
Exploring the Value of Different Data Sources for Predicting
Student Performance in Multiple CS Courses

Soohyun Nam Liao
University of California, San Diego

Daniel Zingaro
University of Toronto Mississauga

Christine Alvarado
University of California, San Diego

William G. Griswold
University of California, San Diego

Leo Porter
University of California, San Diego

ABSTRACT
A number of recent studies in computer science education have
explored the value of various data sources for early prediction
of students’ overall course performance. These data sources in-
clude responses to clicker questions, prerequisite knowledge, in-
strumented student IDEs, quizzes, and assignments. However, these
data sources are often examined in isolation or in a single course.
Which data sources are most valuable, and does course context
matter? To answer these questions, this study collected student
grades on prerequisite courses, Peer Instruction clicker responses,
online quizzes, and assignments, from five courses (over 1000 stu-
dents) across the CS curriculum at two institutions. A trend emerges
suggesting that for upper-division courses, prerequisite grades are
most predictive; for introductory programming courses, where no
prerequisite grades were available, clicker responses were the most
predictive. In concert, prerequisites and clicker responses gener-
ally provide highly accurate predictions early in the term, with
assignments and online quizzes sometimes providing incremental
improvements. Implications of these results for both researchers
and practitioners are discussed.

CCS CONCEPTS
• Social andprofessional topics→Computing education;Com-
puter science education; CS1;

KEYWORDS
machine learning, prediction, student outcomes, low-performing
students, CS1, CS2, Data Structures, Architecture

ACM Reference Format:
Soohyun Nam Liao, Daniel Zingaro, Christine Alvarado, William G. Gris-
wold, and Leo Porter. 2019. Exploring the Value of Different Data Sources for
Predicting Student Performance in Multiple CS Courses. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19), February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3287324.3287407

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287407

1 INTRODUCTION
Failure rates in computer science courses can be high, both in
introductory computing [24] and in follow on courses [15]. This
problem is exacerbated by current high enrollments [6] because
growing class sizes make it increasingly difficult for instructors to
identify who among their students is in trouble. As a result, the
computing education research community has been studying au-
tomated means of identifying at-risk students early in the term
so that instructors might be able to intervene. Some prior studies
focused on introductory courses, looking at relationships between
student outcomes and pre-class experiences or characteristics (SAT
score, gender, prior programming experience, achievement goals
etc.) [12, 14, 19, 22, 26, 29]. Other work has leveraged educational
technology to collect student data, such as programming behav-
ior, types of questions asked on online forums, and clicker data
from Peer Instruction [17, 21, 23]. Much of this work has focused
on understanding characteristics of low- or high-performing stu-
dents based on data from a single term, though a few recent studies
have predicted overall course performance across terms by using
machine learning models built with clicker data [11] and assign-
ments [3, 5].

One limitation of previous prediction studies is that they largely
focus on introductory programming courses, leaving a gap in our
understanding of the factors that might be predictive for later
courses. In addition, many of those studies focus on single data
sources, rather than the ways in which multiple sources might work
in concert.

In this study, we collect grades in prerequisite computer science
courses (when applicable), assignments, online quizzes, and clicker
data from five different CS courses (both lower- and upper-division)
across two separate institutions. In each case, we examine the value
of each of these data sources in building a predictive model, where
the model is trained on data from one term and then applied to
students in a subsequent term. We find, as one might expect, that
for upper-division courses, grades in prerequisite courses are par-
ticularly strong predictors. Adding clicker data improves the model
in general for all five courses, including two introductory program-
ming courses where prerequisite CS grades are not available. By
contrast, assignments and online quizzes improve the model only
marginally, compared to prerequisite courses and clicker data. In
concert, prerequisite grades and clicker data provide particularly
accurate predictions. As such, instructors wishing to identify low-
performing students early in the term may wish to prioritize the
collection of these data sources.

