C fz0 |0,Q1 ,

for some α ∈ (0, 1). Using the Gaussian decay of f (3.6), this implies | fz0 |α,Q1/2 �
e−μ′|v0|2 . By rescaling, we have | fz0 |α,Q1 � e−μ′|v0|2 . Next, Lemma 3.3 with M =
p = 0, along with the local upper bounds on A and C in Lemma 3.1, implies that
the coefficients A and C in (3.2) satisfy

∣∣A∣∣
2α/3,Q1

+ ∣∣C∣∣
2α/3,Q1

� (1 + |v0|)k0 ,
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for some k0 ∈ R, with α as above. We apply the Schauder estimate, Theo-
rem 2.12(a), to fz0 in Q1 with α′ = 2α/3 to obtain

[ fz0 ]1+α′/3,Q1/2 � C([C fz0 ]α′,Q1 + |A|p
α′,Q1

| fz0 |0,Q1) � e−μ′|v0|2

for any z0 ∈ (0, T0]×R
d ×R

d , where p > 0 depends on α1. By Lemma 3.3 again,
this implies A,C ∈ C1+α′′

(Q1/2), with α′′ = 2α′/3 and
∣∣A∣∣

1+α′′,Q1/2
� r−2

1 (1 + |v0|)k1 � (1 + t−1
0 )(1 + |v0|)k1,∣∣C∣∣

1+α′′,Q1/2
� (1 + |v0|)�1,

for k1, �1 ∈ R. We can now apply Theorem 2.12(b) to obtain

[∂t fz0 ]α′′,Q1/4 + [∇x fz0 ]α′′,Q1/4 + [D3
v fz0 ]α′′,Q1/4

� (|C fz0 |1+α′′,Q1/2 + |A|q1+α′′,Q1/2
| fz0 |0,Q1/2)

� (1 + t−q
0 )e−μ′|v0|2 .

where q > 0 depends on α. Again, by taking a larger constant we have

[D3
v fz0 ]α′′,Q1 + [∂t fz0 ]α′′,Q1 + [∇x fz0 ]α′′,Q1 � (1 + t−q

0 )e−μ′|v0|2 .

From here, we can inductively apply Theorem 2.12(a) and (b) to conclude fz0 ∈
C∞(Q1). In more detail, assume that all partial derivatives ∂

j
t ∂

β
x ∂

η
v fz0 with

2 j + 3|β| + |η| � M (3.7)

exist in Cα(Q1) for some α > 0, and that for every such partial derivative ∂ fz0 and
z0 ∈ (0, T0] × R

d × R
d , we have

[∂ fz0 ]α,Q1 � C
(
1 + t−q

0

)
e−μ′|v0|2 , (3.8)

for some q > 0. Then Lemma 3.3 implies that A and C in (3.2) satisfy

[
∂A

]
1+α′,Q1/2

� (1 + t−q ′
0 )(1 + |v0|)k[

∂C
]
1+α′,Q1/2

� (1 + t−q ′+1
0 )(1 + |v0|)�,

(3.9)

for some q ′ > 0 and k, � ∈ R. Letting ∂ = ∂
j
t ∂

β
x ∂

η
v be a partial derivative satisfying

(3.7), we can therefore differentiate equation (3.2) to obtain an equation for ∂ fz0 of
the form

∂t (∂ fz0) + v · ∇x (∂ fz0) = tr(A(z)∂ fz0) + C(z)∂ fz0 + F( fz0(z), A(z),C(z)),

1 Technically, Theorem 2.12 does not apply to f since it is not sufficiently regular; how-
ever, a standard mollification argument allows us to sidestep this potential issue. We omit
the details.
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for some differential operator F of order at most M (counted with the scaling of
(3.7)). Applying Theorem 2.12(a) and our inductive hypothesis (3.8), we have

[∂ fz0 ]1+α′,Q1/2 �
(
[C(z)∂ fz0 + F( fz0(z), A(z),C(z))]α′,Q1 + |A|p

α′,Q1
| fz0 |0,Q1

)

