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We show that the stationary distribution of a finite Markov chain can be expressed as
the sum of certain normal distributions. These normal distributions are associated to
planar graphs consisting of a straight line with attached loops. The loops touch only at
one vertex either of the straight line or of another attached loop. Our analysis is based
on our previous work, which derives the stationary distribution of a finite Markov chain
using semaphore codes on the Karnofsky—Rhodes and McCammond expansion of the
right Cayley graph of the finite semigroup underlying the Markov chain.
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1. Introduction

In our previous paper [11], we developed a general theory to compute the stationary
distribution of a finite Markov chain. Every finite state Markov chain M has a
random letter representation, that is, a representation of a semigroup S acting
on the left on the state space  [8]. Combining the Karnofsky—Rhodes and the
McCammond expansion of the right Cayley graph of S, we were able to provide
a construction of the stationary distribution using finite semigroup theory without
the use of linear algebra. The construction relies on the concept of lumping; the
distributions for the expanded graphs can be computed thanks to normal forms of

§Corresponding author.

1431


http://dx.doi.org/10.1142/S0218196719500577

Int. J. Algebra Comput. 2019.29:1431-1449. Downloaded from www.worldscientific.com

by UNIVERSITY OF CALIFORNIA @ DAVIS on 05/01/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

1432 J. Rhodes & A. Schilling

the elements. The stationary distribution of the original Markov chain M is then
obtained by lumping.

In this paper, we show that the stationary distribution of any finite Markov
chain can be obtained from certain normal (or Gaufiian) distributions. The normal
distributions are derived from planar graphs by adding directed loops (or circles)
to the straight line, which only touch the graph at one point. Let us outline the
construction of these normal forms in the remainder of the introduction.

1.1. Straight line

We start with a straight line starting at 1 with n further vertices:

1 1 2 o ——sp-1l—>n

1.2. Adding loops

A loop is a sequence of vertices connected by edges vg — v1 — ... — v such
that vy = v, but all other vertices v; with 0 < i < k are distinct.

Add aloop ¢ to any vertex of the straight line constructed in Sec. 1.1 (except 1)
with k£ > 0 new vertices, which only touches one existing vertex v.

Vk—1 V2
\Jl}k 1}1}
1 1 2 Sv}--- —_——n—-1—n
The cut of £ is
v U1 V2 Vk—1 Vk

Continue to add loops at any vertex (except 1), including the new vertices.
Multiple loops at a given vertex are allowed.

BV

q
‘\)(h-)@/\
f

Vk—1 V2
o Vg U1 7

1 1 2 S$o7 . 1 ——n
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Normal distributions of finite Markov chains 1433

Let G be the directed graph obtained by this procedure. Notice that each such G
can be drawn in the plane.

1.3. Kleene expressions

Given a finite alphabet A, assign a letter a € A to each arrow in the graph G. The
result is called a loop graph, denoted G.

Example 1.1. For the alphabet A = {a,b, ¢, d,x}, we might obtain

d
9! a1 Dec
G:
aa bb c T
1 1 2 3 4

In general, this procedure gives a non-deterministic automata since different
edges emitting from a vertex can be labeled by the same letter. In the above exam-
ple, vertex 1 has two arrows labeled b coming out of it.

Denote the set of all paths in a loop graph G starting at 1 and ending at n (the
last vertex on the initial straight line underlying G) by Pg. Here a path is given by

a a a
150 2. By, =n,

where v; are vertices in G and a; € A are the labels on the edges.

There is a simple inductive way to describe P¢g using Kleene expressions. Given
a set L, define L° = {e} given by the empty string, L' = L, and recursively
L+ ={wa | w € L%, a € L} for each integer i > 0. Then the Kleene star is

L* = U L.
i>0

A Kleene expression only involves letters in A, concatenation, unions, and x.
To obtain a Kleene expression for Pg, perform the following doubly recursive
procedure:

Algorithm 1.

Induction basis: Start at vertex 1 and with the empty expression L.

Induction step: Suppose one is at vertex ¢ # n (or 1) on the straight line path

underlying G.

