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Abstract

We consider the spatially inhomogeneous Landau equation with initial data that
is bounded by a Gaussian in the velocity variable. In the case of moderately soft
potentials, we show that weak solutions immediately become smooth, and remain
smooth as long as the mass, energy, and entropy densities remain under control. For
very soft potentials, we obtain the same conclusion with the additional assumption
that a sufficiently high moment of the solution in the velocity variable remains
bounded. Our proof relies on the iteration of local Schauder-type estimates.

1. Introduction

The Landau equation from plasma physics models the evolution of a particle
density f(¢,x,v) = 0 in phase space, see e.g. [4,16]. In spatial dimension d, the
equation is given by

Of+v-Vof =0L(f )
=Vy- </Rd a(v —w)[f(w)Vf) — f(v)Vf(w)]dw> ,
(1.1)
a(z) = aqylz|" <I -1 i) . (1.2)
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Here, r € [0, Tol, x € R4, v € RY, y > —d, and aq, > 0 is a physical
constant. The Landau equation arises as the limit of the Boltzmann equation as
grazing collisions predominate [ 1]. We are interested in both the case of moderately
soft potentials, y € (—2,0) and very soft potentials, y € [—d, —2]. The case
d = 3,y = —3 corresponds to Coulomb interaction between particles at small
scales.

As opposed to the Boltzmann collision operator, which is a purely integro-
differential operator of fractional order, Qy is an operator of diffusion type whose
coefficients depend nonlocally on f. In particular, the Landau equation (1.1) can
be written in divergence form

O f+v-Vif =Vy-[alt,x, v)Vyfl+b(t,x,v)-V,f +ct, x,v)f, (1.3)

or in nondivergence form
a,f+u-vxf=tr[a(t,x,v)D§f] Tt X, 0) f, (14)

with the coefficients @(z, x, v) € R¥%4 b(t, x, v) € R4, and ¢(z, x, v) € R defined
by

a(t,x,v) = aq f <1 Y i) w2 £t x, v —wydw, (1.5
]Rd

lw| — |w]
b(t, x,v) :=bq, / lw|”wf(t, x, v — w)dw, (1.6)
R4
c(t,x,v) = cd,,,/ lw|” f(t,x,v—w)dw, (1.7)
]Rd
for some constants ay .y, bg,,, and cg,,. When y = —d, the expression for ¢

must be replaced by ¢y, f. We use both formulations (1.3) and (1.4), which are
equivalent as long as, say, f € CZ’IOC and f has enough decay so that @, b, and ¢
are well-defined.

We make the following assumptions on the mass density, energy density, and
entropy density:

0<my=< / f(t, x,v)dv < My, (1.8)
R4
/ [v]® f(r, x,v)dv < Eg,  and (1.9)
R4
/ f@t, x,v)log f(t, x,v)dv £ Hy, (1.10)
R4

uniformly in 7 > 0 and x € R?. In the spatially homogeneous case, i.e. when f is
assumed to be independent of x, the mass and energy are conserved, and the entropy
is monotonically decreasing; hence, in this case, it would suffice to assume that the
initial data have finite mass, energy, and entropy. It is not currently known whether
these hydrodynamic quantities stay under control for # > 0 in the inhomogeneous
case, so we include (1.8), (1.9), and (1.10) as a priori assumptions.

We are interested in the regularity of weak solutions to (1.1). We use the fol-
lowing notion of weak solution, which is implicitly used in [9] and [3]:
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Definition 1.1. We say f : [0, Tp] x RY x RY — R is a weak solution of (1.3) if
fVuf 0 f4+v-Vif e L%OC (R2d+l), the coefficients a, b, and ¢ are well-defined,
and

/ @ f +v-VyfHopdvdxds
R2d+1
=/ (=@Vuf, Vud) + (b - Vo f +¢f)p) dvdxdr
R2d+1

forall ¢ € Hj (R2T1).

Our main result states that weak solutions immediately become smooth, for any
initial data that is bounded by a Gaussian and regular enough for a weak solution
to exist:

Theorem 1.2. Let y € (—2,0), and let f : [0, To] x R x RY — R, be a bounded
weak solution of the Landau equation (1.1) satisfying the bounds (1.8), (1.9), and
(1.10). There exists o > 0 depending on d, y, mo, My, Eo, and Hy such that if
the initial data fi, satisfies

finlx, v) < Coe IV

for some Co > 0and jn > 0, then f € C*®((0, Ty] x R? x RY), and for any 1’ <
min{ug, i}, any integer j 2 0, and any multi-indices B and n with non-negative
integer coordinates, the partial derivatives of f satisfy the pointwise estimates

10/ 9207 £ (1, x, v)| £ C (1 +179) e ¥ 1F, (1.11)

The constants C,q 2 0 depend on d, vy, mo, My, Eg, Ho, 1, j, |B|, Inl, and Cy.
Fory € [—d, —2], if we make the additional assumption that for all t € [0, Tp]
and x € R4,

fRd [|? f(t, x, v)dv = Py, (1.12)

dly|
24+y+d
holds, with all constants depending additionally on Py and || f|| Lo [0, 7y]x R xR4)-
Ify < —d/2 — 1, the constants also depend on T.

where p is the smallest integer such that p > , then the same conclusion

The question of global-in-time existence of smooth solutions to (1.1) for non-
perturbative initial data remains a challenging open problem. In the case of mod-
erately soft potentials, Theorem 1.2 implies a physically meaningful continuation
criterion: any loss of smoothness of f can be detected at the macroscopic level by
a breakdown of the bounds on the mass, energy, or entropy density.

Our proof of Theorem 1.2 relies on three elements:

1. The local Holder continuity of solutions to (1.1), which was established in [23]
and [9].
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2. Decay of the solution f for large velocities, and corresponding decay in the
local estimates, which is needed to pass regularity of f to regularity of the
coefficients @ and ¢ in (1.4).

3. Local Schauder-type estimates for kinetic Fokker-Planck equations with Holder
continuous coefficients, which we prove in Section 2 and apply iteratively in
Section 3.

The second point is where our assumption that fi, is bounded by a Gaussian comes
in. In [3], it was shown that this upper bound is propagated for all ¢+ € (0, Tp]
when y € (-2, 0). We extend this to y € [—d, —2] in Theorem 3.4, under more
restrictive assumptions; however, if we could guarantee by any other method that
sufficiently high moments of the solution are finite (as in the hypotheses of [5] and
[17], see below), our proof would still go through. It was shown in [3] that solutions
of (1.1) satisfying the hydrodynamic bounds (1.8), (1.9), and (1.10) satisfy a priori
pointwise decay proportional to (1 + |v|)~! for arbitrary initial data, but this is not
strong enough for our purposes because of the slowly decaying kernels in (1.5) and
(1.7). It was also shown in [3] that a priori Gaussian decay cannot hold without
any decay assumption on fi,(x, v).

1.1. Related Work

In [5], the authors show that classical solutions of (1.1) defined on a three-
dimensional torus are C*° in all three variables, provided that infinitely many mo-
ments of the solution and its first eight derivatives in x and v remain bounded
uniformly in time and provided that the solution remains bounded away from vac-
uum. A corresponding result for solutions defined on R3 was shown in [17], in the
case y € [—3, —2). Our Theorem 1.2 extends these results in the case where f;j is
bounded by a Gaussian. The assumptions (1.8), (1.9), and (1.10) are much weaker
than the a priori regularity hypotheses of [5] and [17], and are defined in terms of
physically relevant hydrodynamic quanitites. At least in the case y € (-2, 0), our
estimates do not depend quantitatively on the L norm of f.

Local Holder estimates for kinetic equations with rough coefficients were
proven by WANG—ZHANG [23] and GOLSE-IMBERT-MOUHOT—VASSEUR [9], and
this is the starting point for the application of our Schauder estimates. The first
global regularity estimates for (1.1) in this setting (weak solutions with bounded
mass, energy, and entropy) were established in [3]. The ellipticity constants of the
diffusion operator Q; degenerate as |[v| — oo in a non-isotropic way (see “Ap-
pendix A”). To deal with this, we use a change of variables derived in [3] to obtain
an equation with universal ellipticity constants in a small cylinder (see Lemma 3.1).

