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We show that the stationary distribution of a finite Markov chain can be expressed as
the sum of certain normal distributions. These normal distributions are associated to
planar graphs consisting of a straight line with attached loops. The loops touch only at
one vertex either of the straight line or of another attached loop. Our analysis is based
on our previous work, which derives the stationary distribution of a finite Markov chain
using semaphore codes on the Karnofsky–Rhodes and McCammond expansion of the
right Cayley graph of the finite semigroup underlying the Markov chain.
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1. Introduction

In our previous paper [11], we developed a general theory to compute the stationary

distribution of a finite Markov chain. Every finite state Markov chain M has a

random letter representation, that is, a representation of a semigroup S acting

on the left on the state space Ω [8]. Combining the Karnofsky–Rhodes and the

McCammond expansion of the right Cayley graph of S, we were able to provide

a construction of the stationary distribution using finite semigroup theory without

the use of linear algebra. The construction relies on the concept of lumping; the

distributions for the expanded graphs can be computed thanks to normal forms of

§Corresponding author.
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the elements. The stationary distribution of the original Markov chain M is then

obtained by lumping.

In this paper, we show that the stationary distribution of any finite Markov

chain can be obtained from certain normal (or Gaußian) distributions. The normal

distributions are derived from planar graphs by adding directed loops (or circles)

to the straight line, which only touch the graph at one point. Let us outline the

construction of these normal forms in the remainder of the introduction.

1.1. Straight line

We start with a straight line starting at � with n further vertices:

� 1 2 · · · n− 1 n

1.2. Adding loops

A loop is a sequence of vertices connected by edges v0 −→ v1 −→ . . . −→ vk such

that v0 = vk, but all other vertices vi with 0 ≤ i < k are distinct.

Add a loop � to any vertex of the straight line constructed in Sec. 1.1 (except �)

with k ≥ 0 new vertices, which only touches one existing vertex v.

� 1 2 v · · · n− 1 n

v1

v2

· · ·

vk

vk−1

The cut of � is

v v1 v2 · · · vk−1 vk

Continue to add loops at any vertex (except �), including the new vertices.

Multiple loops at a given vertex are allowed.

� 1 2 v · · · n− 1 n

v1

v2

...

q

· · ·

vk

vk−1

q1 q2

...

qh
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Let G be the directed graph obtained by this procedure. Notice that each such G

can be drawn in the plane.

1.3. Kleene expressions

Given a finite alphabet A, assign a letter a ∈ A to each arrow in the graph G. The

result is called a loop graph, denoted G.

Example 1.1. For the alphabet A = {a, b, c, d, x}, we might obtain

G =

� 1 2 3 4

1′2′

a b c x
ba

d

ca

In general, this procedure gives a non-deterministic automata since different

edges emitting from a vertex can be labeled by the same letter. In the above exam-

ple, vertex 1 has two arrows labeled b coming out of it.

Denote the set of all paths in a loop graph G starting at � and ending at n (the

last vertex on the initial straight line underlying G) by PG. Here a path is given by

�
a1−→ v1

a2−→ . . .
ak−→ vk = n,

where vi are vertices in G and ai ∈ A are the labels on the edges.

There is a simple inductive way to describe PG using Kleene expressions. Given

a set L, define L0 = {ε} given by the empty string, L1 = L, and recursively

Li+1 = {wa | w ∈ Li, a ∈ L} for each integer i > 0. Then the Kleene star is

L� =
⋃
i≥0

Li.

A Kleene expression only involves letters in A, concatenation, unions, and �.

To obtain a Kleene expression for PG, perform the following doubly recursive

procedure:

Algorithm 1.

Induction basis: Start at vertex � and with the empty expression L.

Induction step: Suppose one is at vertex i �= n (or �) on the straight line path

underlying G.

(1) Continue to the next vertex i+1 (or 1) on the straight line path underlying

G and append the label a on the edge from i
a−→ i+ 1 (or �

a−→ 1) to L.
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(2) If there are loops �1, �2, . . . , �k at vertex i + 1 (or 1), append the formal

expression

{�1, �2, . . . , �k}�

to L. The loops �1, �2, . . . , �k are in one-to-one correspondence with the

edges coming into vertex i+ 1.

(3) If i + 1 �= n, continue with the next induction step. Else stop and output

L.

Algorithm 2. For each symbol �i in the expression for L, do the following:

(1) Consider the loop �i =
(
v0

a1−→ v1
a2−→ · · · ak−→ vk = v0

)
from vertex v0 to

v0 in G. Consider the subgraph of G with straight line v1
a2−→ · · · ak−→ vk

and all further loops that are attached to any of the vertices vi in G. Attach

� to v1. The resulting graph G(i) is a new loop graph. Perform Algorithm

1 on G(i) to obtain a Kleene expression L(i). Replace the symbol �i in L

by L(i).