Paper Session: Process & Performance SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

112

https://doi.org/10.1145/3287324.3287407
https://doi.org/10.1145/3287324.3287407

Table 1: Dataset Details

ID Course Name Inst† Size‡ Course Topics Prerequisites

CS1P CS1 in Python A 192 / 142 variables, datatypes, functions, condi-
tionals, loops, and sorting algorithms

None

CS1J CS1 in Java B 373 / 374 variables, methods, conditionals, loops,
and objects

None

CS2J CS2 in Java B 169 / 176 arrays, lists, stacks, queues, sorting al-
gorithms, and runtime analysis

CS1

DataStr Advanced
Data Structures

B 197 / 191 trees, balanced search trees, hashtables,
tries, Huffman coding, and graph search

CS2, Programming Tools Lab,
Discrete Mathematics, Com-
puter Organization

Arch Introductory
Computer Architecture

B 339 / 266 ISA, performance, single/multi-cycle
processors, pipelining, and caches

Computer Organization, Digital
Logic, Digital Logic Lab

† Institution ‡ Size of Training Set / Test Set

Table 2: Data Sources Used in the Present Study

ID Description Preprocessing Method CS1P CS1J CS2J DataStr Arch

p Final grades from prerequisite courses Numerical grade ✓ ✓ ✓
c In-class clicker correctness Average correctness ✓ ✓ ✓ ✓ ✓
a Take-home assignment grades Average score ✓ ✓ ✓ ✓
q Online quiz grades Average score ✓ ✓ ✓ ✓ ✓

2 BACKGROUND
Accurately predicting student performance in CS courses is a long-
standing goal of CS education researchers [20]. Given the elevated
failure rates often reported in CS courses [24], the hope is to be
able to identify at-risk students in a timely manner, so that there is
opportunity to alert students or help them make progress.

Much of the relevant work relies on static factors that can be
measured at the start of a course but that cannot be easily changed.
Such factors include gender, prior experience, achievement goals,
and self-efficacy [19, 26, 29]. While some success has been met
using such approaches [18], correlations between these factors and
course outcomes tend to be low or do not consistently replicate [25].

Fortunately, we can also avail ourselves of data generated by
modern educational technology. In contrast to static data, this dy-
namic data is generated as the course unfolds, and provides a more
nuanced understanding of how students progress through and in-
teract with course material. One strand of this research leverages
Peer Instruction (PI) clicker data, using student in-class responses
from early in the term to predict course outcomes [11, 17]. Another
strand uses instrumented software to capture student process and
behavioral data, such as total keypresses when programming [3],
time and changes between compilations [25], and time spent with
particular elements in online modules [10].

We note two related gaps in the body of literature summarized
above. First, the extant research push is largely focused on mak-
ing predictions in CS1 courses, with very little action in other
courses [8]. Second, students taking CS1 courses are very likely in
their first year of study, so such research cannot include student
grades in prerequisite courses. Some work suggests that grades in
prerequisite courses are useful for predicting student progression
through a CS degree program [4], but that work does not consider
dynamic predictors of performance. In summary, while in CS1 the

efficacy of static predictors tends to pale in comparison to that of
dynamic predictors, it is not known to what extent prerequisite
grades and dynamic predictors may work together to predict out-
comes in more advanced courses. The present paper addresses these
research gaps: we study a variety of courses in the undergraduate
CS curriculum, and (for more advanced courses) make predictions
using both static and dynamic predictors.

3 METHOD
Our work was guided by two central research questions:

• RQ1:What is the value of each of our data sources for pre-
dicting student performance in computing?

• RQ2: How do prediction accuracies improve as we use mul-
tiple data sources?

Given these research questions, we provide background informa-
tion on our datasets and how we create models to predict student
performance and evaluate those predictions.

3.1 Our Datasets
We obtained our data from five courses across the CS curriculum
at two North American research-focused institutions with institu-
tional approval to study human subjects. Table 1 provides course
details, including course topics and numbers of students in each
dataset. Note that for each course we have two terms’ worth of
data, one used for training and the other for testing. This cross-term
modeling approach captures authentic variation in natural teaching
environments, including changes in courses and exams [3, 11]. Our
data includes two CS1 courses, one from each institution; these
courses were taught completely separately and not coordinated
across institutions.