Regarding the existence theory for (1.1), global-in-time classical solutions have
only been constructed in the close-to-equilibrium setting: see the work of Guo
[10] in the x-periodic case, and MOUHOT-NEUMANN [19] in the whole space. For
general initial data, VILLANI [21] constructed so-called renormalized solutions with
defect measure for the Landau equation. More recently, HE-YANG [12] established
the short-time existence of spatially periodic classical solutions to (1.1) in the
Coulomb case (y = —d) with initial data in a weighted H)Z)v space, by taking the
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grazing collisions limit in their estimates on the Boltzmann collision operator. They
assume that the mass density of the initial data is uniformly bounded away from
zero. Since this lower bound along with the bounds (1.8), (1.9), (1.10), and (1.12)
can be shown to propagate for a short time, our Theorem 1.2 combined with [12]
provides a C* solution to the Cauchy problem for suitable initial data. However,
on physical grounds, the equation should be expected to be well-posed even with
vacuum regions in the initial data. We explore this issue, as well as short-time
existence for a broader range of y, in a forthcoming paper.

For the spatially homogeneous Landau equation, C°*° smoothing was estab-
lished in [6] in the case y > 0 and [22] in the y = 0 case. For y € (—2,0),
the upper bounds of [20] also imply smoothing via parabolic regularity theory. For
y € [—d, —2], the result of Theorem 1.2 is new even in the space homogeneous
case, to the best of our knowledge.

1.2. Schauder Estimates

Our main technical tools are local Schauder-type estimates for linear kinetic
Fokker-Planck equations of the form

du+v-Veu =tr(AD?u) + g, (1.13)

with A and g Holder continuous (see Theorem 2.12 below). Schauder estimates
have been established in the more general setting of ultraparabolic equations by
MANFREDINI [ 18], DIFRANCESCO-POLIDORO [7], and BRAMANTI-BRANDOLINI [2],
among others. However, there are two complications involved in bootstrapping
regularity estimates in this context: based on the natural scaling of the equation,
Schauder estimates should be expected to bound two derivatives in v, one derivative
in ¢, and two-thirds of a derivative in x (i.e. the %—Hélder norm in x) of u, which
is not enough to directly conclude u is a classical solution. Even worse, Schauder
estimates do not provide C* estimates on d,u, but rather on d,u + v - Vu. This
is related to the non-symmetric Lie group structure of the equation, which shows
up in the representation formula (2.3) of the solution. To get around this, we prove
a second estimate that bounds d,u and V,u in terms of the C'**-norm of g. We
give elementary proofs of the estimates we need, using the explicit fundamental
solution for constant-coefficient equations.

1.3. Organization of the Paper

In Section 2, we prove regularity estimates for kinetic equations with Holder
continuous coefficients. In Section 3, we apply these estimates iteratively to weak
solutions of the Landau equation. In “Appendix A”, we review the bounds on the

coefficients @, b, and ¢ in (1.4).

1.4. Notation

We let z = (¢, x, v) denote a point in R} x R? x R?. For any zo = (fo, X0, Vo),
define the Galilean transformation

Sy (t, x,v) 1= (to +t, x0 + x + tvg, vo + V).
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We also have
S;OI(I, x,v) = (t —ty,x —x9 — (t —tp)vo, v — Vg).
For r > 0, define the scaling §, by
§(t,x,v) = (rzt, r3x, rv).

The class of equations of the form (1.13) is invariant under S;, and §,. We also
define the quasimetric

172

p(z.2) = IS N =1t — 1] 15— x — (¢ — )P+ | — ),

where

1/2 1/3

lz =2 =1t =12 4+ |x = X"V + o =)

For any r > 0 and zo9 = (ty, X0, vp), let
0 (z0) = (to — *, fo] X {x : [x — x0 — (t — t0)vo| < r°} x By (vp),

and O, = 0,(0,0,0).

We say a constant is universal if it depends only on y, d, mgy, My, Ep, and
Hy when y € (—2,0). When y € [—d, —2], we also allow universal constants to
depend on Py and || f || oo (0. 7] xRd x Re)- The notation A < B means that A = CB
for a constant C that depends on the quantities listed in the statement of the given
lemma or theorem, and A ~ B means that A < B and B < A.

2. Schauder Estimates for Linear Kinetic Equations

In this section, we obtain regularity estimates for equations of the form (1.13).
We begin by defining Holder norms and semi-norms that correspond to p.

Definition 2.1. Let Q € R2*! Foru : O — R, define

[4]e,@ := sup Ju@) — u@)]
“eT en PRI
7#7
[ar.0 = sup lu(t, x,v) —u(t,x',v)|
o,x,Q = ,
(t,x,v),(t,x",v)€Q, |x — x/lot
x#x'
[lar.0 = sup lu(t, x,v) —u(t', x,v)|
0,0 - —
¢ (t,x,v),(t ,x,v)€0, [t =t/ + | (¢ — t)v|2a/3
t#£t
lulo, o := sup |u(2)]
z€Q

[ula, 0 := lulo,g + [Ula,0
[u]i4a,0 = [Voitle, 0, + [Ul(14a)/2.0,0 + [U]l(140)/3.x.0
luli+e,0 = lulo,0 + |Voulo,g + [uli+e.0
[Ul240.0 = [Dyule.0 + [it)e,0 + [l 24a)/3.x.0
lul24a,0 = lulo,0 + dulo.0 + [Voulo,o + |Diulo,o + [Ul24a,0-
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For 8 € (0, 3),if |ulg,g < oo, we say u € Cﬁ(Q).

If u is in C¥(Q) by this definition, then in particular, u is %-Hélder continuous in
the Euclidean metric on R>¢*!. We use the following lemma repeatedly:

Lemma 2.2. (Interpolation Inequalities) Let Q = Q,(zo) for some zy € R2d+1
andr > 0, and let u € C*t%(Q). There exists a constant C, depending only on the
dimension, such that for any ¢ > 0,

[la.0 < &2 [ulrra.0 + Ce*ulo.0,

e[dula,0 + Ce2lulo, o,
81+Ot[

[0rulo, 0

|Vyitlo.0 ulata.0 + Ce ™ ulo.o,

IA A IA

[Voule.o < lulasa.o + Ce~ T ulg o,
|D2ulo.0 < e [ulasa.0 + Ce 2lulo.0-

IfDSu, Viu € C¥(Q), we also have
ID3ulo.o < e*[Djula.o + Celulo.g
[Veulo,o < 6*[Vatdla.o + Celulo.o-

The method of proving inequalities of this type is standard. (See, for example, [18]
or [14, Theorem 8.8.1]). Briefly, it suffices to prove the case ¢ = 1 by scaling. To
prove the first inequality, one estimates |u(z) — u(z’)| by writing z — z’ as a sum of
segments parallel to the coordinate axes, and applying the mean value inequality.
The details are omitted.

Finally, we define the non-scale-invariant Holder seminorms that correspond to
our regularity estimates as follows:

Definition 2.3. For 0 € R%?*! y: 0 — R,and o, B € (0, 1), define
[Uly 0.0 = [Dpule.g + [ 24a/3x.0 + [U]p1.0-
(115 1.0 = [Btla,0 + [Vittla,0 + [D}ula.o-
2.1. Constant Coefficients
Consider the equation
U +v-Vou —Ayu=g 2.1)

in (—1,0] x R? x R? with zero initial data at r = —1. The explicit fundamental
solution for this equation is given by

Cy > 3v-x  3x]?
Xp —T——— , >0,

[(z) = 124
0, t <0,

(2.2)
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where C; = (ﬁ/ (27))?. More precisely, if g is, say, continuous, bounded, and
has support contained in {# > —1} then (2.1) is uniquely solved by

_ -1
ww= [ r(s7) ez, @3

where ¢ = (s, y, w) and S;lz = (t—s,x—y—(t—s)w, v—w). The fundamental
solution I" is a special case of the solution constructed by HORMANDER [13] for more
general hypoelliptic equations. (See also [15,18].) The following lemma provides
a useful characterization of the homogeneity of the fundamental solution:

Lemma 2.4. For any partial derivative 3,j af 3T of I, with B a multi-index of order
k 2 0 and n a multi-index of order £ = 0, there exists a constant C = C(d, j, k, £)
such that for allt > 0 and p,q 2 0,
L, [ fa8aira +-61.5 + a0+ i hutt dudy
R4 JIR

< Ct—(£/2+j+3k/2)+3p/2+q/2_
Further, if ¢ € [0, 1] x RY x R and ||&|| < t'/%/2, then

/ / |atfafagr(z +O|yIP|w|? dwdy < Ct—(£/2+j+3k/2)+3p/2+fI/2’
R4 JRd

where z = (t, x, V).