(2) Continue this process until L does not contain any further expressions �i
for some loop �i, that is, L only contains unions, � and elements in the

alphabet A. Then the Kleene expression for PG is L.

The resulting expressions can be made into unionless expressions by using Zimin

words

{a}� = a� and {a, b}� = (a�b)�a� for a, b ∈ A. (1.1)

Expressions for larger unions can be obtained by induction using (1.1).

Example 1.2. Let G be as in Example 1.1. Then

L = a��1bcx,

where �1 is the loop attached to vertex 1. Cut this loop and continue the process

to obtain

�1 = b{�′1, �′2}�da,

where �′1 is the loop at vertex 1′ labelled a and �′2 is the loop at vertex 1′ labelled c.

We have �′1 = a and �′2 = c, so that altogether we find

L = a(b{a, c}�da)�bcx = a(b(a�c)�a�da)�bcx,

where in the last step we used the Zimin words to get rid of the unions. This is a

Kleene expression for PG.

See Example 3.8 for another example and also compare this construction to the

definition of Pict in Definition 3.5.
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Main results. We are now going to define normal distributions.

Definition 1.3 (Normal distribution). LetG be a loop graph with edges labeled

by letters in the alphabet A. Associate the indeterminate xa to a ∈ A. Then the

normal distribution of G is defined as

ΨG =
∑
p∈PG

∏
a∈p

xa,

where the product is over all letters a in p.

We may use the Kleene expressions of the previous section for PG. The advan-

tage in doing so is that one can immediately obtain rational expressions. Namely,

using the geometric series, we find that

∑
s∈a�

∏
i∈s

xi =

∞∑
�=0

x�
a =

1

1− xa
.

Similarly

∑
s∈{a,b}�

∏
i∈s

xi =
∑

s∈a�(ba�)�

∏
i∈s

xi =
1

1− xa
· 1

1− xb

1−xa

=
1

1− xa − xb
.

In general, using the recursion (1.1) we derive by induction

∑
s∈{a1,a2,...,an}�

∏
i∈s

xi =
1

1− xa1 − xa2 − . . .− xan

. (1.2)

Our main theorem is the following.

Theorem 1.4. The stationary distribution ΨM of a finite Markov chain M is the

sum of normal distributions ΨG or certain limits of ΨG, where G is a loop graph.

The proof of Theorem 1.4 is given in Sec. 3.3. A more precise version of Theo-

rem 1.4 is stated in Theorem 3.9.

The paper is outlined as follows. In Sec. 2, we review the main results from [11],

in particular the expressions for the stationary distribution of a finite Markov chain

in terms of semaphore codes of the Karnofsky–Rhodes expansion of the right Cayley

graph of the underlying semigroup. In Sec. 3, we review the McCammond expansion

and its relation to semaphore codes and provide the definition of Pict. The map

Pict is used to give a proof of Theorem 1.4. The original definition of Pict is due to

McCammond, but the applications to random walks are due to the authors.

2. Stationary Distributions of Markov Chains

In this section, we provide definitions and review the necessary results we need

from [11].
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2.1. Markov chains

A Markov chain M consists of a finite or countable state space Ω together with

transition probabilities Ts′,s for the transition s −→ s′ for s, s′ ∈ Ω. The matrix T =

(Ts′,s)s,s′∈Ω is called the transition matrix, which is a column-stochastic matrix,

meaning that the column sums of T are equal to one.

A Markov chain is irreducible if for any s, s′ ∈ Ω there exists an integer m

(possibly depending on s, s′) such that T m
s′,s > 0. In other words, one can get from

any state s to any other state s′ using only steps with positive probability. A state

s ∈ Ω is called recurrent if the system returns to s in finitely many steps with

probability one.

The stationary distribution of M is a vector Ψ = (Ψs)s∈Ω such that T Ψ = Ψ

and
∑

s∈Ω Ψs = 1. In other words, Ψ is a right-eigenvector of T with eigenvalue

one. If the Markov chain is irreducible, the stationary distribution is unique [8].

Next we define lumping of Markov chains. Partition the state space Ω into

(Ω1, . . . ,Ω�) such that

Ωi ∩Ωj = ∅ for i �= j and Ω =

�⋃
i=1

Ωi.