Table 2 describes the modeling features used for the present
study. We selected relatively common course components within

Paper Session: Process & Performance SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

113

these five courses to predict student performance: course prerequi-
sites, clicker responses, assignments, and online quizzes. Course
prerequisites (see the Prerequisites column in Table 1) are not avail-
able for CS1, as it is the first CS course taken by students at these
institutions. Clicker data was available for all five courses, as all in-
structors used Peer Instruction [7] in class. Peer Instruction involves
the use of conceptually-rich multiple-choice questions to which
students respond individually and then in groups. The questions are
designed to target student difficulties and misconceptions, and are
informed by teaching experience, research literature, and available
question banks. Assignment grades were incorporated into four of
the models; no assignment data was available for CS1P, because
the first assignment in that course was due later in the term. Arch
students completed individual assignments. In the other courses,
pair programming was required (CS1J) or encouraged (CS1P, CS2J,
DataStr). Online quiz data was available in all courses through pre-
class reading quizzes; CS2J also had review quizzes assessing what
students learned in the past week.

3.2 Model Generation
Our model generation process can be divided into four major steps:
defining early prediction, defining low-performing students, pre-
processing the data, and training a model. We used the glm R
function [2] to generate and evaluate prediction models.
Defining early prediction. Similar to prior studies, we produce
predictions using only data collected during the first 3 weeks of
each term [11, 17]. By making predictions this early in the term, the
belief is that potential interventions may be possible even before
the first midterm exam.
Defining low-performing students.We defined low-performing
students to be those who are ranked in the bottom 40% on the
final exam. This is based on prior literature [11] where instructors
selected the bottom 40% to be the group of students likely in need
of assistance.
Preprocessing. We preprocessed each data source as indicated in
the Preprocessing Method column of Table 2. Each data source was
distilled into a single value per student, except for prerequisites
where we used one value per prerequisite course grade. We col-
lected final letter grades from the prerequisite courses, and then
converted these letter grades into numerical grades on a 0-4.33 scale,
so A+ became 4.33, A became 4.0, A- became 3.67, and so on. For
clicker data, we used records of student responses to each clicker
question, following prior work [17] stating that student clicker
correctness is correlated with final exam performance. Specifically,
we assigned -1, 0, and 1 for incorrect, no response, and correct,
respectively, and calculated the average of all clicker questions for
each student. Similarly, for assignments and quizzes, we calculated
average grades, after scaling the maximum possible score of each
assessment item to be 1.0 to correct for different maximum possible
scores. As a final step, we normalized each data feature to have a
normal distribution.
Training. We trained a Logistic regression model [27] to perform
binary classification (low-performing vs. high-performing) for each
course. We selected logistic regression after exploring a number of
different models for accuracy, simplicity, and ability to work well
with a small number of input features. The model was trained on

Figure 1: An Example ROC Curve

data from an earlier term with the data sources as features and with
the binary outcome labels of low-performing or high-performing
based on final exam score.

3.3 Model Analysis
Given the model created using the previous term of data (train-
ing set), we make predictions on the subsequent term (test set)
and evaluate those predictions using a common graph in machine
learning called a Receiver Operating Characteristic (ROC) curve,
which plots the performance of a model as its parameters are var-
ied. An example ROC curve is provided in Figure 1. The x-axis
plots how accurately a model identifies high-performing students
(specificity) and the y-axis plots how accurately a model identifies
low-performing students (sensitivity). The output of the logistic
regression model is a number between 0 and 1 representing the
probability that a particular student is low-performing. We can
trade off the specificity and sensitivity of our model by varying the
probability threshold we use to decide whether a student is classi-
fied as high- or low-performing. This trade-off is what is shown in
the ROC curve; each point on the curve corresponds to a different
selected value for the probability threshold. For example, the point
corresponding to a probability threshold of 0.3 is shown in Figure 1.
This example point, for this model at this threshold, produces a
specificity of 72% and a sensitivity of 76%.

When evaluating the overall modeling performance, the Area
Under the Curve (AUC) on an ROC curve is commonly used as
it captures, in effect, how close to an ideal curve is provided by
the model. Figure 1 visualizes the AUC in blue. Overall, a high
AUC (closer to 1.0) implies a better model as it is better capable of
capturing sensitivity and specificity.