Proof. 1t is straightforward to show by induction that every partial derivative of I"
can be written

j 1w Yd Wi Wy
J
8t8)’?831"(t,y,w)= j,ﬁ,n(m,t—z,-..,t—z,Tmu,T L@,y w),

with P; g , ahomogeneous polynomial where each termis of degree exactly £+2 j +
3k. Since exp(—fw[?/t —3w-y/1? =3|yP*/1%) = exp(—[wl?/(161) =3[y [*/(5%)),
formula (2.2) for I" implies

//|ag'afa3r(r,y,w>||y|"|w|qdwdy
R4

/ / o w o wa
tzd Rd Rd ]/3" [1/271’2’.'., ’ t,'..’ [

L@, y, w)|yl?|lw]?dwdy

Yd W1 wq
<Cd/ f Jﬂ’](]/z’ 20 Tm,,m)

[w* 31y
xexp| ———— —
16 5

1 0+2j+43k
< (_) t3p/2+q/2’

t3p/2+q/2|y|11|w|q dwdy

/2

where w = w/t'/? and y = y/t3/%. The proof of the second claim is almost
identical, using the fact thatr <t + & <1, where & := (&, &,,&). O
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We now prove our main regularity estimates in the constant-coefficient case.

Lemma 2.5. Suppose that g € C*(Q1) has compact support in Q1, for some
o € (0, 1). Then the solution u of (2.1) in Q1 satisfies

[D2ula.0, + Ul te)3x.01 S [8)w. 01

where the implied constant depends only on a and the dimension d. We also have
(g0, S [8la, 0, for any B € (0, 1), so that

[u]/2+a’lB’Ql ,S [g]a,Ql s

with [-124a,8,0, as in Definition 2.3. In particular, [uli+g,0, S [8la, 0, for any
B € (0, 1).

Proof. First, we estimate [D%u]a,Ql. Since g has compact support in Q, (2.3)
implies that, for any (¢, x, v) € Oy,

av,-vju(z)

t
= / / f 8vinF(t -85, x—y—(—s5)w,v—w)g(s,y,w)dwdyds
—1 JRA JRd
1+¢
= / / / Ay, (s, y, w)gt —s,x —y —s(v —w), v —w)dwdyds,
0 Rd JRd

for1 <i,j <d.Letz=(t,x,v)and z’ = (¢, x’, V') be fixed points in Q with
t £ t'. Further, let h = p(z,7') and fix any i, j € {1, ..., d}. We write

81),'1)_,' M(Z) - 811,-1),- M(Z/)

2h2 141
/ —i—/ / / Bvivjl"(s, vy, w)dg(s,y, w)dwdyds
0 2h2 Rd JRA

1+

— /d /d By, T (s, y, w)g(t' =5, x'=y—s (v — w), v —w)dwdyds
1+ JRI JR

L+ L+ L,

where

dg(s,y,w) :=gt—s,x—y—s(v—w),v—w)
—g(t =5, x' —y—s@ —w), v —w).
We make the convention that if 242 > 1-+1t,then I, =0.

Since spt(g) C Q1, wehave [8g(s, y, w)—38g(s, ¥, 0)| < 2[gla. 0, ((s|w /3 +
|w|%). Observe that for any s > 0, y € R¢,

/ 8viij(s, y, w)dw = 0.
Rd
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This allows us to estimate /; as follows:

2h2
|| =

. Ay, (s, y, w)[dg(s, y, w) —ég(s, y,0)]dwdyds
R

2h2

gz[gla,glf //|av,-vjr(s,y,w)|(<s|w|)“/3+|w|“)dwdyds
0 Rd JRd
2

2h
< leleor f 5271 ds < [gla, 0, h.
0

where the second-to-last inequality follows from Lemma 2.4.
Changing variables in I and adding and subtracting a term, we have

t—2h?
I = / /}éd/ [0y, (7 = 5,0 =y, v —w)g(s, y — (t —s)w, w)

av,vj —s5,x =y, vV —wgGk,y — ¢ —s)w, w)]dwdyds

1—2h?
f /d/ v, T =5, x—y,v—w)
R

X [g(s,y —({t —s)w,w) —g(s,y — ' —s)w, w)]dw dyds

t—2h%
/ /d/[avlv] — S, X =y, v—w)
R

av,v, (t Yav —w)]
x g(s,y— (@t — s)w, w)dwdyds
=L+1I.

Re-defining 8g(s, y, w) := g(s,y — (t — s)w, w) — g(s,y — ' — s)w, w), we
have

|8g(sv ) w) - (Sg(S, Vs U)l
< [glar (=512 + 1 = 51"l = w420 — wl),

which implies

t—2h2
|| = / f / dyo, Tt — 5,6 =y, v —w)[8g(s, y, w)
—1 Rd ]Rd

—38g(s,y,v)]dwdyds]|

1+¢
[g]o{ [ / / / |av,'ij(S7 Y, U))|
2h? R4 JRd

X ((so‘/3 + |t =t +s|°‘/3) |w|®/3 + |w|°‘) dwdyds

141
g [g]oz,Ql / i s*l (SO(/Z +h20£/3s01/6) ds 5 [g]a’th()l,
2h
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by Lemma 2.4. For 17, first note that

t—2h?
Ié’:f / / [0y,0, Tt =5, x =y, v —w) =Tt —s5,x" =y, 0" —w)]
—1 R JRA

X [g(s,y — (' —s)w, w) — g(s,y — (¢’ —s)v, v)]dwdy ds.
We next note that, with £ = (s, y, w),
[0y, Tt =5, x =y, 0 —w) = By, (" —5,x" =y, 0" —w)|

< max (h2|88. TG—C+8)
= leishazo\ Y (re

+h3|vxav,~vjr(z —C+8&)|+ h|vvavivjr(z -+ §)|) >

where we denote £ = (£, &, &) € R x RY x R?,
Using these two facts along with the second half of Lemma 2.4, we have

141
4 ] / / / max h 00y, T(C +
| 2| (g a, 01 wa Jrd 16120, E1>0 |0, viv; (¢ +8&)

+ B3| Vdyu, D& +E) + 7| Vydy, T +8)]]
(|r’ — s+ 6w — & + - &[*) dwdyds

1+t
] / / / max h 00y, T(C +
g o, Q1 - ri JRa ||§H<h $1>0 | 1 Ov;v; (; S)|

+ W |Vidyo, T(C +8)]
+ h|Vody, T +6)]] (<h2 + 9P (w| + P + w|* + h“) dw dy ds
5 [g]a,tha

Proceeding as in our estimate of 11, with g(#/ — s, x’ —y —s(v' —w), v — w)
playing the role of §g(s, y, w), we obtain

151 S (8l (1472 = (1 +072) S (gl I = 112 S [8la, %,

completing the estimate of [D%u]a’Ql .
To estimate the CZ1®/3 norm of u in the x variable, we define h = x" —x
and write

u(t,x',v) —u(t,x,v)

w3 1+t
=/ +/ f/l“(s,y,w)
0 h2/3 R JRA

X gt —s,x —y—s(v—w),v—w)
—gt—s,x—y—s(v—w),v—w)]dwdyds
= J1+ /.
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Since [pa fra T'(s, y, w)dwdy = 1 forany s > 0, we have

n2/3
e [g]a,tha/Sf
0

< [gla.0, h*T973.

/ f I'(s,y, w)dwdyds
R4 JRA
For J,, we use a change of variables and then the fact that

//F(s,x’—y,w)dydw:/ / C(s,x —y, w)ydydw
Rd JRd Rd JRd

to rewrite the convolution as follows:

14+
/ / [T(s,x" —y,w) =T(s,x — y, w)]
h2/3 R4 JRA
xgt—s,y—s(—w),v—w)dydwds]|

1+t
fh2/3 /Rd /Rd[l”(s, X' =y, w) =T, x =y, w]

X [gt—s,y—s(v—w),v—w)

|| =

— g(t—s,x—s(v—w),v—w)]dydwds‘

141
g[g]a,th/ //(maxmms,x—ws,wn)
23 Jrd Jra \ g1k

x |x — y|[*3dydwds

1+1
< [8la.0,h max / (57242 4 5713 ds S [gla, 0, hPHP,
§1=h Jn2/3

using Lemma 2.4, that |§| < h, and that A < $3/2 on the domain of integration.
The proof that [u]g ;. 0, < [glw, 0, follows a similar outline, and is omitted. O

Lemma 2.6. With g and u as in Lemma 2.5, assume in addition that g € C1t%(Q)
for some o € (0, 1). Then u satisfies

(115100, = [Ola.0, + [Vxttla, 0, + [Dyule.0, = Clglisa.0, -
where the constant depends on o and d.

