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1. Introduction

The representation theory of Lie algebras is of fundamental importance, and hence

combinatorial models for representations, especially those amenable to computation, are
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of great use. In the 1990’s, Kashiwara [16] showed that integrable highest weight rep-
resentations of the Drinfeld-Jimbo quantum groups U,(g), where g is a symmetrizable
Kac—Moody Lie algebra, in the ¢ — 0 limit result in a combinatorial skeleton of the
integrable representation. He coined the term crystal bases, reflecting the fact that ¢
corresponds to the temperature of the underlying physical system. Since then, crystal
bases have appeared in many areas of mathematics, including algebraic geometry, com-
binatorics, mathematical physics, representation theory, and number theory. One of the
major advances in the theory of crystals for simply-laced Lie algebras was the discov-
ery by Stembridge [23] of local axioms that uniquely characterize the crystal graphs
corresponding to Lie algebra representations. These local axioms provide a completely
combinatorial approach to the theory of crystals; this viewpoint was taken in [4].

Lie superalgebras [15] arose in physics in theories that unify bosons and fermions. They
are essential in modern string theories [7] and appear in other areas of mathematics, such
as the projective representations of the symmetric group. The crystal basis theory has
been developed for various quantum superalgebras [3,11,8-10,12,17,18]. In this paper, we
are in particular interested in the queer superalgebra q(n) (see for example [6]). A the-
ory of highest weight crystals for the queer superalgebra q(n) was recently developed by
Grantcharov et al. [8-10]. They provide an explicit combinatorial realization of the high-
est weight crystal bases in terms of semistandard decomposition tableaux and show how
these crystals can be derived from a tensor product rule and the vector representation.
They also use the tensor product rule to derive a Littlewood—Richardson rule. Choi and
Kwon [5] provide a new characterization of Littlewood—Richardson—Stembridge tableaux
for Schur P-functions by using the theory of q(n)-crystals. Independently, Hiroshima [13]
and Assaf and Oguz [1,2] defined a queer supercrystal structure on semistandard shifted
tableaux, extending the type A crystal structure of [14] on these tableaux.

In this paper, we provide a characterization of the queer supercrystals. Assaf and
Oguz [1,2] conjecture a local characterization of queer supercrystals in the spirit of
Stembridge’s [23] characterization of crystals associated to classical simply-laced root
systems, which involves local relations between the odd crystal operator f_; with the
type A,_1 crystal operators f; for 1 < i < n. However, we provide a counterexample
to [2, Conjecture 4.16], which conjectures that these local axioms uniquely characterize
the queer supercrystals. Instead, we define a new graph G(C) on the relations between
the type A components of the queer supercrystal C, which together with Assaf’s and
Oguz’ local queer axioms and further new axioms uniquely fixes the queer supercrystal
structure (see Theorem 5.1). We provide a combinatorial description of G(C) by providing
the combinatorial rules for all odd queer supercrystal operators f_; and e_; on certain
highest weight elements for 1 < ¢ < n.

This paper is structured as follows. In Section 2, we review the combinatorial definition
of the queer supercrystals by [8-10] and prove several results that are needed later for
the combinatorial description of the graph G(C). In particular, Theorems 2.12 and 2.16
provide explicit combinatorial descriptions of the odd queer crystal operators f_; and
e_; on highest weight elements. In Section 3, we state the local queer axioms by Assaf
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and Oguz [1,2] and provide a counterexample to [2, Conjecture 4.16]. The graph G(C)
is introduced in Section 4. Theorem 4.9 allows us to transform G(C) into combinatorial
graphs G(C) and G(C), which together with the local queer axioms of Definition 3.1 and
new connectivity axioms of Definition 4.4 uniquely characterize the queer supercrystals
as stated in Theorem 5.1. The graph G(C) also yields a new combinatorial description
of the Schur expansion of the Schur P-polynomials (see Remark 4.10).
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2. Queer supercrystals

In Section 2.1, we review the queer supercrystals constructed in [8-10]. In Section 2.2,
we review some properties of queer supercrystals discovered in [1,2]. In Section 2.3, we
provide new explicit combinatorial descriptions of f_; and e_; on certain highest weight
elements, which will be used in Section 4 to construct the graph G(C). In Section 2.4,
we provide relations between e_; when acting on certain highest weight elements, which
will be used in Section 4 to deal with “by-pass arrows” in the component graph G(C).

2.1. Definition of queer supercrystals

An (abstract) crystal of type A, is a nonempty set B together with the maps

e;, fi: B— BU{0} for i € I,

(2.1)
wt: B — A,

where A = Z’;Jorl is the weight lattice of the root of type A, and I = {1,2,...,n} is the
index set, subject to several conditions. Denote by o; = €; — €;41 for @ € I the simple
roots of type A, where ¢; is the i-th standard basis vector of Z™+!. Then we require:

A1l. For b,V € B, we have f;b = b if and only if b = ¢;¥’. In this case wt(d') = wt(b) — a.

For b € B, we also define

@i(b) =max{k € Zso | fF(0) #0}  and  &;(b) = max{k € Zs¢ | € (b) # 0}.
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1 . .

Fig. 1. q(n + 1)-crystal of letters B.

For further details, see for example [4, Definition 2.13].
There is an action of the symmetric group S, on a type A, crystal B given by the
operators

P PO )
5(b) = {e;’“(b) if k< 0, 22)

for b € B, where k = ¢;(b) — &,(b).

An element b € B is called highest weight if e;(b) = 0 for all ¢ € I. Similarly, b is called
lowest weight if f;(b) = 0 for all ¢ € I. For a subset J C I, we say that b is J-highest
weight if e;(b) = 0 for all ¢ € J and similarly b is J-lowest weight if f;(b) = 0 for all
i€ J.

We are now ready to define an abstract queer supercrystal.

Definition 2.1. [9, Definition 1.9] An abstract q(n + 1)-crystal is a type A, crystal B
together with the maps e_1, f_1: B — B U {0} satisfying the following conditions:

Q1. wt(B) C A;

Q2. wt(e_1b) = wt(b) + a1 and wt(f_1b) = wt(b) — ay;

Q3. for all b’ € B, f_1b=1V"if and only if b = e_1¥;

Q4. if 3 <7 < n, we have
(a) the crystal operators e_; and f_; commute with e; and f;;
(b) if e_1b € B, then g;(e_1b) = £;(b) and ¢;(e_1b) = ;(b).

Given two q(n + 1)-crystals By and Bs, Grantcharov et al. [9, Theorem 1.8] provide
a crystal on the tensor product B; ® Bs, which we state here in reverse convention. It
consists of the type A,, tensor product rule (see for example [4, Section 2.3]) and the
tensor product rule for by ® by € B; ® Bg

by ®e_1by if Wt(bl)l = Wt(bl)Z =0,

e_1b1 ® by otherwise,

e_1(b1 @ bg) = {

bl X f_1b2 if Wt(bl)l = Wt(bl)g = O,
f_1bl ® by otherwise.

fo1(b1 ®b2) = {

The crystals of interest are the crystals of words B®¢, where B is the q(n 4 1)-crystal
of letters depicted in Fig. 1.
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In addition to the queer supercrystal operators f_1, f1,..., fn and e_q,e1,...,e,, we
define the crystal operators for 1 <i < n

foi= Syt f-15w, and € i 1= 8,-1€_15u,, (2.4)

where s, = s2---5;81---8;—1 and s; is the reflection along the i-string in the crystal
defined in (2.2). Furthermore for i € Iy := {1,2,...,n}

J—ir = Swe€_(nt1—i)Swo and ey = Swy - (nt1-i)Swos (2.5)

where wq is the longest word in the symmetric group Sp4+1. By [9, Theorem 1.14],
with all operators e;, f; for i € {-1,-2,...,—n,1,2,...,n} each connected compo-
nent of B®’ has a unique highest weight vector and with all operators e;, f; for
i€ {-1,-2...,—n',1,2,...,n} each connected component of B has a unique lowest
weight vector.

2.2. Properties of queer supercrystals

We now review and prove several properties about the queer supercrystal operators.

Lemma 2.2. For 1 < i <n, we have

f—(i+1) = (5¢S¢+1) f-i (5i+15i)a

(2.6)
€_(i+1) = (3i5i+1) € (3i+13i)~
Proof. We use the definition (2.4). Note that the following recursion holds
Swip, = (827 8ip1)(S1-7+8:) = (52 5¢)(51 -+ 8i-1)8i418i = Sw,; Si+15i, (2.7)

which implies the statement. O

Remark 2.3. The operators f; for i € Iy have an easy combinatorial description on
b € B®¢ given by the signature rule, which can be directly derived from the tensor
product rule (see for example [4, Section 2.4]). One can consider b as a word in the
alphabet {1,2,...,n+ 1}. Consider the subword of b consisting only of the letters i and
1+ 1. Pair (or bracket) any consecutive letters i + 1,4 in this order, remove this pair,
and repeat. Then f; changes the rightmost unpaired 4 to ¢ + 1; if there is no such letter
fi(b) = 0. Similarly, e; changes the leftmost unpaired 7 + 1 to 4; if there is no such letter
ei(b) = 0.

Remark 2.4. From (2.3), one may also derive a simple combinatorial rule for f_; and
e_1. Consider the subword v of b € B®* consisting of the letters 1 and 2. The crystal
operator f_1 on b is defined if the leftmost letter of v is a 1, in which case it turns it
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into a 2. Otherwise f_1(b) = 0. Similarly, e_; on b is defined if the leftmost letter of v is
a 2, in which case it turns it into a 1. Otherwise e_;(b) = 0.

Lemmas 2.5 and 2.6 have appeared in [1,2]. We provide proofs for completeness.

Lemma 2.5. Let b € B®Y. The following holds:

(1) I or(b) > 2 and o1 (b) = 1, we have p1(b) = o1 (f_1(8))+2 and £1(6) = £1(f_1(8)).
If furthermore v1(b) > 2, then

fif-1(b) = f-1f1(D).
(2) If p1(b) = p_1(b) = 1, we have
f1(b) = f-1(b).

(3) If e1(b),e—1(b) > 0 and e1(b) # e_1(b), we have e1(b) = e1(e_1()), ¥1(b) =
p1(e_1(b)) — 2, and

616_1(b) — €_1€1 (b)

Proof. Let p = ¢1(b) and ¢ = £1(b). Consider the subword v consisting of all letters 1
and 2 in b. After performing 1,2-bracketing onto v according to the signature rule, we
have a subword of unbracketed letters in b as

Viy Uiy + - Vi) Vjy o Vi s (2.8)
where v, =1 forall 1<k <pandvj, =2forall 1 <k<gq.

(1) We assume that ¢_1(b) > 0, so that f_1(b) is defined. This implies v; = 1. Since
vy is necessarily unbracketed, i1 = 1 as well. The word V' = f_1(b) is formed by
changing the leftmost 1 in b, namely v;,, into 2. This introduces a new bracketed
1,2-pair formed by v; = 2 and v;, = 1. The subword of unbracketed letters in b now
becomes

Vig « - Uipvj1 e ’qu
so that v1(f-1(b)) =p—2=1(b) — 2 and &1 (f-1(b)) = ¢ = £1(b). This establishes
the first assertion.

Now, assume in addition that p = 1(b) > 2. Using the sequence of unbracketed

letters in b as in the preceding paragraph, f; changes the rightmost unbracketed 1

in b, namely v; , into 2. We still have v; to be 1 after the change, so that f_(f1(b))

is defined and the leftmost 1 in fi(b), namely vy, is changed into 2 under f_;. On
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the other hand, fi1(f-1(b)) is defined precisely because p > 2, and the rightmost
unbracketed 1 in f_;(b), namely v; , is changed into 2 under f;. As the changes
introduced in b to form f_1(f1(b)) are the same as in those of f1(f_1(b)), we conclude
that f1(f-1(b)) = f-1(f1(b)), proving the second assertion.

We assume ¢1(b) = 1, so that (2.8) is of the form v; vj, ...v;,. Furthermore, as
w_1(b) =1, f_1(b) is defined and vy = 1. As vy is necessarily unbracketed, i; = 1 as
well. Therefore, we see that fi(b) = f_1(b), since the rightmost unbracketed 1 in b
and the leftmost 1 in b are the same, namely v;, = v;.

We assume that e_1(b) > 0, so that e_1(b) is defined. This implies v; = 2. However,
since e_1(b) # e1(b), e—1 and e; must change a 2 in b at different locations, so we
have j; > 1. Consequently v; is a bracketed 2 and hence must be paired with some
vp, = 1 where h < i1 < j1 (in case p =0, h < j; still holds). The word &’ = e_1(b) is
obtained by changing the leftmost 2 in b, namely vy, to 1. This introduces two new
unbracketed 1’s, namely, v; and vj,. The subword of unbracketed letters in b’ is now

VIVRG, -0V - V),
so that e1(b) = ¢ = e1(e_1(b)) and p1(e—1(b)) = p+ 2 = ¢1(b) + 2. This establishes
the first two equalities.

Now, ej(e—1(b)) is the word formed by changing the leftmost unbracketed 2 in
b = e_1(b), namely v;,, to 1. On the other hand, using the subword of v in b contain-
ing unbracketed letters as described in the preceding paragraph, e;(b) changes the
leftmost unbracketed 2 in b, namely vj,, into a 1. We still have v; = 2 and v;, = 1 af-
ter the change, so that e_1(e1(b)) is defined, with the leftmost 2 in e;(b), namely vy,
being changed into 1 under e_;. As the changes introduced in b to form e_q(e; (b))
are the same as in those of ej(e_1 (b)), we conclude that ej(e_1(b)) = e_1(e1(b)),
thereby proving the final relation. O

Lemma 2.6. Let b € B®Y. The following holds:

(1)

(2)

3)

If p2(b), p—1(b) > 0, we have p2(b) = p2(f-1(b)) — 1, £2(b) = e2(f-1(b)) and
faf-1(b) = f-1f2(D).

If p2(b) = 0 and p_1(b) > 0, we have either
(a) p2(f-1(b)) =1 and e2(b) = e2(f-1(b)), or
(b

) ealf1(6)) =0 and ea(5) = e2(f (b)) + 1

If e5(b),e—1(b) > 0, we have either

(a) e2(e-1(b)) = e2(b) + 1, 2(b) = @2(e-1(b)) = 0, or
(b) ea(e-1(b)) = e2(b), <P2(b) = @2(e-1(b)) + 1, and

6_162(()) = 626_1(b).
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Proof. We prove each part separately.

(1)

Assume that ¢a(b),p_1(b) > 0, so that fo(b) and f_1(b) are both nonzero. Let
b = f_1(b) and V" = fo(b).

By the signature rule, ¢9(b) is the number of unbracketed 2 entries in the 2,3-
bracketing of b. Since ¢o(b) > 0, there exists a rightmost unbracketed 2, say b;. As
in Remark 2.4 ¥’ = f_1(b) is formed by changing the leftmost 1, say b;, to b, = 2,
where b; is the leftmost of all 1 and 2 entries (so in particular ¢ < j).

Since p_1(b) > 0, every 2 must be to the right of b;. Assume that there is a 3 left
of b; bracketed with a 2 to the right of b;, and let by, - - - bs, by, -+ - b, = 372" be the
subsequence of all 3 and 2 entries bracketed with each other for which s; < ¢ and
i < t, for all k. Then in b, we have that b) brackets with b} rather than b} , and
by, _, brackets with b , and so on, leaving b; a new unbracketed 2. Thus we always
have p2(b') = ¢2(b) + 1. Furthermore, since the number of unbracketed 3 entries
remains unchanged, we have e2(b) = e2(f-1(b)).

For the commutativity relation, note that since 5 > i, so b} = 2 is still the rightmost
unbracketed 2 in &’ and b} = 1 is the leftmost 1 in b” without a 2 to the left of b.
Thus both fa(f-1(b)) and f_1(f2(b)) are formed by changing b; to 2 and b; to 3.
Hence

fa(f-1(0)) = f-1(f2(b))

as desired.

Assume ¢3(b) = 0 and p_1(b) > 0, so that b’ = f_1(b) is defined but f2(b) is not.
Then there is an entry b; = 1 with no 1 or 2 left of it that changes to 2 to form ¥'.
There are also no unbracketed 2 entries in the 2,3 bracketing.

We consider two cases. First, suppose that every 3 to the left of b; in b is bracketed
with some 2 to its right. Then in b’ with b} = 2, the bracketed pairs for the entries
b, = 3 to the left of b] shift left as in part (1) above, leaving a new unbracketed 2 and
exactly the same number of unbracketed 3 entries. Thus 2 (b') = 1 and e5(b') = e3(b)
in this case.

If instead there is an unbracketed 3 to the left of b;, then this 3 becomes bracketed
with a 2 (after the same shift in bracketed pairs) and we have @o(b’') = 0 and
eo(b') = e9(b) — 1, as desired.

Suppose e2(b),e_1(b) > 0. Then the leftmost 1 or 2 in b is b; = 2 for some ¢, and
b :=e_1(b) is formed by changing b; to 1. Since ez (b) is defined, there also exists a
leftmost unbracketed 3, say b; = 3.

