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We provide a characterization of the crystal bases for 
the quantum queer superalgebra recently introduced by 
Grantcharov et al. This characterization is a combination 
of local queer axioms generalizing Stembridge’s local axioms 
for crystal bases for simply-laced root systems, which were 
recently introduced by Assaf and Oguz, with further axioms 
and a new graph G characterizing the relations of the type 
A components of the queer supercrystal. We provide a 
counterexample to Assaf’s and Oguz’ conjecture that the local 
queer axioms uniquely characterize the queer supercrystal. We 
obtain a combinatorial description of the graph G on the type 
A components by providing explicit combinatorial rules for 
the odd queer operators on certain highest weight elements. 
This also yields a new combinatorial description of the Schur 
expansion of the Schur P -polynomials.
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1. Introduction

The representation theory of Lie algebras is of fundamental importance, and hence 
combinatorial models for representations, especially those amenable to computation, are 
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of great use. In the 1990’s, Kashiwara [16] showed that integrable highest weight rep-
resentations of the Drinfeld–Jimbo quantum groups Uq(g), where g is a symmetrizable 
Kac–Moody Lie algebra, in the q → 0 limit result in a combinatorial skeleton of the 
integrable representation. He coined the term crystal bases, reflecting the fact that q
corresponds to the temperature of the underlying physical system. Since then, crystal 
bases have appeared in many areas of mathematics, including algebraic geometry, com-
binatorics, mathematical physics, representation theory, and number theory. One of the 
major advances in the theory of crystals for simply-laced Lie algebras was the discov-
ery by Stembridge [23] of local axioms that uniquely characterize the crystal graphs 
corresponding to Lie algebra representations. These local axioms provide a completely 
combinatorial approach to the theory of crystals; this viewpoint was taken in [4].

Lie superalgebras [15] arose in physics in theories that unify bosons and fermions. They 
are essential in modern string theories [7] and appear in other areas of mathematics, such 
as the projective representations of the symmetric group. The crystal basis theory has 
been developed for various quantum superalgebras [3,11,8–10,12,17,18]. In this paper, we 
are in particular interested in the queer superalgebra q(n) (see for example [6]). A the-
ory of highest weight crystals for the queer superalgebra q(n) was recently developed by 
Grantcharov et al. [8–10]. They provide an explicit combinatorial realization of the high-
est weight crystal bases in terms of semistandard decomposition tableaux and show how 
these crystals can be derived from a tensor product rule and the vector representation. 
They also use the tensor product rule to derive a Littlewood–Richardson rule. Choi and 
Kwon [5] provide a new characterization of Littlewood–Richardson–Stembridge tableaux 
for Schur P -functions by using the theory of q(n)-crystals. Independently, Hiroshima [13]
and Assaf and Oguz [1,2] defined a queer supercrystal structure on semistandard shifted 
tableaux, extending the type A crystal structure of [14] on these tableaux.

In this paper, we provide a characterization of the queer supercrystals. Assaf and 
Oguz [1,2] conjecture a local characterization of queer supercrystals in the spirit of 
Stembridge’s [23] characterization of crystals associated to classical simply-laced root 
systems, which involves local relations between the odd crystal operator f−1 with the 
type An−1 crystal operators fi for 1 � i < n. However, we provide a counterexample 
to [2, Conjecture 4.16], which conjectures that these local axioms uniquely characterize 
the queer supercrystals. Instead, we define a new graph G(C) on the relations between 
the type A components of the queer supercrystal C, which together with Assaf’s and 
Oguz’ local queer axioms and further new axioms uniquely fixes the queer supercrystal 
structure (see Theorem 5.1). We provide a combinatorial description of G(C) by providing 
the combinatorial rules for all odd queer supercrystal operators f−i and e−i on certain 
highest weight elements for 1 � i < n.

This paper is structured as follows. In Section 2, we review the combinatorial definition 
of the queer supercrystals by [8–10] and prove several results that are needed later for 
the combinatorial description of the graph G(C). In particular, Theorems 2.12 and 2.16
provide explicit combinatorial descriptions of the odd queer crystal operators f−i and 
e−i on highest weight elements. In Section 3, we state the local queer axioms by Assaf 
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and Oguz [1,2] and provide a counterexample to [2, Conjecture 4.16]. The graph G(C)
is introduced in Section 4. Theorem 4.9 allows us to transform G(C) into combinatorial 
graphs G(C) and G̃(C), which together with the local queer axioms of Definition 3.1 and 
new connectivity axioms of Definition 4.4 uniquely characterize the queer supercrystals 
as stated in Theorem 5.1. The graph G(C) also yields a new combinatorial description 
of the Schur expansion of the Schur P -polynomials (see Remark 4.10).
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2. Queer supercrystals

In Section 2.1, we review the queer supercrystals constructed in [8–10]. In Section 2.2, 
we review some properties of queer supercrystals discovered in [1,2]. In Section 2.3, we 
provide new explicit combinatorial descriptions of f−i and e−i on certain highest weight 
elements, which will be used in Section 4 to construct the graph G(C). In Section 2.4, 
we provide relations between e−i when acting on certain highest weight elements, which 
will be used in Section 4 to deal with “by-pass arrows” in the component graph G(C).

2.1. Definition of queer supercrystals

An (abstract) crystal of type An is a nonempty set B together with the maps

ei, fi : B → B � {0} for i ∈ I,

wt : B → Λ,
(2.1)

where Λ = Zn+1
�0 is the weight lattice of the root of type An and I = {1, 2, . . . , n} is the 

index set, subject to several conditions. Denote by αi = εi − εi+1 for i ∈ I the simple 
roots of type An, where εi is the i-th standard basis vector of Zn+1. Then we require:

A1. For b, b′ ∈ B, we have fib = b′ if and only if b = eib
′. In this case wt(b′) = wt(b) −αi.

For b ∈ B, we also define

ϕi(b) = max{k ∈ Z�0 | fk
i (b) �= 0} and εi(b) = max{k ∈ Z�0 | eki (b) �= 0}.
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Fig. 1. q(n + 1)-crystal of letters B.

For further details, see for example [4, Definition 2.13].
There is an action of the symmetric group Sn on a type An crystal B given by the 

operators

si(b) =
{
fk
i (b) if k � 0,
e−k
i (b) if k < 0,

(2.2)

for b ∈ B, where k = ϕi(b) − εi(b).
An element b ∈ B is called highest weight if ei(b) = 0 for all i ∈ I. Similarly, b is called 

lowest weight if fi(b) = 0 for all i ∈ I. For a subset J ⊆ I, we say that b is J-highest 
weight if ei(b) = 0 for all i ∈ J and similarly b is J-lowest weight if fi(b) = 0 for all 
i ∈ J .

We are now ready to define an abstract queer supercrystal.

Definition 2.1. [9, Definition 1.9] An abstract q(n + 1)-crystal is a type An crystal B
together with the maps e−1, f−1 : B → B � {0} satisfying the following conditions:

Q1. wt(B) ⊂ Λ;
Q2. wt(e−1b) = wt(b) + α1 and wt(f−1b) = wt(b) − α1;
Q3. for all b, b′ ∈ B, f−1b = b′ if and only if b = e−1b

′;
Q4. if 3 � i � n, we have

(a) the crystal operators e−1 and f−1 commute with ei and fi;
(b) if e−1b ∈ B, then εi(e−1b) = εi(b) and ϕi(e−1b) = ϕi(b).

Given two q(n + 1)-crystals B1 and B2, Grantcharov et al. [9, Theorem 1.8] provide 
a crystal on the tensor product B1 ⊗ B2, which we state here in reverse convention. It 
consists of the type An tensor product rule (see for example [4, Section 2.3]) and the 
tensor product rule for b1 ⊗ b2 ∈ B1 ⊗B2

e−1(b1 ⊗ b2) =
{
b1 ⊗ e−1b2 if wt(b1)1 = wt(b1)2 = 0,
e−1b1 ⊗ b2 otherwise,

f−1(b1 ⊗ b2) =
{
b1 ⊗ f−1b2 if wt(b1)1 = wt(b1)2 = 0,
f−1b1 ⊗ b2 otherwise.

(2.3)

The crystals of interest are the crystals of words B⊗�, where B is the q(n + 1)-crystal 
of letters depicted in Fig. 1.
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In addition to the queer supercrystal operators f−1, f1, . . . , fn and e−1, e1, . . . , en, we 
define the crystal operators for 1 < i � n

f−i := sw−1
i

f−1swi
and e−i := sw−1

i
e−1swi

, (2.4)

where swi
= s2 · · · sis1 · · · si−1 and si is the reflection along the i-string in the crystal 

defined in (2.2). Furthermore for i ∈ I0 := {1, 2, . . . , n}

f−i′ := sw0e−(n+1−i)sw0 and e−i′ := sw0f−(n+1−i)sw0 , (2.5)

where w0 is the longest word in the symmetric group Sn+1. By [9, Theorem 1.14], 
with all operators ei, fi for i ∈ {−1, −2, . . . , −n, 1, 2, . . . , n} each connected compo-
nent of B⊗� has a unique highest weight vector and with all operators ei, fi for 
i ∈ {−1′, −2′, . . . , −n′, 1, 2, . . . , n} each connected component of B⊗� has a unique lowest 
weight vector.

2.2. Properties of queer supercrystals

We now review and prove several properties about the queer supercrystal operators.

Lemma 2.2. For 1 � i < n, we have

f−(i+1) = (sisi+1) f−i (si+1si),

e−(i+1) = (sisi+1) e−i (si+1si).
(2.6)

Proof. We use the definition (2.4). Note that the following recursion holds

swi+1 = (s2 · · · si+1)(s1 · · · si) = (s2 · · · si)(s1 · · · si−1)si+1si = swi
si+1si, (2.7)

which implies the statement. �
Remark 2.3. The operators fi for i ∈ I0 have an easy combinatorial description on 
b ∈ B⊗� given by the signature rule, which can be directly derived from the tensor 
product rule (see for example [4, Section 2.4]). One can consider b as a word in the 
alphabet {1, 2, . . . , n + 1}. Consider the subword of b consisting only of the letters i and 
i + 1. Pair (or bracket) any consecutive letters i + 1, i in this order, remove this pair, 
and repeat. Then fi changes the rightmost unpaired i to i + 1; if there is no such letter 
fi(b) = 0. Similarly, ei changes the leftmost unpaired i + 1 to i; if there is no such letter 
ei(b) = 0.

Remark 2.4. From (2.3), one may also derive a simple combinatorial rule for f−1 and 
e−1. Consider the subword v of b ∈ B⊗� consisting of the letters 1 and 2. The crystal 
operator f−1 on b is defined if the leftmost letter of v is a 1, in which case it turns it 
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into a 2. Otherwise f−1(b) = 0. Similarly, e−1 on b is defined if the leftmost letter of v is 
a 2, in which case it turns it into a 1. Otherwise e−1(b) = 0.

Lemmas 2.5 and 2.6 have appeared in [1,2]. We provide proofs for completeness.

Lemma 2.5. Let b ∈ B⊗�. The following holds:

(1) If ϕ1(b) � 2 and ϕ−1(b) = 1, we have ϕ1(b) = ϕ1(f−1(b)) +2 and ε1(b) = ε1(f−1(b)). 
If furthermore ϕ1(b) > 2, then

f1f−1(b) = f−1f1(b).

(2) If ϕ1(b) = ϕ−1(b) = 1, we have

f1(b) = f−1(b).

(3) If ε1(b), ε−1(b) > 0 and e1(b) �= e−1(b), we have ε1(b) = ε1(e−1(b)), ϕ1(b) =
ϕ1(e−1(b)) − 2, and

e1e−1(b) = e−1e1(b).

Proof. Let p = ϕ1(b) and q = ε1(b). Consider the subword v consisting of all letters 1 
and 2 in b. After performing 1,2-bracketing onto v according to the signature rule, we 
have a subword of unbracketed letters in b as

vi1vi2 . . . vipvj1 . . . vjq , (2.8)

where vik = 1 for all 1 � k � p and vjk = 2 for all 1 � k � q.

(1) We assume that ϕ−1(b) > 0, so that f−1(b) is defined. This implies v1 = 1. Since 
v1 is necessarily unbracketed, i1 = 1 as well. The word b′ = f−1(b) is formed by 
changing the leftmost 1 in b, namely vi1 , into 2. This introduces a new bracketed 
1,2-pair formed by v1 = 2 and vi2 = 1. The subword of unbracketed letters in b′ now 
becomes

vi3 . . . vipvj1 . . . vjq

so that ϕ1(f−1(b)) = p − 2 = ϕ1(b) − 2 and ε1(f−1(b)) = q = ε1(b). This establishes 
the first assertion.
Now, assume in addition that p = ϕ1(b) > 2. Using the sequence of unbracketed 
letters in b as in the preceding paragraph, f1 changes the rightmost unbracketed 1 
in b, namely vip , into 2. We still have v1 to be 1 after the change, so that f−1(f1(b))
is defined and the leftmost 1 in f1(b), namely v1, is changed into 2 under f−1. On 
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the other hand, f1(f−1(b)) is defined precisely because p > 2, and the rightmost 
unbracketed 1 in f−1(b), namely vip , is changed into 2 under f1. As the changes 
introduced in b to form f−1(f1(b)) are the same as in those of f1(f−1(b)), we conclude 
that f1(f−1(b)) = f−1(f1(b)), proving the second assertion.

(2) We assume ϕ1(b) = 1, so that (2.8) is of the form vi1vj1 . . . vjq . Furthermore, as 
ϕ−1(b) = 1, f−1(b) is defined and v1 = 1. As v1 is necessarily unbracketed, i1 = 1 as 
well. Therefore, we see that f1(b) = f−1(b), since the rightmost unbracketed 1 in b
and the leftmost 1 in b are the same, namely vi1 = v1.

(3) We assume that ε−1(b) > 0, so that e−1(b) is defined. This implies v1 = 2. However, 
since e−1(b) �= e1(b), e−1 and e1 must change a 2 in b at different locations, so we 
have j1 > 1. Consequently v1 is a bracketed 2 and hence must be paired with some 
vh = 1 where h < i1 < j1 (in case p = 0, h < j1 still holds). The word b′ = e−1(b) is 
obtained by changing the leftmost 2 in b, namely v1, to 1. This introduces two new 
unbracketed 1’s, namely, v1 and vh. The subword of unbracketed letters in b′ is now

v1vhvi1 . . . vipvj1 . . . vjq

so that ε1(b) = q = ε1(e−1(b)) and ϕ1(e−1(b)) = p + 2 = ϕ1(b) + 2. This establishes 
the first two equalities.
Now, e1(e−1(b)) is the word formed by changing the leftmost unbracketed 2 in 
b′ = e−1(b), namely vj1 , to 1. On the other hand, using the subword of v in b contain-
ing unbracketed letters as described in the preceding paragraph, e1(b) changes the 
leftmost unbracketed 2 in b, namely vj1 , into a 1. We still have v1 = 2 and vh = 1 af-
ter the change, so that e−1(e1(b)) is defined, with the leftmost 2 in e1(b), namely v1, 
being changed into 1 under e−1. As the changes introduced in b to form e−1(e1(b))
are the same as in those of e1(e−1(b)), we conclude that e1(e−1(b)) = e−1(e1(b)), 
thereby proving the final relation. �

Lemma 2.6. Let b ∈ B⊗�. The following holds:

(1) If ϕ2(b), ϕ−1(b) > 0, we have ϕ2(b) = ϕ2(f−1(b)) − 1, ε2(b) = ε2(f−1(b)) and

f2f−1(b) = f−1f2(b).

(2) If ϕ2(b) = 0 and ϕ−1(b) > 0, we have either
(a) ϕ2(f−1(b)) = 1 and ε2(b) = ε2(f−1(b)), or
(b) ϕ2(f−1(b)) = 0 and ε2(b) = ε2(f−1(b)) + 1.

(3) If ε2(b), ε−1(b) > 0, we have either
(a) ε2(e−1(b)) = ε2(b) + 1, ϕ2(b) = ϕ2(e−1(b)) = 0, or
(b) ε2(e−1(b)) = ε2(b), ϕ2(b) = ϕ2(e−1(b)) + 1, and

e−1e2(b) = e2e−1(b).
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Proof. We prove each part separately.

(1) Assume that ϕ2(b), ϕ−1(b) > 0, so that f2(b) and f−1(b) are both nonzero. Let 
b′ = f−1(b) and b′′ = f2(b).
By the signature rule, ϕ2(b) is the number of unbracketed 2 entries in the 2, 3-
bracketing of b. Since ϕ2(b) > 0, there exists a rightmost unbracketed 2, say bj. As 
in Remark 2.4 b′ = f−1(b) is formed by changing the leftmost 1, say bi, to b′i = 2, 
where bi is the leftmost of all 1 and 2 entries (so in particular i < j).
Since ϕ−1(b) > 0, every 2 must be to the right of bi. Assume that there is a 3 left 
of bi bracketed with a 2 to the right of bi, and let bs1 · · · bsrbt1 · · · btr = 3r2r be the 
subsequence of all 3 and 2 entries bracketed with each other for which sk < i and 
i < tk for all k. Then in b′, we have that b′sr brackets with b′i rather than b′t1 , and 
b′sr−1

brackets with b′t1 , and so on, leaving b′tr a new unbracketed 2. Thus we always 
have ϕ2(b′) = ϕ2(b) + 1. Furthermore, since the number of unbracketed 3 entries 
remains unchanged, we have ε2(b) = ε2(f−1(b)).
For the commutativity relation, note that since j > i, so b′j = 2 is still the rightmost 
unbracketed 2 in b′ and b′′i = 1 is the leftmost 1 in b′′ without a 2 to the left of b′′i . 
Thus both f2(f−1(b)) and f−1(f2(b)) are formed by changing bi to 2 and bj to 3. 
Hence

f2(f−1(b)) = f−1(f2(b))

as desired.
(2) Assume ϕ2(b) = 0 and ϕ−1(b) > 0, so that b′ = f−1(b) is defined but f2(b) is not. 