Proof. First, we show the estimate [V, u]q, g, < Clglita, 0,- We proceed as in the
previous lemma, taking advantage of the regularity of g in x. We have

141
axl.u(z):/ / / oy (s, y,w)gt —s,x —y —s(v—w),v—w)dwdyds
0 Rd JRd
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forl1 £i<d.Letz,7 € Q1 witht <t andleth = p(z, z’). We write

Oy, u(2) — Oy, u(z)

2h2 1+1
/ f / / O, I'(s, y, w)dg(s, y, w)dwdyds
2h2 R4 JRRE

1+
/ / / O D(s,y,w)gt' —s,x' —y —s@ —w), v —w)dwdyds
1 Rd JR

=L+ DL+,

where
og(s,y,w) =gt —s,x—y—s(v—w),v—w)
—gt' —s5,x —y—s@ —w),v —w).
We make the convention that if 242 > 1 + ¢, then I, = 0.

Since spt(g) C Q1, we have |8g(s, y, w) — 8g(s, 0, w)| < 2[gla. o, || /3.
Observe that for any s > 0, y € RY,

/ o, I'(s, y, w)dy =0.
Rd

This allows us to estimate /1 as follows:

2h?
|| =

O, I'(s, y, w)[dg(s, y, w) — 8g(s,0,w)]dydwds
R4 JR4

242
2g1a,g./ /f|axir<s,y,w)||y|“+“>/3dydwds
0 R4 JRd

h2

[¢le.0 / s TIAHIFO2 45 < [glg,0,h°,
0

by Lemma 2.4.
Changing variables in I, we have

A

A

1—2h?%
Izz/ / / [0, Tt —s,x —y,v—w)gls,y — { —s)w, w)
— R4 JRA

— 8)6[1“(1" —s5,x —y, v —w)gls,y — (' —s)w, w)]dydwds

1—2h?%
:/ /]Rd/ o't —s,x—y,v—w)

x g,y —(t —s)w,w) — g,y — (¢ —s)w, w)]dydwds

t—2h?
/ /Rd/ [0, T(t —5.% — y,v— w)

— ax,.r(z — s, x —y,v —w)]
x g(s,y— (' —s)w, w)dydwds
=1+ 1.
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Re-defining 8g(s, y, w) := g(s,y — (t — s)w, w) — g(s, y — (' — s)w, w), we
have
168(s, y, w) — 8g(s, x, w)| < 2[gli4a.0,1x — ¥ TP,

which implies

1—2h?%
|| = / / / A, Lt —s,x —y,v—w)[5g(s, y, w)
-1 R4 JRd

—38g(s,x,w)]dydwds|

1+¢

< gl o, / / / 195 7G5, v, w)lly|+73 dy dw ds
2h2 R4 JRA
1+t

g [g]a,Q1 /th s—3/2+(1+0¢)/2 ds S [g]a’thOl’

by Lemma 2.4. For I/, first note that with ¢ = (s, y, w),
|0y, C(t —s,x —y,v—w) — 0, Lt —5,x" —y, v —w)|

< max (h2|8,8xl.I‘(z —¢+8)|
IE1<h

+ Vx0T (@ = ¢ +§)| + IV, T = £ +6)]).

By applying Lemma 2.4 again and arguing as in the proof of Lemma 2.5, we have

t—2h%
/1 /Rd /Rd[ax,.r(r =5, x=y, v—w)—d, L' — s, X" — y,v" —w)]

x [g(s,y— (' —s)w,w) — g(s,x — (' —s)w, w)]dy dwds

1+t
§[g]1+a,Q1/ / f max [R219,35, T(s, v, w)] + 73 V205, T(s, v, w)|
22 JRrd JRA |EI1ZR

15| =

+ 1| Vydg, T (s, y, w)lly — &9 dy dw ds
S [gliva. 0 A

Proceeding as in our estimate of 17, with g(t/ — s, x’ —y —s(v' —w), v — w)
playing the role of §g(s, y, w), we obtain

131 £ Clghiag, (1 4+ = (1 4+1°72)

< Clglita,0, 1t — t1%? < Clgli4a,0, 1",

and the proof of the estimate on [Vyu]y, o, is complete.

Equation (2.1) and Lemma 2.5 imply the estimate on [0,u]y, ¢, . We complete the
proof by differentiating (2.1) in v and applying Lemma 2.5 to estimate [Dgu]a,Ql,
using our already-established estimate on Vyu. 0O
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Next, let Ag be a (constant) symmetric, strictly positive definite, d x d matrix.
Assume that 6 (Ag) C [, A] where 0 < A < A.

Lemma 2.7. If g € CY(Q) for some a € (0, 1), and g has compact support in
Q1, then the solution u of

du+v-Vou —tr(AgD2u) = g
satisfies
[Ulyi0.5.0, = Clgla.0;
forany B € (0, 1). If, in addition, g € C'T(Q1), then
[u]g-‘roz,Ql é C[g]1+a,Q1-
The constants C depend on d, o, B, A, and A.

Proof. Let P be such that P? = Ag, and define up(t, x,v) := u(t, Px, Pv).
Notice that o (P) C [v/A, ~/A]. Then

orup +v-Vyup — Ayup = (0;u +v - Vou — Ayu)(t, Px, Pv)
=g(t, Px, Pv) =: gp(t, x,v),

and we can apply Lemma 2.5to up = / F(S;lz)gp(g“) d¢ to obtain

[U]o4a,P0)) S C(P)gla,P0))

where P(Q1) := (—1,0] x P(By) x P(By). To get an estimate on Q1, we replace
u with u(R?t, R3x, Rv), where R > 0 depends only on A and A. Similarly, if
Dgu, Viu, oiu € C*(Q1), we apply Lemma 2.6 toup. 0O

2.2. Variable Coefficients
Let L be an operator of the form
Lu = tr(A(z) D*u),

where A € C*(Q1),and 0 < AI < A(z) £ Al forall z € Q). We now study
equations of the form

oou+v-Vyu—Lu=g. 2.4)

As is standard, we extend Lemma 2.7 to solutions of (2.4) by freezing the coeffi-
cients at a point z and taking advantage of the closeness of L to L(z) in a small
cylinder around z, where L(z) refers to the operator tr(A (z)D%u) with z “frozen”.
We also remove the assumption that # has compact support, which requires tracking
how interior estimates on Q, scale for r € (0, 1]. For this, we need the following
technical lemma:
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Lemma 2.8. Let w(r) = 0 be bounded in [ro, r1] with ry = 0. Suppose for rg <
r < R < ry, we have

o) < pw(R) + A + B
- (R—r)P

forsome € [0,1)and A, B, p 2 0. Then for anyro < r < R < ry, there holds

(r) < A + B

o(r —_— s
~\(R—-r)P

where the implied constant depends only on u and p.

Proof. See [11, Lemma4.3]. O

Theorem 2.9. Fix o € (0, 1). Suppose that, [”]/2+a,/3,Q1 < oo forall B € (0,1),
and A € C*(Q1). Then

34+a+2
(s rap.0p S (I8l + 1AL S lulo.g,)

where g :== 0;u + v - Vyu — Lu. The implied constant depends only ond, o, B, X,
and A.