One may view such a partition as an equivalence relation s ∼ s′ if s, s′ ∈ Ωi for some

1 ≤ i ≤ �. We say that M can be lumped with respect to the partition (Ω1, . . . ,Ω�)

if the transition matrix T satisfies [8, Lemma 2.5] [5] for all 1 ≤ i, j ≤ �

∑
t∈Ωj

Tt,s =
∑
t∈Ωj

Tt,s′ for all s, s′ ∈ Ωi. (2.1)

The lumped Markov chain is a random walk on the equivalence classes, whose

stationary distribution labeled by w is
∑

s∼w Ψs.

Every finite state Markov chain M has a random letter representation, that is,

a representation of a semigroup S acting on the left on the state space Ω (see [8,

Proposition 1.5] and [1, Theorem 2.3]). In this setting, we transition s
a−→ s′ with

probability 0 ≤ xa ≤ 1, where s, s′ ∈ Ω, a ∈ S and s′ = a.s is the action of a on

the state s. Let A = {a ∈ S | xa > 0}. We assume that A generates S; if not, it

suffices to consider the subsemigroup generated by A. Note that
∑

a∈A xa = 1. The

transition matrix T of M is the |Ω| × |Ω|-matrix

Ts′,s =
∑
a∈A

s
a−→s′

xa for s, s′ ∈ Ω. (2.2)

Note that we may assume that the action of S on Ω is faithful as this does not

affect the random walk.
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If S is a semigroup, then S� denotes S with an adjoint identity � even if S

already has an identity.

Definition 2.1 (Ideal). Let S be a semigroup. A two-sided ideal I (or ideal for

short) is a subset I ⊆ S such that uIv ⊆ I for all u, v ∈ S�. Similarly, a left ideal

I is a subset I ⊆ S� such that uI ⊆ I for all u ∈ S�.

If I, J are ideals of S, then IJ ⊆ I ∩ J , so that I ∩ J �= ∅. Hence every finite

semigroup has a unique minimal ideal denotedK(S). As shown in [3, 6], the minimal

ideal K(S) of a finite semigroup S is the disjoint union of all the minimal left ideals

of S and the Rees Theorem applies. By [1, Remark 2.8] the faithful left action of S

on Ω is isomorphic to the left action of S on K(S).

Let (S,A) be a semigroup S together with a choice of generators A for S. Define

M(S,A) to be the Markov chain, where the transition s
a−→ s′ for s, s′ ∈ S and

a ∈ A is given by s′ = as in the left Cayley graph with probability 0 < xa ≤ 1.

Note that we are assuming that all probabilities xa for a ∈ A are nonzero. Then it

was shown in [4] (see also [1, Proposition 3.2]) that the recurrent states of M(S,A)

are the elements in K(S). Furthermore, the connected components of the recurrent

states in the random walk are the minimal left ideals of S. The restriction of the

randomwalk to any minimal left ideal is irreducible. Moreover, the chain so obtained

is independent of the chosen minimal left ideal. This random walk and the random

walk with states a left ideal L of K(S) and S acting on the left made faithful, that

is x
a−→ y for x ∈ L and y = ax, are essentially the same. So we may not distinguish

the two cases.

2.2. Karnofsky–Rhodes expansion

In this section, we define the right Cayley graph of a finite semigroup and its

Karnofsky–Rhodes expansions.

Definition 2.2 (Right Cayley graph). Let (S,A) be a finite semigroup S

together with a set of generators A. The right Cayley graph RCay(S,A) of S with

respect to A is the rooted graph with vertex set S�, root r = � ∈ S�, and edges

s
a−→ s′ for all (s, a, s′) ∈ S� ×A× S�, where s′ = sa in S�.

A path p in RCay(S,A) is a sequence

p =
(
v1

a1−→ . . .
a�−→ v�+1

)
,

where vi ∈ S� are vertices in RCay(S,A) and vi
ai−→ vi+1 are edges in RCay(S,A).

The endpoint of p is τ(p) := v�+1. The length of the path p is �(p) := �, which

equals the number of edges. A simple path is a path that does not visit any vertex

twice. Empty paths are considered simple. A path which starts and ends at the
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same vertex is called a circuit. A circuit that is simple, when the last vertex is

removed, is called a loop.

Definition 2.3 (Transition edges). An edge s
a−→ s′ in the right Cayley graph

RCay(S,A) is a transition edge if there is no directed path from s′ to s in RCay(S,A).

In other words, there does not exist any sequence a1, . . . , ak ∈ A with k ≥ 1 such

that s′(a1 . . . ak) = s.

Let us now define the Karnofsky–Rhodes expansion of the right Cayley graph

(see also [10, Definition 4.15] and [7, Sec. 3.4]). Let (A+, A) be the free semigroup

with generators A, where A+ is the set of all words a1 . . . a� of length � ≥ 1 over A

with multiplication given by concatenation. When we write [a1 . . . a�]S , we mean the

element in S when taking the product in the semigroup of the generators ai ∈ A.