�
(
1 + t−q ′′

0

)
e−μ′|v0|2 ,

withq ′′ > 0.By (3.9),wehave enough regularity ofC(z) andF( fz0(z), A(z),C(z))
to apply Theorem 2.12(b):

[D3
v∂ fz0 ]α′′,Q1/4 + [∂t∂ fz0 ]α′′,Q1/4 + [∇x∂ fz0 ]α′′,Q1/4 �

(
1 + t−q ′′′

0

)
e−μ′|v0|2 .

As above, we may replace Q1/4 with Q1 by taking a larger implied constant. Such
an estimate holds for each partial derivative ∂ fz0 satisfying (3.7), so we have shown

(3.8) holds with some q > 0 for ∂
j
t ∂

β
x ∂

η
v fz0 whenever

2 j + 3|β| + |η| � M + 3.

We conclude fz0 ∈ C∞(Q1) for any z0 ∈ (0, T0] × R
d × R

d . By Proposi-
tion 3.2, we have that f ∈ C∞((0, T0] × R

d × R
d)) with the pointwise estimates

(1.11). ��
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Appendix A. Bounds on the Coefficients of the Landau Equation

In this appendix, we collect the available bounds on the coefficients a, b, and c
in the Landau equation (1.3) with soft potentials (γ ∈ [−d, 0)). The estimates
in Propositions A.1 and A.2 were derived in [20] and [3]. Earlier, corresponding
bounds in the case γ � 0 were shown in [6].

Proposition A.1. Let f : [0, T0] ×R
d ×R

d → R+ satisfy the bounds (1.8), (1.9),
and (1.10), and let a be defined by (1.5). If γ ∈ [−d, 0), then for unit vectors
e ∈ R

d ,
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ai j (t, x, v)ei e j � c

{
(1 + |v|)γ , e ∈ S

d−1,

(1 + |v|)γ+2, e · v = 0.
(A.1)

If γ ∈ [−2, 0), then a satisfies the upper bound

ai j (t, x, v)ei e j � C

{
(1 + |v|)γ+2, e ∈ S

d−1,

(1 + |v|)γ , e · v = |v|, (A.2)

and if γ ∈ [−d,−2),

ai j (t, x, v)ei e j � C‖ f (t, x, ·)‖−(γ+2)/d
L∞(Rd )

, e ∈ S
d−1. (A.3)

The constants c and C depend on d, γ , m0, M0, E0, and H0.

Proposition A.2. Let f be as in Proposition A.1. The coefficients b and c defined
by (1.6) and (1.7) respectively, satisfy the upper bounds

∣∣b(t, x, v)
∣∣

� C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + |v|)γ+1, −1 � γ < 0,

(1 + |v|)γ+1(1 + ‖ f ‖L∞(B1(v)))
−(γ+1)/d ,

−3d − 2

d + 2
� γ < −1,

(1 + |v|)−2−2(γ+1)/d
(
1 + ‖ f ‖L∞(B1(v))

)−γ /d
, −d � γ <

−3d − 2

d + 2
,

(A.4)

and

c(t, x, v) � C

⎧⎪⎨
⎪⎩

(1 + |v|)γ (1 + ‖ f ‖L∞(B1(v)))
−γ /d ,

−2d

d + 2
� γ < 0,

(1 + |v|)−2−2γ /d
(
1 + ‖ f ‖L∞(B1(v))

)−γ /d
, −d < γ <

−2d

d + 2
,

(A.5)

where the constants depend on d, γ , M0, and E0.

Finally, we show that when γ ∈ [−d,−2], the coefficients a and c still have the
appropriate decay to prove Theorem 3.4, if sufficiently many moments of f are
finite.