Proof. Forr € (0, 1], recall that
Wl iap.0, = [Dyule.o, + [Ul@ta)/3x.0, + [Up.r.0,-
Letr € [}T, %] be arbitrary. For 1 < i, j < d, pick z, 7/ € Q, such that

8y, 0;u(2) — By, u (@) 1
A ,v o 2 _[au,-vju]ol,Q,u
p(z, ) 2

Let 0 € (0, 1/8) be a constant, to be chosen later. If p(z,z’) = 0, then by the
interpolation inequalities in Lemma 2.2,

_ 1 _
[0u0,1la.0. = 207%1Djul0.0, £ 15 Ulrsa .0, + CO P lulo 0, (25)

On the other hand, if p(z, 7') < 0, let x be a smooth cutoff such that x(Z) = 1 if
p(Z,7) <O and x(Z) =0if p(Z,z') = 26. We can choose x such that
IVoxlo.or 07" [Vuxlooy SO7'7% 19ix +v- Vaxlo.o
+ 1D} xlo.0, S 072,
and  [0x + v Vaxlao +[Dyxlao) S 6777

Using Lemma 2.7, we now have

[Ov;v;u]a, 0,
S 2[X”]/2+0t’/3,Qr+20
S0 (xu) + v - Vi (xu) = L&) (x)]a, 0,420
S0 (xw) +v - Ve(xu) — L(xt)]la, 0,409 + (L — L)) (X10)]at, 0, 120 -
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Let R = r + 20. To estimate the first term on the last line, note that
O (xu) +v - Ve(xu) — L(xu) = xg +u(d +v-Vy — L)x —2(A(x)Vyu) - Vyx.
By the interpolation inequalities in Lemma 2.2,
[9: (xu) +v - Ve(xu) — L(xt)]la, 0p
S (18)a.0r + (14 1Al0,0) O [l 0 + 07 [Vottla, 0z)) (2.6)
S (8loor + (1 + 1410,0) (67130050, + CO> "% Pl g, )

For the second term, note that (L — L(z))(xu) = tr((A(Z) — A(z’))D%(X u)) for
all Z € Q. Since spt(x) C {Z: p(Z,7) < 20}, we have

(L = LEN Gl S (AT 0,6% (D200 + 1D2ul0.01)
2.7
S [Ale, 0,607 ([M]/2+a,;‘},QR + 9_2|MIO,QR) ,

using the interpolation inequalities again. Combining (2.6) and (2.7), we obtain,
when p(z,7) <0,

[0v;v;ula,0, S 1Ala. 0,0 <[u]/2+a,/3,QR + [gla,0x + 07 "1Ala, 0 |M|0,Q1) . (2.8)
with p =2 4+ a2 + o).
The combination of (2.5) and (2.8) implies that, for any fixed 6 € (0, 1/8),
1
[Oyv;Ula,0, = <C|A|a,Q19a + W) (4121 08.0x
+Clgla.gx + COPIAla, 0, lulo,0,-

Summing over i and j, and applying a similar argument to [u]24«)/3,x,0, and
[ulg,, 0, We obtain

1
Whiapor < (C1Au0 0 + ) Wi 0, + Clehon
+C9_p|A|a,Q1|M|0,Q1.
Fix 6p > 0 such that C|Aly,0,0% < 1/4 for all & € (0, 8y). Then, for each
R € (r,r + 26p), we have
1

<
-2

[l 1ap.0, = 5[U)21a .05 + Clglog + C(R = 1) 7P| Ala,g; lulo.o;-

Recall that r € [}P %] was arbitrary. Lemma 2.8 with w(s) = [u]/2+a 8.0
ro =1/2,and r; = 1/2 + 26y implies '

(Wl yap.0, < CUglwor + (R = 1) 7?1 Ala 0, lulo,0,),

for each % <r<RZ % + 26y. Choose r = % and R = % + 6o, and the proof is
complete. O
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Next, we extend the estimate of Lemma 2.6 to the variable-coefficient case.
Here, we need to assume A(z) in the operator L is in Cclte (Q1).

Theorem 2.10. Assume that Dgu, Viu, diu € C*(Q1). Then

5+a+6
(1 a0, = € (I81a0r + 1AL} og 0.0 )

where g 1= d;u +v - Vyu — tr(ADgu). The constant C depends on d, a, A, and A.
Proof. Forr € (0, 1], recall
(115 4.0, = Bula.g, + [Vela.g, + [Djuleo,-

With 7, 0, and R as in the proof of Theorem 2.9, we can follow the argument of
that proof to show

1
()3 40,0, = <C|A|l+a»Q19a + Z) (U134 0p + Cl8li+a,0r
+CO IO A g 0, ulo, 0
The conclusion of the proof is the same as Theorem 2.9. O

In the previous theorems, we assumed that solutions exist. This is verified by
the following theorem:

Proposition 2.11. Given g € C*((—1, 0] x R? x R?) with compact support in Q1,
then there exists a unique weak solution u in C2+°‘|((—1, 0] x R4 x RY) of (2.4).
Furthermore, [u]’2+a g0 < 00 Ifg e CH'“(Ql ), the same conclusion holds with

[”]/3/+oz,Q| < 00, where [-]/ZJFO"/&QI and [~]§/+Q’Q1 are as in Definition 2.3.

Proof. Fix any B € (0, 1) and assume that the matrix A is uniformly bounded and
coercive on R x R? x R?. Define the norm

lullg == max {|ula, 0, z0) + [U]2+0.8,01(z0) + [0rtt + v - Vitla, 0, (z0) © 20
= (0, xo, v0), X0, Vo € Rd} ,
and the Banach space
B:i={uecC™([-1,0] xR xRY) : || - |Ig < o0},
endowed with || - |5, and
Vi={ueC¥%-1,0] x R x RY) : u(—1,.,-) =0},

endowed with the obvious norm.
For any 6 € [0, 1], define the operator Ey : B — )V by

Eou :=u; +v-Veu—(1—0)Ayu —6Lu.
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From Theorem 2.9, we see that

lullz < I1Eouly

for all u € B. Linearity and the above inequality imply that Ej is injective. Also,
from (2.2), we see that Eq is onto. Applying the method of continuity as in [8,
Theorem 5.2], we obtain that £ is onto as well. Hence, E is invertible.

This finishes the first claim. The same argument applies in the second case when
g has one more derivative, using Theorem 2.10. O

We collect all estimates above and use the equation that u# solves in order to
derive an estimate on (9; + v - V,)u to obtain the following theorem:

Theorem 2.12. Let u be such that
u+v-Vou—Lu=g
in Q1, with L = tr(AD2u) and A1 < A < Al
(@) If g, A € C*(Q)) for some a € (0, 1), we have the estimate

[Dgu]a,Ql/z + [u](2+a)/3,x,Q1/2 + [M]ﬁ,l,Ql/z + [(8t +v- vx)u]a,Ql/z
< (gla,0i +1ALL o, 110,01,

forany g € (0, 1).
b)Ifg, A€ CH'“(Ql)for some o € (0, 1), then

[0t 010 + [Vattlo, 01y + [D3ule 010 S (81401 + Al 14 0, ltl0.0))-

The implied constants depend on d, a, B, A, and A. The exponents p, g > 0 depend
only on .

3. Smoothing for Weak Solutions of the Landau Equation

In this section, we apply the estimates of Section 2 to the Landau equation.
The diffusion operator tr(E(z)Dg f) (or in divergence form, V, - (@(z)Vy f)) is
uniformly elliptic in any bounded set, but the ellipticity constants degenerate as
|lv| = oo. (See “Appendix A”.) To deal with this, we apply a change of variables in
a small cylinder around a given point zg, which yields an equation with ellipticity
constants that are independent of zg. In the sequel, we undo this transformation to
explicitly see the dependence of the estimates on |v|.

The following lemma was first proven in [3] in the case of moderately soft
potentials:

Lemma 3.1. Let zg = (f9, x0, vo) € Ry x R? x R? be such that |vo| = 2, and let
T be the linear transformation such that

{Ivol”"/ze, e-v=0

Te =
lvol”/%e,  e-vo = |vol.
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Let 7~‘(t, x,v) = (t, Tx, Tv), and define

T, (t, x,v) :=8; 0 f"(t, X, V)
=({to+t,x0+ Tx +tvg,vg+ Tv).

Then:

(a) There exists a constant C > 0 independent of vy € R\ By such that for all
S Bl,

C ol < vo + Tv| < Clugl.