Then there is an entry bi = 1 with no 1 or 2 left of it that changes to 2 to form b′. 
There are also no unbracketed 2 entries in the 2, 3 bracketing.
We consider two cases. First, suppose that every 3 to the left of bi in b is bracketed 
with some 2 to its right. Then in b′ with b′i = 2, the bracketed pairs for the entries 
b′si = 3 to the left of b′i shift left as in part (1) above, leaving a new unbracketed 2 and 
exactly the same number of unbracketed 3 entries. Thus ϕ2(b′) = 1 and ε2(b′) = ε2(b)
in this case.
If instead there is an unbracketed 3 to the left of bi, then this 3 becomes bracketed 
with a 2 (after the same shift in bracketed pairs) and we have ϕ2(b′) = 0 and 
ε2(b′) = ε2(b) − 1, as desired.

(3) Suppose ε2(b), ε−1(b) > 0. Then the leftmost 1 or 2 in b is bi = 2 for some i, and 
b′ := e−1(b) is formed by changing bi to 1. Since e2(b) is defined, there also exists a 
leftmost unbracketed 3, say bj = 3.
We consider two cases. First suppose ϕ2(b) = 0, meaning that every 2 is 
bracketed in the 2, 3-bracketing of b. Then in particular bi is bracketed; let 
bs1 · · · bsrbibt1 · · · btr−1 = 3r2r be the subsequence consisting of all bracketed 3’s 
(bsi) to the left of bi along with the entries they are bracketed with (btr−i

where 
t0 = i). Then after lowering bi to 1 to form b′, we have that b′s brackets with b′t
i r−i+1
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for i � 2, and b′s1 is an unbracketed 3. All other bracketed pairs are the same as 
in b, so there is only one more 3 among the unbracketed letters. It follows that 
ε2(b′) = ε2(b) + 1 and ϕ2(b′) = ϕ2(b) = 0.
For the second case, suppose ϕ2(b) > 0. Then there is some unbracketed 2 in b; let 
bk be the leftmost unbracketed 2. Note that k � i because bi is the leftmost 2, and 
note also that k < j because bj is the leftmost unbracketed 3. Thus i < j.
Now, lowering bi to 1 to form b′ results in shifting the bracketing as in the cases 
above, which makes b′k be bracketed (and all other bracketings the same). Thus 
there is one less unbracketed 2 in b′ as b, and the same number of unbracketed 3’s. It 
follows that ε2(b′) = ε2(b) and ϕ2(b′) = ϕ2(b) −1. Furthermore, b′j is still the leftmost 
unbracketed 3 in b′, and so both e−1e2(b) and e2e−1(b) are formed by changing bi to 
1 and bj to 2. The result follows. �

2.3. Explicit description of f−i and e−i

In this section, we give explicit descriptions of ϕ−i(b), ε−i(b), f−ib, and e−ib for 
J-highest-weight elements b ∈ B⊗� for certain J ⊆ I0 (see Proposition 2.9 and Theo-
rems 2.12 and 2.16). We will need these results in Section 4 when we characterize certain 
graphs on the type A components of the queer supercrystal.

Lemma 2.7. Let i ∈ I0 and b ∈ B⊗� be {1, 2, . . . , i − 1}-highest weight. If the first letter 
in the (i, i + 1)-subword of b is i + 1, then ε−i(b) = 1.

Proof. The statement is true for i = 1 by Remark 2.4. Now suppose that by induction 
on i the statement of the lemma is true for 1, 2, . . . , i − 1. By Lemma 2.2, we have 
e−i = si−1sie−(i−1)sisi−1. Let u = i + 1 be the leftmost i + 1 in b and v = i be the 
leftmost i in b. By assumption, u appears to the left of v and hence v is bracketed in 
the (i, i + 1)-bracketing. Since by assumption b is {1, 2, . . . , i − 1}-highest weight, in the 
(i − 1, i)-bracketing there are no unbracketed i and si−1 raises all unbracketed i − 1 to i. 
In particular, all i − 1 to the left of v are raised to i since v is the leftmost i. In turn, si
acts on unbracketed i and i +1 in the (i, i +1)-bracketing. Since v is bracketed and there 
are no i − 1 to the left of v, the first letter in the (i − 1, i)-subword of sisi−1(b) is i. Also, 
sisi−1(b) is {1, 2, . . . , i − 2}-highest weight. Hence by induction ε−(i−1)(sisi−1(b)) = 1, 
which proves that ε−i(b) = 1. �

The next definition below will be used heavily throughout this section.

Definition 2.8. The initial k-sequence of a word b = b1 . . . b� ∈ B⊗�, if it exists, is the 
sequence of letters bpk

, bpk−1 , . . . , bp1 , where bpk
is the leftmost k and bpj

is the leftmost 
j to the right of bpj+1 for all 1 � j < k.

Let i ∈ I0 and b ∈ B⊗� be {1, 2, . . . , i}-highest weight with wt(b)i+1 > 0, where 
wt(b)i+1 is the (i + 1)-st entry in wt(b) ∈ Zn+1

�0 . Then note that b has an initial (i + 1)-
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sequence, say bpi+1 , bpi
, . . . , bp1 . Also let bqi , bqi−1 , . . . , bq1 be the initial i-sequence of b. 

Note that pi+1 < pi < · · · < p1 and qi < qi−1 < · · · < q1 by the definition of initial 
sequence. Furthermore either qj = pj or qj < pj+1 for all 1 � j � i.

Proposition 2.9. Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight for i ∈ I0. Then:

(a) ε−i(b) = 1 if and only if wt(b)i+1 > 0 and pj = qj for at least one j ∈ {1, 2, . . . , i}.
(b) ϕ−i(b) = 1 if and only if wt(b)i > 0 and either wt(b)i+1 = 0 or pj �= qj for all 

j ∈ {1, 2, . . . , i}.

Example 2.10. Take b = 1331242312111 and i = 3. Then p4 = 6, p3 = 8, p2 = 10, p1 = 11
and q3 = 2, q2 = 5, q1 = 9. We indicate the chosen letters pj by underlines and qj
by overlines: b = 1331242312111. Since no letter has a both an overline and underline 
(meaning pj �= qj for all j), we have ϕ−3(b) = 1.

Proof of Proposition 2.9. Let us first prove claim (a) for i = 1. If wt(b)2 = 0, then 
certainly ε−1(b) = 0 since by definition e−1 changes a 2 into a 1. If wt(b)2 > 0, then 
q1 is the position of the leftmost 1, p2 is the position of the leftmost 2, and p1 is the 
position of the first 1 after this 2. If p1 = q1, there is no 1 to the left of the leftmost 
2. By definition in this case ε−1(b) = 1. If on the other hand q1 < p2, the leftmost 1 is 
before the leftmost 2 and hence ε−1(b) = 0. This proves the claim.

Now assume by induction that claim (a) is true for up to i − 1. If wt(b)i+1 = 0, then 
ε−i(b) = 0 since e−i changes the weight by the simple root αi. Otherwise assume that 
wt(b)i+1 > 0.

If pi = qi, the first letter i or i + 1 is the i + 1 in position pi+1 < pi = qi. Hence by 
Lemma 2.7 we have ε−i(b) = 1.

If qi < pi (and hence automatically qi < pi+1), recall that by Lemma 2.2 we have 
e−i = si−1sie−(i−1)sisi−1. The operator si−1 leaves the letter i − 1 in positions qi−1 and 
pi−1 unchanged since these letters are bracketed with i in positions qi and pi, respectively. 
All i − 1 to the left of position qi−1 are unbracketed and since b is {1, 2, . . . , i}-highest 
weight, si−1 changes all of these i − 1 to i. In si−1b there are possibly new letters i
between positions pi+1 and pi; the i + 1 in position pi+1 brackets with the leftmost of 
these in position pi+1 < p′i � pi. The operator si on si−1b changes all letters i to the left of 
position p′i to i +1. Hence wt(sisi−1b)i > 0, sisi−1b is {1, 2, . . . , i −1}-highest weight with 
sequences with respect to i −1 given by p′i > pi−1 > · · · > p1 and qi−1 > qi−2 > · · · > q1. 
Claim (a) now follows by induction on i.

If b is {1, 2, . . . , i}-highest weight and wt(b)i > 0, we must have ϕ−i(b) + ε−i(b) = 1. 
Hence ϕ−i(b) = 1 precisely when ε−i(b) = 0, proving (b). �

Recall that in a queer supercrystal B an element b ∈ B is highest-weight if ei(b) = 0
for all i ∈ I0 ∪ I−, where I0 = {1, 2, . . . , n} and I− = {−1, −2, . . . , −n}.



M. Gillespie et al. / Journal of Combinatorial Theory, Series A 173 (2020) 105235 11
Proposition 2.11. [9, Proposition 1.13] Let b ∈ B⊗� be highest weight. Then wt(b) is a 
strict partition.

Proof. Let b be highest weight and suppose that wt(b)i = wt(b)i+1 for some i, meaning 
that b contains the same number of letters i and i + 1. Since all letters i and i + 1 must 
be bracketed in the (i, i + 1)-bracketing, this means that the first letter in the (i, i + 1)-
subword of b is the letter i + 1. Then by Lemma 2.7, ε−i(b) = 1, which means that b
is not highest weight. Hence wt(b)i > wt(b)i+1 for all i, implying that wt(b) is a strict 
partition. �

Next, we provide an explicit description of f−i(b) for i ∈ I0, when b is {1, 2, . . . , i}-
highest weight. Recall that the sequence bqi , bqi−1 , . . . , bq1 is the leftmost sequence of 
letters i, i − 1, . . . , 1 from left to right. Set r1 = q1 and recursively define rj < rj−1 for 
1 < j � i to be maximal such that brj = j. Note that by definition qj � rj . Let 1 � k � i

be maximal such that qk = rk.

Theorem 2.12. Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight for i ∈ I0 and ϕ−i(b) = 1
(see Proposition 2.9). Then f−i(b) is obtained from b by changing bqj = j to j − 1 for 
j = i, i − 1, . . . , k + 1 and brj = j to j + 1 for j = i, i − 1, . . . , k.

Example 2.13. Let us continue Example 2.10 with b = 1331242312111 and i = 3. We 
overline bqj and underline brj , so that b = 1331242312111. From this we read off q3 =
2, q2 = 5, q1 = 9, r3 = 3, r2 = 7, r1 = 9, k = 1 and f−3(b) = 1241143322111.

As another example, take b = 545423321211 in the q(6)-crystal B⊗12 and i = 5. Again, 
we overline bqj and underline brj , so that b = 545423321211. This means that q5 = 1, 
q4 = 2, q3 = 6, q2 = 8, q1 = 9, r5 = 3, r4 = 4, r3 = 7, r2 = 8, r1 = 9, k = 2, and 
f−5(b) = 436522431211.

Proof of Theorem 2.12. We prove the claim by induction on i. For i = 1, since by as-
sumption ϕ−1(b) = 1, the first letter in the subword of b of letters in {1, 2} is a 1. This 
1 is in position q1 = r1 and changes to 2, which proves the claim.

Now assume that the claim is true for f−1, . . . , f−(i−1). Recall that by Lemma 2.2 we 
have f−i = si−1sif−(i−1)sisi−1. Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight. Applying 
si−1 to b changes all unbracketed i − 1 in the (i − 1, i)-bracketing to i. Subsequently 
applying si changes all unbracketed i in the (i, i +1)-bracketing to i +1. It is not hard to 
see that the resulting word is {1, . . . , i −1}-highest weight, so we can apply the inductive 
hypothesis in order to apply f−(i−1).

In the notation for Proposition 2.9, we have either wt(b)i+1 = 0 or qi < pi+1 and 
qi−1 < pi since ϕ−i(b) = 1. In particular this means that if pi+1 is defined and pi+1 <

qi−1, no letter i lies between pi+1 and qi−1 since otherwise pi < qi−1 contradicting the 
requirement qi−1 < pi. This implies that all i − 1 and i in the positions to the left of 
position qi−1 become i +1 when applying sisi−1. The letter i −1 in position qi−1 remains 
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i − 1 under sisi−1 since it is bracketed with an i. Denote the sequences for f−(i−1) in 
sisi−1b by q′i−1, . . . , q

′
1 and r′i−1, . . . , r

′
1 and call k′ the maximal index such that q′k′ = r′k′ . 

By the above arguments, we have q′i−1 = qi−1. We need to distinguish three cases given 
by k = i, i − 1 and k < i − 1.
Case k = i: The claim is that the i in position qi changes to i +1. Since qi = ri for k = i, 
there is only one i to the left of the i − 1 in position ri−1. Since qi−1 � ri−1, this implies 
that all i − 1 between positions qi−1 and ri−1 (and including ri−1) change to i + 1 when 
applying sisi−1. This means that k′ = i − 1 and by induction f−(i−1) changes the i − 1
in position qi−1 to i. Hence under si−1si, the letter in position qi remains an i + 1 and 
all other letters i + 1 and i return to their original value. This proves the claim.
Case k = i − 1: In this case, we have at least two i to the left of position qi−1 = ri−1

and there is no i − 1 between positions qi−1 and ri−2 � qi−2. Since sisi−1 lifts all i to 
the left of position qi−1 to i + 1, but leaves the i − 1 in position qi−1 and possible i − 2
in positions qi−2 and ri−2, we have k′ = i − 1. Hence by induction f−(i−1) changes the 
i − 1 in position q′i−1 = qi−1 to i. When applying si−1si to f−(i−1)sisi−1b, the i + 1 in 
position ri remains an i + 1 since it is now bracketed with the i in position qi−1 or an i
to its left. In addition, the i + 1 in position qi becomes an i − 1 since the i in position 
qi−1 is now bracketed with the previous bracketing partner of letter in position qi in b, 
causing it to drop to i − 1. This proves the claim for k = i − 1.
Case k < i −1: In this case qi < ri and qi−1 < ri−1, so that there are at least two i to the 
left of position ri−1 and at least two i − 1 between positions qi and ri−2 � qi−2. By the 
arguments above, all i to the left of position qi−1 become i +1 under sisi−1, the letter i −1
in position qi−1 remains i −1 and q′i−1 = qi−1 < r′i−1 � ri−1. Also, since sisi−1 leaves all 
letters i −2 and smaller untouched, we have q′j = qj and r′j = rj for 1 � j < i −1. Hence 
by induction f−(i−1) changes the letter in position qi−1 = q′i−1 to i − 2 and the letter in 
position r′i−1 to i, in addition to the letters in positions qj , rj for j < i −1. Next applying 
si−1si changes the letter in position ri−1 to i since it is now bracketed with the i − 1 in 
position ri−2. The letters i + 1 in positions r′i−1 < p < ri−1 are changed back to i − 1
since they are not bracketed. If r′i−1 < ri−1, then the letter i in position r′i−1 changes to 
i − 1 since it is also not bracketed. The letter in position qi−1 = q′i−1 remains i − 2. The 
letter i + 1 in position ri is bracketed with the i in position r′i−1 in f−(i−1)sisi−1b and 
hence remains i + 1 in si−1sif−(i−1)sisi−1b. The letters i + 1 between positions qi and 
ri in f−(i−1)sisi−1b return to their original value i under si−1si since they are bracketed 
with i − 1 to the right. The letter in position qi lost its bracketing partner since the i − 1
in position qi−1 became i − 2. Hence the letter in position qi becomes i − 1, proving the 
claim. �
Corollary 2.14. Let b ∈ B⊗� be J-highest weight for {1, 2, . . . , i} ⊆ J ⊆ I0 and ϕ−i(b) = 1
for some i ∈ I0. Then:

(1) Either f−i(b) = fi(b) or f−i(b) is J-highest weight.
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(2) f−i(b) is I0-highest weight only if b = fi+1fi+2 · · · fh−1u for some i < h � n +1 and 
u a I0-highest weight element.

Proof. We begin by proving (1). By Theorem 2.12, in f−i(b) the letters bqj are changed 
from j to j − 1 for j = i, i − 1, . . . , k + 1 and brj are changed from j to j + 1 for 
j = i, i − 1, . . . , k. Hence f−i(b) is not J-highest weight if and only if either there is an 
i + 1 to the left of position qi that is no longer bracketed with an i or the letter k + 1 in 
position rk is no longer bracketed with a k.

First assume that k < i. Since k is maximal such that qk = rk, there must be at least 
two k + 1 to the left of position qk in b, one in position qk+1 and one in position rk+1. 
Since b is J-highest weight, both of these k+1 must be bracketed with a k to their right 
in b, which implies that there is a k to the right of position qk that is bracketed with the 
k + 1 in position qk+1 in b. In f−i(b), the letter k + 1 in position qk+1 changes to k, and 
hence the new k + 1 in position qk = rk is bracketed with the k to its right.

Since by assumption ϕ−i(b) = 1, we have by Proposition 2.9 that either wt(b)i+1 = 0
(in which case there cannot be an i + 1 to the left of position qi in b) or pj �= qj for all 
j ∈ {1, 2, . . . , i}. The condition pi �= qi implies that qi < pi+1, so that there cannot be 
a letter i + 1 to the left of position qi. This proves that f−i(b) is J-highest weight when 
k < i.

Next assume that k = i. In this case f−i(b) differs from b by changing the letter i in 
position qi to i + 1. If there is a letter i to the right of position qi that is not bracketed 
with a letter i + 1, then the new i + 1 in position qi will bracket with this i in f−i(b)
(or to the left of this i) and hence f−i(b) is J-highest weight. Otherwise, there is no 
letter i to the right of position qi in b that is not bracketed with an i + 1 and therefore 
fi(b) = f−i(b). This proves claim (1).

The above arguments also show that f−i(b) can only be I0-highest weight if either 
b is I0-highest weight or εj(b) = 0 for j ∈ I0 \ {i + 1} and the new letter i + 1 in 
position ri in f−i(b) is bracketed with a letter i +2 in b. Such a b is precisely of the form 
b = fi+1fi+2 · · · fh−1u proving claim (2). �

Next, we describe e−i on a {1, 2, . . . , i}-highest weight element b. We again use the 
initial (i + 1)-sequence bpi+1 , bpi

, . . . , bp1 in b.
We also need the notion of cyclically scanning leftwards for a letter t starting at 

an entry bj . By this we mean choosing the rightmost t to the left of bj , if it exists, 
or else the rightmost t in the entire word (i.e., “wrapping around” the edge of the 
word).