(1) Continue to the next vertex i+1 (or 1) on the straight line path underlying
G and append the label a on the edge from i =4 +1 (or 1 —% 1) to L.
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(2) If there are loops ¢1,¥s,...,¢; at vertex i + 1 (or 1), append the formal
expression

{l1,02, ..., 0p}"

to L. The loops #1,%s,...,¢; are in one-to-one correspondence with the
edges coming into vertex ¢ + 1.

(3) If i + 1 # n, continue with the next induction step. Else stop and output
L.

Algorithm 2. For each symbol /¢; in the expression for L, do the following;:

(1) Consider the loop ¢; = (vg N U()) from vertex vy to

vg in G. Consider the subgraph of G with straight line vy . N
and all further loops that are attached to any of the vertices v; in G. Attach
1 to v;. The resulting graph G is a new loop graph. Perform Algorithm
1 on G to obtain a Kleene expression L(*). Replace the symbol ¢; in L
by L.

(2) Continue this process until L does not contain any further expressions ¢;
for some loop ¢;, that is, L only contains unions, * and elements in the
alphabet A. Then the Kleene expression for Pg is L.

The resulting expressions can be made into unionless expressions by using Zimin
words

{a}* =a* and {a,b}* = (a*b)*a* for a,be A. (1.1)
Expressions for larger unions can be obtained by induction using (1.1).
Example 1.2. Let G be as in Example 1.1. Then
L = alibcz,

where ¢ is the loop attached to vertex 1. Cut this loop and continue the process
to obtain

£1 = b{f/l, ;}*da,

where £] is the loop at vertex 1’ labelled a and £} is the loop at vertex 1’ labelled c.
We have ¢} = a and ¢, = ¢, so that altogether we find

L = a(b{a,c}*da)*bex = a(b(a*c)*a*da)*bex,

where in the last step we used the Zimin words to get rid of the unions. This is a
Kleene expression for Pg.

See Example 3.8 for another example and also compare this construction to the
definition of Pict in Definition 3.5.
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Main results. We are now going to define normal distributions.

Definition 1.3 (Normal distribution). Let G be aloop graph with edges labeled
by letters in the alphabet A. Associate the indeterminate z, to a € A. Then the
normal distribution of G is defined as

Vg = Z me

pEPG acp

where the product is over all letters a in p.

We may use the Kleene expressions of the previous section for Pg. The advan-
tage in doing so is that one can immediately obtain rational expressions. Namely,
using the geometric series, we find that

> 1

s€a* i€s
Similarly
1 1 1
se{a,b}* €8 sEa,*(ba,*)* 1€8 La

In general, using the recursion (1.1) we derive by induction

1
Z Hxi:l—xal—xaz—...—xan' (12)

s€{a1,az,....,an }* 1€8

Our main theorem is the following.

Theorem 1.4. The stationary distribution U™ of a finite Markov chain M is the
sum of normal distributions Vg or certain limits of Y, where G is a loop graph.

The proof of Theorem 1.4 is given in Sec. 3.3. A more precise version of Theo-
rem 1.4 is stated in Theorem 3.9.

The paper is outlined as follows. In Sec. 2, we review the main results from [11],
in particular the expressions for the stationary distribution of a finite Markov chain
in terms of semaphore codes of the Karnofsky—Rhodes expansion of the right Cayley
graph of the underlying semigroup. In Sec. 3, we review the McCammond expansion
and its relation to semaphore codes and provide the definition of Pict. The map
Pict is used to give a proof of Theorem 1.4. The original definition of Pict is due to
McCammond, but the applications to random walks are due to the authors.

2. Stationary Distributions of Markov Chains

In this section, we provide definitions and review the necessary results we need
from [11].
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2.1. Markov chains

A Markov chain M consists of a finite or countable state space §2 together with
transition probabilities T, ¢ for the transition s — ¢’ for s, s’ € Q. The matrix 7 =
(Ts',s)s,s'cq 1s called the transition matrix, which is a column-stochastic matrix,
meaning that the column sums of 7 are equal to one.

A Markov chain is irreducible if for any s,s’ € Q there exists an integer m
(possibly depending on s, s) such that 7., > 0. In other words, one can get from
any state s to any other state s’ using only steps with positive probability. A state
s € Q is called recurrent if the system returns to s in finitely many steps with
probability one.