(b) Let f be a weak solution of the Landau equation (1.3) satisfying (1.8), (1.9),
and (1.10), and if y < —2, assume that f satisfies (1.12). Then there exists a
radius

r1 = cilvol~4Y/?+ min (1, ,/to/2) ,

with ¢y universal, such that for any r € (0, r1], the function f,,(t,x,v) =
(T, (r’t, r3x, rv)) satisfies

O fro TV Vafg = Vo (A Vi fo) + B@) - Vo foy + C(2) fr, (B.1)
or equivalently,
O fog + V- Vifoy = tr (K(Z)Dg fm) +CT@) fe. (3.2)
in Q1, and the coefficients
A2) =T7'a(T,y (6, @NT ™", BR) =rT"'b(T,(5,(2))). and
C(2) = r*e(T:, (8,(2)))
satisfy

M S A(z) S AL

1, -1y <0,
1B()| < { lwol™m 477200 (14 £z, x, Moo qmyon) 7T —2<y <1,
ool Y2222V (L || £ (1, x, Hlgyon) 7T, —d Sy < -2,

Gy < O Meyan) 7" <y <o,
~ |v0‘—(2+y)+—2—2y/d (1 + £, x, ')”L“’(BMu)))iy/d, —d<y< d_ij_dz’

with % and A universal, and 0 < 1 + |vo|~%/4.

Proof. For y € (—2,0), this lemma is proven in [3, Lemma 4.1]. In fact, that
proof does not use y > —2 in an essential way. The necessary ingredients are the
upper and lower bounds of Proposition A.1 and Lemma A.3 from the “Appendix”,
which hold under our assumptions on f. The bounds on B and C come from
Proposition A.2 and Lemma A.3. O
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The coefficients A, B, and C are dependent on zp, which we refer to as the
“base point,” and r.

For any zo = (19, xo0, vo) with |vg| < 2, we define f;,(z) = f(S;,0r2), with
r1 as in Lemma 3.1(b). Note that in the notation of [3], our f;,(z, x, v) is equal
to fr (rlzt, rl3x, r1v). The following proposition shows how the regularity of f
depends on the regularity of f.

Proposition 3.2. Lez f : [0, To] xRY xR? — R forsome Ty > 0. If f,, is defined
with base point zo € (0, To] x R x R4, and some partial derivative 8,] 8)’? 3 S Of
order M = 2j + 3|8| + In| exists in C*(Q1) for some o € (0, 1), then

10/ 920] flo.0,, ey S 1M+ o)) 77 210] 080] foy a0,

t Yx Y
< (1 4 tO—(M+a)/2) 1+ |U0|)M(l+y/2)+a|3;j3§333fz()|a,Q1,

with ry as in Lemma 3.1.
Proof. Letd = B,j 858,7. For z, 7' € Oy, (zo) with |vg| = 2, we have

10f (2) = 3f ) = ry M1ofey 8, S5 T712) = 32 (87,1 S T2
[0fs0de 071 M (8,1 S T2, 8,181 T 12)®
= [0feolo0ry M (S, T 2, S T 1)
S [3fwlasoiry M (T2, T2

< [0fzla.o T M ol 77 p(2, 7).

[IA

In the case |vg| < 2, we have f(2) = fz ¢y, lSz_olz), and a similar calculation
applies. O

Next, we show that if the regularity estimates of f7, decay sufficiently quickly
as |[v| — oo, they imply regularity of the coefficients of (3.2). Although it is enough
to show that partial derivatives of A and C grow at most polynomially, we derive
explicit rates for the sake of concreteness.

Lemma 3.3. Let f,, be as in Lemma 3.1. Assume that some partial derivative

8!8583]‘20 of order M = j + |B| + |n| exists in C*(Q1) for every zg € (0, Ty] x
R? x R4, and satisfies

[0/ 0297 f.lw.0, < Co (1 + f(?p) (1 + Jvo))™?

forsome p 2 0andq > d+2+y(1 —a/2)+a/3. Then A(t, x, v) and C(t, x, v)
enjoy the same regularity as f,, and for any zo € (0, To] x R? x R, one has

[a,f'afa:]Z] < (1 _HO—M/Z—p) (1 4 vo|)M+e/DA+y /2 +2+atay/3

20/3.0

[353}?335]2 o < (1 +tO_M/2_”+1) (1 + |vo|)M+e/3=2) 14y /2) s totay /3
/3,1

where A and C are defined with base point zo, and ry is as in Lemma 3.1. The
implied constant depends on d, y, q, and Cy.
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Proof. Letd = 8t'/ Bf d, . For some base point zo with |vg| > 2, fix z, 7’ € Q and
let z = (,%,0) = T.,(8,,2) and 2’ = T;,(8,,2'), with rj as in Lemma 3.1. For
w € R4, Proposition 3.2 implies

|3f(f,£, V—w) — af(f’,i’, v - w)|
< [0/ a0y, (tor0.v0-w) (. 5. T — w), (7' ¥, 7 — w))”
S+ yr7 M7 (1 + Jvg — w72 (p(Z, 7)Y + [w|*p(E, 7)*).

Recall A(z) = T~'a(7;,(8,,2))T ~'. The formula (1.5) for @ implies

10A(z) — AR = Jvol ™7 /d w2 af (7, 5.0 — w) — of @, &, 7 — w)| dw
R
5 (1 + t(;p)|U0|_yr1_M_ap(Z, 21)2(1/3
x [l = )
R4

S (L1 M p (@, 2P ug e

—p\ —M—a/3
5 (1 +t0 p)rl Ol/ p(Z’Z/)ZOl/3IUO|2+(¥+Ol}//3,

where we have used p(Z,7) < lvol"t7/2r1p(z, Z). A similar calculation ap-

plies to C(z) = rle(’]}O(Srlz). In the borderline case y = —d, we have C(z) =
cd,),rl2 f20(2), and the conclusion of the lemma follows from the even stronger decay
of 9f7,. O

Remark. The decay in the estimates of Lemma 3.3 can be improved when || > 0
by integrating by parts in w. However, this would still not grant us enough decay
to conclude f € C* without any decay assumption on the initial data.

Next, we show that Gaussian bounds in the initial data are propagated. This
result was established in the case y € (—2,0) in [3, Theorem 1.2] , under the
assumption that the hydrodynamic bounds (1.8), (1.9), and (1.10) hold. To prove
such a result when y € [—d, —2], we also need a priori bounds on || || and on
sufficiently high moments of f.

Theorem 3.4. Let y € [—d, —2], and let f be a bounded weak solution of the
Landau equation (1.4) satisfying the hydrodynamic bounds (1.8), (1.9), and (1.10).
Assume, in addition, that

/ [I? f(v)dv = Py,
R4

d
where p is the smallest integer such that p > & Then there exists o > 0

2+y+d
such that if

finlx, v) < Coe IV
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forall x € RY, v eRY and p > 0, then
£t x,v) < e~ minluosvl 3.3)

where o and the implied constant in (3.3) depend on Co, My, Eo, and
I £l oo 0.7 x R xRy If ¥ = —d/2 — 1, then the implied constant in (3.3) also
depends on the time of existence Ty.

Proof. First, assume that y € (—d/2 — 1, —2]. Fix g > 0 to be determined and
let @ = min{u, po}. Proceeding as in the proof of [3, Theorem 1.2], we claim that

o, x,v) = e PV is a supersolution to the linear Landau equation
¢+ v-Vip = tr@D>p) + o, (3.4)

for |v| large, where @ and ¢ are defined in terms of f. Since ¢ is radial in v, we
have

orr@ ord ViV

[v]

4% v)? -2 _ Viv; .
= [—U,-uj—zu 5,»j—ﬁ e PV,

Proposition A.1 and Lemma A.3 from the appendix imply

10,006 < [ G2 + )7 = 2011+ o) = 22C2(1 + o))+ [ e TP
= (@E*Cy — 2ECH (1 + o7+ = 2C1 (1 + o] ) e 7T
< —C+ ) Pp),

for |v| sufficiently large, provided that we choose g < C2/(2C1), where we use
the convention that repeated indices are summed over. With the bound on ¢ from
Lemma A.3, this implies

Gij0u 006 + 09 = [—CUL+ )72+ CA+ )27 g (0),
The first term on the right-hand side dominates for large |v|, and we have
G;j 0y, du, ¢ + T < —Clv" g (3.5)

for [v| 2 Ry for some large Rg. Choose C s such that Cy¢(t, x,v) > || f| 1 for
all [u] < Ry and such that C ¢ (0, x, v) > £(0, x, v) for all (x, v) € R x R?. In
the second inequality we used that it < . Define the function

gt,x,v) = [f(t,x,v) = Crp(t, x,v)]4.

If [v] £ Ry, then g(r, x,v) = 0 by our choice of Ci. If |v| > Ry, then by

(3.5), ¢ is a supersolution to (3.4). We conclude g(z, x, v) is a subsolution of
;g +v-Vig £ j Bving + cg in its entire domain; hence, by the maximum
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principle [3, Lemma A.2], we have g < Oforall > 0,s0 f(¢, x,v) < C1¢(t, x, v)
for all # > O for which f is defined.