3.4 Analysis of Multiple Sources
Ultimately, we use a combination of multiple data sources to train
and test the model using the AUC described above. We would like
to know whether adding a data source leads to improvement in the
model. However, one cannot directly determine whether a model
is statistically better than another based on resultant AUC curves.
As such, we begin by determining whether adding a specific data
source is statistically significant, and to do so, we run a likelihood
ratio test [13] (using the lrtest R package [1]). This test compares
two models, before and after adding a specific data source, and

Paper Session: Process & Performance SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

114

(a) CS1P (b) CS1J (c) CS2J (d) DataStr (e) Arch

Figure 2: AUCWhen Modeling with Individual Data Sources

returns a p-value to show whether adding that data source sta-
tistically changes the generated model. We define statistical sig-
nificance at the p < 0.05 level. There is an important distinction
between this analysis and the model analysis from Section 3.3 in
that likelihood ratio tests are performed on the training set data
only, whereas evaluation with an AUC occurs on a test set. This has
the important consequence for our evaluation that a statistically
significant improvement in the model’s accuracy for the training
set, evidenced by the likelihood ratio, may not necessarily translate
to an improved result for the AUC on the test set (due to potential
overfitting, changes across terms, etc.).

4 RESULTS
We first examine the value of different data sources (RQ1) and then
explore how model accuracy improves as we use multiple data
sources (RQ2).

4.1 RQ1: Value of Different Data Sources
To determine which data sources are most valuable, first we exam-
ine the resultant AUC of each data source when used in isolation
and then we determine whether adding each source statistically
significantly improves the model using likelihood ratio analysis.

4.1.1 Value of Data Sources in Isolation. Figure 2 provides the
resultant AUC for the test set when using each data source individ-
ually, collected from the five courses. Recall that CS1 courses do
not have any course prerequisites at our institutions, so they do
not include results from prerequisite data. Moreover, CS1P did not
have any assignments due within the first three weeks of the term,
so Figure 2a does not have results on assignments.

On average, prerequisite data (p in Figure 2) returns the best AUC
(0.76) out of all data sources. This implies that for courses beyond
CS1 (even as early as CS2), prerequisite grades are a powerful
predictor of student outcomes. The next highest average AUC (0.70)
is provided by clicker data (c), confirming prior work that this data
source as a valuable predictor of student outcomes [11, 17]. Online
quizzes and assignments provide similar AUC for CS1J and Arch;
assignments are better for CS2J; and quizzes are better for DataStr.
Although the Average AUC is 0.68 and 0.63 for online quizzes
and assignments, respectively, the inconsistencies between courses
means no clear trend between online quizzes and assignments has
emerged. Overall, the trend is that prerequisites are more valuable
than clickers and clickers are more valuable than assignments or

Table 3: Statistical Significance of Adding Data Sources

CS1P CS1J CS2J DataStr Arch

‘p’ only N/A N/A *** *** ***
Add ‘c’ to ‘p’ *** *** * ***
Add ‘a’ to ‘pc’ N/A * * ***
Add ‘q’ to ‘pca’ *** ***
* p < 0.05, ** p < 0.01, ***p < 0.001

quizzes. In DataStr, we see that assignments have effectively no
predictive power, as the associated AUC is worse than random
guessing (i.e., AUC < 0.5). This is further discussed in Section 5.

4.1.2 Value of Data Sources Relative to Each Other. Next, we
determine which data sources add statistical significance to the
model accuracy. For example, although online quizzes in isolation
have some predictive power, perhaps the variance explained by
that data source is already better explained by the clicker data.

To perform this evaluation, we test howwell the generatedmodel
performs as we add one additional data source at a time. Specifically,
the initial model with one data source is compared against a null
model with only the intercept term to determine the statistical
significance of the initial model. We then determine whether adding
an additional data source improves the model for the training set.

Likelihood ratio analysis depends heavily on the order that one
adds the data sources. For example, if one adds data sources ordered
from least predictive to most predictive, then the least predictive are
more apt to be deemed significant. As such, we used the common
approach in likelihood ratio analysis of adding data sources from
most to least predictive (based on our results from Section 4.1.1). We
therefore start with prerequisite data, then sequentially add clicker,
assignment, and online quiz data. (We additionally experimented
with a variety of different orders, and the overall conclusions re-
mained the same.)