The stationary distribution of M is a vector ¥ = (Uy)secq such that T¥ = ¥
and ) ..o Vs = 1. In other words, V¥ is a right-eigenvector of 7" with eigenvalue
one. If the Markov chain is irreducible, the stationary distribution is unique [8].

Next we define lumping of Markov chains. Partition the state space € into
(Q1,...,9) such that

¢
Q;NQ =0 fori#jand Q=[]

=1

One may view such a partition as an equivalence relation s ~ s’ if s, s’ € Q; for some
1 <4 < £. We say that M can be lumped with respect to the partition (1,...,)
if the transition matrix 7 satisfies [8, Lemma 2.5] [5] for all 1 < 4,5 < /¢

S Tow=> Tw forallss . (2.1)

teQ; teQ;

The lumped Markov chain is a random walk on the equivalence classes, whose
stationary distribution labeled by wis >, ., ¥s.

Every finite state Markov chain M has a random letter representation, that is,
a representation of a semigroup S acting on the left on the state space Q (see [8,
Proposition 1.5] and [1, Theorem 2.3]). In this setting, we transition s — s’ with
probability 0 < z, < 1, where 5,5’ € Q, a € S and s’ = a.s is the action of a on
the state s. Let A = {a € S| x, > 0}. We assume that A generates S; if not, it
suffices to consider the subsemigroup generated by A. Note that ) ., 2, = 1. The
transition matrix 7 of M is the |Q| x |Q]-matrix

Ters = Z x, fors,s €. (2.2)
acA
SL)S/
Note that we may assume that the action of S on € is faithful as this does not
affect the random walk.
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If S is a semigroup, then S! denotes S with an adjoint identity 1 even if S
already has an identity.

Definition 2.1 (Ideal). Let S be a semigroup. A two-sided ideal I (or ideal for
short) is a subset I C S such that ulv C I for all u,v € ST. Similarly, a left ideal
I is a subset I C ST such that uI C I for all u € ST.

If I,.J are ideals of S, then I.J C I NJ, so that I N J # (). Hence every finite
semigroup has a unique minimal ideal denoted K (S). As shown in [3, 6], the minimal
ideal K (S) of a finite semigroup S is the disjoint union of all the minimal left ideals
of S and the Rees Theorem applies. By [1, Remark 2.8] the faithful left action of S
on §) is isomorphic to the left action of S on K(.5).

Let (S, A) be a semigroup S together with a choice of generators A for S. Define
M(S, A) to be the Markov chain, where the transition s —— s’ for s,s’ € S and
a € A is given by s’ = as in the left Cayley graph with probability 0 < z, < 1.
Note that we are assuming that all probabilities x, for a € A are nonzero. Then it
was shown in [4] (see also [1, Proposition 3.2]) that the recurrent states of M(S, A)
are the elements in K(5). Furthermore, the connected components of the recurrent
states in the random walk are the minimal left ideals of S. The restriction of the
random walk to any minimal left ideal is irreducible. Moreover, the chain so obtained
is independent of the chosen minimal left ideal. This random walk and the random
walk with states a left ideal L of K(S) and S acting on the left made faithful, that
is &z — y for z € L and y = ax, are essentially the same. So we may not distinguish
the two cases.

2.2. Karnofsky—Rhodes expansion

In this section, we define the right Cayley graph of a finite semigroup and its
Karnofsky—Rhodes expansions.

Definition 2.2 (Right Cayley graph). Let (S, A) be a finite semigroup S
together with a set of generators A. The right Cayley graph RCay(S, A) of S with
respect to A is the rooted graph with vertex set S', root r = 1 € S', and edges
s — ' for all (s,a,s’) € ST x A x ST, where s’ = sa in S*.

A path p in RCay(S, 4) is a sequence
p= (vl BN ﬂ)v4+1>7

where v; € ST are vertices in RCay(S, A) and v; — v; 1, are edges in RCay(S, A).
The endpoint of p is 7(p) := wver1. The length of the path p is ¢(p) := ¢, which
equals the number of edges. A simple path is a path that does not visit any vertex
twice. Empty paths are considered simple. A path which starts and ends at the
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same vertex is called a circuit. A circuit that is simple, when the last vertex is
removed, is called a loop.