We consider two cases. First suppose @2(b) = 0, meaning that every 2 is
bracketed in the 2,3-bracketing of b. Then in particular b; is bracketed; let
bsy -+ bs, biby, -+ by, = 372" be the subsequence consisting of all bracketed 3’s
(bs;) to the left of b; along with the entries they are bracketed with (b, _, where

to = 4). Then after lowering b; to 1 to form V', we have that b, brackets with b}
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for i > 2, and b, is an unbracketed 3. All other bracketed pairs are the same as
in b, so there is only one more 3 among the unbracketed letters. It follows that
62([)/) = SQ(b) +1 and gDz(b/) = (pz(b) =0.

For the second case, suppose pa(b) > 0. Then there is some unbracketed 2 in b; let
br be the leftmost unbracketed 2. Note that k > ¢ because b; is the leftmost 2, and
note also that k < j because b; is the leftmost unbracketed 3. Thus i < j.

Now, lowering b; to 1 to form b results in shifting the bracketing as in the cases
above, which makes 0}, be bracketed (and all other bracketings the same). Thus
there is one less unbracketed 2 in b" as b, and the same number of unbracketed 3’s. It
follows that e2(b’) = €2(b) and 2(b') = 2(b) — 1. Furthermore, b’ is still the leftmost
unbracketed 3 in &', and so both e_jes(b) and eze_1(b) are formed by changing b; to
1 and b; to 2. The result follows. O

2.3. Explicit description of f_; and e_;

In this section, we give explicit descriptions of ¢_;(b), e_;(b), f_;b, and e_;b for
J-highest-weight elements b € B®¢ for certain J C Iy (see Proposition 2.9 and Theo-
rems 2.12 and 2.16). We will need these results in Section 4 when we characterize certain
graphs on the type A components of the queer supercrystal.

Lemma 2.7. Let i € Iy and b € B®* be {1,2,...,i — 1}-highest weight. If the first letter
in the (i,i+ 1)-subword of b is i+ 1, then e_;(b) = 1.

Proof. The statement is true for ¢ = 1 by Remark 2.4. Now suppose that by induction
on ¢ the statement of the lemma is true for 1,2,...,7 — 1. By Lemma 2.2, we have
e_i = 8;-18;6_(;—1)5:8;—1. Let u = i + 1 be the leftmost 7 + 1 in b and v = 7 be the
leftmost ¢ in b. By assumption, u appears to the left of v and hence v is bracketed in
the (¢,i+ 1)-bracketing. Since by assumption b is {1,2,...,7 — 1}-highest weight, in the
(i — 1,4)-bracketing there are no unbracketed 7 and s;_; raises all unbracketed i — 1 to i.
In particular, all 7 — 1 to the left of v are raised to 7 since v is the leftmost 4. In turn, s;
acts on unbracketed ¢ and i+ 1 in the (4,7 + 1)-bracketing. Since v is bracketed and there
are no ¢ — 1 to the left of v, the first letter in the (i — 1,4)-subword of s;s;_1(b) is . Also,
58i—1(b) is {1,2,...,i — 2}-highest weight. Hence by induction e_(;_q(sisi—1(b)) = 1,
which proves that e_;(b) =1. O

The next definition below will be used heavily throughout this section.

Definition 2.8. The initial k-sequence of a word b = by ...b, € B®, if it exists, is the
sequence of letters by, , by, _,,...,by, , where by, is the leftmost k and by, is the leftmost

J to the right of b, ,, forall 1 <j <k.

Let i € Iy and b € B® be {1,2,...,i}-highest weight with wt(b);11 > 0, where
wt(b)i41 is the (i + 1)-st entry in wt(b) € Zggl. Then note that b has an initial (i + 1)-
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sequence, say b bp.s--.,bp,. Also let by, ,bq,_,,...,bg be the initial i-sequence of b.

Pit1)
Note that p;+1 < p; < -+ < p1 and ¢; < ¢;—1 < -+ < @1 by the definition of initial

sequence. Furthermore either ¢; = p; or ¢; < pj41 for all 1 < j <.

Proposition 2.9. Let b € B®* be {1,2,...,i}-highest weight for i € Iy. Then:

(a) e—;(b) =1 if and only if wt(b)i41 > 0 and p; = q; for at least one j € {1,2,...,i}.
(b) w—i(b) = 1 if and only if wt(b); > 0 and either wt(b);x1 = 0 or p; # q; for all
je{l,2,...,i}.

Example 2.10. Take b = 1331242312111 and i = 3. Then ps = 6,p3 = 8, ps = 10,p; = 11
and g3 = 2,q2 = 5,1 = 9. We indicate the chosen letters p; by underlines and g;
by overlines: b = 1331242312111. Since no letter has a both an overline and underline
(meaning p; # g; for all j), we have ¢_3(b) = 1.

Proof of Proposition 2.9. Let us first prove claim (a) for ¢ = 1. If wt(b)2 = 0, then
certainly €_1(b) = 0 since by definition e_; changes a 2 into a 1. If wt(b)s > 0, then
q1 is the position of the leftmost 1, po is the position of the leftmost 2, and p; is the
position of the first 1 after this 2. If p; = ¢1, there is no 1 to the left of the leftmost
2. By definition in this case e_1(b) = 1. If on the other hand ¢; < p2, the leftmost 1 is
before the leftmost 2 and hence e_1(b) = 0. This proves the claim.

Now assume by induction that claim (a) is true for up to i — 1. If wt(b);41 = 0, then
e_;(b) = 0 since e_; changes the weight by the simple root «;. Otherwise assume that
Wt(b)prl > 0.

If p; = q;, the first letter ¢ or ¢ + 1 is the ¢ + 1 in position p;+1 < p; = ¢;. Hence by
Lemma 2.7 we have e_;(b) = 1.

If ¢; < p; (and hence automatically ¢; < p;11), recall that by Lemma 2.2 we have
e_; = 8;_15i€_(j—1)5iSi—1. The operator s;_1 leaves the letter i — 1 in positions ¢;_1 and
p;—1 unchanged since these letters are bracketed with ¢ in positions ¢; and p;, respectively.
All 4 — 1 to the left of position ¢;_; are unbracketed and since b is {1,2,...,4}-highest
weight, s;_1 changes all of these i — 1 to ¢. In s;_1b there are possibly new letters ¢
between positions p;y1 and p;; the ¢ + 1 in position p;+1 brackets with the leftmost of
these in position p; 11 < p; < p;. The operator s; on s;_1b changes all letters i to the left of
position p} to i+1. Hence wt(s;8;,-1b); > 0, 8;8,-1bis {1,2,...,i—1}-highest weight with
sequences with respect to i —1 given by p, > p;—1 > -+ >prand ¢;—1 > gi—2 > -+ > ¢1.
Claim (a) now follows by induction on i.

If bis {1,2,...,4i}-highest weight and wt(b); > 0, we must have ¢_;(b) + e_;(b) = 1.
Hence ¢_;(b) = 1 precisely when e_;(b) = 0, proving (b). O

Recall that in a queer supercrystal B an element b € B is highest-weight if e;(b) = 0
for all i € Ip U I_, where Iy = {1,2,...,n} and I_ = {-1,-2,..., —n}.
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Proposition 2.11. [9, Proposition 1.13] Let b € B®* be highest weight. Then wt(b) is a
strict partition.

Proof. Let b be highest weight and suppose that wt(b); = wt(b);1 for some 4, meaning
that b contains the same number of letters ¢ and i + 1. Since all letters ¢ and i + 1 must
be bracketed in the (4,7 + 1)-bracketing, this means that the first letter in the (i,7 + 1)-
subword of b is the letter ¢ + 1. Then by Lemma 2.7, £_;(b) = 1, which means that b
is not highest weight. Hence wt(b); > wt(b);41 for all ¢, implying that wt(b) is a strict
partition. O

Next, we provide an explicit description of f_;(b) for i € Iy, when b is {1,2,...,i}-
highest weight. Recall that the sequence by, ,bq, _,,...,bq is the leftmost sequence of
letters 4,4 — 1,...,1 from left to right. Set r; = ¢; and recursively define r; < r;_; for
1 < j < 7 to be maximal such that brj = j. Note that by definition ¢; < r;. Let 1 <k <4
be maximal such that ¢ = 7.

Theorem 2.12. Let b € B®* be {1,2,...,i}-highest weight for i € Iy and ¢_;(b) = 1
(see Proposition 2.9). Then f_;(b) is obtained from b by changing by, = j to j — 1 for
J=ti—1,...;k+1andb., =jtoj+1 forj=ii—1,... k.

Example 2.13. Let us continue Example 2.10 with b = 1331242312111 and ¢ = 3. We
overline by, and underline b,, so that b = 1331242312111. From this we read off g3 =
2@ =5,q1=9,73 =3, =T,11 =9, k =1 and f_3(b) = 1241143322111.

As another example, take b = 545423321211 in the q(6)-crystal B2 and i = 5. Again,
we overline by, and underline b,,, so that b = 545423321211. This means that ¢5 = 1,
g1 =2,q3 =6, =8 ¢ =9 1r5=3,r4 =4, r3="7,1r, =81 =9, k=2, and
F_5(b) = 436522431211,

Proof of Theorem 2.12. We prove the claim by induction on . For ¢ = 1, since by as-
sumption ¢_;(b) = 1, the first letter in the subword of b of letters in {1,2} is a 1. This
1 is in position ¢; = r; and changes to 2, which proves the claim.

Now assume that the claim is true for f_1,..., f_(;_1). Recall that by Lemma 2.2 we
have f_; = s;_15:f_(i—1)8isi—1. Let b € B®¢ be {1,2,...,i}-highest weight. Applying
s;—1 to b changes all unbracketed ¢ — 1 in the (i — 1,4)-bracketing to i. Subsequently
applying s; changes all unbracketed ¢ in the (7,7 + 1)-bracketing to ¢+ 1. It is not hard to
see that the resulting word is {1, ...,7— 1}-highest weight, so we can apply the inductive
hypothesis in order to apply f_(;_1)-.

In the notation for Proposition 2.9, we have either wt(b);+1 = 0 or ¢; < p;+1 and
gi—1 < p; since ¢_;(b) = 1. In particular this means that if p,y; is defined and p; 11 <
qi—1, no letter ¢ lies between p; 1 and ¢;—; since otherwise p; < ¢;—1 contradicting the
requirement ¢;_1 < p;. This implies that all ¢ — 1 and ¢ in the positions to the left of
position ¢;_1 become i+ 1 when applying s;s;—1. The letter ¢ — 1 in position ¢;_; remains
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1 — 1 under s;s;_1 since it is bracketed with an i. Denote the sequences for f—(i—l) in
$isi—1bby ¢i_q,...,qi and r,_,,...,r] and call &’ the maximal index such that g}, = r},.
By the above arguments, we have ¢;_; = ¢;—1. We need to distinguish three cases given
by k=1t:i—1and k <i—1.

Case k = i: The claim is that the ¢ in position g; changes to ¢+ 1. Since ¢; = r; for k = ¢,
there is only one 7 to the left of the s — 1 in position r;_1. Since ¢;_1 < 7;_1, this implies
that all ¢ — 1 between positions ¢;—1 and ;1 (and including r;_1) change to 7 + 1 when
applying s;s;_1. This means that &’ =i — 1 and by induction f_(;_;y changes the i — 1
in position ¢;_1 to ¢. Hence under s;_1s;, the letter in position ¢; remains an ¢ 4+ 1 and
all other letters ¢ + 1 and ¢ return to their original value. This proves the claim.

Case k = i — 1: In this case, we have at least two i to the left of position ¢;—1 = r;_1
and there is no ¢ — 1 between positions ¢;_1 and r;_o > ¢;_s. Since s;s;_1 lifts all i to
the left of position ¢;_1 to i + 1, but leaves the ¢ — 1 in position ¢;_; and possible i — 2
in positions ¢;_» and r;_», we have k&’ = i — 1. Hence by induction f_(;_1) changes the
i — 1 in position ¢j_; = ¢;—1 to i. When applying s;_15; to f_(;_1)sis;-1b, the i + 1 in
position r; remains an ¢ + 1 since it is now bracketed with the ¢ in position g;_; or an ¢
to its left. In addition, the ¢ + 1 in position ¢; becomes an i — 1 since the i in position
¢i—1 is now bracketed with the previous bracketing partner of letter in position ¢; in b,
causing it to drop to ¢ — 1. This proves the claim for k =7 — 1.

Case k < ¢—1: In this case ¢; < r; and ¢;_1 < r;_1, so that there are at least two ¢ to the
left of position ;1 and at least two 7 — 1 between positions ¢; and 7;_o > ¢;_2. By the
arguments above, all i to the left of position ¢;_1 become i+1 under s;s;_1, the letter i—1
in position ¢;—1 remains i —1 and ¢j_; = ¢;—1 < ri_; < r;_1. Also, since s;s;_1 leaves all
letters ¢ — 2 and smaller untouched, we have q} = q; and r; =r;for 1 <j <i—1. Hence
by induction f_(;_1y changes the letter in position ¢;—1 = ¢;_; to i — 2 and the letter in
position ;_; to ¢, in addition to the letters in positions g¢;, r; for j < i—1. Next applying
si—15; changes the letter in position r;_; to ¢ since it is now bracketed with the ¢ — 1 in
position 7;_5. The letters ¢ + 1 in positions }_; < p < r;_; are changed back to i — 1
since they are not bracketed. If 7;_; < r;_1, then the letter ¢ in position r;_; changes to
i — 1 since it is also not bracketed. The letter in position ¢;—1 = ¢,_; remains ¢ — 2. The
letter i 4 1 in position r; is bracketed with the 4 in position 7;_; in f_;_1ys:s;—1b and
hence remains ¢ + 1 in si,lsif,(i,l)sisi,lb. The letters ¢ + 1 between positions ¢; and
r; in f_(i_l)sisi_lb return to their original value ¢ under s;_1s; since they are bracketed
with ¢ — 1 to the right. The letter in position g; lost its bracketing partner since the ¢ — 1
in position ¢;_1 became ¢ — 2. Hence the letter in position ¢; becomes i — 1, proving the
claim. 0O

Corollary 2.14. Let b € B! be J-highest weight for {1,2,...,i} CJ C Iy and p_;(b) =1
for some i € Iy. Then:

(1) Either f_;(b) = fi(b) or f_;(b) is J-highest weight.
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(2) f—i(b) is In-highest weight only if b= fiv1fire - fn_1u for somei <h <n+1 and
u a Ig-highest weight element.

Proof. We begin by proving (1). By Theorem 2.12, in f_;(b) the letters by, are changed
from j to j — 1 for j = 4,0 —1,...,k + 1 and b,, are changed from j to j + 1 for
j=1t,5—1,...,k. Hence f_;(b) is not J-highest weight if and only if either there is an
i+ 1 to the left of position g; that is no longer bracketed with an i or the letter £+ 1 in
position 7 is no longer bracketed with a k.

First assume that k& < 4. Since k is maximal such that q; = rj, there must be at least
two k 4 1 to the left of position g in b, one in position gx41 and one in position rg41.
Since b is J-highest weight, both of these k+ 1 must be bracketed with a k to their right
in b, which implies that there is a k to the right of position ¢ that is bracketed with the
k+ 1 in position g1 in b. In f_;(b), the letter £+ 1 in position gi41 changes to k, and
hence the new k 4 1 in position g = rj is bracketed with the k to its right.

Since by assumption ¢_;(b) = 1, we have by Proposition 2.9 that either wt(b);+; =0
(in which case there cannot be an i + 1 to the left of position g; in b) or p; # g, for all
j €{1,2,...,i}. The condition p; # ¢; implies that ¢; < p;11, so that there cannot be
a letter ¢ + 1 to the left of position ¢;. This proves that f_;(b) is J-highest weight when
k <.

Next assume that k£ = 4. In this case f_;(b) differs from b by changing the letter ¢ in
position ¢; to ¢ + 1. If there is a letter i to the right of position ¢; that is not bracketed
with a letter ¢ 4+ 1, then the new ¢ 4+ 1 in position ¢; will bracket with this ¢ in f_;(b)
(or to the left of this 7) and hence f_;(b) is J-highest weight. Otherwise, there is no
letter ¢ to the right of position g; in b that is not bracketed with an 7 + 1 and therefore
fi(b) = f—;(b). This proves claim (1).