Table 3 shows whether adding each data source makes any sta-
tistically significant changes in the generated model. The initial
model based only on either prerequisite data (CS2J, DataStr, Arch)
or clicker data (CS1P, CS1J) is always meaningful compared to the
null model. Clicker data is statistically significant overall, not only
when compared to the null model (CS1P, CS1J), but also when added
to the model with prerequisite data only (CS2J, DataStr, Arch). Also,
adding assignment data is statistically significant in all courses but
CS1J. Lastly, adding online quiz data on top of prerequisite, clicker,

Paper Session: Process & Performance SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

115

(a) CS1P (b) CS1J (c) CS2J (d) DataStr (e) Arch

Figure 3: AUCWhen Modeling with Combination of Data Sources

and assignment data statistically significantly improves only the
model for two courses (CS1J, Arch).

Overall, this statistical analysis confirms findings from Section 4.1.1
that the value of our data sources, from most to least, is as follows:
prerequisites, clickers, assignments, and online quizzes.

4.2 RQ2: Combining Different Data Sources
Similar to Section 4.1.2, we examine how the model improves as we
add additional data sources. Rather than focusing on the statistical
significance of the model for the training set, however, here we
look at the resultant AUC for the test set when building a model
with a combination of data sources. Because the statistical analysis
in Section 4.1.2 was on the training set only, and the analysis here
is for the training and test sets combined, we again note that data
sources found “significant” in Section 4.1.2 may not translate to
improved accuracy here.

Figure 3 shows how AUC changes as we add more data to the
model. Overall, AUC improves as we add more data, except in
DataStr and Arch. In those two cases, the model with both prerequi-
sites and clickers performs quite well, but the additional data does
not improve (and sometimes hurts) the model accuracy. The fact
that prerequisites and clickers are more meaningful than the other
sources for DataStr and Arch was also noticeable when we eval-
uated each data source individually (see Figure 2d and Figure 2e).
One might suppose that there is a ceiling to the possible prediction
accuracy in our courses, given different student demographics, dif-
ferent topic orderings, and different exams each term. It is unclear
whether such a ceiling effect is limiting further prediction accuracy
for DataStr.

For CS1P, CS1J, and CS2J, the model generally improves as more
data sources are added (with the exception of online quizzes for
CS2J). This finding may suggest that the multiple data sources col-
lectively improves accuracy; but one might also argue that accuracy
is generally quite high already with just two data sources, and that
the additional sources only provide marginal improvements.

5 DISCUSSION
This section discusses implications of our results and provides
suggestions for instructors wishing to use various data sources to
identify low-performing students. We also explain why we selected
these data sources and possible threats to validity of our results.

5.1 Implications
Our work adds to our understanding of how to predict student
outcomes by examining the value of different data sources. To our
knowledge, this is the first work that uses various data sources, col-
lected in multiple courses across the CS curriculum, from multiple
institutions, to perform cross-term predictions.
Prerequisite Grades.Of the four data sources, prerequisite course
data is the most predictive. This predictive power relates to the
number of prerequisite courses for each course. For instance, CS2J
had only one prerequisite (CS1), while Arch and DataStr had two
and three, respectively; in turn, the AUC of the prerequisite-only
model of CS2J is the lowest, followed by Arch, then by DataStr.

The predictive power of prerequisite grades is unsurprisingwhen
one considers that a final grade in a course represents a student’s
overall academic performance throughout the term. Specifically,
the final grade includes direct observations of a student’s class per-
formance, often including attendance, assignment grades, midterm
exam grades, final exam grades, and so on. Moreover, it likely also
captures some underlying factors that lead to student success on
these assessments (motivation, study strategies, background knowl-
edge, etc.). Lastly, a single term of data represents a full 10-12 weeks
(at our institutions) of student performance. Recall that our other
data sources were collected over a comparably brief three-week pe-
riod. Given these differences in duration, it is somewhat astonishing
that our other sources are as powerful as they are.