Definition 2.3 (Transition edges). An edge s —— s’ in the right Cayley graph
RCay(S, A) is a transition edge if there is no directed path from s’ to s in RCay(S, A).
In other words, there does not exist any sequence aq,...,ar € A with & > 1 such
that 3’(a1 . ak) = S.

Let us now define the Karnofsky—Rhodes expansion of the right Cayley graph
(see also [10, Definition 4.15] and [7, Sec. 3.4]). Let (A", A) be the free semigroup
with generators A, where AT is the set of all words ay ...as of length £ > 1 over A
with multiplication given by concatenation. When we write [a; . . . a¢]s, we mean the
element in S when taking the product in the semigroup of the generators a; € A.

Definition 2.4 (Karnofksy—Rhodes expansion). The Karnofsky—Rhodes
expansion KR(S, A) is obtained as follows. Start with the right Cayley graph
RCay(At, A). Identify two paths in RCay(A™, A)

pim (120 5 ) and = (niw; &...%vg,)
in KR(S, A) if and only if the corresponding paths in RCay(.S, A)

pls o= (15 [o]s 2 ... <5 [u]s)  and

/ ’ a//
[P]s = (]l BN [vi]s L2y 2 [vzl]5> )
where v; = a1az...a; and v] = ajdf...a}, end at the same vertex [vs]s = [v},]s

and in addition the set of transition edges of [p]s and [p']s in RCay(S, A) is equal.

Example 2.5. Consider the right Cayley graph of the Klein 4-group Zs x Z5 with
zero with generators {a,b,0}, where a = (1,-1), b = (—1,1), and O is the zero.
The right Cayley graph RCay(Z; x Z2 U {0}, {a,b,0}) is

where all three arrows a, b, fix the vertex [J at the bottom. Transition edges
are indicated in grey. Double edges mean that right multiplication by the label for
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either vertex yields the other vertex. The Karnofsky-Rhodes expansion of this right
Cayley graph is given by

a? a b b2

i~ 4 ™ i

a b
a?b = aba <~ ab ba < bab = b%a

a?0d a2 abd a0 O b  baO b2al] b20

where arrows a, b, fix all the vertices at the bottom.

Proposition 2.6 ([11, Proposition 2.15]). KR(S, A) is the right Cayley graph
of a semigroup, also denoted by KR(S, A).

2.3. Stationary distribution

We now review the main results of [11], which give the stationary distribution for
any Markov chain M (S, A) for a finite semigroup with chosen generators (.S, A).
Recall that M (S, A) is the random walk on the unique minimal ideal K(S) of S.
More precisely, the random walk is given by the left action of .S on K (S).

To state our results for the stationary distribution, we first need to review the
semaphore codes associated to (S, A) [2]. The semaphore code (S, A) is the set of
all words ajas...ap € AT such that [ajas...a¢s € K(S), but [ajas...ar—1]s &
K(S). Semaphore codes are closely related to normal forms of the McCammond
expansion, see Sec. 3.1.

The main results are the following.

Theorem 2.7 ([11, Corollary 2.28]). The Markov chain M(S, A) is the lumping
of M(KR(S, A)) with stationary distribution

TS = N GMEREAD - for allw € (S, A).

VEKR(S,A)
[v]s=w

The next result is non-trivial. It requires the assumption that the minimal ideal
K(S) is left zero, that is, zy = « for all z,y € K(S).

Theorem 2.8 ([11, Theorem 2.12]). If K(S) is left zero, the stationary distri-
bution of the Markov chain M(KR(S, A)) is given by

PMKR(S,4)) — Z Haca for all w € K(KR(S, A)).
seS(S,A) acs
[S]KR(S.A):'LU
As outlined in [11, Sec. 2.9], the case when K (S) is not left zero can be con-
structed from the case when K (S) is left zero using the flat operation. That is, one
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adds an additional generator (J to the alphabet A, which acts as zero. The associ-
ated probability is 2. The elements in the minimal ideal K (KR(SU{O}, Au{}))
are of the form wl, where w € KR(S, A). Since v = O for all v € KR(S, 4),
we indeed have that K (KR(S U{O}, Au{0})) is left zero and hence Theorem 2.8
applies. Then [11, Corollary 2.33]

PMKR(S,4)) _ iy pMKR(SU{T}AU{O})) (2.3)
w zD—>O w

3. Normal Distributions for Random Walks

In this section, we prove Theorem 1.4. By Theorems 2.7 and 2.8 and Eq. (2.3), the
stationary distribution \I/wM(S’A) is the sum of terms of the form [] ., z,, where
s € 8(S,A) (or limits of such expressions). In Sec. 3.1, we will explain how the
semaphore code §(S, A) is related to the McCammond expansion Mco KR(S, A). In
Sec. 3.2, we will then define the map Pict on Mco KR(S, 4) to deduce that g4
is a sum of normal forms. A proof of Theorem 1.4 is given in Sec. 3.3. Theorem 3.9

is a more precise version of Theorem 1.4.