Definition 2.4 (Karnofksy–Rhodes expansion). The Karnofsky–Rhodes

expansion KR(S,A) is obtained as follows. Start with the right Cayley graph

RCay(A+, A). Identify two paths in RCay(A+, A)

p :=
(
�

a1−→ v1
a2−→ . . .

a�−→ v�

)
and p′ :=

(
�

a′
1−→ v′1

a′
2−→ . . .

a′
�′−→ v′�′

)

in KR(S,A) if and only if the corresponding paths in RCay(S,A)

[p]S :=
(
�

a1−→ [v1]S
a2−→ . . .

a�−→ [v�]S

)
and

[p′]S :=

(
�

a′
1−→ [v′1]S

a′
2−→ . . .

a′
�′−→ [v′�′ ]S

)
,

where vi = a1a2 . . . ai and v′i = a′1a
′
2 . . . a

′
i, end at the same vertex [v�]S = [v′�′ ]S

and in addition the set of transition edges of [p]S and [p′]S in RCay(S,A) is equal.

Example 2.5. Consider the right Cayley graph of the Klein 4-group Z2 ×Z2 with

zero with generators {a, b,�}, where a = (1,−1), b = (−1, 1), and � is the zero.

The right Cayley graph RCay(Z2 × Z2 ∪ {�}, {a, b,�}) is

�

(1,−1) (−1, 1)

(−1,−1)

(1, 1)

�

a b

b a

a b
�

��
�

�

where all three arrows a, b,� fix the vertex � at the bottom. Transition edges

are indicated in grey. Double edges mean that right multiplication by the label for
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either vertex yields the other vertex. The Karnofsky–Rhodes expansion of this right

Cayley graph is given by

�

a b

ab ba

a2 b2

a2b = aba bab = b2a

�a�ab�a2b�a2� b� ba� b2a� b2�

a b

a

bb a a b

b

a�
�

��
�� �

� �
�

where arrows a, b,� fix all the vertices at the bottom.

Proposition 2.6 ([11, Proposition 2.15]). KR(S,A) is the right Cayley graph

of a semigroup, also denoted by KR(S,A).

2.3. Stationary distribution

We now review the main results of [11], which give the stationary distribution for

any Markov chain M(S,A) for a finite semigroup with chosen generators (S,A).

Recall that M(S,A) is the random walk on the unique minimal ideal K(S) of S.

More precisely, the random walk is given by the left action of S on K(S).

To state our results for the stationary distribution, we first need to review the

semaphore codes associated to (S,A) [2]. The semaphore code S(S,A) is the set of

all words a1a2 . . . a� ∈ A+ such that [a1a2 . . . a�]S ∈ K(S), but [a1a2 . . . a�−1]S �∈
K(S). Semaphore codes are closely related to normal forms of the McCammond

expansion, see Sec. 3.1.

The main results are the following.

Theorem 2.7 ([11, Corollary 2.28]). The Markov chain M(S,A) is the lumping

of M(KR(S,A)) with stationary distribution

ΨM(S,A)
w =

∑
v∈KR(S,A)
[v]S=w

ΨM(KR(S,A))
v for all w ∈ (S,A).

The next result is non-trivial. It requires the assumption that the minimal ideal

K(S) is left zero, that is, xy = x for all x, y ∈ K(S).

Theorem 2.8 ([11, Theorem 2.12]). If K(S) is left zero, the stationary distri-

bution of the Markov chain M(KR(S,A)) is given by

ΨM(KR(S,A))
w =

∑
s∈S(S,A)

[s]KR(S,A)=w

∏
a∈s

xa for all w ∈ K(KR(S,A)).

As outlined in [11, Sec. 2.9], the case when K(S) is not left zero can be con-

structed from the case when K(S) is left zero using the flat operation. That is, one
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adds an additional generator � to the alphabet A, which acts as zero. The associ-

ated probability is x�. The elements in the minimal ideal K(KR(S∪{�}, A∪{�}))
are of the form w�, where w ∈ KR(S,A). Since �v = � for all v ∈ KR(S,A),

we indeed have that K(KR(S ∪ {�}, A ∪ {�})) is left zero and hence Theorem 2.8

applies. Then [11, Corollary 2.33]

ΨM(KR(S,A))
w = lim

x�→0
ΨM(KR(S∪{�},A∪{�}))

w . (2.3)

3. Normal Distributions for Random Walks

In this section, we prove Theorem 1.4. By Theorems 2.7 and 2.8 and Eq. (2.3), the

stationary distribution Ψ
M(S,A)
w is the sum of terms of the form

∏
a∈s xa, where

s ∈ S(S,A) (or limits of such expressions). In Sec. 3.1, we will explain how the

semaphore code S(S,A) is related to the McCammond expansion Mc◦KR(S,A). In
Sec. 3.2, we will then define the map Pict on Mc◦KR(S,A) to deduce that Ψ

M(S,A)
w

is a sum of normal forms. A proof of Theorem 1.4 is given in Sec. 3.3. Theorem 3.9

is a more precise version of Theorem 1.4.