One important benefit of prerequisites being so predictive for
upper-division courses is that this data is available at the beginning
of a term, before collecting any data from the course itself. This
suggests the possibility of offering support before the course offi-
cially begins. For example, refresher sessions could be offered, and
students could be emailed to encourage participation.
Clicker Responses. Clicker data is the second best predictor of
student performance, supporting prior findings that use clicker data
for prediction [11, 17]. Peer Instruction questions may be particu-
larly predictive as they are designed to address core concepts and
highlight common misconceptions. In addition, these questions in
our courses are graded on participation rather than correctness [16].
This gives students the freedom to represent their understanding
accurately, as there is no grade incentive to solicit assistance. For
those who have adopted Peer Instruction in their courses, clicker
data is automatically available. Scoring clicker questions presents

Paper Session: Process & Performance SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

116

a small overhead, but is likely performed as part of teaching the
course. Those not using Peer Instruction, by contrast, could use
multiple-choice questions as part of online quizzes instead [11].
Assignments and Online Quizzes. Our AUC results imply that
the additional value of assignments or online quizzes beyond pre-
requisite and clicker data is relatively small. Two exceptions are
the addition of assignment and quiz data to CS1J, and the addition
of assignment data to CS2J. In each of these courses, neither the
clicker-only model (for CS1J) nor the prerequisite-only model (for
CS2J) was as predictive as for the other courses, so this may have
allowed more room for improvement from additional data sources.
Why prerequisite data and clicker data were less predictive for
these two classes is enigmatic, and could stem from a variety of
factors (key differences in exams across terms, multiple CS1 courses
feeding a single CS2 course, quality of clicker questions, etc.). We
leave this as a topic for future inquiry. In addition to the AUC re-
sults, the likelihood ratio test results showed that online quiz data
does not statistically significantly improve the generated model for
most courses. Thus, if an instructor already has prerequisite course
grades and clicker data, it may not be worth the additional effort to
add assignments and online quizzes to a prediction model.

The poor performance of assignments as a predictor of success
in DataStr was initially surprising. However, upon reflection, we
observed that there were only two DataStr assignments given in
the first three weeks of the term: one was a pre-class survey and
the other was a programming assignment that is easier than other
assignments given later in the course. The relative low difficulty
of the programming assignment (and subsequently high grades on
average) may explain the lackluster performance of assignments as
a predictor of overall course performance.
Combining Data Sources. Overall, our results demonstrate that
prediction accuracy often improves when adding additional data
sources. When choosing to collect data, instructors may wish to
prioritize the more predictive data sources of prerequisites and
clicker responses. Instructors may consider augmenting the model
with other data sources, with the proviso that accuracy gains may
be limited.

5.2 Ease of Collecting Data Sources
We selected the data sources used in this study as they are generally
easy to obtain. Three of the sources (clickers, assignments, and
quizzes) are often already part of course assessments. The remaining
source (prerequisites) is already available in the school database
(although we recognize that access to this data may be limited
depending on institution). One might be able to obtain grades in
prerequisites through a start-of-term survey of students, though
there may be concerns about reminding students of previously
poor performance at the outset of a new course. These sources
differ from some of those used in prior studies, where data was
gathered using an extra instrument, such as a survey, pre- or post-
test, or programming IDE [3, 29]. In contrast, we anticipate no
significant burden for instructors to use the data sources in our
study other than retrieving the required data and, in the case of
clicker questions, marking the correct answer if not marked.

Prior work has demonstrated a relationship between prior pro-
gramming knowledge and success in CS1 [9, 28]. We considered

using a measure of prior knowledge as an alternative to prereq-
uisite grades but did not do so because the data is a burden for
instructors to collect, and because collecting accurate data requires
asking students to solve programming-related questions that might
be intimidating to those lacking prior knowledge. An alternative
to explore in the future may be APCS grades or high school math
grades, but in our experience instructors rarely have access to such
data.