3.1. The McCammond expansion and semaphore codes

Let us now turn to the McCammond expansion [9, 10] of the Karnofsky—Rhodes
expansion of the right Cayley graph of (S, A). Recall that a simple path in KR(.S, A)
is a path that does not visit any vertex twice. Empty paths are considered simple.

Definition 3.1 (McCammond expansion). The McCammond expansion Mc o
KR(S, A) of KR(S, A) is the graph with vertex set V, which is the set of simple
paths in KR(S, A). The edges are given by

E:={(p,a,q) €V x AxV[7(q) =7(p)a, £(q) < €(p) + 1,
g is an initial segment of p if ¢(q) < £(p)}.

In other words, if the path pa in KR(S,A) is simple, then ¢ = pa. Otherwise
7(pa) = v is a vertex of p and then ¢ is the initial segment of p up to and including v.

Remark 3.2. Note that McoKR(S, A) has a spanning tree T with the same vertex
set as Mc o KR(S, A), but only those edges (p,a,q) € E such that £(q) = £(p) + 1.

Example 3.3. The McCammond expansion of KR(S, A) of Example 2.5 is given
in Fig. 1.

By Remark 3.2, the McCammond expansion McoKR(.S, A) has a spanning tree T.
In this tree, the vertices are naturally labeled by the sequence of edge labels in the
path from 1 to the vertex. More concretely, if

p:(]limjlﬂm..&va

is a path in T, then the vertex v, is naturally labeled by a; ... as. Hence the corre-
sponding vertex vy in Mc o KR(S, A) has a normal form given by a; ... as.
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1
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. N . N
o " LN . . - ; b ) .
b, V] NV pRY b.” YRR N
0 1 \ ~ ’ 1 \ AN
’ 2 ab \\ // ba b2 \
! be s “ ha ' ! b T N
’ 7’ AY 7 SO
/ " b (N\ \ / )/%7 (N\ \
1 1 \ \ 1 1 \ \
1 1 1 1
! -7 a2b aba < 1 1 Y bab bza A e 1
A} ’ N 7’ N 1
\ (I, a b\\b /’ ‘\ u’/l fx\b ’
N 1 \ 7’ A 1 \ 7’
a’ba abab baba b%ab

a?bad 200 o?0 e abd abald ababl O  babad babl bal b0 20 b2ad b2abO

Fig. 1. (Color online) The McCammond expansion of KR(S, A) of Example 2.5. Transition edges
are grey. The edges (p,a, q) € E with ¢(q) = ¢(p) + 1 are solid, whereas the edges with £(q) < ¢(p)
are dashed (and red). The spanning tree T is obtained by removing all the dashed (red) arrows.

Remark 3.2. Also ensures that McoKR(S, A) has the unique simple path property,
defined as follows.

Definition 3.4 (Unique simple path property). A rooted graph (T', 1) with
root 1 has the unique simple path property if for each vertex v in I' there is a
unique simple path from the root 1 to v.

Elements in the semaphore code S(S, A) are paths in McoKR(S, A) (rather than
in T) starting at 1 and ending in K(S). They are also in natural correspondence
with words a; ...a, € AT such that [a;...as)s € K(S) and [a; ...ar_1]s € K(S).
From the semaphore code, one can obtain the normal form by stripping away all
loops in the path.

3.2. Definition of Pict

We are now going to define the map Pict from the set of tuples (', p), where I is
a graph with the unique simple path property and p is a simple path in I' starting
at 1, to the set of loop graphs. The straight line, that the loop graph is based on,
will correspond to p. The map Pict was first defined by McCammond (we give a
simplified definition here).