We define the k-bracketed entries of a word b as follows. Every k in b is k-bracketed, 
and for j = k−1, k−2, . . . , 1, we recursively determine which j’s in b are k-bracketed by 
considering the subword of only the k-bracketed (j + 1)’s and all j’s, and performing an 
ordinary crystal bracketing on this subword. The j’s that are bracketed in this process 
are the k-bracketed j’s.
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Example 2.15. In the word

142334122311322111,

to obtain the 4-bracketed letters we first mark all 4’s as 4-bracketed:

142334122311322111

and then bracket these with 3’s and mark the bracketed 3’s as being 4-bracketed:

142334122311322111.

We then consider only the boldface 3’s and all the 2’s and bracket them to obtain the 
4-bracketed 2’s:

142334122311322111

Finally we bracket these boldface 2’s with the 1’s to obtain:

142334122311322111

The boldface letters above are precisely the 4-bracketed letters in this word.

We now have the tools to describe the application of e−i to an {1, 2, . . . , i}-highest 
weight word.

Theorem 2.16. Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight for i ∈ I0 and ε−i(b) = 1 (see 
Proposition 2.9). Let bpi+1 , . . . , bp1 be the initial (i + 1)-sequence of b. Then e−i(b) is 
obtained from b by the following algorithm:

• Change bpj
from j to j − 1 for j = i + 1, i, . . . , 3, 2 to form a word c(1).

• Cyclically scan left in c(1) starting just to the left of position p1 for a 1 that is not 
i-bracketed in c(1). Change that 1 to 2 to form a word c(2). In c(2), continue cyclically 
scanning from just to the left of the previously changed entry for a 2 that is not i-
bracketed in c(2), and change it to 3. Continue this process until an i − 1 changes 
into an i; the resulting word c(i) is e−i(b).

Proof. We will prove this by induction on i. For i = 1 the algorithm simply changes the 
leftmost 2 to a 1 as required, since the second step is vacuous in this case.

Assume the statement is true for i and let b ∈ B⊗� be {1, 2, . . . , i + 1}-highest weight. 
Recall that e−(i+1) = sisi+1e−isi+1si by Lemma 2.2. We will analyze each step of ap-
plying sisi+1e−isi+1si to b and show that it matches the desired algorithm.

Let bpi+2 , bpi+1 , bpi
, . . . , bp2 , bp1 be the initial (i + 2)-sequence of b. Since eib = 0, 

applying si to b simply changes all unbracketed i entries in the (i, i + 1)-pairing to i + 1. 
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Note that bpi
itself must be bracketed with an i + 1 in b, for if it is not then bpi+1 is 

paired with an earlier i to its right, contradicting the definition of bpi
. Thus bpi

is still i
in sib. Note also that sib still satisfies ei+1sib = 0.

Let b′ = si+1sib. Note that any i + 1 to the left of bpi+2 in sib is not bracketed with 
an i +2 since bpi+2 is the leftmost i +2. Thus every i +1 left of bpi+2 (including those i’s 
that changed to i + 1 from b) changes to i + 2 to form b′, along with any other unpaired 
i + 1. Let bti+1 be the leftmost i + 1 between bpi+2 and bpi+1 in sib. Then bti+1 is either 
equal to bpi+1 or was an i in b. Furthermore, bti+1 is still i + 1 in b′ = si+1sib since it 
must be paired with either bpi+2 itself or some i + 2 to the right of bpi+2 .

Now consider e−ib
′. By the induction hypothesis, this can be computed by first low-

ering the entries of the initial (i + 1)-sequence b′p′
i+1

, b′p′
i
, . . . , b′p′

1
appropriately to form a 

word c′ (1), then cyclically raising some non-i-bracketed entries 1, 2, 3, . . . , i − 1 in order 
to form words c′ (2), . . . , c′ (i). We will show that p′j = pj for j � i, and that the same 
entries 1, 2, . . . , i − 1 are changed as would be changed in the e−(i+1) algorithm applied 
to b.

For the first claim, it suffices to show that p′i = pi. Note that b′p′
i+1

may be to the 

left of bpi+1 , but it is to the right of bpi+2 by the above analysis. If p′i+1 = pi+1 we are 
done, so suppose pi+2 < p′i+1 < pi+1. Assume by contradiction that there is an entry 
b′a = i between positions p′i+1 and pi in b′. Then we further have p′i+1 < a < pi+1 by 
the definition of bpi

and b′. It follows that ba is an i in b that is bracketed with an i + 1, 
since applying si kept it an i. But then by the definition of pi+1, the entry bc = i + 1
that brackets with ba in b is to the left of position pi+2. Thus bp′

i+1
itself was a bracketed 

i in b, a contradiction. Thus p′i = pi.
Let c(j) be the word in the definition of e−(i+1) acting on b and c′ (j) the word in the 

definition of e−i on b′. Similarly, let tj (resp. t′j) be the position of the chosen j in c(j)

(resp. c′ (j)) that is raised to j +1. We now wish to show that, for any j � i − 1, we have 
t′j = tj .

We first show this for j = 1. Note that since p2 = p′2 (assuming i � 2, since otherwise 
we are done) the same entries are equal to 1 in both c = c(1) and c′ = c′ (1). Moreover, 
p1 = p′1, so we start searching cyclically left for a 1 in the same position in both. It 
therefore suffices to show that an entry cx = 1 is (i + 1)-bracketed in c if and only if 
c′x = 1 is i-bracketed in c′. Note that the i’s in c that are bracketed with i + 1’s are 
precisely either:

• cp′
i+1

, or
• an i that was bracketed with an i + 1 in b.

But since c′ is formed by applying si to b (which changes all unbracketed i’s to i + 1’s), 
then si+1 (which does not change any i’s), then lowering certain entries, where bp′

i+1
is 

the only one that becomes a new i, the above characterization gives precisely all i’s in 
c′. Since the 1, 2, . . . , i − 1 entries are the same in both c and c′, it follows that an entry 
is (i + 1)-bracketed in c if and only if it is i-bracketed in c′.
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It now follows that t1 = t′1, and inductively we can conclude that tj = t′j for all 
j � i − 1. Thus if we apply sisi+1 to c′ (i) to obtain e−(i+1)b, the entries less than or 
equal to i −1 match those of c(i+1), the result of the algorithm applied to b. Furthermore, 
since si, si+1, and e−i only change letters less than or equal to i + 2, the entries larger 
than i + 2 also match.

It remains to consider the entries equal to i, i +1, and i +2. For i +2, the application 
of si+1 to sib changes all unbracketed i + 1 entries in sib to i + 2, and e−i changes the 
single entry b′p′

i+1
= i + 1 to i and otherwise does not affect the i + 1 or i + 2 entries. In 

the (i +1, i +2)-bracketing in b′, b′pi+2
is the leftmost bracketed i +2, and b′p′

i+1
is the first 

i +1 after it, so removing b′p′
i+1

from the (i +1, i +2)-subword leaves the i +2 in position 

pi+2 unbracketed, with all other bracketed (i + 2)’s remaining bracketed. It follows that 
applying si+1 to e−isi+1sib lowers the i +2 in position pi+2 to i +1, along with any i +2
that was raised in the first si+1 step. Therefore, the i + 2 entries in si+1e−ib

′, and hence 
in sisi+1e−ib

′ = e−(i+1)b, match those in the output of the algorithm.
Finally, we consider the (i, i + 1)-subwords of the words in question. We first analyze 

how the (i, i + 1)-subword of w := sib differs from that of w′ := si+1e−isi+1sib. By 
inspecting the above analysis, we see that w′ differs from w in the following four ways:

• w′
pi+2

= i + 1 is a new i + 1 in the (i, i + 1)-subword in w′ whereas wpi+2 = i + 2 was 
not in the subword in w.

• w′
p′
i+1

= i whereas wp′
(i+1)

= i + 1.
• w′

pi
= i − 1 is no longer in the subword whereas wpi

= i was an i in the subword.
• w′

ti−1
= i is a new i in the subword, whereas wti−1 = i − 1.

Note that the last two items above may coincide and cancel each other out if ti−1 = pi.
We now apply si to both subwords, and analyze how siw′ = e−(i+1)b differs from 

siw = b in the (i, i + 1)-subword. In particular, we will show it is the same as how c(i+1)

differs from b. Note that the (i, i + 1)-subword in c(i+1) is formed from that of b by 
making the following changes:

• A new i + 1 is inserted in position pi+2 (bpi+2 = i + 2 whereas c(i+1)
pi+2 = i + 1).

• The i + 1 in position pi+1 is lowered to i.
• The i in position pi is removed.
• An i is inserted in position ti−1.
• In the current subword, look for the first unbracketed i cyclically left of position ti−1; 

call this position ti and change this i to i + 1.

First, note that there are no i + 1 entries between w′
pi+2

= i + 1 and w′
p′
i+1

= i in w′, 
for if there were, this would contradict the definition of bpi+1. It follows that w′

pi+2
= i +1

is bracketed with an i to its right in w′, so in siw′ = e−(i+1)b, the entry in position pi+2
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remains i + 1. So this is one position in which it differs from b, since bpi+2 = i + 2, so it 
matches c(i+1) in this position.

Note also that in w, all i’s are bracketed with (i + 1)’s. Applying si to w simply 

changes the unbracketed i + 1’s back to i’s to form b. We now consider two cases.
Case 1: Suppose p′i+1 �= pi+1.

We know that siw and siw′ match b and c(i+1), respectively, in position pi+2 by the 

above analysis. For position p′i+1, note that it is an unbracketed i +1 in w, so it changes 
to i in siw. It is a bracketed i in w′ since it was the first unbracketed i + 1 to the right 
of position pi+1 in w, so it stays i in siw′. Thus they are both equal to i in the results, 
matching b and c(i+1), which do not differ in this entry.

We now wish to show that the i + 1 in position pi+1 is unbracketed in w′ unless it is 
bracketed via the insertion of the i in position ti−1. In other words, if we make all the 

changes that define w′ from w besides the i in position ti−1, we claim that position pi+1

is an unbracketed i + 1. Indeed, before removing i in position pi, this i + 1 in position 

pi+1 is the leftmost i +1 that is bracketed with an entry weakly right of position pi, since 

the position pi+2 entry is bracketed with some i weakly left of position p′i+1. It follows 
that removing the i in position pi leaves bpi+1 unbracketed, and otherwise all other i +1’s 
are bracketed if and only if they are bracketed in w.

Furthermore, the combination of lowering both pi+2 and p′i+1 to i + 1 and i and 

removing the i in position pi leaves all i’s still bracketed, as they are in w.
Finally, when we put back the new i in position ti−1 to form w′, there are two subcases: 

first suppose inserting this i makes some unbracketed i + 1 to its left become bracketed. 
Then by the above analysis, this must have been the position of the first unbracketed i

in c(i) to the left of ti−1, and this is position ti, which remains i + 1 in siw′. Applying si
to w′ then turns the remaining unbracketed i + 1 entries back to i and matches c(i+1). 
Otherwise, if inserting the i in position ti−1 does not bracket any i + 1 to the left, it 
creates an unbracketed i in the word, and so the rightmost unbracketed i + 1 also will 
not change under applying si to w′. This corresponds to the first unbracketed i cyclically 

left of position ti−1 in c(i), and we are done as before.
Case 2: Suppose p′i+1 = pi+1.

In this case, the analysis matches the above except for the following steps: first, since 

position pi+1 contains a bracketed i + 1 in w, lowering it to i may make some i to its 
right become unbracketed. (The new i in position pi+1 itself is bracketed due to the new 

i + 1 in position pi+2 as before.)
Then, removing the i in position pi will make all i’s bracketed once again, since bpi

was the first i to the right of position pi+1 in b and hence in w. So once again, at the 

step before inserting ti−1, all i’s are bracketed, and an i + 1 in that matches one in w is 
bracketed if and only if it is bracketed in the modified word. Thus inserting ti−1 has the 

same effect as above, and we are done. �
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We now show that the output of e−i on a {1, 2, . . . , i}-highest weight element is itself 
{1, 2, . . . , i}-highest weight if and only if there is no “cycling around the edge” in the 
cycling step of Theorem 2.16.

Proposition 2.17. Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight for i ∈ I0, with ε−i(b) = 1. 
Let t1, . . . , ti−1 be the positions of the 1, 2, . . . , i − 1 that change to 2, 3, . . . , i respectively 
in the second step of the computation of e−i(b) (see Theorem 2.16). Also define t0 = p1. 
Then e−i(b) is {1, 2, . . . , i}-highest weight if and only if ti−1 < ti−2 < · · · < t1 < t0.

Proof. First, suppose that it is not the case that ti−1 < ti−2 < · · · < t1; let 1 � k < i

be the smallest index for which tk−1 � tk, where t0 = p1. Then in the algorithm for 
computing e−i(b), after changing a k − 1 to k in position tk−1, we search cyclically left 
for a k that is not i-bracketed to find position tk. Since tk−1 � tk, we cycle around the 
end of the word, so tk is the position of the rightmost k that is not i-bracketed.

Any k to the right of tk is i-bracketed, and we claim that the k+1’s that they bracket 
with in the i-bracketing are all to the right of position tk as well. Indeed, if one such 
k + 1 was to the left of tk then it should bracket with the k in position tk instead, a 
contradiction. Thus the suffix starting at position tk + 1 has at least as many k + 1’s as 
k’s.

In particular, just after changing each bpr
to r − 1 in the first step of the algorithm, 

the resulting word c is still highest weight. It follows that, just after raising tk−1 to k, the 
resulting word is still {k}-highest weight. It follows that the suffix starting at position 
tk + 1 at this step has exactly as many k + 1’s as k’s.

Now, if tk+1 < tk, changing tk to k + 1 and then changing tk+1 to k + 2 leaves the 
suffix starting at tk being not {k}-highest weight in the final word. Thus we are done in 
this case.

Otherwise, suppose tk+1 also cycles, so that tk+1 � tk and tk+1 is the new position 
of the rightmost k + 1 that is not i-bracketed after changing tk to k + 1. Changing tk+1

to k + 2 could potentially make the word {k}-highest weight again. In fact, suppose for 
contradiction that, just after changing tk−1 to k, there were a k+1 between position tk−1

and tk that makes its suffix not {k}-highest weight. Then some entry k + 1 in position 
p < tk brackets with the k in position tk, and since position tk is not i-bracketed, this 
k + 1 is not i-bracketed either. Thus after changing tk to k + 1, the k + 1 in position p
is still not i-bracketed and it would be picked up in the search for tk+1, a contradiction 
to the assumption that tk+1 � tk.

We now, however, can repeat the argument with tk+1 and the (k+ 1, k + 2)-subword, 
and so on until we either reach the last step or a non-cycling step, say with index �. At 
this point we conclude that the final word e−i(b) is not {�}-highest weight.

It follows that if tk−1 � tk for some k, then e−i(b) is not {1, 2, . . . , i}-highest weight.
For the converse, we wish to show that if ti−1 < ti−2 < · · · < t1 < t0 then e−i(b)

remains highest weight. Notice that by construction we must have tk−1 � pk for all k � i.
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We first show that the (1, 2)-subword remains highest weight in e−i(b) if t2 < t1. If 
i = 1, then the first 2 simply changes to a 1 and so it is still {1}-highest weight. So 
suppose i � 2.

The changes that affect the (1, 2)-subword are that bp3 changes from 3 to 2, bp2 changes 
from 2 to 1, bt1 changes from 1 to 2, and (if i � 3) bt2 changes from 2 to 3. Note that 
after the first two of these changes, any suffix of the word starting between positions 
p3 and p2 has at least two more 1’s than 2’s (due to the change in bp2 starting from a 
highest weight word) and any suffix starting weakly before position p3 has at least one 
more 1 than 2.

If i = 2, bt1 is an unbracketed 1, so the suffixes before it must in fact have at least 
two more 1’s than 2’s even if t1 < p3. Thus changing bt1 to 2 leaves the word highest 
weight, and we are done in this case.

If i � 3, bt1 is a 1 that is not i-bracketed to the left of bp2 , and bt2 is the first 2 that 
is not i-bracketed to the left of t1 (and necessarily to the left of bp3). It follows that, 
after changing them to 2 and 3 respectively, the suffixes all have at least as many 1’s as 
2’s except possibly those starting between position t2 and t1. Assume to the contrary 
that there is a suffix with more 2’s than 1’s starting between t2 and t1; the rightmost 
such starts at another entry ba = 2 between t2 and t1, and this 2 must be i-bracketed 
by the definition of t2. But then since bt1 is not i-bracketed, ba must be bracketed with 
a 1 between ba and bt1 ; hence the suffix starting at ba cannot have a higher difference 
between 2’s and 1’s than the suffix starting at bt1 after its change, a contradiction. It 
follows that the (1, 2)-subword remains highest weight.

Now consider the (k, k + 1)-subword for some k � i − 1. This is changed by 
bpk+2 , bpk+1 , bpk

changing from k+2 to k+1, k+1 to k, and k to k− 1 respectively, and 
then btk−1 , btk , btk+1 changing from k − 1 to k, k to k + 1, k + 1 to k + 2 respectively.

If we first change bpk
to k− 1, then we have removed a k from the subword, but since 

there are no k entries between bpk+1 and bpk
, the rightmost suffix that may become not 

highest weight for k starts at bpk+1 itself. Thus changing bpk+1 from k+1 to k afterwards 
keeps the (k, k + 1)-subword being {k}-highest weight, and in fact any suffix starting to 
the left of bpk+1 at this point has at least one more k than k+1. Finally if we change bpk+2

to k + 1, this adds a single k + 1 to any suffix starting left of this position, so again the 
word remains {k}-highest weight. Next, we change btk−1 from k − 1 to k, which means 
any suffix starting left of tk−1 has at least one more k than k+1. The argument for what 
happens after changing tk and tk+1 now is identical to that of the (1, 2)-subword above.