5.3 Threats to Validity
Although we included multiple courses, both lower- and upper-
division, the data from the upper-division courses (DataStr and
Arch) were collected only at a single institution. That said, these
upper-division courses were taught by different instructors, so our
results are not biased to a single instructor. In addition, we used
logistic regression as it provided strong prediction accuracy for a
binary outcome given only a few features per student. To arrive at
that modeling technique, we tried a variety of models commonly
used inmachine learning (e.g., SVM and random forest) and selected
logistic regression based on its consistently strong results. As our
findings are based on using logistic regression, our results may be
biased by our choice of modeling technique.

6 CONCLUSION
Our work analyzes the predictability of different data sources and
how prediction performance improves when combining multiple
data sources. We collected students’ prerequisite course grades,
clicker correctness, assignment grades, and online quiz grades, and
applied logistic regression to produce cross-term predictions (as
one might do to authentically predict in practice). Overall, our re-
sults demonstrate that prerequisite course grades (when available)
predict student performance most strongly, followed by clicker
data, assignments, and online quizzes. Combining prerequisite and
clicker data often improves the model’s prediction accuracy; how-
ever, adding assignments and quizzes to that already accurate model
often does not increase the accuracy further.

This work adds to our knowledge of predicting outcomes in
computing by comparing different data sources collected from the
same population to determine which are most meaningful. The
data sources selected for the work are those generally available
to instructors, reducing the barrier for instructors to adopt these
techniques. We note also that prerequisite and clicker data are avail-
able early: prerequisite data before the start of class, and clicker
data from the first lecture (though several weeks of clicker data are
likely required for accurate modeling [11]). The findings are gener-
ally consistent across five different computing courses (including
both lower- and upper-division courses) and are collected from two
institutions. Overall, our findings suggest that instructors wishing
to identify low-performing students should leverage prerequisite
course grades and clicker questions to make that determination.

7 ACKNOWLEDGEMENTS
We greatly appreciate the reviewers for their helpful feedback. This
work was supported in part by NSF award 1712508.

Paper Session: Process & Performance SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

117

REFERENCES
[1] https://www.rdocumentation.org/packages/lmtest/versions/0.9-

36/topics/lrtest.
[2] https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/glm.
[3] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen. Exploring machine learning

methods to automatically identify students in need of assistance. In Proceedings
of the 11th Conference on International Computing Education Research, pages
121–130, 2015.

[4] A. Anthony and M. Raney. Bayesian network analysis of computer science grade
distributions. In Proceedings of the 43rd Technical Symposium on Computer Science
Education, pages 649–654, 2012.

[5] K. Castro-Wunsch, A. Ahadi, and A. Petersen. Evaluating neural networks as a
method for identifying students in need of assistance. In Proceedings of the 48th
Technical Symposium on Computer Science Education, pages 111–116, 2017.

[6] CRA Enrollment Committee Institution Subgroup. Generation CS: Computer
science undergraduate enrollments surge since 2006. Computing Research Asso-
ciation, 2017.

[7] C. H. Crouch and E. Mazur. Peer instruction: Ten years of experience and results.
American Journal of Physics, 69, 2001.

[8] H. Danielsiek and J. Vahrenhold. Stay on these roads: Potential factors indicating
students’ performance in a CS2 course. In Proceedings of the 47th Technical
Symposium on Computer Science Education, pages 12–17, 2016.

[9] D. Hagan and S. Markham. Does it help to have some programming experi-
ence before beginning a computing degree program? In ACM SIGCSE Bulletin,
volume 32, pages 25–28, 2000.

[10] L. Leppänen, J. Leinonen, P. Ihantola, and A. Hellas. Predicting academic success
based on learning material usage. In Proceedings of the 18th Conference on
Information Technology Education, pages 13–18, 2017.

[11] S. N. Liao, D. Zingaro, M. A. Laurenzano, W. G. Griswold, and L. Porter. Light-
weight, early identification of at-risk CS1 students. In Proceedings of the 12th
Conference on International Computing Education Research, pages 123–131, 2016.

[12] A. Lishinski, A. Yadav, J. Good, and R. Enbody. Learning to program: Gender
differences and interactive effects of students’ motivation, goals, and self-efficacy
on performance. In Proceedings of the 12th Conference on International Computing
Education Research, pages 211–220, 2016.

[13] M. Natrella. NIST/SEMATECH e-handbook of statistical methods. http://www.
itl.nist.gov/div898/handbook, 2010.