3.1. The McCammond expansion and semaphore codes

Let us now turn to the McCammond expansion [9, 10] of the Karnofsky–Rhodes

expansion of the right Cayley graph of (S,A). Recall that a simple path in KR(S,A)

is a path that does not visit any vertex twice. Empty paths are considered simple.

Definition 3.1 (McCammond expansion). The McCammond expansion Mc ◦
KR(S,A) of KR(S,A) is the graph with vertex set V , which is the set of simple

paths in KR(S,A). The edges are given by

E := {(p, a, q) ∈ V ×A× V | τ(q) = τ(p)a, �(q) ≤ �(p) + 1,

q is an initial segment of p if �(q) ≤ �(p)}.

In other words, if the path pa in KR(S,A) is simple, then q = pa. Otherwise

τ(pa) = v is a vertex of p and then q is the initial segment of p up to and including v.

Remark 3.2. Note that Mc◦KR(S,A) has a spanning tree T with the same vertex

set as Mc ◦ KR(S,A), but only those edges (p, a, q) ∈ E such that �(q) = �(p) + 1.

Example 3.3. The McCammond expansion of KR(S,A) of Example 2.5 is given

in Fig. 1.

By Remark 3.2, the McCammond expansionMc◦KR(S,A) has a spanning tree T.
In this tree, the vertices are naturally labeled by the sequence of edge labels in the

path from � to the vertex. More concretely, if

p =
(
�

a1−→ v1
a2−→ . . .

a�−→ v�

)

is a path in T, then the vertex v� is naturally labeled by a1 . . . a�. Hence the corre-

sponding vertex v� in Mc ◦ KR(S,A) has a normal form given by a1 . . . a�.
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�

a b

ab baa2

a2b

a2ba

b2

aba

abab

bab

baba

b2a

b2ab

�a2ba� a2b� a2� a� ab� aba� abab� baba� bab� ba� b� b2� b2a� b2ab�

�

�
�

�
�

�
�

� �
�

�
�

�
�

�

a b

aa

b
b

aa

b b
b

a
a

b b

a a
a

b
b

aa

b
b

a
a

b b

b a

Fig. 1. (Color online) The McCammond expansion of KR(S,A) of Example 2.5. Transition edges
are grey. The edges (p, a, q) ∈ E with �(q) = �(p)+ 1 are solid, whereas the edges with �(q) ≤ �(p)
are dashed (and red). The spanning tree T is obtained by removing all the dashed (red) arrows.

Remark 3.2. Also ensures that Mc◦KR(S,A) has the unique simple path property,

defined as follows.

Definition 3.4 (Unique simple path property). A rooted graph (Γ,�) with

root � has the unique simple path property if for each vertex v in Γ there is a

unique simple path from the root � to v.

Elements in the semaphore code S(S,A) are paths in Mc◦KR(S,A) (rather than
in T) starting at � and ending in K(S). They are also in natural correspondence

with words a1 . . . a� ∈ A+ such that [a1 . . . a�]S ∈ K(S) and [a1 . . . a�−1]S �∈ K(S).

From the semaphore code, one can obtain the normal form by stripping away all

loops in the path.

3.2. Definition of Pict

We are now going to define the map Pict from the set of tuples (Γ, p), where Γ is

a graph with the unique simple path property and p is a simple path in Γ starting

at �, to the set of loop graphs. The straight line, that the loop graph is based on,

will correspond to p. The map Pict was first defined by McCammond (we give a

simplified definition here).

Definition 3.5 (McCammond). Let Γ be a graph with the unique simple path

property and p a simple path in Γ starting at �. Then Pict(Γ, p) is defined by the

principle of induction.

Induction basis: Set P = p and start at vertex v0 = �.

Induction step: Suppose one is at vertex v0 �= τ(p) on path p. Take the edge e

from v0 to v1 in p.

(1) If there is no edge in Γ coming into v1 besides e, continue with the unique

next vertex in p, now denoted v1 (with the current vertex v1 relabeled v0),

unless v1 = τ(p). If v1 = τ(p), then output Pict(Γ, p) = P .
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(2) Otherwise there is at least one edge e′ �= e in Γ going into v1, given by

e′ =
(
v′ a−→ v1

)
for some a ∈ A. Since Γ has the unique simple path

property by assumption, there must be a unique simple path starting at �

going to v0 along the path p followed by the path p′ starting at v0, going

along e to v1, and ending at v′.