Definition 3.5 (McCammond). Let I' be a graph with the unique simple path
property and p a simple path in I’ starting at 1. Then Pict(T, p) is defined by the
principle of induction.

Induction basis: Set P = p and start at vertex vg = 1.

Induction step: Suppose one is at vertex vy # 7(p) on path p. Take the edge e
from vg to vy in p.

(1) If there is no edge in I' coming into v; besides e, continue with the unique
next vertex in p, now denoted vy (with the current vertex v; relabeled vy),
unless v1 = 7(p). If v1 = 7(p), then output Pict(I',p) = P.
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(2) Otherwise there is at least one edge e’ # e in I' going into vy, given by
e = (v’ N v1> for some a € A. Since I' has the unique simple path
property by assumption, there must be a unique simple path starting at 1
going to vy along the path p followed by the path p’ starting at vy, going
along e to v, and ending at v’.

(a) Run the induction on p’ in a subgraph IV of T', consisting of all edges
and vertices on circuits containing a vertex of p’. Note that p’ is simple
in IV. The output is P’ = Pict(I”,p’).

(b) Modify P by attaching P’ disjointly except at v; and adding edge ¢’
from v’ in P’ back to v.

(3) Repeat step (2) for each edge ¢’ # e at vertex vy.
(4) Continue with the induction step unless v; = 7(p). If v1 = 7(p), then

output Pict(T',p) = P.

Remark 3.6. If I is a rooted graph with the unique simple path property, then
T’ with some edges removed (and any vertices that are no longer connected to the
root 1) still has the unique simple path property. This is the case since either the
unique simple path from 1 to v is still there or the vertex v is now disconnected
from 1 and has hence been removed.

The graph I in the Induction step (2)(a) in the definition of Pict can be obtained
in two steps. First remove all incoming and outgoing edges on the vertices along
the path p from 1 to vy, except the edges on the path p itself. Remove all vertices
that have become disconnected in this process. By the remark above, the resulting
graph still has the unique simple path property. In this graph, all simple paths go
through the vertex v1. Hence we may make vy the root (removing all vertices 1 up
to vg along p). The result is I, which still has the unique simple path property.

Example 3.7. Let p = (1 - 1 LN SN 3) in

a2 9
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Normal distributions of finite Markov chains 1443

To compute Pict(T', p), we start with P = p, vo = 1 and v; = 1. We are in step (2)
of the Induction step with e = (1 %+ 1) and ¢’ = (4 —% 1). Then p’ = (1 -
12524 4) and T is T’ with the arrow labelled a from v’ = 4 to v; = 1 removed.
Also P’ = Pict(I",p') is p’ with a loop labelled a at vertex 2. Attaching P’ at v; = 1
(with its vertex 2 relabelled to 2’ to avoid repetition) and adding edge e’ we obtain

1

Since there are no further edges going into vertex v; = 1, we continue with the
induction along p. This means that we set vo = 1, v; =2 and e = (1 LN 2). Besides
e, there is only one other arrow going into v; = 2 in I', namely ¢/ = (2 %+ 2). In

this case p’ =1 %y 2 and I is T with 1 and the arrows 1 —% 1,4 % 1 and
2 %+ 2 removed. Hence the new P with P’ = Pict(I",p’) added is

1

Pict(T,p) = P =

The remaining induction steps do not change this P, which is hence also Pict(T’, p).
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Example 3.8. Consider the McCammond expansion I' = Mco KR(S, A) of Exam-
ple 3.3 (see also Fig. 1) and the path in the McCammond tree T given by abll.
Then Pict(T", ab) is given by

1
[ ] [ )
a b a b
a a b Q a b b
Y} e} e} [~ N g N "N
[ ) [ ) [ [ ] [ ] a [ ] [ ) [ ) [ ) [ )
r—ro ~ ~ <~ " S~— S~— S—
a a 5 g ¢ y b
a
b . b~ a
b( )b af Ja
[} [ ]
af Ja b( )b
[} [ ]
a b
LN
ab . .
~A ~—A
a b
abl]

Following the algorithm explained in Sec. 1.3, a Kleene expression for Ppicy(r,qas0)
is given by