[14] C. G. Petersen and T. G. Howe. Predicting Academic Success in Introduction to
Computers. Association for Educational Data Systems, 12(4):182–191, 1979.

[15] L. Porter, C. Bailey Lee, and B. Simon. Halving fail rates using peer instruction:
a study of four computer science courses. In Proceedings of the 44th technical

symposium on Computer science education, pages 177–182, 2013.
[16] L. Porter, D. Bouvier, Q. Cutts, S. Grissom, C. Lee, R. McCartney, D. Zingaro,

and B. Simon. A multi-institutional study of peer instruction in introductory
computing. In Proceedings of the 47th Technical Symposium on Computer Science
Education, pages 358–363, 2016.

[17] L. Porter, D. Zingaro, and R. Lister. Predicting student success using fine grain
clicker data. In Proceedings of the 10th Conference on International Computing
Education Research, pages 51–58, 2014.

[18] K. Quille and S. Bergin. Programming: Predicting student success early in CS1.
a re-validation and replication study. In Proceedings of the 23rd Conference on
Innovation and Technology in Computer Science Education, pages 15–20, 2018.

[19] V. Ramalingam, D. LaBelle, and S. Wiedenbeck. Self-efficacy and mental models
in learning to program. SIGCSE Bulletin, 36:171–175, 2004.

[20] A. Robins. Learning edge momentum: A new account of outcomes. Computer
Science Education, 20(1):37–71, 2010.

[21] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud, A. C. M. Amarra, T. Dy, M. B. V.
Espejo-Lahoz, S. A. L. Lim, S. A. Pascua, J. O. Sugay, and E. S. Tabanao. Affective
and behavioral predictors of novice programmer achievement. In Proceedings of
the 14th Conference on Innovation and Technology in Computer Science Education,
pages 156–160, 2009.

[22] V. L. Sauter. Predicting computer programming skill. Computers & Education,
10(2):299–302, 1986.

[23] M. Vellukunnel, P. Buffum, K. E. Boyer, J. Forbes, S. Heckman, and K. Mayer-Patel.
Deconstructing the discussion forum: Student questions and computer science
learning. In Proceedings of the 48th Technical Symposium on Computer Science
Education, pages 603–608, 2017.

[24] C. Watson and F. W. Li. Failure rates in introductory programming revisited.
In Proceedings of the 19th Conference on Innovation and Technology in Computer
Science Education, pages 39–44, 2014.

[25] C. Watson, F. W. Li, and J. L. Godwin. No tests required: Comparing traditional
and dynamic predictors of programming success. In Proceedings of the 45th
Technical Symposium on Computer Science Education, pages 469–474, 2014.

[26] B. C. Wilson and S. Shrock. Contributing to success in an introductory computer
science course: a study of twelve factors. SIGCSE Bulletin, 33:184–188, 2001.

[27] J. R. Wilson and K. A. Lorenz. Short history of the logistic regression model. In
Modeling Binary Correlated Responses using SAS, SPSS and R, pages 17–23, 2015.

[28] D. Zingaro. Peer instruction contributes to self-efficacy in CS1. In Proceedings of
the 45th technical symposium on Computer science education, pages 373–378, 2014.

[29] D. Zingaro, M. Craig, L. Porter, B. A. Becker, Y. Cao, P. Conrad, D. Cukierman,
A. Hellas, D. Loksa, and N. Thota. Achievement goals in CS1: Replication and
extension. In Proceedings of the 49th Technical Symposium on Computer Science
Education, pages 687–692, 2018.

Paper Session: Process & Performance SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

118

http://www.itl.nist.gov/div898/handbook
http://www.itl.nist.gov/div898/handbook

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Our Datasets
	3.2 Model Generation
	3.3 Model Analysis
	3.4 Analysis of Multiple Sources

	4 Results
	4.1 RQ1: Value of Different Data Sources
	4.2 RQ2: Combining Different Data Sources

	5 Discussion
	5.1 Implications
	5.2 Ease of Collecting Data Sources
	5.3 Threats to Validity

	6 Conclusion
	7 Acknowledgements
	References