(a) Run the induction on p′ in a subgraph Γ′ of Γ, consisting of all edges

and vertices on circuits containing a vertex of p′. Note that p′ is simple

in Γ′. The output is P ′ = Pict(Γ′, p′).
(b) Modify P by attaching P ′ disjointly except at v1 and adding edge e′

from v′ in P ′ back to v1.

(3) Repeat step (2) for each edge e′ �= e at vertex v1.

(4) Continue with the induction step unless v1 = τ(p). If v1 = τ(p), then

output Pict(Γ, p) = P .

Remark 3.6. If Γ is a rooted graph with the unique simple path property, then

Γ with some edges removed (and any vertices that are no longer connected to the

root �) still has the unique simple path property. This is the case since either the

unique simple path from � to v is still there or the vertex v is now disconnected

from � and has hence been removed.

The graph Γ′ in the Induction step (2)(a) in the definition of Pict can be obtained

in two steps. First remove all incoming and outgoing edges on the vertices along

the path p from � to v1, except the edges on the path p itself. Remove all vertices

that have become disconnected in this process. By the remark above, the resulting

graph still has the unique simple path property. In this graph, all simple paths go

through the vertex v1. Hence we may make v0 the root (removing all vertices � up

to v0 along p). The result is Γ′, which still has the unique simple path property.

Example 3.7. Let p = (�
a−→ 1

b−→ 2
c−→ 3) in

Γ =

�

1

2

3

4a

b

c

a

d

a
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To compute Pict(Γ, p), we start with P = p, v0 = � and v1 = 1. We are in step (2)

of the Induction step with e = (�
a−→ 1) and e′ = (4

a−→ 1). Then p′ = (�
a−→

1
b−→ 2

d−→ 4) and Γ′ is Γ with the arrow labelled a from v′ = 4 to v1 = 1 removed.

Also P ′ = Pict(Γ′, p′) is p′ with a loop labelled a at vertex 2. Attaching P ′ at v1 = 1

(with its vertex 2 relabelled to 2′ to avoid repetition) and adding edge e′ we obtain

P =

�

1

2

3

4

2′

a

b

c

a

b

d

a

Since there are no further edges going into vertex v1 = 1, we continue with the

induction along p. This means that we set v0 = 1, v1 = 2 and e = (1
b−→ 2). Besides

e, there is only one other arrow going into v1 = 2 in Γ, namely e′ = (2
a−→ 2). In

this case p′ = 1
b−→ 2 and Γ′ is Γ with � and the arrows �

a−→ 1, 4
a−→ 1 and

2
a−→ 2 removed. Hence the new P with P ′ = Pict(Γ′, p′) added is

Pict(Γ, p) = P =

�

1

2

3

4

2′

a

b

c

a

b

d

aa

The remaining induction steps do not change this P , which is hence also Pict(Γ, p).
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Example 3.8. Consider the McCammond expansion Γ = Mc ◦KR(S,A) of Exam-

ple 3.3 (see also Fig. 1) and the path in the McCammond tree T given by ab�.

Then Pict(Γ, ab�) is given by

�

a

ab

ab�

a

b

�

• •
a

a

b

b

•••
a

a

b

b

a

a

• • •
b

b

a

a

b

b

•

•

•

a
b

a
b

•

•

•

b a

b
a

•
a

a

•
b

b

•
b b

•
a a

•
a a

•
b b

Following the algorithm explained in Sec. 1.3, a Kleene expression for PPict(Γ,ab�)

is given by

L = a{�1, �2, �3, �4}�b��5�,

where

�1 = a(b(aa)�b)�b(aa)�ab,

�2 = a(b(aa)�b)�a,

�3 = b(a(bb)�a)�a(bb)�ba,

�4 = b(a(bb)�a)�b,

�5 = a(bb)�a.

Hence

ΨPict(Γ,ab�) =
xaxbx�

1− x2
ax

2
b(

1− x2
b

1−x2
a

)
(1−x2

a)
− x2

a

1− x2
b

1−x2
a

− x2
ax

2
b(

1− x2
a

1−x2
b

)
(1−x2

b)
− x2

b

1− x2
a

1−x2
b




×
(
1− x2

a

1− x2
b

)

In
t. 