Lemma A.3. Let γ ∈ [−d,−2], and let f : [0, T0]×R
d ×R

d → R be a bounded
function satisfying (1.8) and (1.9). Assume in addition that

∫
Rd

|v|p f (v) dv � P0,
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where p is the smallest integer such that p >
d|γ |

2 + γ + d
. Then the upper bounds

(A.2)hold,with constants dependingond,γ , M0, E0, P0, and‖ f ‖L∞([0,T0]×Rd×Rd ).
If, in addition, γ > −d/2 − 1, there is an ε > 0 depending on d and γ such that

c(t, x, v) � C(1 + |v|)γ+2−ε,

with C depending on the same quantities.

Proof. For any e ∈ S
d−1, the formula (1.5) implies

ai j (t, x, v)ei e j = ad,γ

∫
Rd

(
1 −

(
w · e
|w|

)2
)

|w|γ+2 f (v − w) dw

�
∫
Rd

|w|γ+2 f (v − w) dw.

Let r := 1
2 |v|(γ+2)/(γ+2+d), R = |v|/2, and define

I1 =
∫
Br

|w|γ+2 f (v − w) dw, I2 =
∫
BR\Br

|w|γ+2 f (v − w) dw,

I3 =
∫
Rd\BR

|w|γ+2 f (v − w) dw.

We have

I1 � ‖ f ‖L∞rd+γ+2 � |v|γ+2,

I2 � rγ+2|v|−p
∫
BR

|v − w|p f (v − w) dw � P0|v|−p+(γ+2)2/(d+γ+2).

Our choice of p implies −p < d(γ + 2)/(d + γ + 2), so that I2 � |v|γ+2. Finally,
for |w| � |v|/2, we have |w|γ+2 � |v|γ+2, and

I3 � |v|γ+2
∫
Rd\BR

f (v − w) dw � M0|v|γ+2.

If e is parallel to v, then proceeding as in [3, Lemma 2.1], we have

∫
Rd

(
1 −

(
w · e
|w|

)2
)

|w|γ+2 f (v − w) dw

=
∫
Rd

(
1 −

(
(v − z) · e

|v − z|
)2

)
|v − z|γ+2 f (z) dz

=
∫
Rd

(
|v − z|2 − (|v| − z · e)2

)
|v − z|γ f (z) dz

=
∫
Rd

(
|z|2 − (z · e)2

)
|v − z|γ f (z) dz

=
∫
Rd

|z|2 sin2 θ |v − z|γ f (z) dz,
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where θ is the angle between v and z. We may assume |v| > 2. Let R = |v|/2 and
q = p(p − 2)

p + d
. By our choice of p, we have (γ + 2)p/q > −d. If z ∈ BR(v),

then | sin θ | � |v − z|/|v|, |z| � |v|, and∫
BR(v)

|z|2 sin2 θ |v − z|γ f (z) dz

� |v|−2
∫
BR(v)

|z|2|v − z|γ+2 f (z) dz

� |v|−p+q‖ f ‖q/p
L∞

∫
BR(v)

|z|p−q f (z)(p−q)/p|v − z|γ+2 dz

� |v|−p+q
(∫

BR(v)

|z|p f (z) dz
)(p−q)/p (∫

BR(v)

|v − z|(γ+2)p/q dz

)q/p

� |v|−p+q E (p−q)/p
0

(
|v|(γ+2)p/q+d

)q/p
� |v|γ .

If |v − z| � R = |v|/2, then |v − z|γ � |v|γ , and we have∫
Rd\BR(v)

|z|2 sin2 θ |v − z|γ f (z) dz � |v|γ
∫
Rd\BR(v)

|z|2 f (z) dz � E0|v|γ .

For c, our choice of p and the restriction that γ > −d/2 − 1 implies there is an

ε > 0 such that −p + γ (γ + 2 − ε)

d + γ
< γ + 2. Define r = 1

2 |v|(γ+2−ε)/(d+γ ),

R = |v|/2, and I1, I2, I3 as above. The same method implies that I1 + I2 + I3 �
|v|γ+2−ε. ��
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