The above arguments also show that f_;(b) can only be Ip-highest weight if either
b is Ip-highest weight or €;(b) = 0 for j € Iy \ {i + 1} and the new letter ¢ + 1 in
position r; in f_;(b) is bracketed with a letter i +2 in b. Such a b is precisely of the form
b= fiy1fit2- - fu—1u proving claim (2). O

Next, we describe e_; on a {1,2,...,i}-highest weight element b. We again use the

initial (i 4 1)-sequence by, ,,by,, ..., by, in b.
We also need the notion of cyclically scanning leftwards for a letter ¢ starting at
an entry b;. By this we mean choosing the rightmost ¢ to the left of b;, if it exists,

or else the rightmost ¢ in the entire word (i.e., “wrapping around” the edge of the

word).
We define the k-bracketed entries of a word b as follows. Every k in b is k-bracketed,
and for j = k—1,k—2,...,1, we recursively determine which j’s in b are k-bracketed by

considering the subword of only the k-bracketed (j + 1)’s and all j’s, and performing an
ordinary crystal bracketing on this subword. The j’s that are bracketed in this process
are the k-bracketed j’s.
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Example 2.15. In the word
142334122311322111,

to obtain the 4-bracketed letters we first mark all 4’s as 4-bracketed:
142334122311322111

and then bracket these with 3’s and mark the bracketed 3’s as being 4-bracketed:
142334122311322111.

We then consider only the boldface 3’s and all the 2’s and bracket them to obtain the
4-bracketed 2’s:

142334122311322111

Finally we bracket these boldface 2’s with the 1’s to obtain:
142334122311322111

The boldface letters above are precisely the 4-bracketed letters in this word.

We now have the tools to describe the application of e_; to an {1,2,...,i}-highest
weight word.

Theorem 2.16. Let b € B®¢ be {1,2,...,i}-highest weight for i € Iy and ¢_;(b) = 1 (see
Proposition 2.9). Let by, ,,...,by, be the initial (i + 1)-sequence of b. Then e_;(b) is
obtained from b by the following algorithm:

o Change by, from j to j—1 for j=1i+1,i,...,3,2 to form a word M,

o COyclically scan left in ¢V starting just to the left of position py for a 1 that is not
i-bracketed in ¢V . Change that 1 to 2 to form a word ¢®. In ¢®), continue cyclically
scanning from just to the left of the previously changed entry for a 2 that is not i-
bracketed in ¢, and change it to 3. Continue this process until an i — 1 changes
into an i; the resulting word ¢ is e_;(b).

Proof. We will prove this by induction on ¢. For ¢ = 1 the algorithm simply changes the
leftmost 2 to a 1 as required, since the second step is vacuous in this case.

Assume the statement is true for i and let b € B®* be {1,2,...,4+ 1}-highest weight.
Recall that e_¢;41) = sisir1€_38;415; by Lemma 2.2. We will analyze each step of ap-
plying s;s;+1€—;S;+15; to b and show that it matches the desired algorithm.

Let by, bp,1sbpis- - bpy, by, be the initial (i 4 2)-sequence of b. Since e;b = 0,
applying s; to b simply changes all unbracketed ¢ entries in the (4,47 + 1)-pairing to ¢ + 1.
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Note that by, itself must be bracketed with an ¢ + 1 in b, for if it is not then b, ,
paired with an earlier ¢ to its right, contradicting the definition of b,,. Thus b, is still ¢

is

in s;b. Note also that s;b still satisfies e;115;6 = 0.
Let b’ = s;115;b. Note that any 7 + 1 to the left of b
an i+ 2 since b

piio i 8;b is not bracketed with
piso 18 the leftmost i 4 2. Thus every i+ 1 left of b, ., (including those i’s
that changed to ¢ + 1 from b) changes to i + 2 to form b', along with any other unpaired
i+ 1. Let by,,, be the leftmost ¢ + 1 between by, , and by, ,
equal to by, , or was an i in b. Furthermore, by, , is still 4 + 1 in ¥’ = s;415;b since it
must be paired with either by, ., itself or some i + 2 to the right of b, ,,.

Now consider e_;b’. By the induction hypothesis, this can be computed by first low-

in s;0. Then by, , is either

) pl
word ¢ (U, then cyclically raising some non-i-bracketed entries 1,2,3,...,7 — 1 in order

ering the entries of the initial (i + 1)-sequence b;§+1,b;2 ,..., b, appropriately to form a

to form words ¢ @, ..., ¢ . We will show that p; = pj for j < i, and that the same
entries 1,2,...,7 — 1 are changed as would be changed in the e_(; ) algorithm applied
to b.

For the first claim, it suffices to show that p; = p;. Note that b;’§+1 may be to the
left of by, ,, but it is to the right of b, ,
done, so suppose piy2 < pi ; < pi+1. Assume by contradiction that there is an entry
b, = i between positions pj ; and p; in &'. Then we further have pj,; < a < p;41 by
the definition of by, and . It follows that b, is an 7 in b that is bracketed with an i + 1,
since applying s; kept it an ¢. But then by the definition of p;1, the entry b, = ¢ + 1

by the above analysis. If p;,, = p;;1 we are

that brackets with b, in b is to the left of position p;;2. Thus bp§+1 itself was a bracketed
i in b, a contradiction. Thus p} = p;.

Let ¢l be the word in the definition of e_(i+1) acting on b and ¢’ (@) the word in the
definition of e_; on b'. Similarly, let ¢; (resp. ;) be the position of the chosen j in c)
(resp. ¢ 7)) that is raised to j + 1. We now wish to show that, for any j < i — 1, we have
t, =t;.

We first show this for j = 1. Note that since py = pf (assuming ¢ > 2, since otherwise
we are done) the same entries are equal to 1 in both ¢ = ¢(® and ¢ = ¢ (1. Moreover,
p1 = p), so we start searching cyclically left for a 1 in the same position in both. It
therefore suffices to show that an entry ¢, = 1 is (¢ + 1)-bracketed in ¢ if and only if
¢, = 1 is i-bracketed in ¢’. Note that the ¢’s in ¢ that are bracketed with ¢ + 1’s are
precisely either:

4 Cp§+1’ or

e an 7 that was bracketed with an 7 + 1 in b.

But since ¢’ is formed by applying s; to b (which changes all unbracketed i’s to i + 1’s),
then s;41 (which does not change any i’s), then lowering certain entries, where bpéﬂ is
the only one that becomes a new i, the above characterization gives precisely all i’s in
. Since the 1,2,...,7 — 1 entries are the same in both ¢ and ¢, it follows that an entry
is (i + 1)-bracketed in ¢ if and only if it is i-bracketed in ¢'.
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It now follows that ¢; = ¢}, and inductively we can conclude that t; = ¢t} for all
j < i— 1. Thus if we apply s;s;41 to ¢ to obtain e_(i+1)b, the entries less than or
equal to i —1 match those of ¢(it1) | the result of the algorithm applied to b. Furthermore,
since s;, s;+1, and e_; only change letters less than or equal to i + 2, the entries larger
than 7 + 2 also match.

It remains to consider the entries equal to i, i+ 1, and 7 + 2. For ¢ + 2, the application
of s;11 to s;b changes all unbracketed i + 1 entries in s;b to i 4+ 2, and e_; changes the
single entry b;’§+1 =i+ 1 to i and otherwise does not affect the ¢ + 1 or ¢ + 2 entries. In
the (i+1,i+2)-bracketing in ', b;HZ is the leftmost bracketed ¢+ 2, and b;’§+1 is the first
i+ 1 after it, so removing b;’§+1 from the (i + 1,7+ 2)-subword leaves the i + 2 in position
pit2 unbracketed, with all other bracketed (i 4+ 2)’s remaining bracketed. It follows that
applying s;+1 to e_;s;4+15;b lowers the ¢+ 2 in position p;42 to i+ 1, along with any ¢+ 2
that was raised in the first s;11 step. Therefore, the i + 2 entries in s;11e_;b’, and hence
in s;8,016_4b' = e_(i+1)b, match those in the output of the algorithm.

Finally, we consider the (4,7 + 1)-subwords of the words in question. We first analyze
how the (i,i + 1)-subword of w := s;b differs from that of w’ := s;11e_;s;415;b. By
inspecting the above analysis, we see that w’ differs from w in the following four ways:

o wy, ,=i+1lisanewi+1inthe (i,i+ 1)-subword in w’ whereas wy,,, =i+ 2 was
not in the subword in w.
! . .
o w = ¢ whereas w,, =i+ 1.
Pit1 P(it1) +
e w, =1i—1isno longer in the subword whereas wj, =4 was an i in the subword.
e wj, , =iisamnew i in the subword, whereas w;, , =i — 1.

Note that the last two items above may coincide and cancel each other out if ¢,_1 = p;.
We now apply s; to both subwords, and analyze how s;w’ = e_(;;1)b differs from

s;iw = b in the (4,7 + 1)-subword. In particular, we will show it is the same as how i)
differs from b. Note that the (i,7 + 1)-subword in ¢t is formed from that of b by
making the following changes:

o A new i+ 1 is inserted in position piia (bp,,, =i + 2 whereas c,(,ﬁzl) =i+1).

o The i+ 1 in position p;4+; is lowered to q.

e The ¢ in position p; is removed.

e An i is inserted in position ¢;_;.

e In the current subword, look for the first unbracketed i cyclically left of position ¢;_1;

call this position t; and change this ¢ to ¢ + 1.

/
Pi+2
for if there were, this would contradict the definition of by, , . It follows that w;, , =i+1

First, note that there are no 7 + 1 entries between w =14+ 1and w;4+1 =1 in W/,

is bracketed with an 4 to its right in w’, so in s;w’ = e_(;4.1)b, the entry in position p;; o
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remains i + 1. So this is one position in which it differs from b, since b =i+2,s0it

Pit2
matches ¢t in this position.

Note also that in w, all #’s are bracketed with (i + 1)’s. Applying s; to w simply
changes the unbracketed ¢ + 1’s back to ¢’s to form b. We now consider two cases.

Case 1: Suppose p; | # pit1-

We know that s;w and s;w’ match b and ¢+ respectively, in position Dit+2 by the
above analysis. For position p;, ;, note that it is an unbracketed 7 +1 in w, so it changes
to ¢ in s;w. It is a bracketed ¢ in w’ since it was the first unbracketed ¢ + 1 to the right
of position p;11 in w, so it stays ¢ in s;w’. Thus they are both equal to ¢ in the results,
matching b and ¢V, which do not differ in this entry.

We now wish to show that the ¢ + 1 in position p;y; is unbracketed in w’ unless it is
bracketed via the insertion of the 7 in position ¢;_;. In other words, if we make all the
changes that define w’ from w besides the ¢ in position ¢;_1, we claim that position p;11
is an unbracketed ¢ + 1. Indeed, before removing 4 in position p;, this ¢ + 1 in position
Di+1 is the leftmost ¢+ 1 that is bracketed with an entry weakly right of position p;, since
the position p;;» entry is bracketed with some i weakly left of position pj ;. It follows

that removing the ¢ in position p; leaves b, , , unbracketed, and otherwise all other i +1’s

it
are bracketed if and only if they are bracketed in w.

Furthermore, the combination of lowering both p;o and pj,; to i + 1 and i and
removing the ¢ in position p; leaves all ¢’s still bracketed, as they are in w.

Finally, when we put back the new ¢ in position ¢;_; to form w’, there are two subcases:
first suppose inserting this ¢ makes some unbracketed 7 + 1 to its left become bracketed.
Then by the above analysis, this must have been the position of the first unbracketed ¢
in ¢ to the left of ¢;_1, and this is position ¢;, which remains i + 1 in s;w’. Applying s;
to w’ then turns the remaining unbracketed i + 1 entries back to ¢ and matches ¢(*+1).
Otherwise, if inserting the 7 in position ¢;_; does not bracket any i + 1 to the left, it
creates an unbracketed 7 in the word, and so the rightmost unbracketed ¢ + 1 also will
not change under applying s; to w’. This corresponds to the first unbracketed 7 cyclically
left of position ¢;_; in ¢, and we are done as before.

Case 2: Suppose pj, | = pit1-

In this case, the analysis matches the above except for the following steps: first, since
position p;11 contains a bracketed ¢ + 1 in w, lowering it to ¢ may make some ¢ to its
right become unbracketed. (The new ¢ in position p;11 itself is bracketed due to the new
1+ 1 in position p; o as before.)

Then, removing the ¢ in position p; will make all i’s bracketed once again, since b,
was the first ¢ to the right of position p;+1 in b and hence in w. So once again, at the
step before inserting t;_1, all i’s are bracketed, and an ¢ + 1 in that matches one in w is
bracketed if and only if it is bracketed in the modified word. Thus inserting ¢;_; has the

same effect as above, and we are done. O
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We now show that the output of e_; on a {1,2,...,i}-highest weight element is itself
{1,2,...,i}-highest weight if and only if there is no “cycling around the edge” in the
cycling step of Theorem 2.16.

Proposition 2.17. Let b € B® be {1,2,...,i}-highest weight for i € Iy, with _;(b) = 1.
Let t1,...,t;_1 be the positions of the 1,2,...,1—1 that change to 2,3, ..., 1 respectively
in the second step of the computation of e_;(b) (see Theorem 2.16). Also define to = p;.
Then e_;(b) is {1,2,...,i}-highest weight if and only if t;—1 < t;—o < --- <t; <tp.

Proof. First, suppose that it is not the case that ¢, 1 < t;_ o < --- <ty;let 1 <k <4
be the smallest index for which ¢;_1 < tz, where {5 = p;. Then in the algorithm for
computing e_;(b), after changing a k — 1 to k in position t;_1, we search cyclically left
for a k that is not i-bracketed to find position tj. Since tx_1 < t, we cycle around the
end of the word, so t; is the position of the rightmost k& that is not i-bracketed.

Any k to the right of t; is i-bracketed, and we claim that the k+ 1’s that they bracket
with in the i-bracketing are all to the right of position ¢; as well. Indeed, if one such
k + 1 was to the left of ¢, then it should bracket with the k in position ¢; instead, a
contradiction. Thus the suffix starting at position t; + 1 has at least as many k + 1’s as
k’s.

In particular, just after changing each b, to r —1 in the first step of the algorithm,
the resulting word c is still highest weight. It follows that, just after raising ¢;_; to k, the
resulting word is still {k}-highest weight. It follows that the suffix starting at position
tr + 1 at this step has exactly as many k + 1’s as k’s.

Now, if tx11 < tg, changing ¢ to k + 1 and then changing tx11 to k + 2 leaves the
suffix starting at ¢ being not {k}-highest weight in the final word. Thus we are done in
this case.

Otherwise, suppose tx11 also cycles, so that t;1 > t; and ti41 is the new position
of the rightmost k + 1 that is not i-bracketed after changing ¢ to k 4+ 1. Changing ¢4
to k + 2 could potentially make the word {k}-highest weight again. In fact, suppose for
contradiction that, just after changing tx_1 to k, there were a k+1 between position t;_1
and ¢ that makes its suffix not {k}-highest weight. Then some entry k + 1 in position
p < ti brackets with the k in position ¢, and since position tj is not i-bracketed, this
k + 1 is not i-bracketed either. Thus after changing ¢; to k + 1, the k£ + 1 in position p
is still not i-bracketed and it would be picked up in the search for t;1, a contradiction
to the assumption that tx41 > t.

We now, however, can repeat the argument with ¢, and the (k+ 1,k + 2)-subword,
and so on until we either reach the last step or a non-cycling step, say with index £. At
this point we conclude that the final word e_;(b) is not {¢}-highest weight.

It follows that if ¢5_1 < ¢ for some k, then e_;(b) is not {1,2,...,4}-highest weight.

For the converse, we wish to show that if ¢;_1 < t;—2 < -+ < t1 < tp then e_;(b)
remains highest weight. Notice that by construction we must have t;_1 < py for all k < 3.
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We first show that the (1,2)-subword remains highest weight in e_;(b) if to < ¢1. If
i = 1, then the first 2 simply changes to a 1 and so it is still {1}-highest weight. So
suppose ¢ > 2.

The changes that affect the (1, 2)-subword are that b,, changes from 3 to 2, by, changes
from 2 to 1, by, changes from 1 to 2, and (if ¢ > 3) b, changes from 2 to 3. Note that
after the first two of these changes, any suffix of the word starting between positions
ps and py has at least two more 1’s than 2’s (due to the change in b, starting from a
highest weight word) and any suffix starting weakly before position p3 has at least one
more 1 than 2.

If ¢ = 2, by, is an unbracketed 1, so the suffixes before it must in fact have at least
two more 1’s than 2’s even if ¢; < p3. Thus changing b;, to 2 leaves the word highest
weight, and we are done in this case.

If 7 > 3, by, is a 1 that is not i-bracketed to the left of b,,, and b;, is the first 2 that
is not ¢-bracketed to the left of ¢; (and necessarily to the left of by, ). It follows that,
after changing them to 2 and 3 respectively, the suffixes all have at least as many 1’s as
2’s except possibly those starting between position 5 and ¢;. Assume to the contrary
that there is a suffix with more 2’s than 1’s starting between to and t¢1; the rightmost
such starts at another entry b, = 2 between ¢, and 1, and this 2 must be i-bracketed
by the definition of ¢5. But then since b;, is not ¢-bracketed, b, must be bracketed with
a 1 between b, and by, ; hence the suffix starting at b, cannot have a higher difference
between 2’s and 1’s than the suffix starting at b;, after its change, a contradiction. It
follows that the (1,2)-subword remains highest weight.