J. 
A

lg
eb

ra
 C

om
pu

t. 
20

19
.2

9:
14

31
-1

44
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

C
A

LI
FO

R
N

IA
 @

 D
A

V
IS

 o
n 

05
/0

1/
20

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



October 15, 2019 16:14 WSPC/S0218-1967 132-IJAC 1950057

Normal distributions of finite Markov chains 1445

=
xaxbx�(1− x2

b)(
1− 2x2

ax
2
b

1−x2
a−x2

b

− x2
a(1−x2

a)

1−x2
a−x2

b

− x2
b(1−x2

b)

1−x2
a−x2

b

)
(1− x2

a − x2
b)
,

=
xaxbx�(1− x2

b)

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2
.

Using that xa + xb + x� = 1, we find that in the limit x� → 0

lim
x�→0

ΨPict(Γ,ab�) =
1

8
(1− x2

b).

In a similar fashion, we find

Ψ� = x�
x�→0−−−−→ 0,

Ψa� =
xa(1− x2

a − x2
b)x�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0−−−−→ xa

4
,

Ψaba� =
x2
axbx�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0−−−−→ xa

8
,

Ψabab� =
x2
ax

2
bx�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0−−−−→ xaxb

8
,

Ψa2� =
x2
a(1− x2

a)x�
1− 2x2

a − 2x2
b + (x2

a − x2
b)

2

x�→0−−−−→ xa(1 + xa)

8
,

Ψa2b� =
x2
axbx�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0−−−−→ xa

8
,

Ψa2ba� =
x3
axbx�

1− 2x2
a − 2x2

b + (x2
a − x2

b)
2

x�→0−−−−→ x2
a

8
.

The stationary probabilities for the elements with a and b interchanged are obtained

by symmetry. It is not hard to check that these probabilities sum to one as desired.

As noted in the introduction, Pict(Γ, p) is not necessarily deterministic. There

can be several arrows leaving a vertex labeled by the same element a ∈ A. For

example, vertex 1 in Example 3.7 has two arrows labeled b coming out.

One can make a non-deterministic automata A deterministic as follows. If A
has states Q with start state � and final states F not containing �, we make

a deterministic automata det(A) accepting the same strings going from � to a

member of F as follows. The states Q′ of det(A) are the collection of subsets of Q

determined a follows:

• {�} is in Q′;
• if Z ∈ Q′, then Z.a ∈ Q′ for a ∈ A, where Z.a = {q | z a−→ q ∈ A where z ∈ Z}.

One continues by induction until the process adds no new subsets. For det(A), start

in state {�}. The final states are all the states of det(A) such that the intersection

with F is non-empty.
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With this definition, making Pict(Γ, p) deterministic gives the automata for

(Γ, p) back.

3.3. Proof of Theorem 1.4

As explained in Sec. 2.1, any finite Markov chain M can be described as a Markov

chain M(S,A) in terms of a finite semigroup S with generators A. Since by Theo-

rem 2.7, Ψ
M(S,A)
w is the sum over Ψ

M(KR(S,A))
v , it suffices to prove the statement of

Theorem 1.4 for Ψ
M(KR(S,A))
v . When K(S) is not left zero, we may use the limiting

construction of (2.3) to obtain Ψ
M(KR(S,A))
v from the case in which the minimal

ideal is left zero. Assuming that K(S) is left zero, we have by Theorem 2.8

ΨM(KR(S,A))
w =

∑
s∈S(S,A)

[s]KR(S,A)=w

∏
a∈s

xa for all w ∈ K(KR(S,A)). (3.1)

As explained in Sec. 3.1, there is a normal form associated to each semaphore

code element s ∈ S(S,A). Namely, s is a path in Mc ◦ KR(S,A) starting at � and

the normal form is the simple path with all loops stripped away from s; equivalently

the normal form is the path in T starting at � and ending at τ(s), where T is the

tree associated to the McCammond expansion Mc ◦KR(S,A). In the tree T, a path

p starting at � is also naturally in bijection with its endpoint τ(p). Hence we may

identify vertex t ∈ T with the path from � to t in T or equivalently with the simple

path from � to t in Mc ◦ KR(S,A). Therefore, we may rewrite the sum in (3.1) as

ΨM(KR(S,A))
w =

∑
t∈T

[t]KR(S,A)=w




∑
s∈S(S,A)

τ(s)=t

∏
a∈s

xa


 for all w ∈ K(KR(S,A)). (3.2)

We claim that for a given t ∈ T with [t]KR(S,A) ∈ K(KR(S,A))

ΨPict(Mc◦KR(S,A),t) =
∑

s∈S(S,A)

τ(s)=t

∏
a∈s

xa. (3.3)

Recall that by Definition 1.3

ΨPict(Mc◦KR(S,A),t) =
∑

p∈PPict(Mc◦KR(S,A),t)

∏
a∈p

xa.