Finally, consider the (i, i + 1)-subword. This is only affected by the changes to bpi+1 , 
bpi

, and bti−1 . The same argument as above shows that it stays {i}-highest weight after 
changing bpi+1 and bpi

, and then changing bti−1 to i certainly keeps it {i}-highest weight 
as well. This completes the proof. �

From the above proof, we immediately obtain the following corollary.
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Corollary 2.18. Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight for i ∈ I0, with ε−i(b) = 1. 
Let t1, . . . , ti−1 be the positions of the 1, 2, . . . , i − 1 that change to 2, 3, . . . , i respectively 
in the second step of the computation of e−i(b) (see Theorem 2.16). Then if e−i(b) is 
not {1, 2, . . . , i}-highest weight, the smallest index � for which e−i(b) is not {�}-highest 
weight is precisely the smallest index for which t�−1 � t� and t�+1 < t� (where the second 
inequality is assumed to be vacuously true if � = i − 1).

In other words, � is the smallest index for which one needs to cycle to get from t�−1
to t�, but one does not need to cycle to get from t� to t�+1.

Proof. The proof of Lemma 2.17 shows that e−i(b) is not {�}-highest weight, and that 
it is {k}-highest weight for k < � if tk−1 � tk � tk+1 (i.e., if tk and tk+1 both cycle). �
Remark 2.19. For any word v ∈ B⊗�, we may combine Proposition 2.9 and Theorem 2.16
in order to algorithmically determine the highest weight element in the connected compo-
nent of the queer supercrystal containing v. In particular, we may first apply as many ei
operators as possible to obtain an I0-highest weight word v′, then apply Proposition 2.9
to determine whether there is an e−i arrow that we may apply. We can then apply e−i

to v′ using Theorem 2.16 and repeat this process on the new word, and so on until we 
have reached a highest weight word w for the queer supercrystal.

Since the operators e−i and ei determine graphs having unique highest weight elements 
in each connected component [9, Theorem 1.14], this process will always terminate at the 
highest weight word in a component. In particular, e−1 and ei for i ∈ {1, 2, . . . , n} were 
previously the only operators having a known direct combinatorial algorithm, which are 
not by themselves sufficient to detect the unique highest weight elements. The algorithm 
in Theorem 2.16 therefore allows us to bypass the computational difficulty of conjugating 
e−1 by swi

.

2.4. Relation among e−i

The main result of this section is Proposition 2.24, which provides relations between 
e−i that do and do not yield a {1, 2, . . . , i}-highest weight element when acting on an I0-
highest weight element. This proposition will be used in Section 4 to deal with “by-pass 
arrows” in the component graph G(C).

We require several technical lemmas about k-bracketed entries and the e−i operation 
on highest weight words.

Lemma 2.20. Suppose b ∈ B⊗� is {1, 2, . . . , i}-highest weight and 1 � k � i. If a letter 
br = a in b = b1b2 . . . b� is k-bracketed, then br is j-bracketed for all a < j � k.

Proof. We first show that if an entry a in b is (a +2)-bracketed, then it is (a +1)-bracketed; 
for simplicity we set a = 1. Let v be the subword of b consisting of only the 2’s that are 
bracketed with a 3 along with all the 1’s, and let v′ be the subword consisting of all the 
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1’s and 2’s. Then v′ can be formed from v by inserting some 2 letters. It therefore suffices 
to show that any 1 that was bracketed in v is still bracketed after inserting a single 2.

Indeed, let vs = 2 and vr = 1 be a bracketed pair in v. Note that by the definition of 
the ordinary crystal bracketing rule, the subword vs . . . vr has exactly the same number 
of 2’s as 1’s, all of them bracketed with some other letter in vs . . . vr. Therefore, if we 
insert a 2 to the left or right of this pair, then the pair (vs, vr) remains bracketed. If 
instead we insert it between vs and vr, then the interval between vs and vr contains 
strictly more 2’s than 1’s, and so there is some entry vt between vs and vr for which the 
subword vt · · · vr is tied; in other words, vr is now bracketed with some 2 to the right of 
vs. Thus vr stays bracketed after inserting a 2, as desired.

Now, if br = a is k-bracketed, then by the above reasoning it is also (k−1)-bracketed, 
since there are weakly more (k−1)’s available in this bracketing, and hence weakly more 
(k − 2)’s available, and so on. The conclusion follows by induction. �
Lemma 2.21. Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight and ε−i(b) = 1. Let bpi+1 , . . . , bp1

be the initial (i + 1)-sequence of b and c the word obtained by changing bpj
from j to 

j − 1. Let k � i′ � i. If b contains a sequence of letters k− 1, k− 2, . . . , 1 before position 
p1 that is not i′-bracketed, then c contains a sequence of letters k− 1, k− 2, . . . , 1 before 
position p1 that is not i′-bracketed.

Proof. Suppose that b contains a sequence S of letters k − 1, k − 2, . . . , 1 in positions 
sk−1, . . . , s1 respectively, before position p1, that are not i′-bracketed; take S to be the 
rightmost such sequence in the sense that it contains the rightmost 1 left of p1 that is 
not i′-bracketed, then the rightmost 2 that is not i′-bracketed before that, and so on. 
Note that s1 < p1 implies that s1 < p2 by the definition of p1. Thus s2 < s1 < p2 and so 
s2 < p3, and so on, showing that sj < pj+1 for all j. Also note that the initial (i + 1)-
sequence bpi+1 , . . . , bp1 is (i + 1)-bracketed, so that the letters bpk

, . . . , bp1 must also be 
i′-bracketed by Lemma 2.20. Since k � i′ � i, this means that the initial (i +1)-sequence 
is disjoint from S and hence S remains unchanged in c.

We now form a sequence S′ from S that is not i′-bracketed in c as follows. Consider the 
largest entry j � i′ for which there exists a j between pj+2 and pj+1. Then all bracketing 
with higher letters remains the same in c, but the letter j between positions pj+2 and 
pj+1 becomes bracketed with the letter j + 1 in position pj+2 in the i′-bracketing in c, 
leaving the letter j in position pj+1 to be an i′-unbracketed j. If sj < pj+2 (or otherwise 
csj does not become bracketed) we keep it in S′, and if pj+2 < sj < pj+1 and it becomes 
bracketed, we replace sj with the first i′-unbracketed position s′j of a j in c to the right 
of sj , to choose the j for S′.

We now show that we can choose a j − 1 after this step to be in S′. If the j on the 
previous step did not change, then we repeat this process for j−1. If it did change, from 
sj to an index s′j , note that if sj−1 < s′j then the previous j − 1 is now i′-bracketed 
with sj in c as well, so we also have to choose the next j − 1 to the right. Either way 
we replace sj−1 with the next i′-unbracketed j − 1, in position s′j−1, if the j − 1 became 
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bracketed, and we see that s′j < s′j−1. Furthermore, s′j−1 � pj since we know that pj
becomes an i′-unbracketed j− 1 as in the case of j above. Continuing in this manner we 
can form a sequence S′ of elements of c that are not i′-bracketed, all weakly to the left 
of p2 (and hence strictly before p1). �
Lemma 2.22. Let b ∈ B⊗� be I0-highest weight such that ε−i(b) > 0 for some i ∈ I0 and 
e−i(b) is not {1, 2, . . . , i}-highest weight. Let k be the smallest index for which tk−1 � tk, 
where t0 = p1 and tj for j = 1, . . . , i −1 are the indices that are raised in the second step 
of the computation of e−i(b) (such a k exists by Proposition 2.17). Then we have that 
ε−k(b) = 1 and e−k(b) is {1, 2, . . . , k}-highest weight.

Proof. Let bpi+1 , bpi
, . . . , bp1 be the initial (i + 1)-sequence, bqi , bqi−1 , . . . , bq1 be the ini-

tial i-sequence, bp′
k+1

, . . . , bp′
1

the initial (k + 1)-sequence, and bq′k , . . . , bq′1 the initial 
k-sequence of b. Also define c and c′ respectively to be the words formed by lowering the 
entries in the sequences {bpj

} or {bp′
j
} by one, respectively.

Since ε−i(b) > 0, we have by Proposition 2.9 that qa = pa for some 1 � a � i. If a is 
maximal with this property, then in fact qj = pj for all j � a by the definition of the initial 
sequences. Assume by contradiction that ε−k(b) = 0. Then again by Proposition 2.9, 
q′j < p′j for all j ∈ {1, . . . , k}. Furthermore, p′j � pj for all j � k so q′j < pj as well.

Suppose that q′a′ = qa′ for some 1 � a′ � k. Then q′j = qj for all j � a′ and hence 
q′j = qj = pj for j � min(a, a′), contradicting the fact that q′j < pj for all j. Hence 
q′j < qj for all 1 � j � k. Thus we also have q′j < qj+1 for all 1 � j � k, for otherwise 
bq′j would be the first j after qj+1 and we would have q′j = qj .

The sequence of letters k, k − 1, . . . , 1 in positions q′k, . . . , q′1 in b is not i-bracketed 
since the first bracketed k + 1 in b must be weakly right of position qk+1 > q′k. Hence 
by Lemma 2.21, the word c also contains a sequence k, k − 1, . . . , 1 of letters that are 
not i-bracketed before position p1, contradicting the fact that tk−1 � tk. It follows that 
ε−k(b) = 1.

Next we show that e−k(b) is {1, 2, . . . , k}-highest weight. Note that by the definition 
of the initial sequences q′j � p′j � qj � pj . Since ε−i(b) = 1 and ε−k(b) = 1, we also have 
q′j = p′j for j � a′ and qj = pj for j � a for some a′, a. Suppose p′j < qj for all j. Then 
by a similar argument to that above, in the word c there exists a sequence of positions 
tk < tk−1 < · · · < t1 < t0 = p1 such that ctj = j which are not i-bracketed in c. This 
contradicts the fact that tk−1 � tk. Hence we must have p′j = qj for some j and hence 
q′j = p′j = qj = pj for j � x for some x � 1. We claim that tj < q′j for all 1 � j < k. 
Indeed, t1 is to the left of position p1 = q′1, so that t1 < q′1. By the definition of p1 we also 
cannot have p2 < t1 < p1 so in fact t1 � p2. The letter in position q′j = pj for 1 < j � x

in c is j − 1, so that also tj < q′j for 1 < j � x. For j > x, the letter in position q′j < pj
in c as well as in b is j. It is k-bracketed in c and b since the first letter k in c and b is in 
position q′k. If tj � q′j then since the sequence of entries q′r for r � j is k-bracketed but 
not i-bracketed, we would have tk < tk−1, a contradiction. Thus tj < q′j .
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It follows that the tj entries are not k-bracketed, so b contains a sequence k − 1, k −
2, . . . , 1 that is not k-bracketed. By Lemma 2.21 this means that c′ has a sequence 
k − 1, . . . , 1 in positions t′k−1 < · · · < t′1 that is not k-bracketed, proving that e−k(b) is 
{1, 2, . . . , k}-highest weight by Proposition 2.17. �

For an element b ∈ B⊗�, denote by ↑ b the unique I0-highest weight element in the 
same component as b. The next lemma describes the action of ↑ after an application of 
e−i.

Lemma 2.23. Let b ∈ B⊗� be I0-highest weight such that ε−i(b) > 0 for some i ∈ I0 and 
e−i(b) is not {1, 2, . . . , i}-highest weight. Let k be as in Lemma 2.22 and let the sequences 
pj and tj be as in Theorem 2.16. Then ↑ e−i(b) can be obtained from b by changing j
in position pj to j − 1 for 1 < j � i + 1 and j in position tj for 1 � j < k to j + 1, 
and lowering some letters larger than i +1. In particular, the changes in positions tj for 
j � k in e−i(b) are undone by the application of ↑.

Proof. By Corollary 2.18, the smallest index � for which e�(e−i(b)) is defined is the first 
� for which t� cycled but t�+1 did not (or does not exist). In particular � � k and all tj
with k � j � � cycle around the end of the word.

Note that t� was chosen as the rightmost � that is not i-bracketed (after raising 
t1, . . . , t�−1). Also recall that the word c formed by lowering the bpj

entries is {1, 2, . . . , i}-
highest weight, so just before changing t� the word is still {�}-highest weight. Finally, 
by assumption t� is weakly right of t�−1 (which is the only new � since starting at the 
word c). Thus, after changing t� to � + 1, if it bracketed with an � to its right (in the 
ordinary crystal bracketing) then in fact that � is also not i-bracketed on the previous 
step, a contradiction since t�−1 � t�.

Therefore t� is an unbracketed � + 1 in e−i(b), and since all other (� + 1)’s before it 
are bracketed with some �, we know that e� changes it back to an �. After doing so, by 
the same argument we see that position t�−1 is now an unbracketed �, so applying e�−1
changes it back to � − 1, and so on down to tk. At this point the resulting word

w := ek · · · e�−1e�(e−ib)

is {1, 2, . . . , �}-highest weight, since tk−1 did not cycle and so changing tk back to k
leaves w highest weight at that step.

Now suppose t�+1 exists (that is, � � i −2); then t�+1 < t�, and in w the position t� is 
changed back to �. We claim that e�+1 is defined on w and applying it changes t�+1 from 
� +2 back to � +1. Indeed, if t�+1 is bracketed with an � +1 in w then this � +1 must be 
to the right of t� (since otherwise it would have been a preferred non-i-bracketed choice 
of t�+1 in the e−i algorithm). But then this � +1 is bracketed with an � to its right since 
w is {�}-highest weight, and then this � similarly contradicts the choice of t�. Thus t�+1
is an � + 2 that is not bracketed with an � + 1 after lowering t� back to �. By the weight 
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changes it must be the only such � + 2 and so applying e�+1 changes t�+1 back to � + 1. 
Continuing in this fashion, we can apply e�+2, e�+3, and so on in that order to change 
the next entries t�+2, t�+3, and so on back to their original values, until some t�+r cycles 
again. Let tm be the next entry for which tm+1 does not cycle (the end of the next block 
of cycling entries); by the same arguments as above we can now apply em, then em−1, 
and so on down to e�+r. Repeating this process on every block of cycling and non-cycling 
entries yields a {1, . . . , i}-highest weight word formed by changing tk, . . . , ti−1 back to 
k, k+1, . . . , i −1 respectively. Finally, to finish forming ↑ e−i(b), only entries larger than 
i + 1 may be changed, and the conclusion follows. �

The next proposition will be used in Section 4 to deal with “by-pass arrows” in the 
component graph G(C).

Proposition 2.24. Let b ∈ B⊗� be I0-highest weight such that ε−i(b) > 0 for some i ∈ I0
and e−i(b) is not {1, 2, . . . , i}-highest weight. Then there exists 1 � k < i such that 
ε−k(b) = 1, e−k(b) is {1, 2, . . . , k}-highest weight and

↑ e−i(b) =↑ e−i ↑ e−k(b) or ↑ e−i(b) =↑ e−k(b). (2.9)

Example 2.25. Take b = 343212211 ∈ B⊗9, which satisfies ε−3(b) > 0. Then

↑ e−3b = e2e1e−3b = 332112211 = e2e−3e−1b =↑ e−3 ↑ e−1b.

Furthermore, e−1b = 343112211 is {1}-highest weight.
Take b = 4321321 ∈ B⊗7, which satisfies ε−3(b) > 0. Then

↑ e−3b = e1e2e−3b = 3211321 = e−3e2e−1b =↑ e−3 ↑ e−1b.

Furthermore, e−1b = 4311321 is {1}-highest weight.
Take b = 2154321 ∈ B⊗7, which satisfies ε−4(b) > 0. Then

↑ e−4b = e3e−4b = 3243211 = e4e−3b =↑ e−3b.

Proof of Proposition 2.24. Let k be as in Lemma 2.22. Then the first statements hold 
for k by Lemma 2.22 and it only remains to prove (2.9). By Lemma 2.23, ↑ e−ib changes 
j in position pj to j− 1 for 1 < j � i + 1 and j in position tj for 1 � j < k to j + 1. The 
changes in positions tj for j � k in e−i are undone by ↑. Some letters bigger than i + 1
might also be lowered by ↑.

We use the same notation as in the proof of Lemma 2.22. There we proved that tj < q′j
for all 1 � j < k. Since q′j � pj and there is no letter j between positions pj+1 and pj
in b, it follows that tj � pj+1 for all 1 � j < k. Now suppose that tj = pj+1 for some 
1 � j < k. We claim that then tj−1 = pj as well. Let d − 1 be maximal such that 
td−1 = pd. Then there has to be a letter d − 1 in position p in b with pd+1 < p < pd, 
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so that the letter d − 1 in position pd in c is not i-bracketed. Suppose that there is no 
letter d − 2 between positions p and pd−1 in b. In this case the letter d − 2 in position 
pd−1 in c is i-bracketed, so that td−2 > pd−1, which contradicts td−2 � pd−1. Continuing 
this argument, there has to be a sequence of letters d − 1, d − 2, . . . , 1 between positions 
pd+1 and p2 that is not i-bracketed. Moreover, letter j in this sequence has to appear 
before position pj+1. But this means that the letter j in position pj+1 for 1 � j < d is 
not i-bracketed, so that tj = pj+1 for all 1 � j < d.

By the arguments above, we have that tj = pj+1 for 1 � j < d for some d and tj for 
j � d is part of a sequence of non k-bracketed letters in b (by the definition of k and the 
sequence q′j). Similarly, we have t′j = p′j+1 for 1 � j < d′ for some d′ and t′j for j � d′ is 
part of the same sequence of non k-bracketed letters in b as tj . Also, d′ � d since p′j � pj
for all 1 � j � k + 1. In particular, this implies tj = t′j for d′ � j < k.

Furthermore, before applying the ↑ operator the entries that change are:

In ↑ e−ib: bpj
: j �→ j − 1 for d < j � i + 1

btj : j �→ j + 1 for d � j < i

In ↑ e−kb: bp′
j
: j �→ j − 1 for d′ < j � k + 1

bt′j : j �→ j + 1 for d′ � j < k.

Recall also that p′j = pj for 1 � j � x for some x � 1. Denote by tj and pj the 
selected positions by e−i on the element ↑ e−kb.

First assume that x = k + 1, so that p′j = pj for all 1 � j � k + 1. In this case 
t′j = tj for 1 � j < k. Furthermore, if in e−k(b) the letter k + 2 in position pk+2 is 
unbracketed, then in ↑ e−k(b), the letter k + 2 in position pk+2, then the letter k + 3 in 
position pk+3 etc. will be lowered. These are the same changes as in ↑ e−i(b), so that 
↑ e−i(b) =↑ e−k(b).