Now consider the (k,k + 1)-subword for some k < ¢ — 1. This is changed by
bpriar Oprsss bp,, changing from k+2to k+1, k+1 to k, and k to k — 1 respectively, and
then by, _,, by, , by, ., changing from k —1to k, k to k+ 1, k + 1 to k + 2 respectively.

If we first change b, to k — 1, then we have removed a k from the subword, but since
there are no k entries between b and by, , the rightmost suffix that may become not
highest weight for k starts at by, _, pess from k+1 to k afterwards
keeps the (k, k + 1)-subword being {k}-highest weight, and in fact any suffix starting to
the left of by, ,
to k£ + 1, this adds a single k 4 1 to any suflix starting left of this position, so again the

Prk+1
itself. Thus changing b

at this point has at least one more k than k+1. Finally if we change by, ,,
word remains {k}-highest weight. Next, we change b;, , from k — 1 to k, which means
any suffix starting left of £;_; has at least one more k than k+ 1. The argument for what
happens after changing ) and tx+1 now is identical to that of the (1, 2)-subword above.

Finally, consider the (4,7 4 1)-subword. This is only affected by the changes to b,. ,,
by, and by, ,. The same argument as above shows that it stays {i}-highest weight after

changing b, , and by, and then changing b, , to i certainly keeps it {i}-highest weight

as well. This completes the proof. O

From the above proof, we immediately obtain the following corollary.
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Corollary 2.18. Let b € B®¢ be {1,2,...,i}-highest weight for i € Iy, with e_;(b) = 1.
Let t1,...,t;_1 be the positions of the 1,2,...,1—1 that change to 2,3, ..., 1 respectively
in the second step of the computation of e_;(b) (see Theorem 2.16). Then if e_;(b) is
not {1,2,...,i}-highest weight, the smallest index £ for which e_;(b) is not {£}-highest
weight is precisely the smallest index for which t;—1 < tg and ty1 <ty (where the second
inequality is assumed to be vacuously true if £ =i —1).

In other words, £ is the smallest index for which one needs to cycle to get from ty_4
to tg, but one does not need to cycle to get from ty to teyq.

Proof. The proof of Lemma 2.17 shows that e_;(b) is not {¢}-highest weight, and that
it is {k}-highest weight for k < € if t5_1 < tx < tg41 (ie., if tg and 41 both cycle). O

Remark 2.19. For any word v € B®*, we may combine Proposition 2.9 and Theorem 2.16
in order to algorithmically determine the highest weight element in the connected compo-
nent of the queer supercrystal containing v. In particular, we may first apply as many e;
operators as possible to obtain an Iy-highest weight word v’, then apply Proposition 2.9
to determine whether there is an e_; arrow that we may apply. We can then apply e_;
to v’ using Theorem 2.16 and repeat this process on the new word, and so on until we
have reached a highest weight word w for the queer supercrystal.

Since the operators e_; and e; determine graphs having unique highest weight elements
in each connected component [9, Theorem 1.14], this process will always terminate at the
highest weight word in a component. In particular, e_; and e; for i € {1,2,...,n} were
previously the only operators having a known direct combinatorial algorithm, which are
not by themselves sufficient to detect the unique highest weight elements. The algorithm
in Theorem 2.16 therefore allows us to bypass the computational difficulty of conjugating
e_1 by su,-

2.4. Relation among e_;

The main result of this section is Proposition 2.24, which provides relations between
e_; that do and do not yield a {1,2,...,i}-highest weight element when acting on an Iy-
highest weight element. This proposition will be used in Section 4 to deal with “by-pass
arrows” in the component graph G(C).

We require several technical lemmas about k-bracketed entries and the e_; operation
on highest weight words.

Lemma 2.20. Suppose b € B®* is {1,2,...,i}-highest weight and 1 < k < 4. If a letter
b =a in b="biby...by is k-bracketed, then b, is j-bracketed for all a < j < k.

Proof. We first show that if an entry a in b is (a+2)-bracketed, then it is (a+1)-bracketed;
for simplicity we set a = 1. Let v be the subword of b consisting of only the 2’s that are
bracketed with a 3 along with all the 1’s, and let v" be the subword consisting of all the
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1’s and 2’s. Then v’ can be formed from v by inserting some 2 letters. It therefore suffices
to show that any 1 that was bracketed in v is still bracketed after inserting a single 2.

Indeed, let vs = 2 and v, = 1 be a bracketed pair in v. Note that by the definition of
the ordinary crystal bracketing rule, the subword vy ... v, has exactly the same number
of 2’s as 1’s, all of them bracketed with some other letter in v, ...w,. Therefore, if we
insert a 2 to the left or right of this pair, then the pair (vs,v,) remains bracketed. If
instead we insert it between vy and v,, then the interval between vs; and v, contains
strictly more 2’s than 1’s, and so there is some entry v; between vs and v, for which the
subword v, - - - v, is tied; in other words, v, is now bracketed with some 2 to the right of
vs. Thus v, stays bracketed after inserting a 2, as desired.

Now, if b, = a is k-bracketed, then by the above reasoning it is also (k — 1)-bracketed,
since there are weakly more (k —1)’s available in this bracketing, and hence weakly more
(k — 2)’s available, and so on. The conclusion follows by induction. O

Lemma 2.21. Let b € B®* be {1,2,...,i}-highest weight and e_;(b) = 1. Let by, , ..., by,
be the initial (i 4 1)-sequence of b and c the word obtained by changing b,, from j to
j—1. Let k <14’ <. If b contains a sequence of letters k— 1,k —2,...,1 before position
p1 that is not i'-bracketed, then c contains a sequence of letters k — 1,k —2,...,1 before
position py that is not i'-bracketed.

Proof. Suppose that b contains a sequence S of letters K — 1,k — 2,...,1 in positions
Sk_1,...,s1 respectively, before position pi, that are not ¢’-bracketed; take S to be the
rightmost such sequence in the sense that it contains the rightmost 1 left of p; that is
not i’-bracketed, then the rightmost 2 that is not i’-bracketed before that, and so on.
Note that s; < p; implies that s; < ps by the definition of p;. Thus sy < s1 < p2 and so
sp < ps3, and so on, showing that s; < p;y1 for all j. Also note that the initial (¢ + 1)-
pis1s- -+ bp, is (i + 1)-bracketed, so that the letters by, ,...,b,, must also be
i’-bracketed by Lemma 2.20. Since k < ¢’ < 7, this means that the initial (i + 1)-sequence

sequence b

is disjoint from S and hence S remains unchanged in c.

We now form a sequence S’ from S that is not #’-bracketed in ¢ as follows. Consider the
largest entry j < ¢’ for which there exists a j between p; o and p;11. Then all bracketing
with higher letters remains the same in ¢, but the letter j between positions p;i2 and
pj+1 becomes bracketed with the letter j + 1 in position p; o in the i’-bracketing in c,
leaving the letter j in position p;j;1 to be an ¢’-unbracketed j. If s; < p; o (or otherwise
cs, does not become bracketed) we keep it in S’ and if pj 4o < s; < p;jy1 and it becomes
bracketed, we replace s; with the first i-unbracketed position s’ of a j in ¢ to the right
of s;, to choose the j for S’.

We now show that we can choose a j — 1 after this step to be in S’. If the j on the
previous step did not change, then we repeat this process for j— 1. If it did change, from
sj to an index s, note that if s;_1 < s then the previous j — 1 is now i'-bracketed
with s; in ¢ as well, so we also have to choose the next j — 1 to the right. Either way

/.

we replace s;_1 with the next ’-unbracketed j — 1, in position 51, if the j —1 became
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bracketed, and we see that s < s’_,. Furthermore, s_; < p; since we know that p;
becomes an i’-unbracketed j — 1 as in the case of ;7 above. Continuing in this manner we
can form a sequence S’ of elements of ¢ that are not i’-bracketed, all weakly to the left
of pa (and hence strictly before p;). O

Lemma 2.22. Let b € B®* be Iy-highest weight such that € _;(b) > 0 for some i € Iy and
e_;(b) is not {1,2,...,i}-highest weight. Let k be the smallest index for which t_1 < ty,
where tg = p1 and t; for] =1,...,2—1 are the indices that are raised in the second step
of the computation of e_;(b) (such a k exists by Proposition 2.17). Then we have that
e_k(b) =1 and e_k(b) is {1,2,..., k}-highest weight.

Proof. Let b, ,,
tial ¢-sequence, b,/

bp,s...,bp, be the initial (i 4+ 1)-sequence, bg,,bq, ,,...,bq, be the ini-
P10+ bpy the initial (k + 1)-sequence, and by, ...,by the initial
k-sequence of b. Also define ¢ and ¢’ respectively to be the words formed by lowering the
entries in the sequences {by, } or {b,,} by one, respectively.

Since £_;(b) > 0, we have by Proposition 2.9 that g, = p, for some 1 < a <. If a is
maximal with this property, then in fact ¢; = p; for all j < a by the definition of the initial
sequences. Assume by contradiction that e_(b) = 0. Then again by Proposition 2.9,
q; < pj for all j € {1,...,k}. Furthermore, p; < p; for all j < k so ¢j < p; as well.

Suppose that g, = gar for some 1 < a’ < k. Then ¢j = g; for all j < @’ and hence
qg = ¢; = p;j for j < min(a,a’), contradicting the fact that ¢; < p; for all j. Hence
qj < g; for all 1 < j < k. Thus we also have q < gj41 for all 1 < j < k, for otherwise
bq; would be the first j after ¢;4+1 and we would have q] =gqj.

The sequence of letters k,k — 1,...,1 in positions ¢, ...,q} in b is not i-bracketed
since the first bracketed k + 1 in b must be weakly right of position Qk+1 > ¢, Hence
by Lemma 2.21, the word ¢ also contains a sequence k, k — , 1 of letters that are
not i-bracketed before position p;, contradicting the fact that tk 1 < tg. It follows that
e_k(b) =1.

Next we show that e_(b) is {1,2, ..., k}-highest weight. Note that by the definition
of the initial sequences ¢; < p; < ¢; < p;. Since _;(b) = 1 and e_x(b) = 1, we also have
q; = pjj for j < a’ and ¢; = p; for j < a for some a', a. Suppose pj < g; for all j. Then
by a similar argument to that above, in the word c there exists a sequence of positions
tr < tp_1 < --- <ty <ty = p; such that e, =7 which are not i-bracketed in ¢. This
contradicts the fact that ¢;_1 < t5. Hence we must have pz = g; for some j and hence
q; = p; = q; = p; for j < x for some x > 1. We claim that ¢; < ¢} for all 1 < j < k.
Indeed, ¢, is to the left of position p; = ¢, so that t; < ¢j. By the definition of p; we also
cannot have py < t; < p1 so in fact £; < ps. The letter in position qé- =pjforl<j<z
in cis j — 1, so that also t; < q§ for 1 < j < z. For j > x, the letter in position q;- < pj
in ¢ as well as in b is j. It is k-bracketed in ¢ and b since the first letter k£ in ¢ and b is in
position ¢. If t; > q;- then since the sequence of entries ¢.. for r > j is k-bracketed but
not i-bracketed, we would have t, < t;_1, a contradiction. Thus t; < q}.
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It follows that the ¢; entries are not k-bracketed, so b contains a sequence k — 1,k —
2,...,1 that is not k-bracketed. By Lemma 2.21 this means that ¢’ has a sequence
k—1,...,1 in positions tj_; < --- < t} that is not k-bracketed, proving that e_z(b) is
{1,2,...,k}-highest weight by Proposition 2.17. O

For an element b € B®¢, denote by 1 b the unique Iy-highest weight element in the
same component as b. The next lemma describes the action of 1 after an application of

€_;.

Lemma 2.23. Let b € B®¢ be Iy-highest weight such that € _;(b) > 0 for some i € Iy and
e—i(b) isnot {1,2,...,i}-highest weight. Let k be as in Lemma 2.22 and let the sequences
p; and t; be as in Theorem 2.16. Then T e_;(b) can be obtained from b by changing j
in position pj to j —1 for 1 < j < i+ 1 and j in position t; for 1 < j < k to j+1,
and lowering some letters larger than i+ 1. In particular, the changes in positions t; for
j =k in e_;(b) are undone by the application of 1.

Proof. By Corollary 2.18, the smallest index ¢ for which ey(e—;(b)) is defined is the first
¢ for which t, cycled but t,41 did not (or does not exist). In particular ¢ > k and all ¢,
with k£ < j < £ cycle around the end of the word.

Note that ¢, was chosen as the rightmost ¢ that is not i-bracketed (after raising
t1,...,te—1). Also recall that the word c formed by lowering the b, entries is {1,2,...,i}-
highest weight, so just before changing ¢, the word is still {¢}-highest weight. Finally,
by assumption ¢, is weakly right of t,_; (which is the only new ¢ since starting at the
word ¢). Thus, after changing ¢, to £ + 1, if it bracketed with an ¢ to its right (in the
ordinary crystal bracketing) then in fact that £ is also not i-bracketed on the previous
step, a contradiction since t,_1 < .

Therefore ¢, is an unbracketed £ + 1 in e_;(b), and since all other (¢ + 1)’s before it
are bracketed with some ¢, we know that e, changes it back to an £. After doing so, by
the same argument we see that position ty_; is now an unbracketed ¢, so applying e;_1
changes it back to £ — 1, and so on down to t;. At this point the resulting word

w:i=ep---ep_1ep(e_;b)

is {1,2,...,¢}-highest weight, since t;_; did not cycle and so changing t; back to k
leaves w highest weight at that step.

Now suppose tp41 exists (that is, £ < ¢ —2); then t,1 < ty, and in w the position t, is
changed back to £. We claim that ey is defined on w and applying it changes ty41 from
£+ 2 back to £+ 1. Indeed, if ¢ty is bracketed with an £+ 1 in w then this £+ 1 must be
to the right of ¢, (since otherwise it would have been a preferred non-i-bracketed choice
of tg41 in the e_; algorithm). But then this £+ 1 is bracketed with an ¢ to its right since
w is {¢}-highest weight, and then this ¢ similarly contradicts the choice of t;. Thus tp41
is an £ 4 2 that is not bracketed with an £ + 1 after lowering ¢, back to ¢. By the weight
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changes it must be the only such ¢ 4 2 and so applying e;11 changes ty41 back to £+ 1.
Continuing in this fashion, we can apply egi2,es43, and so on in that order to change
the next entries t49, t¢4+3, and so on back to their original values, until some ¢, cycles
again. Let ¢,, be the next entry for which ¢,,41 does not cycle (the end of the next block
of cycling entries); by the same arguments as above we can now apply e,,, then e,,_1,
and so on down to eyy,.. Repeating this process on every block of cycling and non-cycling
entries yields a {1,...,4}-highest weight word formed by changing tg,...,t;_1 back to
k,k+1,...,i—1 respectively. Finally, to finish forming 1 e_;(b), only entries larger than
i+ 1 may be changed, and the conclusion follows. O

The next proposition will be used in Section 4 to deal with “by-pass arrows” in the
component graph G(C).

Proposition 2.24. Let b € B® be Iy-highest weight such that e_;(b) > 0 for some i € I
and e_;(b) is not {1,2,...,i}-highest weight. Then there exists 1 < k < i such that
e_k(b) =1, e_x(b) is {1,2,...,k}-highest weight and

Te_i(b) =te_;te_ik(d) or Te_ib)=1e_k(b). (2.9)
Example 2.25. Take b = 343212211 € B%°, which satisfies e_3(b) > 0. Then
T e_3b=ese1e_3b =332112211 = ese_ze_1b=Te_3 T e_1b.

Furthermore, e_1b = 343112211 is {1}-highest weight.
Take b = 4321321 € B®7, which satisfies e_3(b) > 0. Then

T 6_3b = 61626_3b = 3211321 = 6_3626_1b :T €_3 T 6_1b.

Furthermore, e_1b = 4311321 is {1}-highest weight.
Take b = 2154321 € B®7, which satisfies e_4(b) > 0. Then

T 6_4b = 636_4b = 3243211 = 646_3b :T 6_3b.

Proof of Proposition 2.24. Let k be as in Lemma 2.22. Then the first statements hold
for k by Lemma 2.22 and it only remains to prove (2.9). By Lemma 2.23, 1 e_;b changes
J in position p; to j —1 for 1 < j <4+ 1 and j in position ¢; for 1 < j < k to j+ 1. The
changes in positions ¢; for j > k in e_; are undone by 1. Some letters bigger than i 41
might also be lowered by 7.