Hence, (3.3) can be proved by establishing a bijection

ϕ : {s ∈ S(S,A) | τ(s) = t} −→ PPict(Mc◦KR(S,A),t). (3.4)

In fact, we are going to prove a slight generalization of (3.4). Namely, for any t ∈ T

we will show that there is a bijection

ϕ : {s ∈ PMc◦KR(S,A) | τ(s) = t} −→ PPict(Mc◦KR(S,A),t), (3.5)
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where PMc◦KR(S,A) is the set of paths in Mc ◦ KR(S,A) starting at �. Then (3.4) is

the special case when [t]KR(S,A) ∈ K(KR(S,A)).

To define ϕ in (3.5), fix t = a1 . . . ak, where ai ∈ A are the labels in the path

in T. A path s ∈ PMc◦KR(S,A) with τ(s) = t, can be viewed as t with circuits �
(j)
j

interspersed. More precisely,

s = a1


∏

j∈J1

�
(j)
1


 a2


∏

j∈J2

�
(j)
2


 · · · ak


 ∏

j∈Jk

�
(j)
k


,

where τ(a1 . . . ai) = τ(a1 . . . ai�
(j)
i ) for all 1 ≤ i ≤ k and j ∈ Ji and any initial

subsequence of �
(j)
i does not reach the vertex a1 . . . ai. Here the sets Ji index the

set of circuits {�(j)i | j ∈ Ji} at vertex a1 . . . ai and either Ji = {1, 2, . . . , ni} is a

finite set or Ji = {1, 2, 3, . . .} is the set of positive integers. In other words, each

�
(j)
i is a circuit from vertex a1 . . . ai to itself, which does not pass through a1 . . . ai

otherwise. The last step of �
(j)
i is an edge in Mc◦KR(S,A) that is not in T. Suppose

by induction that

s′ = a1


∏

j∈J1

�
(j)
1


 · · · ai


∏

j∈J′
i

�
(j)
i


,

where 1 ≤ i ≤ k and J ′
i = {1, 2, . . . , n′

i} ⊆ Ji or J ′
i = Ji, is mapped to π in

Pict(Mc ◦ KR(S,A), a1 . . . ai) under ϕ. We need to distinguish two cases.

Case J ′
i � Ji. Let j be the smallest element in Ji \ J ′

i . Recall that Mc ◦ KR(S,A)
has the unique simple path property. Hence the path p′ in Mc ◦ KR(S,A) from

v0 = a1 . . . ai−1 through v1 = a1 . . . ai to v′, which is a1 . . . ai�
(j)
i with the last edge

e′ removed is a path in Γ′ in the notation of Sec. 3.2. By induction this path is

mapped to π′ in PPict(Γ′,p′). Hence

ϕ(s′�(j)i ) = ππ′ ∈ PPict(Mc◦KR(S,A),a1...ai)

This corresponds to the induction step (2) in Definition 3.5.

Case J ′
i = Ji. If i = k, we are done. If i < k, we define

ϕ(s′ai+1) = πai+1 ∈ PPict(Mc◦KR(S,A),a1...ai+1),

which is a well-defined path since the last step is along the straight line path and

hence unique. This corresponds to the induction step (1) (if Ji = ∅) or step (4) (if

Ji �= ∅) in Definition 3.5.

This shows that ϕ is a well-defined map. It has an inverse ϕ−1 by mapping a

path π ∈ PPict(Mc◦KR(S,A),t) to a path in Mc ◦KR(S,A) by just reading the labels of

the edges. This indeed gives a path in Mc ◦ KR(S,A) by the construction of Pict.
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Combining (3.2) and (3.3), we obtain

ΨM(KR(S,A))
w =

∑
t∈T

[t]KR(S,A)=w

ΨPict(Mc◦KR(S,A),t),

which proves Theorem 1.4 since Pict(Mc ◦ KR(S,A), t) is a loop graph.

In summary, we proved the following theorem, which is a more detailed version

of Theorem 1.4.

Theorem 3.9. Let M(S,A) be a Markov chain associated to the finite semigroup

with generators (S,A). If K(S) is left zero, the stationary distribution is given by

ΨM(S,A)
w =

∑
t∈T

[t]S=w

ΨPict(Mc◦KR(S,A),t) for w ∈ K(S),

where T is the spanning tree of Mc ◦ KR(S,A). Otherwise

ΨM(S,A)
w =

∑
t∈T

[t]S=w�

lim
x�→0

ΨPict(Mc◦KR(S∪{�},A∪{�}),t) for w ∈ K(S),

where T is the spanning tree of Mc ◦ KR(S ∪ {�}, A ∪ {�}) and � acts as zero.
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