Next assume that d′ < x � k or x = k + 1 but the letter k + 2 in position pk+2 in 
e−k(b) is bracketed. We first show that in this case pj = pj for x < j � i + 1. Note that 
to form ↑ e−k(b), since e−k(b) is {1, 2, . . . , k}-highest weight, we apply ek+1, ek+2, . . . , er
in order for some r, so that we lower a k + 2 to a k + 1, k + 3 to k + 2, and so on until 
we reach an I0-highest weight word. Note also that bp′

k+1
was the entry that lowered 

from k + 1 to k, so the k + 2 that gets lowered, if it exists, is to the left of p′k+1 < pk+1. 
Similarly the k + 3 that gets lowered is left of p′k+2 < pk+2, and so on, and hence r < i

since pi+1 is the leftmost i +1. It follows that no i +1 lowers to an i, and so pi+1 = pi+1. 
Since the entries lowered by ↑ are left of pj for each j > x, it follows that pj = pj for 
x < j � i + 1.

For the sequence tj , note that the entries pj that we lower for j � x cannot be i-
bracketed in c due to the condition pi+1 = pi+1 shown above, and because tx−1 = t′x−1, 
so that t′x−1 cannot be between px+1 and px. Furthermore, for x � j < k the letters in 
positions pj+1 are all i-bracketed in c and tj = t′j < p′j+1 < pj+1 = pj+1. Also note that 
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d = d′ since pj+1 = p′j+1 = t′j for d � j < d′ < x and the letter j in position pj+1 = p′j+1
in c′ is not k-bracketed and hence not i-bracketed in c′ and c. It follows that

tj =
{
pj+1 for 1 � j < x,
p′j+1 for x � j � k,

and for k < j � r, we have that tj is equal to the position of letter j + 1 that is lowered 
when applying ↑ to e−k(b). Hence ↑ e−i(b) =↑ e−i ↑ e−k(b).

Finally, assume that x � d′. In this case, by a similar argument, we have pj = pj for 
1 � j � i + 1 and

tj =

⎧⎪⎪⎨⎪⎪⎩
pj+1 for 1 � j < d,
tj for d � j < d′,
p′j+1 for d′ � j � k,

and for k < j � r, we have that tj is equal to the position of letter j + 1 that is lowered 
when applying ↑ to e−k(b). Again, we have ↑ e−i(b) =↑ e−i ↑ e−k(b). �
3. Local axioms

In [2, Definition 4.11], Assaf and Oguz give a definition of regular queer supercrystals. 
In essence, their axioms are rephrased in the following definition, where Ĩ := I0 ∪ {−1}.

Definition 3.1 (Local queer axioms). Let C be a graph with labeled directed edges given 
by fi for i ∈ I0 and f−1. If b′ = fjb for j ∈ Ĩ define ej by b = ejb

′.

LQ1. The subgraph with all vertices but only edges labeled by i ∈ I0 is a type An

Stembridge crystal.
LQ2. ϕ−1(b), ε−1(b) ∈ {0, 1} for all b ∈ C.
LQ3. ϕ−1(b) + ε−1(b) > 0 if wt(b)1 + wt(b)2 > 0.
LQ4. Assume ϕ−1(b) = 1 for b ∈ C.

(a) If ϕ1(b) > 2, we have

f1f−1(b) = f−1f1(b),

ϕ1(b) = ϕ1(f−1(b)) + 2,

ε1(b) = ε1(f−1(b)).

(b) If ϕ1(b) = 1, we have

f1(b) = f−1(b).

LQ5. Assume ϕ−1(b) = 1 for b ∈ C.
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Fig. 2. Illustration of axioms LQ4 (left) and LQ5 (right). The (−1)-arrow at the bottom of the right figure 
might or might not be there.

(a) If ϕ2(b) > 0, we have

f2f−1(b) = f−1f2(b),

ϕ2(b) = ϕ2(f−1(b)) − 1,

ε2(b) = ε2(f−1(b)).

(b) If ϕ2(b) = 0, we have

ϕ2(b) = ϕ2(f−1(b)) − 1 = 0, or ϕ2(b) = ϕ2(f−1(b)) = 0,

ε2(b) = ε2(f−1(b)), ε2(b) = ε2(f−1(b)) + 1.

LQ6. Assume that ϕ−1(b) = 1 and ϕi(b) > 0 with i � 3 for b ∈ C. Then

fif−1(b) = f−1fi(b),

ϕi(b) = ϕi(f−1(b)),

εi(b) = εi(f−1(b)).

Axioms LQ4 and LQ5 are illustrated in Fig. 2.

Proposition 3.2 ([2]). The queer supercrystal of words B⊗� satisfies the axioms in Defi-
nition 3.1.

Proof. LQ1 follows by definition. LQ2 and LQ3 follow from Remark 2.4. LQ4 follows 
from Lemma 2.5 and LQ5 follows from Lemma 2.6. Finally, LQ6 is Q4. �
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In [2, Conjecture 4.16], Assaf and Oguz conjecture that every regular queer supercrys-
tal is a normal queer supercrystal. In other words, every connected graph satisfying the 
local queer axioms of Definition 3.1 is isomorphic to a connected component in some B⊗�. 
We provide a counterexample to this claim in Fig. 3. In the figure, the I0-components of 
the q(3)-crystal of highest weight (4, 2, 0) are shown. Some of the f−1-arrows are drawn 
in green. The remaining arrows can be filled in using the axioms of Fig. 2 in a consistent 
manner. If the dashed green arrow from 331131 to 332131 and the dashed green arrow 
from 331132 to 332132 are replaced by the dashed (double-headed) purple arrow from 
331131 to 331231 and the dashed (double-headed) purple arrow from 331132 to 332231, 
respectively, all axioms of Definition 3.1 are still satisfied with the remaining f−1-arrows 
filled in. However, the I0-component with highest weight element 132121 has become 
disconnected and hence the two crystals are not isomorphic.

The problem with Axiom LQ5 illustrated in Fig. 2 is that the (−1)-arrow at the bottom 
of the 2-strings is not closed at the top. Hence, as demonstrated by the counterexample in 
Fig. 3 switching components with the same I0-highest weights can cause non-uniqueness. 
In fact, if f−1b is determined for all b ∈ C such that

ϕi(b) = 0 for all i ∈ I0 \ {1} and ϕ1(b) = 2, (3.1)

then, by the relations between f−1 and fi for i ∈ I0 of Definition 3.1, f−1 is determined 
on all elements in C. Namely, fi and f−1 commute for i �= 1, 2, so that it is enough to 
consider f−1b when ϕi(b) = 0. Similarly, by the right picture in Fig. 2, once f−1b is 
determined for b with ϕ2(b) = 0, which are the elements at the bottom of the 2-strings, 
then f−1c is determined for all c in this picture. And finally, if f−1b is determined for b
with ϕ1(b) = 2, which is the element at height 2 in the left picture of Fig. 2, then f−1 is 
determined on all elements above this b. Furthermore, f−1(c) = f1(c) when ϕ1(c) = 1. 
Hence the conditions in (3.1) are indeed enough.

Lemma 3.3. Let v ∈ B⊗� be an I0-lowest weight element, that is, ϕi(v) = 0 for all i ∈ I0. 
Then every b ∈ B⊗� satisfying (3.1) is of the form

gj,k := (e1 · · · ej)(e1 · · · ek)v for some 1 � j � k � n. (3.2)

Conversely, every gj,k �= 0 with 1 � j � k � n satisfies (3.1).

Proof. The statement of the lemma is a statement about type An crystals and hence can 
be verified by the tableaux model for type An crystals (see for example [4]). The element 
v is I0-lowest weight and hence as a tableau in French notation contains the letter n + 1
at the top of each column, the letter n in the second to top box in each column, and 
in general the letter n + 2 − i in the i-th box from the top in its column. If there is a 
letter k+1 in the first row of v, then (e1 · · · ek) applies to v and b′ = (e1 · · · ek)v satisfies 
ϕi(b′) = 0 for i ∈ I0 \ {1} and ϕ1(b′) = 1. The element b′ has several changed entries 
in the first row, and otherwise the entries above the first row all have letter n + 2 − i
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in the i-th box from the top in their column. If b′ has a letter j + 1 in the first row 
with 1 � j � k, then (e1 · · · ej) applies to b′ and b = gj,k = (e1 · · · ej)b′ satisfies (3.1). 
Note that if j > k, then the last e1 would no longer apply and hence b = 0. This proves 
that gj,k �= 0 as in (3.2) satisfies (3.1). If conversely b satisfies (3.1), then as a tableau it 
contains two extra 1’s in the first row that have a 3 or bigger above them rather than a 
2 in their columns, and for entries higher than the first row the i-th box from the top in 
its column contains n + 2 − i. It is not hard to check that then (fk · · · f1)(fj · · · f1)b = v

for some 1 � j � k � n. Hence b is of the form (3.2). �
In the next section, we introduce a new graph just on I0-highest weight elements and 

new connectivity axioms (see Definition 4.4) that uniquely characterizes queer super-
crystals (see Theorem 5.1).

4. Graph on type A components

Let C be an abstract q(n + 1)-crystal with index set I0 ∪ {−1} that is a Stembridge 
crystal of type An when restricted to the arrows labeled I0. In this section, we define a 
graph for C labeled by the type An components of C. We draw an edge from vertex C1
to vertex C2 in this graph if there is an element b1 in the component C1 and an element 
b2 in the component C2 such that f−1b1 = b2. We provide an easy combinatorial way 
to describe this graph for a queer supercrystal which is a subcrystal of the crystal of 
words leveraging the explicit actions of f−i described in Theorem 2.12 and e−i described 
in Theorem 2.16, respectively (see Theorem 4.9). We also provide new axioms in Defi-
nition 4.4 that will be used in Section 5 to provide a unique characterization of queer 
supercrystals.

Definition 4.1. Let C be a crystal with index set I0 ∪ {−1} that is a Stembridge crystal 
of type An when restricted to the arrows labeled I0. We define the component graph of 
C, denoted by G(C), as follows. The vertices of G(C) are the type An components of C
(typically labeled by their highest weight elements). There is an edge from vertex C1 to 
vertex C2 in this graph, if there is an element b1 in the component C1 and an element 
b2 in the component C2 such that

f−1b1 = b2.

Example 4.2. Let C be the connected component in the q(3)-crystal B⊗6 with highest 
weight element 1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1 of highest weight (4, 2, 0). The graph G(C) is given 
in Fig. 4 on the left (disregarding the labels on the edges). The graph G(C′) for the 
counterexample C′ in Fig. 3 is given in Fig. 4 on the right. Since the two graphs are not 
isomorphic as unlabeled graphs, this confirms that the purple (double-headed) dashed 
arrows in Fig. 3 do not give the queer supercrystal even though the induced crystal 
satisfies the axioms in Definition 3.1.
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Fig. 4. Left: G(C). The graph G(C) is obtained from G(C) by removing the labels. Right: G(C′) for the crystals 
of Example 4.2.

Fig. 5. The graph G(C) for Example 4.3.

Example 4.3. Let C be the connected component with highest weight element 1 ⊗1 ⊗2 ⊗
1 ⊗ 2 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 1 in the q(4)-crystal B⊗9. Then the graph G(C) is given in Fig. 5. One 
may easily check using Theorem 2.12 that all arrows in Fig. 5 are given by the application 
of f−i for some i except for the arrows that by-pass other arrows, the arrow to the lowest 
vertex, which is given by f−2f3 (which is also determined by Theorem 2.12), and the 
arrow going into 3 ⊗ 2 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 1, which is given by f−1f2. The result is 
shown in Fig. 6.
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Fig. 6. The graph G(C) of Fig. 5 obtained from G(C) by labeling each edge (except for the by-pass edges) 
by (−i, h) if f(−i,h) applies.

Next we introduce new axioms.

Definition 4.4 (Connectivity axioms). Let C be a connected crystal satisfying the local 
queer axioms of Definition 3.1. Let v ∈ C be an I0-lowest weight element and u =↑ v. As 
in (3.2), define gj,k := (e1 · · · ej)(e1 · · · ek)v for 1 � j � k � n.

C0. ϕ−1(gj,k) = 0 implies that ϕ−1(e1 · · · ekv) = 0.
C1. Suppose that G(C) contains an edge u → u′ such that wt(u′) is obtained from wt(u)

by moving a box from row n + 1 − k to row n + 1 − h with h < k. For all h < j � k

such that gj,k �= 0, we require that f−1gj,k �= 0 and

f−1gj,k = (e2 · · · ej)(e1 · · · eh)v′,

where v′ is I0-lowest weight with ↑ v′ = u′.
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C2. Suppose that either (a) G(C) contains an edge u → u′ such that wt(u′) is obtained 
from wt(u) by moving a box from row n + 1 − k to row n + 1 − h with h < k or (b) 
no such edge exists in G(C). For all 1 � j � h in case (a) and all 1 � j � k in case 
(b) such that gj,k �= 0 and f−1gj,k �= 0, we require that

f−1gj,k = (e2 · · · ek)(e1 · · · ej)v.

Remark 4.5. Condition C0 can be replaced by the following condition:

LQ7. If ε1(e2(b)) > ε1(b) for b ∈ C with ε2(b) > 0, then ϕ−1(b) � ϕ−1(e1e2(b)).

This condition indeed implies C0. Suppose ϕ−1(e1 · · · ekv) = 1. Then for b =
(e3 · · · ej)(e1 · · · ek)v, we have ϕ−1(b) = 1. However, b satisfies ε1(e2(b)) > ε1(b), so 
the above condition implies that ϕ−1(e1e2(b)) = 1 as well. But e1e2(b) = gj,k. Hence 
ϕ−1(gj,k) = 0 implies that ϕ−1(e1 · · · ekv) = 0.

Moreover, in B⊗� the conditions in LQ7 are satisfied. Namely, the condition ε1(e2(b)) >
ε1(b) implies that e2(b) �= 0 and e1e2(b) �= 0. Moreover, this condition implies that e1
acts on e2(b) in a position weakly to the left of where e2 acts on b. Thus if ϕ−1(b) = 1, 
it immediately follows that ϕ−1(e1e2(b)) = 1 which proves the statement.

Theorem 4.6. The q(n + 1)-crystal B⊗� satisfies the axioms in Definition 4.4.

The proof of Theorem 4.6 is given in Appendix A.
Next we show that the arrows in G(C), where C is a connected component in B⊗�, can 

be modeled by e−i on type A highest weight elements.

Proposition 4.7. Let C be a connected component in the q(n +1)-crystal B⊗�. Let C1 and 
C2 be two distinct type An components in C and let u2 be the I0-highest weight element 
in C2. Then there is an edge from C1 to C2 in G(C) if and only if e−iu2 ∈ C1 for some 
i ∈ I0.

Proof. First note that there is an edge from C1 to C2 in G(C) if there exists b1 ∈ C1 and 
b2 ∈ C2 such that e−1b2 = b1. Recall that by (2.4) we have e−i := sw−1

i
e−1swi

. Hence, 
if e−iu2 is defined and e−iu2 ∈ C1, then b1 := e−1b2 is defined, where b2 := swi

u2 ∈ C2
and b1 ∈ C1. This proves that there is an edge between C1 and C2 in G(C).

Conversely assume that b1 = e−1b2 for some b1 ∈ C1 and b2 ∈ C2. We want to show 
that then e−iu2 ∈ C1 for some i ∈ I0. By the discussion before Lemma 3.3, we know 
that the (−1)-arrow on b1 is induced (using the local queer axioms of Definition 3.1) 
by the (−1)-arrow on gj,k = (e1 · · · ej)(e1 · · · ek)v1 for some j � k. By Theorem 4.6 and 
Condition C1 of Definition 4.4, we must have

f−1gj,k = (e2 · · · ej)(e1 · · · eh)v2 for some h < j � k,
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where v2 is the I0-lowest weight element in the component C2. In particular, for the 
edge u1 → u2 in G(C), where u1 is the I0-highest weight element in the component 
C1, the weight wt(u2) differs from wt(u1) by moving a box from row n + 1 − k to row 
n + 1 − h with 1 � h < k � n. Furthermore, all gj′,k �= 0 with h < j′ � k are mapped to 
component C2 under f−1.

Claim. Set b := swn−h
u2 and b′ := (e2 · · · eh+1)(e1 · · · eh)v2. If wt(b)2 > 0, there exist 

j1, . . . , jp ∈ I0 such that b′ = fj1 · · · fjpb and

ϕ2(fja · · · fjpb) > 0 if ja = 2. (4.1)

The claim is a statement about type An crystal operators, hence one may use the 
tableaux model to verify it. It is straightforward to verify that every column of height 
d > n − h in the insertion tableau of b contains the letter m in row m; the columns of 
height n − h contain 1 in the first row and m + 1 in row m > 1; finally the columns of 
height d < n − h contain the letter m + 2 in row m. Hence wt(b)2 > 0 is only satisfied if 
there is at least one column of height d > n − h. Now we start acting with operators fj
on b, where j ∈ I0 \ {2}, to make b into a I0 \ {2}-lowest weight element. This element 
differs from v2 only in columns of height d � n −h; columns of height d > n −h contain 1 
and 2 in rows 1 and 2, respectively, whereas columns of height d = n −h contain 2 in row 
1. Suppose that there are p columns whose height is less than n + 1 and at least n − h. 
Then we can apply fp−1

2 without violating (4.1) since each such column contains an 
unbracketed 2. Then apply again fj with j ∈ I0 \{2} to make the tableau into a I0 \{2}-
lowest weight element, followed by the maximal number of f2 satisfying (4.1), followed by 
making the result I0 \{2}-lowest weight. This tableau is exactly (e2 · · · eh+1)(e1 · · · eh)v2. 
This proves the claim.