We use the same notation as in the proof of Lemma 2.22. There we proved that ¢; < q;-
for all 1 < j < k. Since q;- < p; and there is no letter j between positions p;;1 and p;
in b, it follows that ¢; < p;11 for all 1 < j < k. Now suppose that ¢t; = p;11 for some
1 < j < k. We claim that then ¢t;_; = p; as well. Let d — 1 be maximal such that
ty—1 = pq. Then there has to be a letter d — 1 in position p in b with pgi1 < p < pg,
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so that the letter d — 1 in position py in ¢ is not i-bracketed. Suppose that there is no
letter d — 2 between positions p and pg_1 in b. In this case the letter d — 2 in position
P4—1 in c is i-bracketed, so that t43_o > pg_1, which contradicts t4_2 < pg—1. Continuing
this argument, there has to be a sequence of letters d — 1,d — 2,...,1 between positions
Pd+1 and po that is not ¢-bracketed. Moreover, letter j in this sequence has to appear
before position p;j;;. But this means that the letter j in position p;4; for 1 < j < d is
not ¢-bracketed, so that t; = p;1 forall 1 < j <d.

By the arguments above, we have that t; = p; 41 for 1 < j < d for some d and ¢; for

> d is part of a sequence of non k-bracketed letters in b (by the definition of k and the
sequence ¢}). Similarly, we have ¢’ = p’; ., for 1 < j < d' for some d’ and ¢, for j > d’ is
part of the same sequence of non k: bracketed letters in b as ¢;. Also, d’ > d since pj < pj
for all 1 < j < k+ 1. In particular, this implies t; = t for d’ <j<k.

Furthermore, before applying the 1 operator the entrles that change are:

In 1 e_;b: by,:j—>j—1 ford<j<i+1
by,

J

j=ji+1 ford<j<i
In 1 e_pb: bp;:j»—>j—1 ford <j<k+1

bt;:jr—>j+1 for d <j<k.

Recall also that p;. = p; for 1 < j < z for some = > 1. Denote by t; and p; the
selected positions by e_; on the element 1 e_b.

First assume that x = k + 1, so that p] =p; forall 1 < j < k+ 1. In this case
th = t; for 1 < j < k. Furthermore, if in e_g(b) the letter k —|— 2 in position pgyo is
unbracketed, then in 1 e_g(b), the letter k + 2 in position pg42, then the letter k£ + 3 in
position pgy3 etc. will be lowered. These are the same changes as in 1 e_;(b), so that
Te—i(b) =1 e—x(b).

Next assume that d < ¢ < k or = k + 1 but the letter k + 2 in position pgio in
e_r(b) is bracketed. We first show that in this case p; = pj for x < j < i+ 1. Note that
to form 1 e_(b), since e_x(b) is {1,2,..., k}-highest weight, we apply ex11, €xt2,--.,€r
in order for some r, so that we lower a k+2toa k+1, k4 3 to k+ 2, and so on until
we reach an Ip-highest weight word. Note also that bpk,ﬂ was the entry that lowered
from &k +1 to k, so the k + 2 that gets lowered, if it exists, is to the left of p} | < pry1.
Similarly the k + 3 that gets lowered is left of pj ,, < pri2, and so on, and hence r < i
since p; 1 is the leftmost ¢ + 1. It follows that no i+ 1 lowers to an ¢, and 80 p; | = pi41.
Since the entries lowered by 1 are left of p; for each j > z, it follows that p;, = p; for
r<j<i+1.

For the sequence ¢;, note that the entries p; that we lower for j < z cannot be i-
bracketed in ¢ due to the condition p;,; = pi41 shown above, and because t,_1 =t,_,
so that t/,_; cannot be between p,.; and p,. Furthermore, for x < j < k the letters in
positions p;; are all i-bracketed in ¢ and ¢; = t; < p;_H < Pj+1 = Pj41- Also note that
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d = d' since p;j1 = pj,, =t} for d < j < d' <z and the letter j in position p;1 = pj 4
in ¢’ is not k-bracketed and hence not i-bracketed in ¢’ and c. It follows that

;o Djt1 for 1 <
! Pip1 forz <

and for k < j < r, we have that ¢; is equal to the position of letter j + 1 that is lowered

when applying 1 to e_(b). Hence 1 e_;(b) =1 e_; T e_(b).
Finally, assume that = < d’. In this case, by a similar argument, we have p; = p; for
1<j<i+1and

Py for1<j<d,
fj = tj for d < < d/
p;»H for d' < j <k,

and for k < j < r, we have that ¢; is equal to the position of letter j + 1 that is lowered
when applying 1 to e_(b). Again, we have T e_;(b) =t e_; T e_x(b). O

3. Local axioms

In [2, Definition 4.11], Assaf and Oguz give a definition of regular queer supercrystals.
In essence, their axioms are rephrased in the following definition, where I := Iy U {-1}.

Definition 3.1 (Local queer axioms). Let C be a graph with labeled directed edges given
by fi fori € Iy and f_q. If o' = f;b for j € I define e; by b = e;l'.

LQ1. The subgraph with all vertices but only edges labeled by i € Iy is a type A,
Stembridge crystal.

LQ2. ¢_1(b),e_1(b) € {0,1} for all b € C.

LQ3. v_1(b) +e_1(b) > 0 if wt(b)1 + wt(b)2 > 0.

LQ4. Assume ¢_1(b) =1 for b € C.
(a) If p1(b) > 2, we have

fif-1(b) = f-1f1(b),
©1(b) = p1(f-1(0)) + 2,
81(b) = El(f—l(b))-

(b) If v1(b) = 1, we have

LQ5. Assume ¢_1(b) =1 for b € C.
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Fig. 2. Illustration of axioms LQ4 (left) and LQ5 (right). The (—1)-arrow at the bottom of the right figure
might or might not be there.

(a) If pa(b) > 0, we have

faf-1(b) = f-1f2(b),
pa2(b) = pa(f-1(b)) — 1,

(b) If @a(b) = 0, we have
p2(b) = @2(f-1(b)) =1 =10, or  a(b) = p2(f-1(b)) = 0,
ea(b) = e2(f-1()), e2(b) = ea(f-1(b)) + L.
LQ6. Assume that ¢_(b) = 1 and ;(b) > 0 with i > 3 for b € C. Then
fif-1(b) = f-1fi(b),

©i(b) = pi(f-1(D)),
ei(b) = ei(f=1(D)).

Axioms LQ4 and LQ5 are illustrated in Fig. 2.

Proposition 3.2 (/2]). The queer supercrystal of words B¢ satisfies the axioms in Defi-
nition 3.1.

Proof. LQ1 follows by definition. LQ2 and LQ3 follow from Remark 2.4. LQ4 follows
from Lemma 2.5 and LQ5 follows from Lemma 2.6. Finally, LQ6 is Q4. O
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In [2, Conjecture 4.16], Assaf and Oguz conjecture that every regular queer supercrys-
tal is a normal queer supercrystal. In other words, every connected graph satisfying the
local queer axioms of Definition 3.1 is isomorphic to a connected component in some B®?.
We provide a counterexample to this claim in Fig. 3. In the figure, the Iy-components of
the q(3)-crystal of highest weight (4,2,0) are shown. Some of the f_j-arrows are drawn
in green. The remaining arrows can be filled in using the axioms of Fig. 2 in a consistent
manner. If the dashed green arrow from 331131 to 332131 and the dashed green arrow
from 331132 to 332132 are replaced by the dashed (double-headed) purple arrow from
331131 to 331231 and the dashed (double-headed) purple arrow from 331132 to 332231,
respectively, all axioms of Definition 3.1 are still satisfied with the remaining f_;-arrows
filled in. However, the Iy-component with highest weight element 132121 has become
disconnected and hence the two crystals are not isomorphic.

The problem with Axiom LQ5 illustrated in Fig. 2 is that the (—1)-arrow at the bottom
of the 2-strings is not closed at the top. Hence, as demonstrated by the counterexample in
Fig. 3 switching components with the same Iy-highest weights can cause non-uniqueness.
In fact, if f_1b is determined for all b € C such that

wi() =0 forallielp\ {1} and ¢1(b) =2, (3.1)

then, by the relations between f_; and f; for ¢ € Iy of Definition 3.1, f_; is determined
on all elements in C. Namely, f; and f_; commute for ¢ # 1,2, so that it is enough to
consider f_1b when ¢;(b) = 0. Similarly, by the right picture in Fig. 2, once f_1b is
determined for b with po(b) = 0, which are the elements at the bottom of the 2-strings,
then f_jc is determined for all ¢ in this picture. And finally, if f_1b is determined for b
with 1(b) = 2, which is the element at height 2 in the left picture of Fig. 2, then f_; is
determined on all elements above this b. Furthermore, f_1(c) = fi(¢) when ¢;(c) = 1.
Hence the conditions in (3.1) are indeed enough.

Lemma 3.3. Let v € B® be an Iy-lowest weight element, that is, @;(v) = 0 for alli € Iy.
Then every b € B®* satisfying (3.1) is of the form

gk = (e1---e;)(e1---ex)v for some 1< j<k<n. (3.2)
Conversely, every g;r 7 0 with 1 < j < k < n satisfies (3.1).

Proof. The statement of the lemma is a statement about type A,, crystals and hence can
be verified by the tableaux model for type A,, crystals (see for example [4]). The element
v is Iy-lowest weight and hence as a tableau in French notation contains the letter n + 1
at the top of each column, the letter n in the second to top box in each column, and
in general the letter n + 2 — ¢ in the i-th box from the top in its column. If there is a
letter £+ 1 in the first row of v, then (e - - - ;) applies to v and b’ = (e; - - - e} )v satisfies
wi(b') =0 for i € Iy \ {1} and (b)) = 1. The element b’ has several changed entries
in the first row, and otherwise the entries above the first row all have letter n +2 —
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in the i-th box from the top in their column. If ' has a letter j + 1 in the first row
with 1 < j < k, then (e1---e;) applies to ' and b = g, = (e1---e;)b satisfies (3.1).
Note that if j > k, then the last e; would no longer apply and hence b = 0. This proves
that g; 5 # 0 as in (3.2) satisfies (3.1). If conversely b satisfies (3.1), then as a tableau it
contains two extra 1’s in the first row that have a 3 or bigger above them rather than a
2 in their columns, and for entries higher than the first row the i-th box from the top in
its column contains n + 2 — 4. It is not hard to check that then (fx--- f1)(fj--- fi)b=wv
for some 1 < j < k < n. Hence b is of the form (3.2). O

In the next section, we introduce a new graph just on Ip-highest weight elements and
new connectivity axioms (see Definition 4.4) that uniquely characterizes queer super-
crystals (see Theorem 5.1).

4. Graph on type A components

Let C be an abstract q(n + 1)-crystal with index set Iy U {—1} that is a Stembridge
crystal of type A,, when restricted to the arrows labeled Iy. In this section, we define a
graph for C labeled by the type A, components of C. We draw an edge from vertex Cj
to vertex C5 in this graph if there is an element b; in the component C; and an element
bo in the component C5 such that f_1b; = by. We provide an easy combinatorial way
to describe this graph for a queer supercrystal which is a subcrystal of the crystal of
words leveraging the explicit actions of f_; described in Theorem 2.12 and e_; described
in Theorem 2.16, respectively (see Theorem 4.9). We also provide new axioms in Defi-
nition 4.4 that will be used in Section 5 to provide a unique characterization of queer
supercrystals.

Definition 4.1. Let C be a crystal with index set Ip U {—1} that is a Stembridge crystal
of type A,, when restricted to the arrows labeled Iy. We define the component graph of
C, denoted by G(C), as follows. The vertices of G(C) are the type A, components of C
(typically labeled by their highest weight elements). There is an edge from vertex C; to
vertex Cq in this graph, if there is an element b; in the component C; and an element
bs in the component Cy such that

f-1b1 = ba.

Example 4.2. Let C be the connected component in the q(3)-crystal B#6 with highest
weight element 1®2®1®1®2® 1 of highest weight (4,2,0). The graph G(C) is given
in Fig. 4 on the left (disregarding the labels on the edges). The graph G(C’) for the
counterexample C’ in Fig. 3 is given in Fig. 4 on the right. Since the two graphs are not
isomorphic as unlabeled graphs, this confirms that the purple (double-headed) dashed
arrows in Fig. 3 do not give the queer supercrystal even though the induced crystal
satisfies the axioms in Definition 3.1.
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Fig. 4. Left: G(C). The graph G(C) is obtained from G(C) by removing the labels. Right: G(C’) for the crystals
of Example 4.2.
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Fig. 5. The graph G(C) for Example 4.3.

Example 4.3. Let C be the connected component with highest weight element 1 ®1®2®
1®2®1®3®2®1 in the q(4)-crystal B#?. Then the graph G(C) is given in Fig. 5. One
may easily check using Theorem 2.12 that all arrows in Fig. 5 are given by the application
of f_; for some i except for the arrows that by-pass other arrows, the arrow to the lowest
vertex, which is given by f_sfs (which is also determined by Theorem 2.12), and the
arrow going into 3®2®3®12®1®3®2® 1, which is given by f_1 fo. The result is
shown in Fig. 6.
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Fig. 6. The graph G(C) of Fig. 5 obtained from G(C) by labeling each edge (except for the by-pass edges)
by (—i,h) if f(_; n) applies.

Next we introduce new axioms.

Definition 4.4 (Connectivity axioms). Let C be a connected crystal satisfying the local
queer axioms of Definition 3.1. Let v € C be an I[j-lowest weight element and u =71 v. As
n (3.2), define g; 1, 1= (e1---e;)(ex---ex)v for 1 < j <k < n.

CO0. v_1(g;k) = 0 implies that ¢_q(ey ---exv) = 0.

C1. Suppose that G(C) contains an edge u — «’ such that wt(u’) is obtained from wt(u)
by moving a box fromrow n+1—ktorown+1—h with h < k. Forall h < j <k
such that g;, # 0, we require that f_1g;, 7 0 and

f—lgj,k = (62 s ej)(el tee @h>U/7

where v’ is Ip-lowest weight with 1 v" = u’.
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C2. Suppose that either (a) G(C) contains an edge u — ' such that wt(u') is obtained
from wt(u) by moving a box from row n+1—k to row n+1 —h with h < k or (b)
no such edge exists in G(C). For all 1 < j < hin case (a) and all 1 < j < k in case
(b) such that g;, # 0 and f_1g;x # 0, we require that

f-1956 = (e2---ex)(e1---€j)v.
Remark 4.5. Condition CO can be replaced by the following condition:
LQ7. If e1(e2(d)) > e1(b) for b € C with e5(b) > 0, then ¢_1(b) < w_1(e1e2(b)).

This condition indeed implies CO0. Suppose ¢_i(ej---exv) = 1. Then for b =
(es---€j)(e1---ex)v, we have p_1(b) = 1. However, b satisfies e1(e2(b)) > €1(b), so
the above condition implies that ¢_;(ejez(b)) = 1 as well. But eje2(b) = g, Hence
v_1(g;,x) = 0 implies that ¢p_i (e ---exv) = 0.

Moreover, in B¥¢ the conditions in LQ7 are satisfied. Namely, the condition &, (e(b)) >
e1(b) implies that es(b) # 0 and ejez(b) # 0. Moreover, this condition implies that ey
acts on eg(b) in a position weakly to the left of where ey acts on b. Thus if p_;1(b) = 1,
it immediately follows that ¢_1(e1e2(b)) = 1 which proves the statement.

Theorem 4.6. The q(n + 1)-crystal B®* satisfies the azioms in Definition 4./.

The proof of Theorem 4.6 is given in Appendix A.
Next we show that the arrows in G(C), where C is a connected component in B2, can
be modeled by e_; on type A highest weight elements.

Proposition 4.7. Let C be a connected component in the q(n+1)-crystal B®¢. Let Cy and
Cs be two distinct type A, components in C and let uy be the Iy-highest weight element
in Co. Then there is an edge from Cy to Cy in G(C) if and only if e_;us € Cy for some
i € Iy.

Proof. First note that there is an edge from C; to Cs in G(C) if there exists b; € C; and
by € Co such that e_1by = b1. Recall that by (2.4) we have e_; := s,,-1e_15,,. Hence,
if e_;us is defined and e_;us € Cq, then by := e_1bs is defined, where Ibg = Sy, U2 € Co
and by € C;. This proves that there is an edge between C; and Cy in G(C).

Conversely assume that by = e_1by for some b; € Cy and by € Co. We want to show
that then e_;us € C for some ¢ € Iy. By the discussion before Lemma 3.3, we know
that the (—1)-arrow on b; is induced (using the local queer axioms of Definition 3.1)
by the (—1)-arrow on g;; = (e1---€;)(e1 - - ex)vy for some j < k. By Theorem 4.6 and
Condition C1 of Definition 4.4, we must have

fo1gik = (e2---ej)(e1---en)ve for some h < j < k,
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where vy is the Iy-lowest weight element in the component Cs. In particular, for the
edge u; — wug in G(C), where u;y is the Ip-highest weight element in the component
(4, the weight wt(ug) differs from wt(u;) by moving a box from row n + 1 — k to row
n+1—h with 1 < h < k < n. Furthermore, all g;/ ; # 0 with h < j/ < k are mapped to
component Co under f_.