L= a{él, 62, 63, 64}*b€g|:|,

where
¢, = a(b(aa)*b)*b(aa)*ab,
ly = a(b(aa)*b)*a,
ls = b(a(bb)*a)*a(bb)*ba,
£y = b(a(bb)*a)*b,
ls = a(bb)*a
Hence
Wpice(r,ab0) = TaTb 0
1— ﬁizg . mgz . x2x2 _ xgz
(1—1f§g>(1—zg) 1—113 (1—1f§g>(1_gﬁg 1—125
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zaxpa(l — xf)

2x2x? z2(1—22) zZ(1—z?) 9 2y’
(1 o 1—x2—x? o liwgfalvl% o 1—x2—z? (1 —Ta xb)

zarprg(l — af)
1—222 — 222 + (22 — 23)?’

Using that x, + x, + g = 1, we find that in the limit zg — 0
1

. 2
zIDHEO\I’Pict(F,abD) = g(l — ).
In a similar fashion, we find
ZO—o0
Vo =20 —> 0,
o To(1 — 22 — 23)an 00 La
o= -
“ 1— 222 — 222 + (22 — 22)? 4’
Vo= r2zpan 050, Ta
e 1 —2x2 — 2z} + (22 — a7)? 8’
N babl] = J)ZJZ%Z‘D T, Lalp
aba 1— 222 — 222 + (22 — 22)? 8
U, = 22(1 — 22)ap 2050 Ta(l+ x4)
@ 1— 222 — 222 + (22 — 23)? 8 ’
)\ 2p0 = xixbx[’ *O-o x_a
@ 1— 222 — 222 + (22 — 23)? 8’
3 2
U 2pa0) = TaTb 70 020, Za
a“ba - 2 2 2 2\2
1—222 — 227 + (22 — x7) 8

The stationary probabilities for the elements with a and b interchanged are obtained
by symmetry. It is not hard to check that these probabilities sum to one as desired.

As noted in the introduction, Pict(T", p) is not necessarily deterministic. There
can be several arrows leaving a vertex labeled by the same element a € A. For
example, vertex 1 in Example 3.7 has two arrows labeled b coming out.

One can make a non-deterministic automata A deterministic as follows. If A
has states @) with start state 1 and final states F' not containing 1, we make
a deterministic automata det(A) accepting the same strings going from 1 to a
member of F as follows. The states Q' of det(.A) are the collection of subsets of @
determined a follows:

o {1} isin Q’;

e if Z€ Q', then Z.a € Q' for a € A, where Z.a = {q | z - q € A where z € Z}.
One continues by induction until the process adds no new subsets. For det(.A), start
in state {1}. The final states are all the states of det(A) such that the intersection
with F' is non-empty.
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With this definition, making Pict(I",p) deterministic gives the automata for
(T", p) back.

3.3. Proof of Theorem 1.4

As explained in Sec. 2.1, any finite Markov chain M can be described as a Markov
chain M(S, A) in terms of a finite semigroup S with generators A. Since by Theo-
rem 2.7, \PQA(S’A) is the sum over \IIUM(KR(S’A)), it suffices to prove the statement of
Theorem 1.4 for U2 *REA) \when K (S) is not left zero, we may use the limiting
construction of (2.3) to obtain gt KR(SA)
ideal is left zero. Assuming that K(S) is left zero, we have by Theorem 2.8

P REA) = N J]2a for all w € K(KR(S, A)). (3.1)
seS(S,A) acs

from the case in which the minimal

[S]KR(S,A):W

As explained in Sec. 3.1, there is a normal form associated to each semaphore
code element s € §(S, A). Namely, s is a path in Mc o KR(S, A) starting at 1 and
the normal form is the simple path with all loops stripped away from s; equivalently
the normal form is the path in T starting at 1 and ending at 7(s), where T is the
tree associated to the McCammond expansion Mco KR(S, A). In the tree T, a path
p starting at 1 is also naturally in bijection with its endpoint 7(p). Hence we may
identify vertex ¢ € T with the path from 1 to ¢ in T or equivalently with the simple
path from 1 to ¢ in Mc o KR(S, A). Therefore, we may rewrite the sum in (3.1) as

PEREA) = " > Iz for all w € K(KR(S, 4)). (3.2)
teT s€S(S,A) a€s
[tlkr(s, 4)=w 7(s)=t