Now since by assumption wt(u2) differs from wt(u1) by moving a box from row n +1 −k

to row n + 1 − h, as a tableau swn−h
u2 indeed has a column of height d > n − k, so that 

wt(swn−h
u2)2 > 0. By condition (4.1), the (−1)-arrow coming into swn−h

u2 is induced 
by the (−1)-arrow coming into (e2 · · · eh+1)(e1 · · · eh)v2 by the local queer axioms of 
Definition 3.1. Hence e−(n−h)u2 ∈ C1, which proves the proposition where i = n −h. �
Example 4.8. Let us illustrate the claim in the proof of Proposition 4.7. Let n = 5, h = 2
and consider the type A5 component C2 of weight (4, 3, 3, 2, 1). Then, using the model 
for type A crystals in terms of semistandard tableaux (see for example [4, Chapter 3]), 
we have

b = sw3u2 =

5
4 4
3 3 4
2 2 3
1 1 1 3

. This becomes

6
5 6
4 5 6
2 3 5
1 1 3 6
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after making it {1, 3, 4, 5}-lowest weight and applying f2
2 . Making this element {1, 3, 4, 5}-

lowest weight again, no further f2 are applicable and we obtain

6
5 6
4 5 6
2 3 5
1 2 4 6

= (e2e3)(e1e2)v2.

By Proposition 4.7, there is an edge from component C1 to component C2 in G(C) if 
and only if e−iu2 ∈ C1 for some i ∈ I0, where u2 is the I0-highest weight element of C2. 
We call the arrow combinatorial if e−iu2 is {1, 2, . . . , i}-highest weight. Otherwise the 
arrow is called a by-pass arrow.

Define f(−i,h) := f−ifi+1fi+2 · · · fh−1.

Theorem 4.9. Let C be a connected component in B⊗�. Then each by-pass arrow is the 
composition of combinatorial arrows. Furthermore, each combinatorial edge in G(C) can 
be obtained by f(−i,h) for some i ∈ I0 and h > i minimal such that f(−i,h) applies.

Proof. Consider a combinatorial arrow from component C1 to C2. This means that e−iu2
is defined for some i ∈ I0 and e−iu2 is {1, 2, . . . , i}-highest weight. Then by Theorem 2.12
and Corollary 2.14 we have f(−i,h)u1 = u2 for some h > i.

If the arrow is a by-pass arrow, then e−iu2 is not {1, 2, . . . , i}-highest weight. By 
Proposition 2.24 and induction, there exists a sequence of indices 1 � i1, . . . , ia < i such 
that

↑ e−iu2 =↑ e−i ↑ e−i1 · · · ↑ e−iau2

where each partial sequence e−ij ↑ e−ij+1 · · · ↑ e−iau2 is {1, 2, . . . , ij}-highest weight. 
This means that each by-pass arrow is the composition of combinatorial arrows. �

Theorem 4.9 provides a combinatorial description of the graph G(C). Let G(C) be the 
graph G(C) with all by-pass arrows removed and each edge labeled by the tuple (−i, h)
for the combinatorial arrow f(−i,h)u1 = u2, where f−i is given by the combinatorial 
rules stated in Theorem 2.12. Hence G(C) can be constructed from the q(n + 1)-highest 
weight element u by the application of combinatorial arrows, see for example Fig. 6. In 
particular, the graph G(C) and the graph G(C) have the same vertices.

Next we construct a graph G̃(C) from G(C) by applying ↑ e−i to each vertex b in the 
graph G(C) (if applicable). This will add additional labeled edges between the vertices 
in the graph, see Fig. 7. We would like to emphasize that the construction of G̃(C) for a 
connected component C of B⊗� is purely combinatorial, starting with the highest weight 
element u of a given weight λ, applying f(−i,h) of Theorem 2.12, and then applying ↑ e−i

to all vertices using Theorem 2.16. This provides a combinatorial construction of G(C)
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Fig. 7. The graph G̃(C) recovered from the graph G(C) of Fig. 6.

by dropping the labels in G̃(C) (and removing multiple edges between vertices when 
applicable).

Remark 4.10. The Schur P -polynomial Pλ(x1, . . . , xn+1) in n +1 variables is the character 
of a finite-dimensional irreducible representation of the queer Lie superalgebra q(n + 1)
with highest weight λ (up to a power of 2) [21]. The above combinatorial construction of 
the component graph of C with highest weight λ produces a Schur expansion of the Schur 
P -polynomial Pλ(x1, . . . , xn+1). This expansion is obtained by counting the multiplicities 
of highest weights for all type An components that are present in G(C). For example, the 
component graph in Example 4.2 yields the expansion P42 = s42+s33+s411+2s321+s222. 
This yields an alternative combinatorial description of the Schur expansion of the Schur 
P -polynomials compared to those given by Stembridge [22] and by Choi and Kwon [5].

5. Characterization of queer supercrystals

Our main theorem gives a characterization of the queer supercrystals. We say that 
two component graphs G(C) and G(D) are isomorphic if they are isomorphic as graphs 
and the weights of the vertices are preserved.
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Theorem 5.1. Let C be a connected component of a generic abstract queer supercrystal 
(see Definition 2.1). Suppose that C satisfies the following conditions:

(1) C satisfies the local queer axioms of Definition 3.1.
(2) C satisfies the connectivity axioms of Definition 4.4.
(3) G(C) is isomorphic to G(D), where D is some connected component of B⊗�.

Then the queer supercrystals C and D are isomorphic.

Theorem 5.1 states that the local queer axioms, the connectivity axioms, and the 
component graph uniquely characterize queer supercrystals.

Remark 5.2. We would like to point out that checking Condition (3) of Theorem 5.1
is algorithmically straightforward. Each component graph has a unique highest weight 
vertex. For the isomorphism, the weights of these highest weight vertices need to agree. 
Then one can recursively compare the edges and weights of adjacent vertices. Condition 
(3) is similar, albeit more complicated, to the condition by Stembridge [23] that for two 
connected crystal components of a simply-laced crystal to be isomorphic, the highest 
weights must agree.

Before we give the proof of Theorem 5.1, we need the following statement. Recall that 
gj,k = (e1 · · · ej)(e1 · · · ek)v was defined in (3.2), where v is an I0-lowest weight vector.

Lemma 5.3. In a crystal satisfying the local queer axioms of Definition 3.1 and C0 of 
Definition 4.4, we have for any gj,k �= 0 with 1 � j � k

ϕ−1(gj,k) = 0 if and only if ϕ−1(e1 · · · ekv) = 0.

Proof. The condition C0 requires that ϕ−1(gj,k) = 0 implies ϕ−1(e1 · · · ekv) = 0.
For the converse direction, note that wt(e1 · · · ekv)1 > 0. Hence

ϕ−1(e1 · · · ekv) = 0 ⇔ ε−1(e1 · · · ekv) = 1.

By the local queer axioms LQ6 and LQ5 of Definition 3.1 (see also Fig. 2), we have

ε−1(e1 · · · ekv) = 1 ⇔ ε−1((e3 · · · ej)(e1 · · · ek)v) = 1

⇒ ε−1((e2 · · · ej)(e1 · · · ek)v) = 1.

It can be easily checked that ϕ1((e2 · · · ej)(e1 · · · ek)v) = 1 for j � k (for example using 
the tableaux model for type An crystals). Hence by the local queer axioms

ε−1((e2 · · · ej)(e1 · · · ek)v) = 1 ⇔ ε−1((e1 · · · ej)(e1 · · · ek)v) = 1.

This proves that ϕ−1(e1 · · · ekv) = 0 implies ϕ−1(gj,k) = 0. �
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Proof of Theorem 5.1. By Proposition 3.2 and Theorem 4.6, D satisfies the local queer 
axioms and the connectivity axioms and hence all conditions of the theorem.

By LQ1 of the local queer axioms of Definition 3.1, each type An-component of C
is a Stembridge crystal and hence is uniquely characterized by [23]. By assumption 
G(C) ∼= G(D). In particular, the vertices of G(C) and G(D) agree. This proves that C
and D are isomorphic as An crystals.

Next we show that all (−1)-arrows also agree on C and D. As discussed just before 
Lemma 3.3, given the local queer axioms of Definition 3.1, it suffices to show that f−1 acts 
in the same way in C and D on the almost lowest elements satisfying (3.1) or equivalently 
by Lemma 3.3 on every gj,k �= 0 with 1 � j � k � n. For the remainder of this proof, fix 
gj,k �= 0 in the I0-component u.

Let us first assume that G(C) contains an edge u → u′ such that wt(u′) is obtained 
from wt(u) by moving a box from row n + 1 − k to row n + 1 − h for some h < k. If 
h < j � k, then f−1gj,k is determined by C1 of Definition 4.4. If j � h, pick h < j′ � k

such that gj′,k �= 0. Such a j′ must exist since there is an edge u → u′ in G(C). By C1, 
we have ϕ−1(gj′,k) = 1 and hence by Lemma 5.3 also ϕ−1(gj,k) = 1. Hence f−1gj,k is 
determined by C2(a).

Next assume that G(C) does not contain an edge u → u′ such that wt(u′) is obtained 
from wt(u) by moving a box from row n + 1 − k.

Claim. If gk,k �= 0, then f−1gj,k = 0.

Proof. Suppose f−1gk,k �= 0. By C2(b), we have f−1gk,k = (e2 · · · ek)(e1 · · · ek)v = f1gk,k. 
But this contradicts the local queer axioms of Definition 3.1 since ϕ1(gk,k) > 1. Hence 
ϕ−1(gk,k) = 0 and by Lemma 5.3 also ϕ−1(gj,k) = 0, which proves the claim. �

If gk,k = 0, we have j < k since by assumption gj,k �= 0.

Claim. Suppose gk,k = 0.

(1) Suppose there is an edge u → u in G(C) such that wt(u) is obtained from wt(u)
by moving a box from row n + 1 − k to row n + 1 − h such that h < k � k. Then 
f−1gj,k = 0.

(2) Suppose G(C) does not contain an edge as in (1). Then f−1gj,k =(e2 · · · ek)(e1 · · · ej)v.

Proof. Suppose that the conditions in (1) are satisfied. Then by C1 there must exist

gj,k := (e1 · · · ej)(e1 · · · ek)v �= 0,

where h < j � k and v is the I0-lowest weight element in the component of u, such that

f−1gj,k = (e2 · · · ej)(e1 · · · eh)v. (5.1)
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Since gj,k �= 0, we have in particular that (e1 · · · ek)v �= 0. Since wt(u) is obtained from 
wt(u) by moving a box from row n + 1 − k to row n + 1 − h, this hence also implies that 
gk,k = (e1 · · · ek)(e1 · · · ek)v �= 0. Hence by C1 Equation (5.1) holds for j = k.

If f−1gh,k = 0, we also have f−1gj,k = 0 by Lemma 5.3 as claimed. Hence we may 
assume that f−1gh,k �= 0. Then by C2(b) we have

f−1gh,k = (e2 · · · ek)(e1 · · · eh)v.

But then f−1gk,k = f−1gh,k = (e2 · · · ek)(e1 · · · eh)v, which contradicts the fact that the 
crystal operator f−1 has a partial inverse since gk,k �= gh,k. This proves (1).

Now suppose that the conditions in (2) are satisfied. Recall that by assumption gj,k �=
0 with j < k. This implies that y := (e2 · · · ek)(e1 · · · ej)v �= 0, ϕi(y) = 0 for i ∈
I0 \ {2} and ϕ2(y) = 1. By the local queer axioms of Definition 3.1, this implies that 
x := e−1y �= 0 with ϕ1(x) ∈ {1, 2} and ϕi(x) = 0 for i ∈ I0 \ {1}. Thus we may write 
x = (e1 · · · es)(e1 · · · et)v, where 0 � s � t and v ∈ C is some I0-lowest weight vector. 
This yields the equality

f−1(e1 · · · es)(e1 · · · et)v = (e2 · · · ek)(e1 · · · ej)v.

If v �= v, then by the connectivity axioms of Definition 4.4 this means that j < k = s � t

and there is an edge in G(C) from ↑ v to u =↑ v, moving a box from row n + 1 − t

to row n + 1 − j. This contradicts the assumptions of (2). Hence we must have v = v. 
By C2(b) we have f−1gs,t = (e2 · · · et)(e1 · · · es)v, so that k = t and j = s. This implies 
f−1gj,k = (e2 · · · ek)(e1 · · · ej)v, proving the claim. �

We have now shown that f−1gj,k is determined in all cases, which proves the theo-
rem. �
Remark 5.4. Consider the q(4)-crystal B⊗4. The elements 4114 and 4113 both lie in 
the same {1, 2, 3}-component of highest weight (3, 1). The highest (resp. lowest) weight 
element in this component is u = 2111 (resp. v = 4344). Both 4114 and 4113 satisfy (3.1). 
In fact, 4114 = (e1e2)(e1e2e3)v = g2,3 and 4113 = (e1e2e3)(e1e2e3)v = g3,3. In the 
component of u there is no sequence of crystal operators that would induce the action of 
f−1 on 4114 from the action of f−1 on 4113 using the local queer axioms of Definition 3.1.

This suggests that the connectivity axioms of Definition 4.4 are indeed necessary. 
However, in this example the graph G(C), where C is the connected component in B⊗4

containing 2111, is linear and hence forces 4114 and 4113 to be mapped to the same 
{1, 2, 3}-component by f−1, see Fig. 8.

Remark 5.5. Consider the connected component C of 111212121 in the q(6)-crystal 
B⊗9. The {1, 2, 3, 4, 5}-component containing 321312121 is connected to the components 
421312121, 431312121, and 432312121 in G(C). The elements g4,5 = 651615464 and 
g3,5 = 651615465 in the component of 321312121 are mapped to the same component 
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Fig. 8. The graph G(C) for the example in Remark 5.4.

432312121 by C1 of Definition 4.4. However, the element g4,5 is connected to 431413131
in the crystal using only arrows that commute with f−1 and the element g3,5 is con-
nected to 431413143 in the crystal using only arrows that commute with f−1. However, 
these two components (containing 431413131 resp. 431413143 using only crystal opera-
tors fi and ei with i ∈ I0 that commute with f−1) are disjoint. This suggests that C1 of 
Definition 4.4 is necessary for uniqueness.

Appendix A. Proof of Theorem 4.6

In this appendix we prove Theorem 4.6. We use the shorthand notation ek1 := e1 · · · ek, 
ek1̄ := e−1e2 · · · ek, f1

k := fk · · · f1, and f 1̄
k := fk · · · f2f−1.

Lemma A.1. In B⊗�, condition C0 of Definition 4.4 holds.

Proof. This follows from Remark 4.5. �
The connectivity axioms C1 and C2 of Definition 4.4 are implied by the following 

conditions. Here v is an I0-lowest weight vector in C:

C1’. If h < k and there exists some j ∈ (h, k] such that f1
hf

1̄
j e

j
1e

k
1(v) is I0-lowest weight, 

then for any j′ ∈ (h, k] with ej
′

1 ek1(v) �= 0 we have f 1̄
j′e

j′

1 e
k
1(v) = f 1̄

j e
j
1e

k
1(v).

C2’. If j � k and f−1e
j
1e

k
1(v) �= 0, then either:

(a) j �= k and f1
j f

1̄
ke

j
1e

k
1(v) = v, or

(b) f1
hf

1̄
j e

j
1e

k
1(v) is I0-lowest weight for some h < j.

Proposition A.2. In B⊗�, condition C2’ holds.

The proof of Proposition A.2 is given in Section A.1.

Proposition A.3. In B⊗�, condition C1’ holds.

We will prove a seemingly weaker statement:
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Lemma A.4. In B⊗�, condition C1’ holds for j = n − 1, j′ = k = n and for j = k = n, 
j′ = n − 1.

The proof of Lemma A.4 is given in Sections A.2 and A.3.

Proposition A.5. Lemma A.4 implies Proposition A.3.

Proof. We first assume that h < j < j′ � k and the assumptions in C1’ hold. Then we 
have

f1
hf

1̄
j e

j
1e

k
1(v) = f1

hf
1̄
j (fj′ · · · fj+2)(ej+2 · · · ej′)ej1ek1(v)

= (fj′ · · · fj+2)f1
hf

1̄
j e

j
1(ej+2 · · · ej′)ek1(v)

= (fj′ · · · fj+2)f1
hf

1̄
j e

j
1e

j+1
1 (v′),

where v′ = (ej+2 · · · ej′)(ej+2 · · · ek)(v). Here we have used Stembridge relations to 
commute crystal operators and in the last step also that the operators are acting on 
an I0-lowest weight element. Note that v′ is {1, . . . , j + 1}-lowest weight. Moreover, 
f1
hf

1̄
j e

j
1e

j+1
1 (v′) is {1, . . . , j + 1}-lowest weight. Since ej+1

1 ej+1
1 (v′) = ej

′

1 e
k
1(v) �= 0, we 

may apply Lemma A.4 with n = j + 1. This implies

(fj′ · · · fj+2)f1
hf

1̄
j e

j
1e

j+1
1 (v′) = (fj′ · · · fj+2)f1

hf
1̄
j+1e

j+1
1 ej+1

1 (v′)

= f1
hf

1̄
j′e

j+1
1 ej+1

1 (ej+2 · · · ej′)(ej+2 · · · ek)(v)

= f1
hf

1̄
j′e

j′

1 e
k
1(v),

which proves the claim.
Next assume that h < j′ < j � k. Then

f1
hf

1̄
j e

j
1e

k
1(v) = f1

hf
1̄
j e

j′+1
1 ej

′+1
1 (ej′+2 · · · ej)(ej′+2 · · · ek)(v)

= (fj · · · fj′+2)f1
hf

1̄
j′+1e

j′+1
1 ej

′+1
1 (v′),

where v′ = (ej′+2 · · · ej)(ej′+2 · · · ek)(v). In this case, both v′ and f1
hf

1̄
j′+1e

j′+1
1 ej

′+1
1 (v′)

are {1, . . . , j′ + 1}-lowest weight. Since ej
′

1 e
j′+1
1 (v′) �= 0, we may apply Lemma A.4 with 

n = j′ + 1 to obtain

f1
hf

1̄
j e

j
1e

k
1(v) = (fj · · · fj′+2)f1

hf
1̄
j′e

j′

1 e
j′+1
1 (v′) = f1

hf
1̄
j′e

j′

1 e
k
1(v),

proving the claim. �
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A.1. Proof of Proposition A.2

Given a word w = w1 · · ·w� in the letters {1, . . . , n + 1} we write w# = w� · · ·w1, 
where wi = n + 2 − wi. Suppose that x = gj,k = ej1e

k
1(v) ∈ B⊗�, where v is I0-lowest 

weight and 1 � j � k � n, so that by Lemma 3.3 we have ϕ1(x) = 2 and ϕi(x) = 0
for all i > 1. The RSK insertion tableau for x#, denoted by P (x#), can be constructed 
as follows: Construct the semistandard Young tableau with weight and shape equal to 
the weight of v#. Change the rightmost n + 1 − k in row n + 1 − k and the rightmost 
n + 1 − j in row n + 1 − j to n + 1.