Claim. Set b := sy, _,u2 and b’ := (ea---ept1)(er---ep)va. If wt(b)a > 0, there exist
Jis---,Jp € lo such that b" = fj, --- f; b and

w2 (fja - f3,0) >0 if ja = 2. (4.1)

The claim is a statement about type A, crystal operators, hence one may use the
tableaux model to verify it. It is straightforward to verify that every column of height
d > n — h in the insertion tableau of b contains the letter m in row m; the columns of
height n» — h contain 1 in the first row and m + 1 in row m > 1; finally the columns of
height d < n — h contain the letter m + 2 in row m. Hence wt(b)2 > 0 is only satisfied if
there is at least one column of height d > n — h. Now we start acting with operators f;
on b, where j € Iy \ {2}, to make b into a Ij \ {2}-lowest weight element. This element
differs from vy only in columns of height d > n — h; columns of height d > n—h contain 1
and 2 in rows 1 and 2, respectively, whereas columns of height d = n — h contain 2 in row
1. Suppose that there are p columns whose height is less than n + 1 and at least n — h.
Then we can apply [ ~! without violating (4.1) since each such column contains an
unbracketed 2. Then apply again f; with j € I\ {2} to make the tableau into a Iy \ {2}-
lowest weight element, followed by the maximal number of f; satisfying (4.1), followed by
making the result I\ {2}-lowest weight. This tableau is exactly (eg - - epy1)(eq - - - ep)va.
This proves the claim.

Now since by assumption wt(us) differs from wt(w;) by moving a box from row n+1—k
to row n+ 1 — h, as a tableau s,,, ,u2 indeed has a column of height d > n — k, so that
Wt(8q,,_,u2)2 > 0. By condition (4.1), the (—1)-arrow coming into s, _, us is induced
by the (—1)-arrow coming into (eg---ept1)(e1---en)ve by the local queer axioms of
Definition 3.1. Hence e_(,,_pyu2 € C1, which proves the proposition where i =n—h. O

Example 4.8. Let us illustrate the claim in the proof of Proposition 4.7. Let n =5,h =2
and consider the type As component Co of weight (4,3,3,2,1). Then, using the model
for type A crystals in terms of semistandard tableaux (see for example [4, Chapter 3]),
we have

5 6]

44 . 506
bZSwSUQZS 314 . This becomes 41516

212(3 21315

1[1]1]3] 1]1[3]6]
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after making it {1, 3,4, 5}-lowest weight and applying fs. Making this element {1, 3,4, 5}-
lowest weight again, no further fo are applicable and we obtain

6 = (6263)(6162)112.

ot

Hl\D»JkCﬂGD|
N |W [T D

416]

By Proposition 4.7, there is an edge from component C; to component Cs in G(C) if
and only if e_;us € C7 for some i € I, where us is the Ip-highest weight element of Cs.
We call the arrow combinatorial if e_;us is {1,2,...,4}-highest weight. Otherwise the
arrow is called a by-pass arrow.

Define f(—i,h) = foifivifiva - foe1-

Theorem 4.9. Let C be a connected component in B®*. Then each by-pass arrow is the
composition of combinatorial arrows. Furthermore, each combinatorial edge in G(C) can
be obtained by f_;ny for some i € Iy and h > i minimal such that f_; 1y applies.

Proof. Consider a combinatorial arrow from component C7 to Cy. This means that e_;uq
is defined for some i € Iy and e_;ug is {1,2,...,4}-highest weight. Then by Theorem 2.12
and Corollary 2.14 we have f(_; pyu1 = ug for some h > i.

If the arrow is a by-pass arrow, then e_;us is not {1,2,... i}-highest weight. By
Proposition 2.24 and induction, there exists a sequence of indices 1 < i1,...,7, < 7 such
that

tejug=te_;te_ - Te_jus

where each partial sequence e_;; T e_;, , --- T e_j,up is {1,2,...,4;}-highest weight.
This means that each by-pass arrow is the composition of combinatorial arrows. 0O

Theorem 4.9 provides a combinatorial description of the graph G(C). Let G(C) be the
graph G(C) with all by-pass arrows removed and each edge labeled by the tuple (—i, h)
for the combinatorial arrow f(_; pyu1 = ug, where f_; is given by the combinatorial
rules stated in Theorem 2.12. Hence G(C) can be constructed from the q(n + 1)-highest
weight element u by the application of combinatorial arrows, see for example Fig. 6. In
particular, the graph G(C) and the graph G(C) have the same vertices.

Next we construct a graph CNJ(C) from G(C) by applying 1 e_; to each vertex b in the
graph G(C) (if applicable). This will add additional labeled edges between the vertices
in the graph, see Fig. 7. We would like to emphasize that the construction of C?(C) for a
connected component C of B®¢ is purely combinatorial, starting with the highest weight
element u of a given weight A, applying f(_; 5y of Theorem 2.12, and then applying 1 e_;
to all vertices using Theorem 2.16. This provides a combinatorial construction of G(C)
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Fig. 7. The graph G(C) recovered from the graph G(C) of Fig. 6.

by dropping the labels in é(C) (and removing multiple edges between vertices when
applicable).

Remark 4.10. The Schur P-polynomial Py(x1,...,Zn41) in n+1 variables is the character
of a finite-dimensional irreducible representation of the queer Lie superalgebra q(n + 1)
with highest weight A (up to a power of 2) [21]. The above combinatorial construction of
the component graph of C with highest weight A produces a Schur expansion of the Schur
P-polynomial Py(x1,...,Z,+1). This expansion is obtained by counting the multiplicities
of highest weights for all type A,, components that are present in G(C). For example, the
component graph in Example 4.2 yields the expansion Pys = s40+ 533+ 5411+ 28321 + S222.
This yields an alternative combinatorial description of the Schur expansion of the Schur
P-polynomials compared to those given by Stembridge [22] and by Choi and Kwon [5].

5. Characterization of queer supercrystals

Our main theorem gives a characterization of the queer supercrystals. We say that
two component graphs G(C) and G(D) are isomorphic if they are isomorphic as graphs
and the weights of the vertices are preserved.
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Theorem 5.1. Let C be a connected component of a generic abstract queer supercrystal
(see Definition 2.1). Suppose that C satisfies the following conditions:

(1) C satisfies the local queer axioms of Definition 3.1.
(2) C satisfies the connectivity axioms of Definition /./.
(3) G(C) is isomorphic to G(D), where D is some connected component of B®.

Then the queer supercrystals C and D are isomorphic.

Theorem 5.1 states that the local queer axioms, the connectivity axioms, and the
component graph uniquely characterize queer supercrystals.

Remark 5.2. We would like to point out that checking Condition (3) of Theorem 5.1
is algorithmically straightforward. Each component graph has a unique highest weight
vertex. For the isomorphism, the weights of these highest weight vertices need to agree.
Then one can recursively compare the edges and weights of adjacent vertices. Condition
(3) is similar, albeit more complicated, to the condition by Stembridge [23] that for two
connected crystal components of a simply-laced crystal to be isomorphic, the highest
weights must agree.

Before we give the proof of Theorem 5.1, we need the following statement. Recall that
gj.k = (e1---¢€;)(e1---ex)v was defined in (3.2), where v is an y-lowest weight vector.

Lemma 5.3. In a crystal satisfying the local queer axioms of Definition 3.1 and CO of
Definition 4.4, we have for any gjr # 0 with 1 < j < k

v_1(gj6) =0 if and only if @_1(e1---exv) =0.

Proof. The condition C0 requires that ¢_1(g; ) = 0 implies ¢_1(e1 - - exv) = 0.
For the converse direction, note that wt(ey - --exv); > 0. Hence

g0_1(61~~ekv) =0 < 5_1(61"'6k’0) = 1.
By the local queer axioms LQ6 and LQ5 of Definition 3.1 (see also Fig. 2), we have

e_iler--epv) =1 & e_1((ez---¢ej)(ex---ex)v) =1
k 1.

= c_1((ez---ej)(er---ep)v) =

It can be easily checked that ¢i((e2---ej)(er---ex)v) =1 for j < k (for example using
the tableaux model for type A, crystals). Hence by the local queer axioms

This proves that ¢_q(eq - - - exv) = 0 implies p_1(g;x) =0. O
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Proof of Theorem 5.1. By Proposition 3.2 and Theorem 4.6, D satisfies the local queer
axioms and the connectivity axioms and hence all conditions of the theorem.

By LQ1 of the local queer axioms of Definition 3.1, each type A,-component of C
is a Stembridge crystal and hence is uniquely characterized by [23]. By assumption
G(C) =2 G(D). In particular, the vertices of G(C) and G(D) agree. This proves that C
and D are isomorphic as A,, crystals.

Next we show that all (—1)-arrows also agree on C and D. As discussed just before
Lemma 3.3, given the local queer axioms of Definition 3.1, it suffices to show that f_; acts
in the same way in C and D on the almost lowest elements satisfying (3.1) or equivalently
by Lemma 3.3 on every g;jr # 0 with 1 < j < k < n. For the remainder of this proof, fix
gjk 7 0 in the Ip-component w.

Let us first assume that G(C) contains an edge v — v’ such that wt(u') is obtained
from wt(u) by moving a box from row n+ 1 — k to row n 4+ 1 — h for some h < k. If
h < j <k, then f_;g; is determined by C1 of Definition 4.4. If j < h, pick h < j' < k
such that gj 5 # 0. Such a j' must exist since there is an edge u — «’ in G(C). By C1,
we have ¢_1(gj ) = 1 and hence by Lemma 5.3 also ¢_1(g;%) = 1. Hence f_1g, is
determined by C2(a).

Next assume that G(C) does not contain an edge u — u’ such that wt(u') is obtained
from wt(u) by moving a box from row n + 1 — k.

Claim. If gi 1 # 0, then f_1g;1 = 0.
Proof. Suppose f_1gi 1 # 0. By C2(b), we have f_1gi1 = (e2---ex)(e1 - ex)v = f1gkk-
But this contradicts the local queer axioms of Definition 3.1 since ¢1(gk.x) > 1. Hence
©_1(gk,k) = 0 and by Lemma 5.3 also ¢_1(g;,x) = 0, which proves the claim. O

If gi x = 0, we have j < k since by assumption g; 1 7# 0.

Claim. Suppose gy = 0.

(1) Suppose there is an edge © — u in G(C) such that wt(u) is obtained from wt(a)
by moving a boz from row n + 1 —k to row n+ 1 — h such that h < k < k. Then

f_lgj,k = 0.
(2) Suppose G(C) does not contain an edge as in (1). Then f_1gjx=(ea---ex)(e1---€;)v.
Proof. Suppose that the conditions in (1) are satisfied. Then by C1 there must exist

gj,E = (61 v e;)(el tee ‘QE)5 7é 07

where h < j < k and ¥ is the Ip-lowest weight element in the component of %, such that

f-1G55 = (e2---e5)(e1- - ep)v. (5-1)
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Since gjr # 0, we have in particular that (e ---eg)v # 0. Since wt(u) is obtained from
wt (@) by moving a box from row n + 1 —k to row n + 1 — h, this hence also implies that
Gr5 = (e1---ex)(e1---ep)v # 0. Hence by C1 Equation (5.1) holds for j = k.

If f-195 = 0, we also have f_;g;, = 0 by Lemma 5.3 as claimed. Hence we may
assume that f_1g5 ; # 0. Then by C2(b) we have

Forgns = (€2 e)(er---ex)u.

But then f_1g, 7 = f-197, = (e2---ex)(e1 - - ex)v, which contradicts the fact that the
crystal operator f_; has a partial inverse since gy  # g5 ;- This proves (1).

Now suppose that the conditions in (2) are satisfied. Recall that by assumption g;  #
0 with j < k. This implies that y := (e2---ex)(e1---ej)v # 0, p;(y) = 0 for i €
Iy \ {2} and ¢2(y) = 1. By the local queer axioms of Definition 3.1, this implies that
x:=e_1y # 0 with ¢1(z) € {1,2} and p;(x) = 0 for ¢ € Iy \ {1}. Thus we may write
x = (e1---es)(er---e)v, where 0 < s < t and ¥ € C is some Ip-lowest weight vector.
This yields the equality

f,1(€1 .. 'es)(el .. .et)v = (62 R elc)<€1 . ~-ej)v.

If ¥ # v, then by the connectivity axioms of Definition 4.4 this means that j < k =s <t
and there is an edge in G(C) from 1 ¥ to u =1 v, moving a box from row n + 1 — ¢
to row n + 1 — j. This contradicts the assumptions of (2). Hence we must have 7 = v.
By C2(b) we have f_1gs; = (e2---e)(e1---es)v, so that k =t and j = s. This implies
f-19jc = (e2---ex)(e1---€j)v, proving the claim. O

We have now shown that f_ig; is determined in all cases, which proves the theo-
rem. O

Remark 5.4. Consider the q(4)-crystal B®4. The elements 4114 and 4113 both lie in
the same {1, 2, 3}-component of highest weight (3,1). The highest (resp. lowest) weight
element in this component is u = 2111 (resp. v = 4344). Both 4114 and 4113 satisfy (3.1).
In fact, 4114 = (e1ez)(e1e2e3)v = ga3 and 4113 = (ejezes)(erezes)v = g3 3. In the
component of u there is no sequence of crystal operators that would induce the action of
f—1 on 4114 from the action of f_; on 4113 using the local queer axioms of Definition 3.1.

This suggests that the connectivity axioms of Definition 4.4 are indeed necessary.
However, in this example the graph G(C), where C is the connected component in B®*
containing 2111, is linear and hence forces 4114 and 4113 to be mapped to the same
{1, 2, 3}-component by f_1, see Fig. 8.

Remark 5.5. Consider the connected component C of 111212121 in the ¢(6)-crystal
B®9. The {1,2, 3,4, 5}-component containing 321312121 is connected to the components
421312121, 431312121, and 432312121 in G(C). The elements g4 5 = 651615464 and
g3,5 = 651615465 in the component of 321312121 are mapped to the same component
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lelelel

21111

32elel

4321

Fig. 8. The graph G(C) for the example in Remark 5.4.

432312121 by C1 of Definition 4.4. However, the element g4 5 is connected to 431413131
in the crystal using only arrows that commute with f_; and the element g3 5 is con-
nected to 431413143 in the crystal using only arrows that commute with f_;. However,
these two components (containing 431413131 resp. 431413143 using only crystal opera-
tors f; and e; with ¢ € Iy that commute with f_) are disjoint. This suggests that C1 of
Definition 4.4 is necessary for uniqueness.

Appendix A. Proof of Theorem 4.6

In this appendix we prove Theorem 4.6. We use the shorthand notation ef :=e; - - - ey,

e’f i=e_1e3- ey, [ = fr--- f1, and fg = fr-- fof-1.
Lemma A.1. In B®¢, condition CO of Definition ./ holds.
Proof. This follows from Remark 4.5. O

The connectivity axioms C1 and C2 of Definition 4.4 are implied by the following
conditions. Here v is an Iy-lowest weight vector in C:

C1’. If h < k and there exists somej € (h, k] such that f}{fieje’f(v) is Ip-lowest weight,
then for any j’ € (h, k] with e 61( ) # 0 we have f1,61 ek(v) = f}e{e’f(v).

C2. If j < k and f_,elek(v) # 0, then either:
(a) j # k and f] fiefef(v) = v, or

(b) fhflelel( ) is Ip-lowest weight for some h < j.
Proposition A.2. In B®¢, condition C2’ holds.
The proof of Proposition A.2 is given in Section A.1.

Proposition A.3. In B®¢, condition C1’ holds.

We will prove a seemingly weaker statement:
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Lemma A.4. In B®¢, condition C1’ holds for j =n —1, j' =k =n and for j = k = n,
j=n-—1.

The proof of Lemma A.4 is given in Sections A.2 and A.3.
Proposition A.5. Lemma A./ implies Proposition A.3.

Proof. We first assume that h < j < j/ < k and the assumptions in C1’ hold. Then we

have
frflelebw) = fRfH(fir e fiva)(ejan - ep)elel(v)
= (fyr - fiv2) F S el (ejra e )ef (v)
= (fy - fi2) fuf} e e @),
where v/ = (ej42---€j:)(ejq2---€ex)(v). Here we have used Stembridge relations to

commute crystal operators and in the last step also that the operators are acting on
an Ip-lowest weight element. Note that v is {1,...,j + 1}-lowest Welght Moreover,
fhfle TN (v') is {1,...,5 + 1}-lowest weight. Since e]T'el ™! (v/) = €] 61( ) # 0, we
may apply Lemma A.4 with n = j 4+ 1. This implies
1 1_j+1
(- Fe) Fufi el ™ (o) = (fyr - i) faffaed T e ()

= fafhel™ el (ejpaey)(ejpz - en)(v)

= fhf /61 61( )s

which proves the claim.
Next assume that h < j' < j < k. Then

13 1 441 j'+1
fafielei(w) = faflel Tl T ejiya e ei)(ejipaer)(v)

= (fj - o) fhfhae] e T,

where v/ = (ejiya---€;)(ej12- - ex)(v). In this case, both v/ and f} f1 i€ el +1e]1 )

are {1,...,7 + 1}-lowest weight. Since 61 eJ1 +1( ") # 0, we may apply Lemma A.4 with

n = 5’ + 1 to obtain

Frrled ek () = (f; - fypa) fhfhe] e (') = fLfhed ek (v),

proving the claim. O
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A.1. Proof of Proposition A.2

Given a word w = wy ---wy in the letters {1,...,n + 1} we write w? = wy - - - Wy,
where w; = n + 2 — w;. Suppose that v = g; = e{e’f(v) € B®! where v is Iy-lowest
weight and 1 < j < k < n, so that by Lemma 3.3 we have ¢1(x) = 2 and ¢;(z) = 0
for all 4 > 1. The RSK insertion tableau for %, denoted by P(z*), can be constructed
as follows: Construct the semistandard Young tableau with weight and shape equal to
the weight of v#. Change the rightmost n + 1 — k in row n + 1 — k and the rightmost
n+l—jinrown+1—j5ton+1.