If y < —d/2 — 1, the above argument does not apply because we do not have
enough a priori decay in ¢ to conclude (3.5). For this case, we define h(z, x, v) =

£(t, x, v)e""’ From the equation (1.4) for f, we have
dh+ v Vo= e (ww[@apd e i | +ze )

_ [aDﬁh] — 4uv - @Voh) + (E —2utr(@) + 412G v; v,-) I,

Lemma A.3 implies that |[c — 2utr(a) + 4 aijvivjll oo 0. 19 % R2) < Cy for
some Cy, so that h(t X,v) = e’CU’h(t X, v) is a supersolution of dh+v-Vih =
tr(a Dgh) +b -V, h with bounded drift b = —4uv;a;;. The maximum principle for
this class of equations (see for example [3, Proposition A.1]) implies A(z, x, v) <
e fin (x, v)e“'”‘z, which is uniformly bounded on any finite time interval. Note
that, since || f || Loo(j0,7y]xR4 x ke 18 finite, this argument also applies in the case
y=—d. O

We are now in a position to prove our main result.

Proof of Theorem 1.2. Let f be a weak solution of the Landau equation (1.3) such
that fin(x,v) = f(0,x,v) < e for some u > 0. Without loss of generality,
we may assume i < o, with g as in the statement of the theorem. By applying
[3, Theorem 1.2] if y € (=2, 0) or Theorem 3.4 if y € [—d, —2], we see that, for
all (1, x,v) € [0, To] x R? x RY,

ft,x,v) < eIl (3.6)

where the implied constant is independent of Ty if y > —d /2 — 1. The dependence
of the implied constant in (3.6) on Ty in the case y < —d /2 — | propagate to the rest
of our estimates. Throughout this proof, as we absorb algebraic-in-v factors into
factors with Gaussian decay in v, i’ denotes a changing, positive constant, with
w' < < wo. The constant 1’ changes only finitely many times, by an arbitrarily
small amount, so the final conclusion is valid for any u’ < w.

Let f;, be as in Lemma 3.1 with base point zg € [0, Tp] x R4 x R4. Since
Lemma 3.1 locally controls the coefficients in the equation for f;; (3.1), we may
apply [9, Theorem 2] to obtain:

|fZ0|a,Q1/2 5 ||fz0||L2(Ql) + |€fZ0|0,Q19

forsome o € (0, 1). Using the Gaussian decay of f (3.6), this implies | fz)la, 0, <

e~W ol . By rescaling, we have | f;)lo,0, S e 'Ivol? . Next, Lemma 3.3 with M =
p = 0, along with the local upper bounds on A and C in Lemma 3.1, implies that
the coefficients A and C in (3.2) satisfy

|Z|2¢x/3,Q1 + !E|2a/3,Q] < (14 o),
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for some kg € R, with o as above. We apply the Schauder estimate, Theo-
rem 2.12(a), to f, in Q1 with &’ = 2a/3 to obtain

[fzo]l+a//% Qi = C([CfZO]Ol o, t+ |A|a 0 |fZO|0 QI) < gTH "lvo|?

forany zo € (0, To] x R¢ x RY, where p > 0 depends on . By Lemma 3.3 again,
this implies A, C € C'** (Q}2), with &” = 2a’/3 and

Al e g1 S 7+ 00D S (115D + w1,
|€|1+a" Q12 ~ S+ |UO|)Z1
for k1, £1 € R. We can now apply Theorem 2.12(b) to obtain

[8tfzo]oc”,Q1/4 + [vxfzo]a”,Ql/4 + [Dls)fzo]a”,Ql/A,
5 (lEfzoll-‘roc”,Ql/z + |X|(1]+a~,Ql/2|fzo|0,Q1/2)

< L1y DeIwF,
where ¢ > 0 depends on «. Again, by taking a larger constant we have

_ 2
[L)f)fzo]m,/g1 + [0 folar, 0 + [Va Frolar 00 S (L+ 15 De ™ "Juol?

From here, we can inductively apply Theorem 2.12(a) and (b) to conclude f;, €
C®(Q1). In more detail, assume that all partial derivatives d; 8 dy fzo with

2j+31Bl+Inl=M (3.7

existin C*(Q1) for some « > 0, and that for every such partial derivative df;, and
20 € (0, To] x R? x R4, we have

[0fzla.0, = C (1 + to‘q) e H w0l (3.8)
for some ¢ > 0. Then Lemma 3.3 implies that A and C in (3.2) satisfy

[9A] 10 0, S A1)+ v |)*

[6C] < (41 + o)) o
1+a’, Q12 ~ or

forsome ¢’ > Oand k, £ € R. Letting d = 8,'/ Bf d, be a partial derivative satisfying
(3.7), we can therefore differentiate equation (3.2) to obtain an equation for df;, of
the form

at(afzo) +v- Vx(afzo) = tr(z(z)afzo) + 6(2)8]20 + f(fzo(z)a K(z)’ E(Z))v

1 Technically, Theorem 2.12 does not apply to f since it is not sufficiently regular; how-
ever, a standard mollification argument allows us to sidestep this potential issue. We omit
the details.
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for some differential operator F of order at most M (counted with the scaling of
(3.7)). Applying Theorem 2.12(a) and our inductive hypothesis (3.8), we have

[faltser 01 S (IC@DF + F(f20(@), 2@, C@ar.0, + 1AL, 4 1 flo.01)
< (1 + to_q”) e—u’lvolz’

withg” > 0.By (3.9), we have enough regularity of C (z) and F ( f;,(z), A(z), C(z))
to apply Theorem 2.12(b):

_m o 2
[D30f0)a. 010 + [0:0fs0)a 015 + [Vadfaolar 014 S (1 +15 )e wWiwol

As above, we may replace Q1,4 with Q1 by taking a larger implied constant. Such
an estimate holds for each partial derivative df;, satisfying (3.7), so we have shown

(3.8) holds with some g > 0 for B,j af dy f, whenever
2j 4318l +Inl = M +3.

We conclude f;, € C°(Qy) for any zo € (0, Tp] x R¢ x R. By Proposi-
tion 3.2, we have that f € C*((0, Tp] x R4 x Rd)) with the pointwise estimates
(1.11). o
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Appendix A. Bounds on the Coefficients of the Landau Equation

In this appendix, we collect the available bounds on the coefficients a, b, and ¢
in the Landau equation (1.3) with soft potentials (y € [—d, 0)). The estimates
in Propositions A.1 and A.2 were derived in [20] and [3]. Earlier, corresponding
bounds in the case y = 0 were shown in [6].

Proposition A.1. Ler f : [0, To] x R? x RY — R satisfy the bounds (1.8), (1.9),
and (1.10), and let a be defined by (1.5). If y € [—d, 0), then for unit vectors
e € RY,
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(147,  ees,

Al
1+ )Y t2, e-v=0. @

ajj(t,x,v)ejej 2 ¢ {

If y € [-2,0), then a satisfies the upper bound

1 y+2’ ESd_l,
@yt x, vyere; < ¢ | LT IDT e (A2)
A+ D", e-v=]vl,

and if y € [—d, =2),
— - 2)/d —
a1, x, v)eie; < CILF(tx, ) T, eest™, (A3)

The constants c and C depend on d, y, mo, My, Eo, and Hy.

Proposition A.2. Let f be as in Proposition A.1. The coefficients b and ¢ defined
by (1.6) and (1.7) respectively, satisfy the upper bounds

b(t, x, )|
(1+ w7+, -1y <0,
—3d -2
<cl{d+ DY TN+ 1| £ Nl ooy yy) ™D/, T Sy < -1,
_h —v/d —3d -2
(A + o)) 22040/ (1 || fllwosy) 4 —d Sy < ——2,
d+2
(A4)
and
—2d
L+ DY A+ [ fllzoos ) 74, —— <y <0,
ct,x,v) £C o d+2 Y
L+ D22 (1 + | flleemey) ' —d <y < T3
(A.S5)

where the constants depend on d, y, My, and Ey.

Finally, we show that when y € [—d, —2], the coefficients @ and ¢ still have the
appropriate decay to prove Theorem 3.4, if sufficiently many moments of f are
finite.