For instance, suppose n = 8 and x = 198199887766. Then x = e6
1e

8
1(v), where v =

998799887766 is I0-lowest weight and v# = 443322113211 has weight (4, 3, 3, 2). Hence 
the tableau P (x#) is obtained from the tableau of shape and weight equal to (4, 3, 3, 2)
by changing the rightmost 1 in row 1 to 9 and the rightmost 3 in row 3 to 9:

4 4
3 3 3
2 2 2
1 1 1 1

−→
4 4
3 3 9
2 2 2
1 1 1 9 .

Below, we consider the entries of a tableau to be linearly ordered in the row reading 
order. If f−1(x) �= 0 there are two possibilities:

(1) The recording tableau of x# is the same as the recording tableau of (f−1(x))#. This 
implies that during the insertion of x#, the final two (n +1)’s to be inserted are at no 
point in the same row. (Note that this is clearly impossible if j = k.) This means, that 
after the insertion of the final two (n +1)’s, the rightmost n +1 is never inserted into 
another row containing an n + 1, and, moreover, there is never an n being inserted 
into the row containing the rightmost n +1 (since after the insertion of the final two 
(n + 1)’s, the rightmost n or n + 1 is always n + 1). In this case, P ((f−1(x)#) is 
obtained from P (x#) by changing the n +1 in row n +1 −k into an n. Since x# and 
(f−1(x))# have the same recording tableau, x and f−1(x) are in the same connected 
component. Since it is evident from P ((f−1(x)#) that f1

j fk · · · f2(f−1(x)) must be 
I0-lowest weight, it follows that v = f1

j f
1̄
ke

j
1e

k
1(v). This is precisely what happens in 

the example above; P ((f−1(x)#) is obtained from P (x#) by:

4 4
3 3 9
2 2 2
1 1 1 9

−→
4 4
3 3 9
2 2 2
1 1 1 8 .

Hence C2’(a) holds.
(2) The recording tableau of x# differs from the recording tableau of (f−1(x))#. This 

implies that during the insertion of x#, there is some point at which the final two 
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(n + 1)’s to be inserted are in the same row. Call this row r and suppose that this 
occurs during the insertion of the i-th letter of x#. Let Pi be the tableau obtained 
from inserting the first i letters of x# and let P ′

i be the tableau obtained from 
inserting the first i letters of (f−1(x))#. Then P ′

i is obtained from Pi by changing 
the second to rightmost n + 1 to n and moving the rightmost n + 1 from row r to 
some row s > r.
Now continue with the insertion of the (i +1)-st letter in each case. Since the (n, n +1)-
subword of x# ends with two (n +1)’s, and these are the only (n, n +1)-unbracketed 
(n + 1)’s in this subword, the same is true of the (n, n + 1)-subword of each of 
Pi, Pi+1, . . . , P�. This implies that at no point in the rest of the insertion of x# is the 
second to rightmost n +1 inserted into a row containing another n +1, and moreover 
at no point is an n inserted into the row containing the second to rightmost n + 1
(since after the insertion of the final two (n + 1)’s, the two rightmost entries which 
are either n or n + 1 must both be n + 1).
It follows that, if we ignore, the rightmost n + 1 in P ((f−1(x)#) and P (x#), then 
they have the same shape, and the second differs from the first only by changing 
its rightmost n to n + 1. Adding back the rightmost n + 1 to P (x#), we see that it 
must go somewhere to the right of this position (by definition), and adding back the 
rightmost n + 1 to P (f−1(x#)), we see that it must go somewhere to the left of this 
position (otherwise P ((f−1(x)#) would have an (n, n + 1)-unbracketed n + 1).
It follows that P ((f−1(x)#) is obtained from P (x#) by eliminating the (rightmost) 
n +1 in row n −k+1, changing the (leftmost) n +1 in row n − j+1 to n and adding 
an n + 1 to some row n −h + 1 for h < j. It follows that v′ = f1

hf
1̄
j e

j
1e

k
1(v) and v are 

both (distinct) I0-lowest weight elements. Hence C2’(b) holds.
To see an example of the second case, let v = 99889. Then v# = 12211, (e7

1e
8
1(v))# =

29911, (f−1e
7
1e

8
1(v))# = 29811, and (f1

6 f
1̄
7 e

7
1e

8
1(v))# = 23211 have the following 

insertion tableaux:

2 2
1 1 1

−→ 2 9
1 1 9

−→
9
2 8
1 1

−→
3
2 2
1 1 .

A.2. Proof of Lemma A.4 for j = n − 1 and j′ = n

Define X = (e1 · · · en)v. For 1 � i � n + 1, set Ai = (ei · · · en)X and Bi =
(ei · · · en−1)X. For 2 � i � n + 1, set A−i = (f(i−1) · · · f2f−1)A1 and B−i =
(f(i−1) · · · f2f−1)B1. (So A1 = A−1 and B1 = B−1. Moreover, Bn+1 = Bn.) By as-
sumption (fh · · · f1)(B−n) is I0-lowest weight, so fn(fh · · · f1)(B−n) = 0 and hence 
B−(n+1) = 0.

Let xi be the integer which represents the position where Ai+1 and Ai differ, and yi
be the integer which represents the position where Bi+1 and Bi differ. Also, let x−i be 
the integer which represents the position where A−i and A−(i+1) differ, and let y−i be 
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the integer which represents the position where B−i and B−(i+1) differ. Note that yn
and y−n are undefined.

Recall that v ∈ B⊗�. Suppose W is any word of length � in the letters {1, . . . , n +1}. If 
1 � p � �, we define W (p) to be the p-th entry of W . If 1 � p � q � � are integers, then 
the notation W (p : q) will be used to refer to the word W (p)W (p +1) . . .W (q− 1)W (q).

If 1 � i � n, we define the i/(i + 1)-subword of W to be the word composed of the 
symbols {i, i + 1, _} which is obtained from W by changing each entry that is neither i
nor i +1 to the symbol _. For instance the 2/3-subword of 241432143 is 2 _ _ _ 32 _ _ 3. 
When we speak of erasing an i or i + 1, we mean changing that entry to _; similarly, 
when we speak of adding an i or i + 1, we mean changing some _ to i or i + 1. Moving 
an i or i + 1 from p to q means erasing an i or i + 1 from position p and adding an i or 
i + 1 to position q. The notation W (p : q) is used in the same way for subwords as it is 
for words. For instance, if W=3 ___32 _ _ 3 then W (3 : 7) = _ _ 32 _.

Claim A.6. For 2 � i � n, we have xi � xi−1. For 2 � i � n − 1, we have yi � yi−1.

Proof. If xi < xi−1, then it follows that fiAi−1 �= 0. But this is the statement that

fi(ei−1ei · · · en)(e1 · · · en)v �= 0

for some integer 2 � i � n, which is absurd since v is I0-lowest weight. If yi < yi−1, then 
it follows that fiBi−1 �= 0. But this is the statement that

fi(ei−1ei · · · en−1)(e1 · · · en)v �= 0

for some integer 2 � i � n − 1, which is also absurd. �
Claim A.7. We have x1 > x−1 and y1 > y−1. (In particular, f−1(A1) �= 0, so x−1 is 
well-defined.)

Proof. By the definition of the operator f−1 we have y1 � y−1. Since v and v∗ :=
f1
hf

1̄
n−1e

n−1
1 en1v are both I0-lowest weight and have different weights, we cannot have 

y1 = y−1. Thus y1 > y−1. Now Bn(1 : y−1) = B1(1 : y−1). Therefore, there are no 1’s 
or 2’s in Bn(1 : y−1 − 1) and we have Bn(y−1) = 1 since these statements must be true 
of B1. If x1 > y−1, then A1(1 : y−1) = B1(1 : y−1) and so A−2 �= 0 with x−1 = y−1. If 
x1 < y−1, then A1(1 : x1 − 1) = Bn(1 : x1 − 1) contains no 1’s or 2’s and A1(x1) = 1. 
Thus A−2 �= 0 with x−1 = x1. It is clearly impossible for x1 = y−1. Therefore, we have 
established that A−2 = f−1(A1) �= 0. In the notation of Proposition A.2, we have for 
j = k = n, that f−1e

j
1e

k
1(v) �= 0. Hence we must be in case C2’(b) from which we deduce 

that f−1(A1) lies in a different I0-connected component than A1. From this it follows 
that x1 > x−1. �
Claim A.8. For 2 � i � n, we have x−(i−1) � x−i. For 2 � i � n, we have y−(i−1) � y−i. 
(In particular, A−3, . . . , A−(n+1) are nonzero, so x−2, . . . , x−n are well-defined.)
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Proof. Again, case C2’(b) applies to f−1(A1) and so the parenthetical statement is 
immediate. First, it is clear from the definitions of the f−1 and f2 operators that 
x−1 � x−2 and that y−1 � y−2. If x−(i−1) > x−i for i > 2, then it follows that 
fiA−(i−1) �= 0. But this is the statement that fi(ei−1ei · · · en)(e1 · · · eg)v̂ �= 0 for some 
I0-lowest weight element v̂ and integers 3 � i � n and 0 � g < n which is absurd. If 
y−(i−1) > y−i for i > 2, then it follows that fi(B−(i−1)) �= 0. But this is the statement 
that fi(ei−1ei · · · en−1)(e1 · · · eg)v∗ �= 0 for some integers 3 � i � n and 0 � g < n which 
is equally absurd. �

So far, we have the following situation:

xn � · · · � x2 � x1 > x−1 � x−2 � · · · � x−n and

yn−1 � · · · � y2 � y1 > y−1 � y−2 � · · · � y−(n−1).

Claim A.9. We have x−1 = y−1.

Proof. Since x1 = y−1 is impossible and since x1 < y−1 would imply that x−1 = x1, 
which contradicts x1 > x−1, we may assume x1 > y−1. However, in this case we have 
A1(1 : y−1) = B1(1 : y−1). Since f−1 acts on B1 in position y−1, it follows that f−1 acts 
on A1 in position y−1 as well. This implies x−1 = y−1. �
Claim A.10. For 1 � i � n − 1, we have xi � yi.

Proof. First we show that xn−1 � yn−1. Now yn−1 represents the position of the leftmost 
(n − 1, n)-unbracketed n in Bn. This n is also unbracketed in An because the (n − 1)/n-
subword of An is obtained from the (n − 1)/n-subword of Bn by inserting an n. Hence 
the leftmost (n − 1, n)-unbracketed n in An is weakly to the left of position yn−1, so 
xn−1 � yn−1. Next, suppose that xi+1 � yi+1 but xi > yi. The i/(i +1)-subword of Ai+1

only differs from the i/(i + 1)-subword of Bi+1 by moving an i + 1 to the left from yi+1

to xi+1. Since yi < xi+1 by assumption, the i +1 which appears in Bi+1(yi) still appears 
in Ai+1(yi) and is (i, i + 1)-unbracketed. This implies xi � yi. Induction completes the 
proof. �
Claim A.11. For 1 � i � n, we have xi � x−i. For 1 � i � n − 1, we have yi � y−i.

Proof. We already know that x1 � x−1. So assume that xi−1 � x−(i−1) but xi < x−i. 
The i/(i + 1)-subword of Ai is obtained from the i/(i + 1)-subword of A−i by moving 
an i to the right from x−(i−1) to xi−1. Since A−i(x−i) contains an (i, i + 1)-unbracketed 
i and xi−1 < x−i, we see that Ai(x−i) still contains an (i, i + 1)-unbracketed i. This 
implies that xi � x−i. Induction completes the proof. The second statement is proved 
in the same way. �
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From the previous result, we have the following situation:

· · · � x3 � x2 � x1 > x−1 � x−2 � x−3 � · · ·� � � ||
· · · � y3 � y2 � y1 > y−1 � y−2 � y−3 � · · ·

where every entry on the left side of the array is � to its mirror image on the right side 
of the array. From now on, let j be minimal such that xj < yj ; if no such j exists, set 
j = n.

Claim A.12. We have xi = yi for all i < j and xi+1 < yi for all j � i < n.

Proof. The first claim is immediate. Next we note that xi < yi for all i � j. (Otherwise 
xi = yi for some i � j. This implies that xk = yk for all k � i, and, in particular, 
xj = yj .) By definition, we have Bi+1(yi) = i + 1 and Ai+2(xi+1) = i + 2. From the 
latter, it follows that Bi+2(xi+1) � i + 2 and, since yi+1 > xi+1 (or yi+1 is undefined) 
that Bi+1(xi+1) � i + 2. Therefore, we have xi+1 �= yi. If xi+1 > yi, we must have 
xi < xi+1 and yi < yi+1 from which it follows that Ai+1(1 : yi) = Bi+1(1 : yi). But this 
makes xi < yi impossible. By contradiction, we conclude that xi+1 < yi. �
Claim A.13. For i < j we have x−i = y−i. Also, xj > xj−1.

Proof. Since the restrictions of Aj−1 and Bj−1 to the alphabet {1, 2, . . . , j − 1} are 
identical, and since the operators ej−2, . . . , e1, f−1, f2, . . . , fj−2 only depend on and effect 
these letters, it follows that for i � j−2 we have x−i = y−i. Now we must show x−(j−1) =
y−(j−1). We have Aj+1(xj) = j + 1 and thus Bj+1(xj) � j + 1, and hence by xj < yj , 
Bj(xj) � j + 1. Since Bj(yj−1) = j, this yields xj �= yj−1. In light of xj−1 = yj−1 this 
gives xj �= xj−1. From this it follows that Aj(1 : xj−1) = Bj(1 : xj−1). By the minimality 
of j and by the result for i � j−2 this implies that A−(j−1)(1 : xj−1) = B−(j−1)(1 : xj−1). 
Since we have both x−(j−1) � xj−1 and y−(j−1) � yj−1, the previous equality implies 
that x−(j−1) = y−(j−1). �

If 1 < i < n, let #(A−i(p : q)) denote the number of i’s minus the number of (i + 1)’s 
which appear in A−i(p : q). Define #(B−i(p : q)) analogously. Set ABi(p : q) = #(A−i(p :
q)) − #(B−i(p : q)).

Claim A.14. Suppose 1 < i < n.

(1) If x−i < y−i, then ABi(1 : x−i) > 0.
(2) If x−i > y−i, then ABi(1 : y−i) < 0.
(3) If x−i < y−i, then ABi(x−i + 1 : y−i) < 0.
(4) If x−i < y−i, x−i = xi, xi �= xi+1, and xi �= yi, then ABi(x−i + 1 : yi) < −1.
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Proof. Once again, C2’(b) applies to f−1(A1) and so we may write A−i = ei · · · eneh
′

1 (v′)
for some I0-lowest weight element v′ and some h′ < n. It follows that A−i has exactly one 
(i, i +1)-unbracketed i and it occurs in x−i. In addition, case C2’(b) applies to f−1(B1) by 
assumption, so B−i = ei · · · en−1e

h
1 (v∗) for an I0-lowest weight element v∗. Hence B−i has 

exactly one (i, i +1)-unbracketed i and it occurs in y−i. Thus we have #(A−i(1 : x−i)) > 0
and #(B−i(1 : y−i)) > 0. If x−i < y−i then #(B−i(1 : x−i)) � 0, while if x−i > y−i

then #(A−i(1 : y−i)) � 0. Together this proves the first two statements. For the third 
statement we have #(A−i(x−i + 1 : y−i)) � 0 and #(B−i(x−i + 1 : y−i)) > 0. For 
the fourth statement, again, we have #(A−i(x−i + 1 : y−i)) � 0, but now note that 
Ai+1(xi) = i + 1. Since xi �= xi+1, also, Ai+2(xi) = i + 1, whence Bi+1(xi) = i + 1, 
and, by, xi �= yi, we have Bi(xi) = i + 1. This now implies that B−i(xi) = i + 1 or 
B−i(x−i) = i + 1. Since the i in B−i(yi) must be (i, i + 1)-unbracketed this implies that 
#(B−i(x−i + 1 : y−i)) > 1. �
Claim A.15. Fix an interval [p, q]. We define the function [t] by [t] = 1 if t ∈ [p, q] and 
[t] = 0 otherwise. With this notation, we have that

ABi(p : q) = [x−(i−1)] − [xi−1] + 2[xi] − [xi+1] + [yi+1] − 2[yi] + [yi−1] − [y−(i−1)].

Proof. This is a straightforward computation. �
Claim A.16. Suppose j < n. If either xj > x−j or yj > y−j , then both xj > x−j and 
yj > y−j . In this case we have x−j = y−j.

Proof. If j = 1, the conclusions of the claim have already been proven in previous claims. 
Thus assume j > 1. First note that, since x−(j−1) = y−(j−1) and xj−1 = yj−1, we have 
ABj(p : q) = 2[xj ] − [xj+1] + [yj+1] − 2[yj ]. To prove the first statement, we will show 
that both (1) xj > x−j and yj = y−j and (2) yj > y−j and xj = x−j are impossible.

First suppose that xj > x−j and that yj = y−j . Since x−j < xj < yj = y−j , we have 
by Claim A.14 that ABj(1 : x−j) > 0. However, xj , xj+1, yj+1, yj are each > x−j so by 
Claim A.15 we have ABj(1 : x−j) = 0. Hence, xj > x−j and yj = y−j is impossible.

Now suppose that yj > y−j and that xj = x−j .

Case 1: y−j < x−j . Since y−j < x−j we have by Claim A.14 that ABj(1 : y−j) < 0. 
However, xj , xj+1, yj+1, yj are each > y−j so by Claim A.15 we have ABj(1 : y−j) = 0.