For instance, suppose n = 8 and = = 198199887766. Then = = efef(v), where v =
998799887766 is Ip-lowest weight and v# = 443322113211 has weight (4, 3, 3,2). Hence
the tableau P(x#) is obtained from the tableau of shape and weight equal to (4,3, 3, 2)

by changing the rightmost 1 in row 1 to 9 and the rightmost 3 in row 3 to 9:

4[4 4[4
3[3]3 3[3]9
20221 7 [2]2]2
1[1]1]1] 1[1]1]9]

Below, we consider the entries of a tableau to be linearly ordered in the row reading
order. If f_1(z) # 0 there are two possibilities:

(1) The recording tableau of z# is the same as the recording tableau of (f_;(x))#. This
implies that during the insertion of #, the final two (n+41)’s to be inserted are at no
point in the same row. (Note that this is clearly impossible if j = k.) This means, that
after the insertion of the final two (n+1)’s, the rightmost n+ 1 is never inserted into
another row containing an n + 1, and, moreover, there is never an n being inserted
into the row containing the rightmost n + 1 (since after the insertion of the final two
(n + 1)’s, the rightmost n or n + 1 is always n + 1). In this case, P((f_1(z)?) is
obtained from P(z#) by changing the n+ 1 in row n+ 1 — k into an n. Since 27 and
(f—1(x))* have the same recording tableau, z and f_;(z) are in the same connected
component. Since it is evident from P((f_1(z)#) that fIfi--- fo(f-1(x)) must be
Ip-lowest weight, it follows that v = fj1 fielel(v). This is precisely what happens in
the example above; P((f_;(z)#) is obtained from P(z*) by:

44 414
3[3]9 3[3]9
2[212]  [2]2]2
1[1]1]9] 1]1]1]8].

Hence C2’(a) holds.
(2) The recording tableau of x# differs from the recording tableau of (f_;(z))*. This
implies that during the insertion of z#, there is some point at which the final two
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(n 4+ 1)’s to be inserted are in the same row. Call this row r and suppose that this
occurs during the insertion of the i-th letter of 2. Let P; be the tableau obtained
from inserting the first i letters of z# and let P! be the tableau obtained from
inserting the first i letters of (f_1(x))#. Then P/ is obtained from P; by changing
the second to rightmost n + 1 to n and moving the rightmost n + 1 from row r to
some row s > r.

Now continue with the insertion of the (i+1)-st letter in each case. Since the (n,n+1)-
subword of 27 ends with two (n+1)’s, and these are the only (n, n + 1)-unbracketed
(n + 1)’s in this subword, the same is true of the (n,n + 1)-subword of each of
P;, Piy1,. .., Pp. This implies that at no point in the rest of the insertion of x# is the
second to rightmost n+1 inserted into a row containing another n+ 1, and moreover
at no point is an n inserted into the row containing the second to rightmost n + 1
(since after the insertion of the final two (n + 1)’s, the two rightmost entries which
are either n or n + 1 must both be n + 1).

It follows that, if we ignore, the rightmost n + 1 in P((f_1(z)#) and P(x#), then
they have the same shape, and the second differs from the first only by changing
its rightmost n to n + 1. Adding back the rightmost n + 1 to P(z%), we see that it
must go somewhere to the right of this position (by definition), and adding back the
rightmost n + 1 to P(f_1(z%)), we see that it must go somewhere to the left of this
position (otherwise P((f_1(z)#) would have an (n,n + 1)-unbracketed n + 1).

It follows that P((f_1(x)#) is obtained from P(z%) by eliminating the (rightmost)
n+1in row n—k+ 1, changing the (leftmost) n+1 in row n—j+1 to n and adding
an n+ 1 to some row n — h+ 1 for h < j. It follows that v' = fﬁf}e{e’f(v) and v are
both (distinct) Ip-lowest weight elements. Hence C2’(b) holds.

To see an example of the second case, let v = 99889. Then v# = 12211, (e]ef(v))#* =
29911, (f_1eleS(v))# = 29811, and (f} flele$(v))# = 23211 have the following
insertion tableaux:

9] (3]
2[2 —. [2]9 — [2]8] . [2]2
1]1]1] 1/1]9] 1[1 1]

A.2. Proof of Lemma A.J forj=n—1and j’=n

Define X = (e1---ep)v. For 1 < ¢ < n+1, set A; = (e;---€,)X and B; =
(€i---en—1)X. For 2 < i < n+41,set Ay = (fi—1y---faf-1)A1 and B_; =
(fti=1) -~ f2af-1)B1. (So Ay = Ay and B, = B_;. Moreover, B,;1 = B,.) By as-
sumption (fy -« f1)(B—y) is Io-lowest weight, so fn(fn---f1)(B-n) = 0 and hence
B,(nJrl) =0.

Let z; be the integer which represents the position where A;y; and A; differ, and y;
be the integer which represents the position where B; 1 and B; differ. Also, let z_; be
the integer which represents the position where A_; and A_ ;1) differ, and let y_; be
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the integer which represents the position where B_; and B_(;1) differ. Note that y,
and y_,, are undefined.

Recall that v € B®¢. Suppose W is any word of length ¢ in the letters {1,...,n-+1}. If

< ¢, we define W(p) to be the p-th entry of W. If 1 < p < ¢ < /£ are integers, then

the notation W(p : ¢) will be used to refer to the word W(p)W(p+1)... W(qg—1)W(q).

If 1 < i < n, we define the i/(i + 1)-subword of W to be the word composed of the
symbols {z, i+ 1,__} which is obtained from W by changing each entry that is neither i
nor ¢+ 1 to the symbol _. For instance the 2/3-subword of 241432143 is2___ 32 ___ 3.
When we speak of erasing an ¢ or ¢ + 1, we mean changing that entry to _; similarly,
when we speak of adding an 7 or 7 4+ 1, we mean changing some __ to ¢ or i + 1. Moving
an i or ¢ + 1 from p to ¢ means erasing an i or ¢ + 1 from position p and adding an ¢ or
i+ 1 to position ¢. The notation W(p : ¢) is used in the same way for subwords as it is
for words. For instance, if W=3__ 32 3 then W(3:7)= __ 32__

Claim A.6. For 2 < i< n, we have x; > x;—1. For 2 <i<n—1, we have y; > y;_1.
Proof. If x; < x;_1, then it follows that f;A;_1 # 0. But this is the statement that

filei—iei---en)(er---en)v #0

for some integer 2 < i < n, which is absurd since v is Ip-lowest weight. If y; < y;_1, then
it follows that f;B;_1 # 0. But this is the statement that

filei—1ei---en_1)(e1---en)v #0
for some integer 2 < ¢ < n — 1, which is also absurd. O

Claim A.7. We have ©1 > z_1 and y1 > y—1. (In particular, f_1(A1) # 0, so x_1 is
well-defined.)

Proof. By the definition of the operator f_; we have y; > y_1. Since v and v* :=
I f1 €7 Yeny are both Iy-lowest weight and have different weights, we cannot have
y1 = y—1. Thus y; > y_1. Now B, (1 : y—1) = Bi(1 : y_1). Therefore, there are no 1’s
or 2’s in B,(1:y_1 — 1) and we have B,(y_1) = 1 since these statements must be true
of By. If 17 > y_1, then A1(1 :y_1) =B1(1:y_1) andso Ao #0 withx_y =y_;. If
21 < y_1, then A;(1: 27 —1) = Bp(1: 21 — 1) contains no 1’s or 2’s and A;(z;) = 1.
Thus A_o # 0 with x_; = x1. It is clearly impossible for xy = y_;. Therefore, we have
established that A_o = f_1(41) # 0. In the notation of Proposition A.2, we have for
j =k =n, that f,lelel( ) # 0. Hence we must be in case C2’(b) from which we deduce
that f_1(A;) lies in a different Iy-connected component than A;. From this it follows
that x1 >x_¢1. O

Claim A.8. For2 < i < n, we have x_;_1) < w_;. For2 <i < n, we have y_;_1) < y—;.
(In particular, A_g, ooy A_(nq1) are nonzero, s0 T_y,...,r_, are well-defined.)



M. Gillespie et al. / Journal of Combinatorial Theory, Series A 173 (2020) 105235 45

Proof. Again, case C2’(b) applies to f_1(A;) and so the parenthetical statement is
immediate. First, it is clear from the definitions of the f_; and f; operators that
r_1 < x_o and that y 1 < yo. If x_(;_1) > x_; for i > 2, then it follows that
fiA_(i—1) # 0. But this is the statement that f;(e;_1e;---en)(e1---e4)0 # 0 for some
Iy-lowest weight element ¥ and integers 3 < ¢ < n and 0 < g < n which is absurd. If
Y—(i—1) > Y—i for i > 2, then it follows that f;(B_(;_1)) # 0. But this is the statement
that f;(ei—1e;---en—1)(e1---eq)v* # 0 for some integers 3 < ¢ < n and 0 < g < n which
is equally absurd. O

So far, we have the following situation:

WV

Tn Z2x2 22X > 1< T 2K KTy and

Yn—1 Z 23/2 22/1 > Y1 <Z/—2 < <y—(n—l)'
Claim A.9. We have z_1 =y_1.

Proof. Since z; = y_; is impossible and since x7; < y_1 would imply that x_; = xq,
which contradicts ©1 > x_;, we may assume x; > y_1. However, in this case we have
A1(1:y—1) = Bi1(1:y_1). Since f_; acts on By in position y_1, it follows that f_; acts
on A; in position y_; as well. This implies z_1 =y_;. O

Claim A.10. For 1 <i<n—1, we have x; < y;.

Proof. First we show that z,,_1 < yn_1. Now y,,_1 represents the position of the leftmost
(n — 1,n)-unbracketed n in B,,. This n is also unbracketed in A,, because the (n —1)/n-
subword of A,, is obtained from the (n — 1)/n-subword of B,, by inserting an n. Hence
the leftmost (n — 1, n)-unbracketed n in A, is weakly to the left of position y,—_1, so
Tp—1 < Yn—1. Next, suppose that z; 11 < yi41 but z; > y;. The i/(i+ 1)-subword of A; 44
only differs from the i/(i + 1)-subword of B;11 by moving an ¢ + 1 to the left from y;11
to x;41. Since y; < x;41 by assumption, the ¢+ 1 which appears in B;1(y;) still appears
in A;11(y;) and is (i,7 + 1)-unbracketed. This implies z; < y;. Induction completes the
proof. O

Claim A.11. For 1 < i< n, we have x; > x_;. For 1 <i<n— 1, we have y; > y_;.

Proof. We already know that x; > x_;. So assume that z;_1 > T_(i—1) but z; < z_;.
The i/(i + 1)-subword of A; is obtained from the /(i + 1)-subword of A_; by moving
an 4 to the right from x_¢;_1) to x;_;. Since A_;(x_;) contains an (i, 7 + 1)-unbracketed
i and 2,1 < x_;, we see that A;(x_;) still contains an (4,7 + 1)-unbracketed 4. This
implies that x; > x_;. Induction completes the proof. The second statement is proved
in the same way. 0O
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From the previous result, we have the following situation:

S Z2X3 2Ty 21 >2 1 KT S T_3K
NN A I
S ZYs Z Y2 2 Y1 > Y-1 < Y-2 < Y-3 <

where every entry on the left side of the array is > to its mirror image on the right side
of the array. From now on, let j be minimal such that z; < y;; if no such j exists, set
j=n.

Claim A.12. We have x; = y; for all i < j and x;41 < y; for all j <i < n.

Proof. The first claim is immediate. Next we note that z; < y; for all i > j. (Otherwise
x; = y; for some ¢ > j. This implies that x; = y; for all £ < 4, and, in particular,
xj = y;.) By definition, we have B;1(y;) = ¢ + 1 and A;yo(2s41) = ¢ + 2. From the
latter, it follows that B;io(ziy1) = ¢ + 2 and, since y;41 > @41 (or y;4+1 is undefined)
that Bii1(ziy1) = i + 2. Therefore, we have z;41 # v;. If ;41 > y;, we must have
x; < wiy1 and y; < y;41 from which it follows that A;11(1 : y;) = Bix1(1 : y;). But this
makes x; < y; impossible. By contradiction, we conclude that z; 11 <y;. O

Claim A.13. Fori < j we have v_; = y—;. Also, xj > x;_1.

Proof. Since the restrictions of A;_; and Bj;_; to the alphabet {1,2,...,5 — 1} are
identical, and since the operators e;_o,...,e1, f—1, fa2,..., fj—2 only depend on and effect
these letters, it follows that for ¢ < j—2 we have x_; = y_;. Now we must show T_(j_1) =
Y—(j—1)- We have A;1(x;) = j + 1 and thus Bj1(x;) = j + 1, and hence by z; < yj,
Bj(zj) > j+ 1. Since B;(yj—1) = j, this yields x; # y;—1. In light of ;1 = y;_1 this
gives x; # x;_1. From this it follows that A;(1 : z;_1) = B,;(1 : z;_1). By the minimality
of j and by the result for i < j—2 this implies that A_;_1)(1:2;_1) = B__1y(1: xj-1).
Since we have both z_¢;_1) < ;-1 and y_¢;_1) < yj—1, the previous equality implies
that T_(j—1) = Y—(j-1)- O

If1<i<mn,let #(A_;(p: q)) denote the number of ¢’s minus the number of (i +1)’s
which appear in A_;(p : q). Define #(B_;(p : q)) analogously. Set AB;(p: q) = #(A_;(p:
q)) = #(B-i(p : q))-

Claim A.14. Suppose 1 < i < n.

) If x_; <y_;, then AB;(1:2z_;) > 0.

) If x_; > y_;, then AB;(1:y—;) <O.

3) Ifx_; <y—y, then ABj(x_; +1:y_;) <O0.
)
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Proof. Once again, C2’(b) applies to f_1(A;) and so we may write A_; = e; - - - epel’ (v/)
for some Iy-lowest weight element v' and some h' < n. It follows that A_; has exactly one
(i,i+1)-unbracketed i and it occurs in z_;. In addition, case C2’(b) applies to f_1(B;) by
assumption,so B_; =¢; - - - en,le?(v*) for an Iy-lowest weight element v*. Hence B_; has
exactly one (i, i+1)-unbracketed ¢ and it occurs in y_,;. Thus we have #(A_;(1 : z_;)) >0
and #(B_;(1 : y—;)) > 0. If x_; < y_; then #(B_;(1 : z_;)) < 0, while if z_; > y_;
then #(A_;(1 : y—;)) < 0. Together this proves the first two statements. For the third
statement we have #(A_;(x_; +1 : y_;)) < 0 and #(B_;(x—; +1 : y_;)) > 0. For
the fourth statement, again, we have #(A_;(x_; + 1 : y—;)) < 0, but now note that
Aiv1(z;) = i+ 1. Since x; # x;41, also, Ajyo(x;) = i + 1, whence Biiq(z;) = i+ 1,
and, by, x; # y;, we have B;(xz;) = i + 1. This now implies that B_;(z;) =i+ 1 or
B_;(x_;) =i+ 1. Since the i in B_;(y;) must be (4,7 + 1)-unbracketed this implies that
#(B-i(z—i+1:y-;)>1. O

Claim A.15. Fiz an interval [p,q]. We define the function [t] by [t] =1 if t € [p,q] and
[t] = 0 otherwise. With this notation, we have that

ABi(p: q) = [v_i—1)] = [wi—1] + 2[z:] — [Tig1] + [Yir1] = 2[yi] + [Yi-1] = [V—-1)]-
Proof. This is a straightforward computation. O

Claim A.16. Suppose j < n. If either x; > x_; or y; > y—_;, then both x; > x_; and
Yy; > y—j. In this case we have x_; = y_;.

Proof. If j = 1, the conclusions of the claim have already been proven in previous claims.