We claim that for a given t € T with [t]xr(s,4) € K(KR(S, 4))
lI’Plct(McoKR(S A),t) = Z H La- (33)

s€S(S,A) a€s
7(s)=t
Recall that by Definition 1.3
Upict(McoKR(S,A),t) = Z H Tq-
PEPpict(McokR(S, A),t) GED

Hence, (3.3) can be proved by establishing a bijection
@: {5 €S(S,A) | 7(5) =t} — Ppict(McoKR(S,A),t)- (3.4)

In fact, we are going to prove a slight generalization of (3.4). Namely, for any t € T
we will show that there is a bijection

©: {5 € Pueokr(s,4) | T(8) =t} — Ppict(McoKR(S,A4),t)5 (3.5)
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where Pycokr(s,4) is the set of paths in Mc o KR(S, A) starting at 1. Then (3.4) is
the special case when [t]xr(s,4) € K(KR(S, A4)).

To define ¢ in (3.5), fix t = a; ...ax, where a; € A are the labels in the path
in T. A path s € Pumcokr(s,4) With 7(s) = ¢, can be viewed as ¢ with circuits égvj)
interspersed. More precisely,

s=a H fgj) as H egj) e ag H el(gj) ,

JEJ JEJ2 JEJk

where (a1 ...a;) = T(al...aié(j)) for all 1 <4 < k and j € J; and any initial

i
subsequence of eﬁj ) does not reach the vertex ai ...a;. Here the sets J; index the
set of circuits {125” | 7 € J;} at vertex aj ...a; and either J; = {1,2,...,n;} is a
finite set or J; = {1,2,3,...} is the set of positive integers. In other words, each
EEJ ) is a circuit from vertex aj . ..a; to itself, which does not pass through a; ...aq;
otherwise. The last step of eﬁj )
by induction that

is an edge in McoKR(S, A) that is not in T. Suppose

J—a Hfgj) a H&(j) ,

j€J1 JjeJ!

where 1 < ¢ < k and J, = {1,2,...,n;} C J; or J, = J;, is mapped to 7 in
Pict(Mc o KR(S, A), a1 ...a;) under . We need to distinguish two cases.

Case J] C J;. Let j be the smallest element in J; \ J;. Recall that Mc o KR(S, A)
has the unique simple path property. Hence the path p’ in Mc o KR(S, A) from
Vg =aji...a;_1 through v1 =ay...a; to v’, whichis ay ... aiél(j) with the last edge
e’ removed is a path in I in the notation of Sec. 3.2. By induction this path is
mapped to ©’ in Ppicy(rv ). Hence

@(s/gz('j)) = 71—71—, € PPict(McoKR(S,A),al...ai)

This corresponds to the induction step (2) in Definition 3.5.

Case J] = J;. If i = k, we are done. If i < k, we define

/
©(s'air1) = Tair1 € Phict(McoKR(S,A),a1...ai1)

which is a well-defined path since the last step is along the straight line path and
hence unique. This corresponds to the induction step (1) (if J; = @) or step (4) (if
J; # ) in Definition 3.5.

This shows that ¢ is a well-defined map. It has an inverse ¢! by mapping a
path T € Ppict(McokR(S,4),¢) t0 @ path in Mco KR(S, A) by just reading the labels of
the edges. This indeed gives a path in Mc o KR(S, A) by the construction of Pict.
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Combining (3.2) and (3.3), we obtain

PMERESA) = Z Upict(McoKR(S,A),t)»
teT

[tlkr(s, a)=w

which proves Theorem 1.4 since Pict(Mc o KR(S, A),t) is a loop graph.
In summary, we proved the following theorem, which is a more detailed version
of Theorem 1.4.

Theorem 3.9. Let M(S, A) be a Markov chain associated to the finite semigroup
with generators (S, A). If K(S) is left zero, the stationary distribution is given by

PMEA) = Z Upict(McokR(8,4),t)  for w € K(S),
teT
[tls=w

where T is the spanning tree of Mc o KR(S, A). Otherwise

\IIQA(S’A) = Z limo Upict(McoKR(SU{O},AU{O}),t) for w e K(5),

T—r
ter U

[t]ls=wD

where T s the spanning tree of Mco KR(S U {0}, AU {0O}) and O acts as zero.
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