Case 2: y−j = x−j . We have Aj+1(xj) = j + 1 and so Bj+1(xj) � j + 1. Hence by 
xj < yj we have Bj(xj) � j + 1 which gives B−j(xj) � j + 1. However, by definition 
B−j(y−j) = j so this makes x−j = y−j impossible in light of xj = x−j .

Case 3a: y−j > x−j and xj = xj+1. Since y−j > x−j we have by Claim A.14 that 
ABj(x−j + 1 : y−j) < 0. However, xj , xj+1 are each < x−j + 1 and yj , yj+1 are each 
> y−j so by Claim A.15 we have ABj(1 : y−j) = 0.
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Case 3b: y−j > x−j and xj < xj+1. Since y−j > x−j = xj , xj �= xj+1, and xj �= yj , we 
have by Claim A.14 that ABj(x−j + 1 : y−j) < −1. However, xj < x−j + 1 and yj , yj+1
are each > y−j so by Claim A.15 we have ABj(x−j + 1 : y−j) ∈ {−1, 0}.

Hence yj > y−j and xj = x−j is impossible. This establishes that if either xj > x−j

or yj > y−j , then both xj > x−j and yj > y−j .
Now assume that both xj > x−j and yj > y−j . If x−j < y−j , we have by 

Claim A.14 that #j(A−j(1 : x−j)) > 0. However, xj , xj+1, yj+1, yj are each > x−j

so by Claim A.15 we have #j(A−j(1 : x−j)) = 0. If x−j > y−j , we have by Claim A.14
that #j(A−j(1 : y−j)) < 0. However, xj , xj+1, yj+1, yj are each > x−j so by Claim A.15
we have #j(A−j(1 : y−j)) = 0. Hence x−j = y−j . �
Claim A.17. If xj < x−j or yj < y−j, then for j � i < n we have y−i < yi and y−i � x−i.

Proof. We proceed by induction. By the first statement of Claim A.16, we can be sure 
that y−j < yj . By the second statement of Claim A.16 we can be sure that y−j = x−j , 
so in particular, y−j � x−j . Therefore the claim holds for i = j. Now let i > j and 
suppose that the claim holds for i − 1 so that y−(i−1) < yi−1 and y−(i−1) � x−(i−1). We 
will show that under this assumption, each of (1) y−i = yi and y−i > x−i, (2) y−i < yi
and y−i > x−i, and (3) y−i = yi and y−i � x−i is impossible.

First suppose that y−i = yi and that y−i > x−i.
Case 1: x−i < xi. Since y−i > x−i by Claim A.14 we have ABi(1 : x−i) > 0. However, 
by assumption xi, xi+1, yi+1, yi, yi−1 are each > x−i and x−(i−1) = y−(i−1) so the only 
possible relevant change is at xi−1. Thus by Claim A.15 we have ABi(1 : y−i) ∈ {−1, 0}.
Case 2a: x−i = xi and xi = xi+1. Since y−i > x−i by Claim A.14 we have ABi(1 :
x−i) > 0. By assumptions, each of x−(i−1), xi−1, xi, xi+1, y−(i−1) are < x−i + 1. Clearly 
yi = y−i ∈ [x−i + 1 : y−i]. Moreover, yi−1 � yi = y−i and yi−1 > xi = x−i, so 
yi−1 ∈ [x−i + 1 : y−i]. Without computing the value of [yi+1] we may conclude by 
Claim A.15 that ABi(1 : y−j) ∈ {−1, 0}.
Case 2b: x−i = xi and xi < xi+1. Since y−i > x−i, x−i = xi, xi �= xi+1, and xi �=
yi we have by Claim A.14 that ABi(x−i + 1 : y−i) < −1. By assumptions, each of 
x−(i−1), xi−1, xi, y−(i−1) are < x−i + 1. Again, we know that yi, yi−1 ∈ [x−i + 1 : y−i]. 
Without computing the value of [yi+1] and [xi+1] we may compute by Claim A.15 that 
ABi(x−i + 1 : y−i) ∈ {−1, 0, 1}.

Hence it is impossible that y−i = yi and that y−i > x−i. Now suppose that y−i < yi
and that y−i > x−i.
Case 1a: x−i < xi and xi � y−i. Since y−i > x−i, we have by Claim A.14 that ABi(x−i+
1 : y−i) < 0. We have that x−(i−1), y−(i−1) are both < x−i+1, that xi ∈ [x−i+1 : y−i] and 
that yi, yi+1 are both > y−i. Without computing [xi−1], [xi+1], [yi−1] we may determine 
by Claim A.15 that ABi(x−i + 1 : y−i) ∈ {0, 1, 2, 3}.
Case 1bi: x−i < xi, xi > y−i, and xi−1 � x−i. Since y−i > x−i, we have by 
Claim A.14 that ABi(x−i+1 : y−i) < 0. By assumption each of x−(i−1), xi−1, y−(i−1) are 
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< x−i + 1 and xi+1, xi, yi, yi+1 are > y−i. Without computing [yi−1] we may determine 
by Claim A.15 that ABi(x−i + 1 : y−i) ∈ {0, 1}.
Case 1bii: x−i < xi, xi > y−i, and xi−1 > x−i. Since y−i > x−i, we have by Claim A.14
that ABi(1 : x−i) < 0. By assumption x−(i−1), y−(i−1) are � x−i whereas each of 
xi−1, xi, xi+1, yi−1, yi, yi+1 are > x−i. Thus by Claim A.15, we have ABi(1 : x−i) = 0.
Case 2a: x−i = xi and xi = xi+1. Since y−i > x−i we have by Claim A.14 that ABi(x−i+
1 : y−i) < 0. By assumption each of x−(i−1), xi−1, xi, xi+1, y−(i−1) are < x−i + 1 and 
yi, yi+1 are > y−i. Without computing [yi−1] we may determine by Claim A.15 that 
ABi(x−i + 1 : y−i) ∈ {0, 1}.
Case 2b: x−i = xi and xi < xi+1. Since y−i > x−i, x−i = xi, xi �= xi+1, and xi �=
yi we have by Claim A.14 that ABi(x−i + 1 : y−i) < −1. By assumption each of 
x−(i−1), xi−1, xi, y−(i−1) are < x−i +1 and yi, yi+1 are > y−i. Without computing [yi−1]
and [xi−1] we may determine by Claim A.15 that ABi(x−i + 1 : y−i) ∈ {−1, 0, 1}.

Hence y−i < yi and y−i > x−i is impossible. Now suppose y−i = yi and y−i � x−i. 
This would imply yi = y−i � x−i � xi < yi which is absurd. The three possibilities 
listed in the beginning of the proof are thus impossible, and the only remaining one is 
y−i < yi and y−i � x−i. �

Supposing j = 3, and n = 5, and xj > x−j our situation would look as follows:

x5 � x4 � x3 > x2 � x1 > x−1 � x−2 � x−3 � x−4 � x−5
∧ ∧ || || || || || �

y4 � y3 � y2 � y1 > y−1 � y−2 � y−3 � y−4

where again every entry on the left side of the array is � its mirror image on the right 
side of the array, and the bold entries are bigger than their mirror image.

Claim A.18. If xj = x−j, then A−(n+1) = B−n.

Proof. We have for all i < j that xi = yi and x−i = y−i. Since by assumption xj = x−j , 
we have for all i � j, xi = x−i. Moreover, if j < n then by Claim A.16 yj = y−j and 
for all i � j, we have yi = y−i. If � is the length of the word v and 1 � p � �, define 
the vector �p to be the vector of length �, which has a 1 in position p and 0’s elsewhere. 
Then recalling that An+1 = X = Bn, we have the equalities:

A−(n+1) = X −
n∑

i=1
�xi +

n∑
i=1

�x−i = X −
j−1∑
i=1

�xi +
j−1∑
i=1

�x−i = X −
j−1∑
i=1

�yi +
j−1∑
i=1

�y−i

= X −
n−1∑
i=1

�yi +
n−1∑
i=1

�y−i = B−n. �

Claim A.19. We have xj = x−j.
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Proof. Suppose xj > x−j .
Case 1: j = n. By the definition of j, we have xn−1 = yn−1 and by Claim A.13 we 
have x−(n−1) = y−(n−1). Since x−n < xn, this implies A−n(1 : x−n) = B−n(1 : x−n). 
Since A−n contains an (n, n +1)-unbracketed n in position x−n, so does B−n. Therefore, 
fn(B−n) �= 0 which contradicts B−(n+1) = 0.
Case 2a: j < n and xn−1 = x−(n−1). We have y−(n−1) � x−(n−1) � xn. Since xn < yn−1
this means that we cannot have y−(n−1) = xn, so we must have y−(n−1) < xn. Since 
xn−1 = x−(n−1) and yn−1 > xn, the n/(n + 1)-subword of B−n(1 : xn) is obtained from 
the n/(n + 1)-subword of An(1 : x−n) by:

(1) Erasing an n from xn and adding an n in y−(n−1). (Note y−(n−1) < xn.)
(2) Adding an n + 1 to xn.

Therefore, since the n/(n +1)-subword of A−n(1 : xn) contains an (n, n +1)-unbracketed 
n and each one of these two steps does not change that property, the n/(n +1)-subword 
of B−n(1 : xn) also does. This implies fn(B−n) �= 0 which contradicts B−(n+1) = 0.
Case 2b: j < n and xn−1 > x−(n−1). Since, xn−1, yn−1 ∈ [1 : xn−1] and xn−1, xn ∈
[xn−1 + 1 : xn] and yn−1 > xn, the n/(n + 1)-subword of B−n(1 : xn) is obtained from 
the n/(n + 1)-subword of A−n(1 : xn) by:

(1) Erasing an n from x−(n−1) and adding an n in y−(n−1). (Note y−(n−1) � x−(n−1).)
(2) Adding an n to xn−1 and erasing an n from xn. (Note xn−1 � xn.)
(3) Adding an n + 1 to xn.

Therefore, since the n/(n +1)-subword of A−n(1 : xn) contains an (n, n +1)-unbracketed 
n and each one of these three steps does not change that property, so does the n/(n +1)-
subword of B−n(1 : xn). This implies fn(B−n) �= 0 which contradicts B−(n+1) = 0. �

Since, indeed xj = x−j , we have A−(n+1) = B−n by Claim A.18, which completes the 
proof of Lemma A.4.

A.3. Proof of Lemma A.4 for j = n and j′ = n − 1

Lemma A.20. Suppose v is I0-lowest weight and h < n − 1. Suppose that (e2 · · ·
en−1)eh1 (v) �= 0 and e2 · · · eneh1 (v) �= 0. If f1

nf
1
ne

n
1̄ e

n
1 (v) is I0-lowest weight, then 

f1
nf

1
n−1e

n−1
1̄ en1 (v) is I0-lowest weight.

Proof of Lemma A.20. Suppose v and v′ = f1
nf

1
ne

n
1̄ e

h
1 (v) are I0-lowest weight and 

(e2 · · · en−1)eh1 (v) �= 0. We must show that f1
nf

1
n−1e

n−1
1̄ eh1 (v) is I0-lowest weight.

Claim A.21. Given a word W , define L(W ) to be the length of the longest weakly in-
creasing subsequence of W . If V is I0-lowest weight, and W and V are in the same 
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I0-connected component, then the number of (n + 1)’s which appear in V is equal to 
L(W ).

Proof. This easily follows from analyzing the RSK insertion tableaux of the words. �
Claim A.22. We have L(en−1

1̄ eh1 (v)) � L(en1̄ e
h
1 (v)).

Proof. Since Y = e2 · · · en−1e
h
1 (v) �= 0, by inspection of the insertion tableaux of v and 

Y we observe that ϕ1(Y ) = 0, ϕ2(Y ) = 1, and ϕk(Y ) = 0 for all k > 2. This implies 
that Y contains a letter 2 which precedes all letters 1. Hence en−1

1̄ eh1 (v) = e−1(Y ) �= 0, 
so the statement L(en−1

1̄ eh1 (v)) � L(en1̄ e
h
1 (v)) is well-defined.

We will now recycle notation from the proof of Section A.2 with slight changes. Let 
X = eh1 (v). For 2 � i � n + 1, set Ai = (ei · · · en)(X) and Bi = (ei · · · en−1)(X). Set 
A1 = e−1(A2) and B1 = e−1(B2). Let xi be the integer which represents the position, 
where Ai+1 and Ai differ and yi be the integer which represents the position where Bi+1
and Bi differ.

Suppose that v contains r letters (n + 1). It follows from weight considerations that 
v′ contains (r + 1) letters (n + 1). This implies that L(en1̄ e

h
1 (v)) = r + 1 whereas 

L(e2 · · · eneh1 (v)) = r. This is to say L(A1) = r + 1 and L(A2) = r. So A1 contains 
a weakly increasing subsequence of length r + 1, specified by the indices i01, . . . , ir1. We 
must have that i01 = x1 and that A1(i11) = 1, otherwise the same indices would specify 
a weakly increasing subsequence of A2 of length r + 1. It follows that A2 has a weakly 
increasing subsequence given by the indices i12, . . . , ir2 where A2(i12) = 1. Now suppose 
2 � k � n and Ak has a weakly increasing subsequence given by the indices i1k, . . . , irk, 
where Ak(i1k) = 1. If xk /∈ {i1k, . . . , irk}, then Ak+1 has such a subsequence specified by 
the same indices.

Now suppose that xk ∈ {i1k, . . . , irk}. Create a list of indices as follows:

(1) If ijk � xk or Ak(ijk) �= k, then ijk+1 = ijk.
(2) If ijk > xk and Ak(ijk) = k, then Ak(ijk) is (k, k + 1)-bracketed with some k + 1 in a 

position between xk and ijk. Let ijk+1 denote this position.

This creates a set {i1k+1, . . . , i
r
k+1}, which, after a possible reordering into increasing 

order, specifies a weakly increasing subsequence of Ak+1 with Ak+1(i1k+1) = 1.
By induction Bn = An+1 = X has a weakly increasing subsequence specified by 

the indices {i′1n, . . . , i′
r
n}, with Bn(i′1n) = 1. Let k > 1 and assume Bk+1 has a weakly 

increasing subsequence specified by the indices {i′1k+1, . . . , i
′r
k+1}, with Bk+1(i′1k+1) = 1. 

If yk < i′1k+1, then the same is true of Bk with the same indices. If yk > i′1k+1 then 
Bk = ek(Bk+1) = [Bk+1(1 : i′1k+1) ek(Bk+1(i′1k+1 + 1 : �))]. Since Bk+1(i′1k+1 + 1 : �) has 
a weakly increasing subsequence of length r − 1, ek(Bk+1(i′1k+1 + 1 : �)) does as well. 
Thus Bk = [Bk+1(1 : i′1k+1) ek(Bk+1(i′1k+1 +1 : �))] has a weakly increasing subsequence 
of length r specified by some indices {i′1k, . . . , i′

r
k}, with Bk(i′1k) = 1 (where i′1k = i′1k+1). 
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By induction this is true for k = 2. Since e−1(B2) = B1 is defined and since B2(i′12) = 1, 
we have y1 < i′12 and so {y1, i′

1
2, . . . , i

′r
2} is a list of indices which give a weakly increasing 

subsequence of length r + 1 in B1. �
We want to show that f1

nf
1
n−1e

n−1
1̄ eh1 (v) is I0-lowest weight. Now e−1(Y ) is obtained 

from Y = e2 · · · en−1e
h
1 (v) by changing its first 2 to 1. As a result ϕ1(e−1(Y )) ∈ {1, 2}

and ϕk(e−1(Y )) = 0 for all k > 1. Therefore, we may write e−1(Y ) = es1e
t
1(v∗) for 

some I0-lowest weight element v∗, and s � 0 and t > 0 with t � s (using Lemma 3.3
when ϕ1(e−1(Y )) = 2). This gives v∗ = f1

t f
1
s e

n−1
1̄ eh1 (v). Since v′ contains one more 

n + 1 than v, it follows from Claims A.21 and A.22 that v∗ contains at least one more 
n + 1 than v, which means we must have t = n. This also means that v and v∗ are 
not in the same connected I0-component. But if v = f1

hf
1̄
n−1e

s
1e

n
1 (v∗) is in a different 

connected I0-component than v∗, then C2’(b) applies which forces s = n − 1. Thus 
v∗ = f1

nf
1
n−1e

n−1
1̄ eh1 (v).

This concludes the proof of Lemma A.20. �
Proposition A.23. Lemma A.4 with j = n − 1 and j′ = n and Lemma A.20 imply 
Lemma A.4.

Proof. We need to show that if v is I0-lowest weight, en−1
1 en1 (v) �= 0, en1 en1 (v) �= 0, 

and v∗ = f1
hf

1̄
ne

n
1 e

n
1 (v) is I0-lowest weight, then f 1̄

n−1e
n−1
1 en1 (v) = f 1̄

ne
n
1 e

n
1 (v). Now v =

f1
nf

1
ne

n
1̄ e

h
1 (v∗) is I0-lowest weight (in particular, e2 · · · eneh1 (v∗) �= 0). Now we show that 

e2 · · · en−1e
h
1 (v∗) �= 0. By definition, eh1 (v∗) �= 0. Either v∗ has more n’s than (n − 1)’s 

so that e2 · · · en−1e
h
1 (v∗) �= 0, or else v∗ has the same number of n’s as (n − 1)’s and 

h = n − 2 in which case also e2 · · · en−1e
h
1 (v∗) �= 0. Therefore, by Lemma A.20 v′ =

f1
nf

1
n−1e

n−1
1̄ eh1 (v∗) is I0-lowest weight. Rewriting this as v∗ = f1

hf
1̄
n−1e

n−1
1 en1 (v′) and 

noting that wt(v) = wt(v′) implies en1 en1 (v′) �= 0 Lemma A.4 with j = n − 1 and j′ = n

gives v∗ = f1
hf

1̄
ne

n
1 e

n
1 (v′). This implies that v = v′ and that hence that f 1̄

n−1e
n−1
1 en1 (v) =

f 1̄
ne

n
1 e

n
1 (v). �
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