Thus assume j > 1. First note that, since _;_1) = y_¢j—1) and z;_1 = y;_1, we have

ABj(p : q) = 2[z;] — [zj+1] + [yj+1] — 2[y;]. To prove the first statement, we will show

that both (1) ; > x_; and y; = y—_; and (2) y; > y—,; and z; = x_; are impossible.
First suppose that x; > x_; and that y; = y_;. Since z_; < z; < y; = y—;, we have

by Claim A.14 that AB;(1: z_;) > 0. However, z;, 41, Y,+1,Y; are each > x_; so by

Claim A.15 we have AB;(1:z_;) = 0. Hence, x; > 2_; and y; = y_; is impossible.
Now suppose that y; > y_; and that z; = z_;.

Case 1: y_; < x_j. Since y_; < x_; we have by Claim A.14 that AB;(1 : y_;) < 0.
However, x;, % +1,Y;+1,Y; are each > y_; so by Claim A.15 we have AB;(1:y_;) =0.

Case 2: y_; = x_;. We have A 1(x;) = j+ 1 and so Bjii(x;) > j + 1. Hence by
xj < y; we have Bj(z;) > j + 1 which gives B_;(x;) > j + 1. However, by definition
B_;(y—;) = j so this makes x_; = y_; impossible in light of z; = 2_;.

Case 3a: y_; > x_; and x; = x;4+1. Since y_; > x_; we have by Claim A.14 that
ABj(x_;+1:y_;) < 0. However, x;,z;11 are each < z_; + 1 and y;,yj+1 are each
> y_; so by Claim A.15 we have AB;(1:y_;) = 0.



48 M. Gillespie et al. / Journal of Combinatorial Theory, Series A 173 (2020) 105235

Case 3b: y_; > z_; and z; < ;4. Since y_; > v_; = x;, Tj; # Tj41, and z; # y;, we
have by Claim A.14 that ABj(z_; +1:y—;) < —1. However, z; < z_; + 1 and y;, y;4+1
are each > y_; so by Claim A.15 we have ABj(z_; +1:y_;) € {—1,0}.

Hence y; > y_; and x; = x_; is impossible. This establishes that if either z; > z_;
or y; > y_j, then both z; > z_; and y; > y_;.

Now assume that both z; > z_; and y; > y—_;. If z_; < y_;, we have by
Claim A.14 that #;(A_;(1 : z_;)) > 0. However, x;,2 41,y +1,Yy; are each > x_;
so by Claim A.15 we have #;(A_;(1:z_;)) = 0. If z_; > y_;, we have by Claim A.14
that #;(A_;(1:y_;)) <0. However, ;,2;41,Y;j+1,y; are each > x_; so by Claim A.15
we have #;(A_;(1:y_;)) =0.Hence z_; =y_;. O

Claim A.17. Ifx; < x_; ory; < y—j, then for j < i <n we havey_; <y; andy_; < x_;.

Proof. We proceed by induction. By the first statement of Claim A.16, we can be sure
that y_; < y;. By the second statement of Claim A.16 we can be sure that y_; = z_j,
so in particular, y_; < z_;. Therefore the claim holds for ¢ = j. Now let ¢ > j and
suppose that the claim holds for ¢ —1 so that y_¢;_1) <y;—1 and y_(;_1) < x_(;_1). We
will show that under this assumption, each of (1) y_; = y; and y—; > z_;, (2) y—i < ¥;
and y_; > x_;, and (3) y_; = y; and y_; < x_; is impossible.

First suppose that y_; = y; and that y_; > x_;.
Case 1: z_; < x;. Since y_; > x_; by Claim A.14 we have AB;(1 : z_;) > 0. However,
by assumption x;, ¥it1,Yit+1,Yi, Yi—1 are each > x_; and r_;_1) = y_(;—1) so the only
possible relevant change is at ;1. Thus by Claim A.15 we have AB;(1: y_;) € {—1,0}.
Case 2a: x_; = z; and x; = x;41. Since y_; > x_; by Claim A.14 we have AB;(1 :
r_;) > 0. By assumptions, each of x_;_1y, Zi—1, T, Tit1,y—(i—1) are < x_; + 1. Clearly
Yi = Y—i € [x—; +1 : y_;]. Moreover, y;_1 < y; = y—; and y;_1 > x; = T_;, SO
Yi—1 € [x—; + 1 : y_;]. Without computing the value of [y;11] we may conclude by
Claim A.15 that AB;(1:y_;) € {—1,0}.
Case 2b: z_; = z; and z; < w;41. Since y_; > _;, T_; = x;, T; # T;r1, and x; #
y; we have by Claim A.14 that AB;(z—; +1 : y—;) < —1. By assumptions, each of
T_(i—1)s Ti—1, T, Y—(i—1) are < x_; + 1. Again, we know that y;,y;—1 € [z +1:y_4].
Without computing the value of [y;+1] and [z;41] we may compute by Claim A.15 that
ABi(x—; +1:y_;) € {-1,0,1}.

Hence it is impossible that y_; = y; and that y_; > x_;. Now suppose that y_; < y;
and that y_; > x_;.
Case la: v_; < z; and z; < y—;. Since y_; > x_;, we have by Claim A.14 that AB;(z_;+
1:y_;) <0.We have that z_(;_1),y_(;—1) are both < x_;+1, that 2; € [x_;+1 : y_;] and
that y;, yi+1 are both > y_,. Without computing [x;_1], [x;11], [yi—1] we may determine
by Claim A.15 that AB;(x_; +1:y_,;) € {0,1,2,3}.
Case 1bi: z_; < =z;, z; > y—;, and 2,1 < x_;. Since y_; > x_;, we have by
Claim A.14 that AB;(x_;+1:y_;) < 0. By assumption each of x_(;_1y, 2;—1,y_(;—1) are
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<x_;+1and z;41,2;,Yi,yi+1 are > y_;. Without computing [y;—1] we may determine
by Claim A.15 that AB;(x_; +1:y_;) € {0,1}.
Case 1bii: x_; < x;, x; > y_;, and z;_1 > x_;. Since y_; > x_;, we have by Claim A.14
that AB;(1 : x_;) < 0. By assumption z_¢;_1),y_(;—1) are < x_; whereas each of
i1, Tiy Tit1, Yio1, Yi, Yit+1 are > x_;. Thus by Claim A.15, we have AB;(1:z_;) = 0.
Case 2a: x_; = z; and x; = x;11. Since y_; > x_; we have by Claim A.14 that AB;(x_;+
1 :y_;) < 0. By assumption each of x_¢_1), 21,7, Ziy1,y—(i—1) are < r_; + 1 and
Yi, Yi+1 are > y_;. Without computing [y;_1] we may determine by Claim A.15 that
AB1($,1 +1: y,i) € {0, ].}
Case 2b: z_; = x; and x; < m;y1. Since y_; > r_;, T_; = T;, T; # Tit1, and z; #
y; we have by Claim A.14 that AB;(x_; + 1 : y_;) < —1. By assumption each of
T_(i—1)s Ti—1,Ti, Y—(i—1) are < x_; + 1 and y;,y;11 are > y_;. Without computing [y; 1]
and [r;—1] we may determine by Claim A.15 that AB;(z_; +1:y_;) € {—1,0,1}.
Hence y_; < y; and y_; > x_; is impossible. Now suppose y_; = y; and y_; < z_;.
This would imply y; = y—; < x—; < x; < y; which is absurd. The three possibilities
listed in the beginning of the proof are thus impossible, and the only remaining one is
y—i<yiand y_; <z_;. O

Supposing j = 3, and n = 5, and z; > x_; our situation would look as follows:

Ty 2 Ty 2X3> T2 221 >T1 ST_2 < T3 Ty 225
AA Il | | | N
YaZ2Y¥s =2 Y22y1>yY-1 <Y 2<Y3< Yy

where again every entry on the left side of the array is > its mirror image on the right
side of the array, and the bold entries are bigger than their mirror image.

Claim A.18. If v; = x_j, then A_(41) = B_y.

Proof. We have for all ¢ < j that ; = y; and z_; = y_;. Since by assumption z; = z_;,
we have for all i > j, ; = x_;. Moreover, if j < n then by Claim A.16 y; = y_; and
for all ¢ > j, we have y; = y_;. If £ is the length of the word v and 1 < p < ¥, define
the vector P’ to be the vector of length ¢, which has a 1 in position p and 0’s elsewhere.
Then recalling that 4,11 = X = B,,, we have the equalities:

n n Jj—1 j—1 7j—1 j—1
A—(n—i—l) =X- § T; + E =X~ E fz + E ffz =X~ _; + _'72
=1 =1 =1 =1 =1 =1
n—1 n—1

Claim A.19. We have z; = x_;.
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Proof. Suppose z; > z_;.

Case 1: j = n. By the definition of j, we have x,_1 = y,—1 and by Claim A.13 we
have x_(,_1) = Y—(n—1). Since x_,, < x,, this implies A_,(1: 2_,) = B_,(1 : 2_,).
Since A_,, contains an (n,n+ 1)-unbracketed n in position x_,,, so does B_,,. Therefore,
Jn(B_-p) # 0 which contradicts B_ 1) = 0.

Case 2a: j <nand x,_1 = T_(,_1). We have y_(,_1) < T_(,—1) < Tp. Since z, < yn_1
this means that we cannot have y_,_1) = x,, so we must have y_(,_1) < z,. Since

Tpo1=T_(p—1) and Yp_1 > Ty, the n/(n 4 1)-subword of B_,(1 : x,) is obtained from
the n/(n 4+ 1)-subword of A, (1:z_,) by:

(1) Erasing an n from x,, and adding an n in y_(,—1). (Note y_¢,—1) < 2p.)
(2) Adding an n + 1 to x,.

Therefore, since the n/(n+ 1)-subword of A_,,(1 : x,,) contains an (n, n+ 1)-unbracketed
n and each one of these two steps does not change that property, the n/(n + 1)-subword
of B_,(1: xy,) also does. This implies f,(B_,) # 0 which contradicts B_,4+1) = 0.
Case 2b: j < n and z,,_1 > T_(,—1). Since, Tp_1,Yn-1 € [1 : Tp_1] and 2, 1,2, €
[®n—1+1:x,) and y,—1 > x,, the n/(n + 1)-subword of B_, (1 : x,) is obtained from
the n/(n 4+ 1)-subword of A_,,(1: x,) by:

(1) Erasing an n from x_,_1) and adding an n in y_,_1). (Note y_,—1) < 2_(n—1).)
(2) Adding an n to z,_; and erasing an n from x,,. (Note z,,—1 < z,.)
(3) Adding an n+ 1 to x,.

Therefore, since the n/(n+1)-subword of A_, (1 : z,,) contains an (n,n+ 1)-unbracketed

n and each one of these three steps does not change that property, so does the n/(n+1)-

subword of B_,,(1 : x,). This implies f,,(B_,) # 0 which contradicts B_¢,41) =0. O
Since, indeed z; = x

—j, we have A_(,, ;1) = B_,, by Claim A.18, which completes the

proof of Lemma A.4.
A.3. Proof of Lemma A.J for j=n and j’=n—1

Lemma A.20. Suppose v is Iy-lowest weight and h < n — 1. Suppose that (eq---
en_1)el(v ) # 0 and ex---enef(v) # 0. If fifletel(v) is Iy-lowest weight, then
Iafh el Len(v) is Io-lowest weight.

Proof of Lemma A.20. Suppose v and v/ = f} fle ef(v) are Ip-lowest weight and
(€2---en_1)el(v) # 0. We must show that f! f1 167 16’{”(1}) is Ip-lowest weight.

Claim A.21. Given a word W, define L(W) to be the length of the longest weakly in-
creasing subsequence of W. If V is Iy-lowest weight, and W and V are in the same
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Iy-connected component, then the number of (n + 1)’s which appear in V is equal to

L(W).
Proof. This easily follows from analyzing the RSK insertion tableaux of the words. 0O
Claim A.22. We have L(e?ile’f(v)) > L(e?e’f(v))

Proof. Since Y = ey ---e,_1el(v) # 0, by inspection of the insertion tableaux of v and
Y we observe that cpl(Y) =0, p2(Y) =1, and (YY) = 0 for all k& > 2. This implies
that Y contains a letter 2 which precedes all letters 1. Hence e~ teh(v) = e_1(Y) #0,
so the statement L (e ™ Leh(v)) > L(eel (v)) is well-defined.

We will now recycle notation from the proof of Section A.2 with slight changes. Let
X =el(v). For 2<i<n+1,set A; = (e;---e,)(X) and B; = (e; - e,_1)(X). Set
A1 = e_1(Az) and By = e_1(B3). Let x; be the integer which represents the position,
where A; 17 and A; differ and y; be the integer which represents the position where B; 1
and B; differ.

Suppose that v contains r letters (n + 1). It follows from weight considerations that
v’ contains (r + 1) letters (n + 1). This implies that L(efe}(v)) = r + 1 whereas
L(eg---enel(v)) = 7. This is to say L(A;) = r + 1 and L(A3) = r. So A; contains
a weakly increasing subsequence of length r + 1, specified by the indices 49, ...,i]. We
must have that ¢ = z; and that A;(i}) = 1, otherwise the same indices would specify
a weakly increasing subsequence of Ay of length r + 1. It follows that As has a weakly
increasing subsequence given by the indices 43, ...,i5 where A5(i3) = 1. Now suppose
2 < k < n and Ay, has a weakly increasing subsequence given by the indices i}, ..., 1,
where Ay (i}) = 1. If ), ¢ {i},...,i,}, then A1 has such a subsequence specified by
the same indices.

Now suppose that zj, € {i},...,i}}. Create a list of indices as follows:

(1) If i}, <y or Ag(i}) # k, then i, = if.
(2) If i, > xp, and Ag(#),) = k, then Ay(#),) is (k, k 4 1)-bracketed with some k+ 1 in a
position between x, and 4y, Let i, denote this position.

This creates a set {i} 415+ 0541}, which, after a possible reordering into increasing
order, specifies a weakly increasing subsequence of Agi1 with Ak (i} +1) =1.

By induction B, = A,41 = X has a weakly increasing subsequence specified by
the indices {#'},...,i'"}, with B,(i’.) = 1. Let k > 1 and assume Bj1 has a weakly
increasing subsequence specified by the indices {i’,ch, ooyt jyq }, with Bk+1(i’,1€+1) =1
If yp < i'i_ﬂ, then the same is true of By with the same indices. If y, > i’,lc_H then
Bi = ex(Biy1) = [Brr1(1: 7 441) ex(Brya(i'hpr +1:£))]. Since Byy1 (/441 +1: £) has
a weakly increasing subsequence of length r — 1, eg (Bk+1(i',1€+1 +1: 7)) does as well.
Thus By, = [Bg+1(1: i’,lﬂ_l) ek(Bk+1(i’,1€+1 +1:¢))] has a weakly increasing subsequence
of length r specified by some indices {i'y, . ..,i'}}, with By (i’y) = 1 (where i’} = i’i+1).
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By induction this is true for k = 2. Since e_y(By) = Bj is defined and since By(i'y) = 1,
we have y; < i’y and so {y1,4'3,...,i'5} is a list of indices which give a weakly increasing
subsequence of length » +1in B;. O

We want to show that f}f) el Lel(v) is Ip-lowest weight. Now e_;(Y) is obtained
from Y = ey -e,_1€?(v) by changing its first 2 to 1. As a result ¢;(e_1(Y)) € {1,2}
and gak(e_l(Y)) = 0 for all k& > 1. Therefore, we may write e_1(Y) = eje!(v*) for
some Iy-lowest weight element v*, and s > 0 and ¢ > 0 with ¢ > s (using Lemma 3.3
when ¢1(e—1(Y)) = 2). This gives v* = ftlfsle?fle’f(v). Since v’ contains one more
n + 1 than v, it follows from Claims A.21 and A.22 that v* contains at least one more
n 4+ 1 than v, which means we must have ¢t = n. This also means that v and v* are
not in the same connected Ip-component. But if v = f} 1 esen(v*) is in a different
connected Tp-component than v*, then C2’(b) applies which forces s = n — 1. Thus

= L e e (o).

This concludes the proof of Lemma A.20. O

Proposition A.23. Lemma A.4 with 5 = n — 1 and 77 = n and Lemma A.20 imply
Lemma A.J.

Proof. We need to show that if v is lo-lowest weight, 61 ten(v) # 0, efep(v) # 0,
and v* = flfleter(v) is Ip-lowest weight, then fl_ef ‘el (v) = flete}(v). Now v =
fi fle e (v*) is Ip-lowest weight (in particular, e - - - e el (v*) # 0). Now we show that
ez -en_1ef(v*) # 0. By definition, e?(v*) # 0. Either v* has more n’s than (n — 1)’s
so that ey --e,_1ef(v*) # 0, or else v* has the same number of n’s as (n — 1)’s and
h = n — 2 in which case also ey --e,_1el(v*) # 0. Therefore, by Lemma A.20 v" =

Safh el Yeh(v*) is Ig-lowest Welght. Rewriting this as v* = flfl_ e} 'e?(v') and

noting that wt(v) = wt(v') implies efef(v’) # 0 Lemma A.4 with j =n — 1 and j' =
gives v* = f} fyefel (v'). This implies that v = v’ and that hence that fIoenler(v) =
fretet(v). O
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