Lemma A.3. Let y € [—d, —2], and let f : [0, Ty] x R? x R — R be a bounded
function satisfying (1.8) and (1.9). Assume in addition that

/ lol” f(v)dv = Py,
R4
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dly|
24y +d
(A.2) hold, with constants depending ond, y, My, Eo, Po, and || f || Lo([0, To] xRY xRY)-
If, in addition, y > —d /2 — 1, there is an ¢ > 0 depending on d and y such that

where p is the smallest integer such that p > Then the upper bounds

ctox, ) S CA+ e,
with C depending on the same quantities.

Proof. For any e € S?~!, the formula (1.5) implies

2
ajj(t,x,v)ejej =aq,y, R i lw|”*? f(v — w) dw
R4 lw]

5/ w2 f (v — w) dw.
R4
Letr := 3|v|7T2/0+2+d) 'R = |v|/2, and define

11=/ w2 £ (v — w) dw, 12:/ [w” 2 f (v — w) dw,
By

Bg\B,

13:,/ lw|”*2 f(v — w) dw.
RA\Bg

‘We have

I S fllpeer® 72 < P +2,

16 rV+2|v|‘f’f v —wl? (v — w)dw  Poly| PHIHDH @),
Bpr

Our choice of p implies —p < d(y +2)/(d +y +2), so that I < |v]|”*2. Finally,
for [w| = |v|/2, we have |w|” T2 < |v|¥*2, and

I < v’ f—w)dw £ Molv|" 2.
R\ B

If e is parallel to v, then proceeding as in [3, Lemma 2.1], we have

2
gD,

- fRd (10 =2 = (ol = z- &%) jv— 2" () dz
~ /R (127 = @ ) lo = 2" f(2) dz

) [wl” 2 f (v — w) dw

= / |z|? sin? Ov — z|” f(z) dz,
R
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where 0 is the angle between v and z. We may assume |v| > 2. Let R = |v|/2 and

-2
q = % By our choice of p, we have (y +2)p/q > —d.If z € Bgr(v),
p

then |sin@| < |v — z|/|v], |z| < |v|, and
/ 1z)? sin? 0]v — z|” f(z) dz
Bgr(v)
< |v|*2/ v — 2" f(2) dz
Bgr(v)

< |v|*f’+‘f||f||zéé’/ 12P74 £ ()P D/P |y — P2 g
Br(v)

(r=a)/p R q/p
< v 7P ([ |Z|pf(z)dz> (/ lv— 7|t )p/qdz>
Br(v) Br(v)

< |v|—p+qE(()p—q)/p (|U|(y+2)p/q+d)q/p <o,

If v — z|] 2 R = |v|/2, then |[v — z|¥ < |v|?, and we have

/ |z sin®Olv — 2" f () dz S W/ |21 £ (2) dz < Eolv]”.

R4\ BR (v) R4\ Bg(v)

For ¢, our choice of p and the restriction that y > —d/2 — 1 implies there is an
2—¢

& > 0 such that —p + y(y%) < y + 2. Define r = |v| 2=/ @d+y),
14

R = |v|/2, and Iy, I, I3 as above. The same method implies that I1 + I + I3 <
lo|7T27¢. O

References

1. ALEXANDRE, R., VILLANI, C.: On the Landau approximation in plasma physics. An-
nales de I’Institut Henri Poincare (C) Non Linear Anal. 21(1), 61-95, 2004

2. BrAMANTI, M., BRANDOLINI, L.: Schauder estimates for parabolic nondivergence
operators of Hormander type. J. Differ. Equ. 234(1), 177-245, 2007

3. CAMERON , S., SILVESTRE , L., SNELSON , S.: Global a priori estimates for the
inhomogeneous Landau equation with moderately soft potentials. Annales de I’ Institut
Henri Poincaré (C) Analyse Non Linéare 35(3), 625-642, 2018

4. CHAPMAN, S., COWLING, T.G.: The Mathematical Theory of Non-uniform gases: An
Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases,
3rd edn. Cambridge University Press, Cambridge 1970

5. CHEN, Y., DEsVILLETTES, L., HE, L.: Smoothing effects for classical solutions of
the full Landau equation. Arch. Ration. Mech. Anal. 193(1), 21-55, 2009

6. DESVILLETTES, L., VILLANI, C.: On the spatially homogeneous Landau equation for
hard potentials part I: existence, uniqueness and smoothness. Commun. Partial Differ.
Equ. 25(1-2), 179-259, 2000

7. Di FrRANCEScO , M., POLIDORO , S.: Schauder estimates, Harnack inequality and
Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv.
Differ. Equ. 11(11), 1261-1320, 2006



142

8

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

CHRISTOPHER HENDERSON & STANLEY SNELSON

GILBARG, D., TRUDINGER, N.S.: Elliptic Partial Differential Equations of Second Or-
der, 2nd edn. Springer, Berlin 2001

GoLsE , F., IMmBErT , C., MouHOT , C., VASSEUR , A.: Harnack inequality for
kinetic Fokker—Planck equations with rough coefficients and application to the Landau
equation. Annali della Scuola Normale Superiore di Pisa XIX(1), 253-295, 2019
Guo , Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3),
391-434, 2002

Han, Q., Lin, E-H.: Elliptic Partial Differential Equations. Courant Lecture Notes,
2nd edn. Courant Institute of Mathematical Sciences, New York University, New York
2011
HE , L., YANG , X.: Well-posedness and asymptotics of grazing collisions limit of
Boltzmann equation with Coulomb interaction. SIAM J. Math. Anal. 46(6), 4104—
4165, 2014

HORMANDER , L.: Hypoelliptic second order differential equations. Acta Math. 119,
147-171, 1967
Kryrov, N.V.: Lectures on Elliptic and Parabolic Equations in Holder Spaces. Grad-
uate Studies in Mathematics, vol. 12. American Mathematical Society, Providence
1996

LANCONELLI, E., POLIDORO, S.: On a class of hypoelliptic evolution operators. Rend.
Sem. Mat. Univ. Politec. Torino 52(1), 29-63, 1994. (Partial differential equations, II
(Turin, 1993))
LirsHITZ, E.M., PiTAEVSKIL, L.P.: Course of Theoretical Physics: Physical Kinetics,
vol. 10, 1st edn. Butterworth-Heinemann, Oxford 1981

Liu , S.,, Ma , X.: Regularizing effects for the classical solutions to the Landau
equation in the whole space. J. Math. Anal. Appl. 417(1), 123-143, 2014
MANEFREDINI , M.: The Dirichlet problem for a class of ultraparabolic equations. Adv.
Differ. Equ. 2(5), 831-866, 1997

MouHot , C., NEUMANN , L.: Quantitative perturbative study of convergence to
equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969, 2006
SILVESTRE , L.: Upper bounds for parabolic equations and the Landau equation. J.
Differ. Equ. 262(3), 3034-3055, 2017

VILLANI, C.: On the Cauchy problem for Landau equation: sequential stability, global
existence. Adv. Differ. Equ. 1(5), 793-816, 1996

VILLANI , C.: On the spatially homogeneous Landau equation for Maxwellian
molecules. Math. Models Methods Appl. Sci. 08(06), 957-983, 1998

WANG , W., ZHANG , L.: The C¥ regularity of weak solutions of ultraparabolic
equations. Discrete Contin. Dyn. Syst. 29(3), 1261-1275, 2011



C® Smoothing for Weak Solutions 143

C. HENDERSON, S. SNELSON
Department of Mathematics,
University of Chicago,

5734 S. University Ave.,
Chicago
IL
60637 USA.
e-mail: ckhenderson @math.arizona.edu
e-mail: ssnelson@fit.edu

and

C. HENDERSON
Present Address:
Department of Mathematics,
University of Arizona,
Tucson
AZ
85721 USA.

and

S. SNELSON
Present Address:
Department of Mathematical Sciences,
Florida Insitute of Technology,
Melbourne
FL
32901 USA.

(Received July 19, 2017 / Accepted October 25, 2019)
Published online November 6, 2019
© Springer-Verlag GmbH Germany, part of Springer Nature (2019)



	Cinfty Smoothing for Weak Solutions of the Inhomogeneous Landau Equation
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Schauder Estimates
	1.3 Organization of the Paper
	1.4 Notation

	2 Schauder Estimates for Linear Kinetic Equations
	2.1 Constant Coefficients
	2.2 Variable Coefficients

	3 Smoothing for Weak Solutions of the Landau Equation
	References




