
18

A Robust Machine Learning Technique to Predict
Low-performing Students

SOOHYUN NAM LIAO, University of California, San Diego, USA

DANIEL ZINGARO, University of Toronto Mississauga, Canada

KEVIN THAI, CHRISTINE ALVARADO, WILLIAM G. GRISWOLD, and LEO PORTER,

University of California, San Diego, USA

As enrollments and class sizes in postsecondary institutions have increased, instructors have sought auto-

mated and lightweight means to identify students who are at risk of performing poorly in a course. This

identification must be performed early enough in the term to allow instructors to assist those students before

they fall irreparably behind. This study describes a modeling methodology that predicts student final exam

scores in the third week of the term by using the clicker data that is automatically collected for instructors

when they employ the Peer Instruction pedagogy. The modeling technique uses a support vector machine

binary classifier, trained on one term of a course, to predict outcomes in the subsequent term. We applied

this modeling technique to five different courses across the computer science curriculum, taught by three

different instructors at two different institutions. Our modeling approach includes a set of strengths not seen

wholesale in prior work, while maintaining competitive levels of accuracy with that work. These strengths

include using a lightweight source of student data, affording early detection of struggling students, and pre-

dicting outcomes across terms in a natural setting (different final exams, minor changes to course content),

across multiple courses in a curriculum, and across multiple institutions.

CCS Concepts: • Social and professional topics → Computing education; Computer science

education;

Additional Key Words and Phrases: Peer instruction, machine learning, at-risk students, prediction, multi-

institution, cross-term, clicker data

ACM Reference format:

Soohyun Nam Liao, Daniel Zingaro, Kevin Thai, Christine Alvarado, William G. Griswold, and Leo Porter.

2019. A Robust Machine Learning Technique to Predict Low-performing Students. ACM Trans. Comput. Educ.

19, 3, Article 18 (January 2019), 19 pages.

https://doi.org/10.1145/3277569

This work was supported in part by NSF Award No. 1712508.

Authors’ addresses: S. N. Liao, K. Thai, C. Alvarado, W. G. Griswold, and L. Porter, University of California, San Diego,

9500 Gilman Dr. La Jolla, CA, 92093, USA; emails: snam@eng.ucsd.edu, kthai1994@gmail.com, cjalvarado@eng.ucsd.edu,

wgg@cs.ucsd.edu, leporter@eng.ucsd.edu; D. Zingaro, University of Toronto Mississauga, 3359 Mississauga Rd, Missis-

sauga, ON, L5L 1C6, Canada; email: daniel.zingaro@utoronto.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1946-6226/2019/01-ART18 $15.00

https://doi.org/10.1145/3277569

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

https://doi.org/10.1145/3277569
mailto:permissions@acm.org
https://doi.org/10.1145/3277569

18:2 S. N. Liao et al.

1 INTRODUCTION

University administrators and faculty continue to be concerned by student time-to-graduation and
retention. Elevated time-to-graduation increases student financial burdens and stresses limited
university resources. Low student retention, particularly in STEM fields, can lead to workplace
shortages.

Course failure rates affect both time-to-graduation and student retention. Failing a course can
increase a student’s time to degree or cause the student to leave the major or the institution. In
addition, there are affective costs to failure, such as reduced self-efficacy [5]. For the institution and
the instructor, student failure means wasted resources and lost opportunity for student success. As
a result, university personnel, instructors, and students share the goal of reducing failure rates [9,
43, 50].

Those seeking to lower failure rates must contend in particular with the recent spike in univer-
sity enrollments and class sizes. According to the National Center for Educational Statistics [26],
undergraduate enrollment in U.S. postsecondary institutions rose from 13.2 million students in
2000 to 17.0 million students in 2015, an increase of more than 25 percent. Computer science, the
focus of this study, has seen even greater rates of increase in enrollment beginning in 2006 [14].
However, this growth in students is not matched by commensurate growth in instructional faculty,
resulting in increased class sizes (or additional course offerings) for computer science courses in
more than 47% of U.S. postsecondary schools. In a large class, it is more difficult for instructors to
keep track of individual students’ progress, and struggling students are more likely to slip through
the cracks.

At the same time, technology-based teaching practices sometimes employed in large classes
not only improve student outcomes in these classes but also generate a rich data set that can be
used to identify struggling students automatically. In this study, we focus specifically on one such
practice called Peer Instruction [15]. Peer Instruction is an active-learning pedagogy used in many
disciplines [15, 25, 28, 31, 45, 48, 55] that revolves around students answering and discussing mean-
ingful conceptual questions with their peers and the instructor. Often, Peer Instruction is paired
with hand-held devices (e.g., clickers) that allow the instructor to quickly view student answers,
and this clicker response data is automatically collected and stored. Our work builds on recent
evidence that student performance on Peer Instruction questions is correlated with student out-
comes [35] and predictive of students who are at risk in an introductory programming class [24].

In this work, we provide a method for using clicker data collected from Peer Instruction activities
to automatically identify students at risk of failure so that these students can receive support and
take corrective action. Our goals for this identification technique are (1) that it can predict at-risk
students accurately and sufficiently early in a term that corrective steps are possible, (2) that data
collection is sufficiently lightweight to encourage instructor adoption, and (3) that it is robust in
the sense that (a) it works on courses across the curriculum and across institutions, and (b) a model
from a previous term applies in subsequent terms despite minor changes to course content.

To the best of our knowledge, our study is the first to apply a single modeling methodology
across a variety of courses within a field (including both lower- and upper-division courses) and
across different institutions and to use prior-term data for predictions. In this study, we applied
our methodology to data from five different courses at two different institutions. We applied a
single modeling method using support vector machines [13] to perform a binary classification of
whether or not students are expected to perform well on the final exam. For each course, a model
is built using a prior term’s student clicker data and final exam scores, which is then applied on
data from the first three weeks of a future term. Our method generates models that are shown to
correctly identify at least 62% of at-risk students when using an instructor-determined threshold
of the bottom 40% of the class.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

A Robust Machine Learning Technique to Predict Low-performing Students 18:3

Table 1. Synthesis of Related Work (�: Present Paper)

Ref
Study

Focus
Year

Presage Variables In-progress Variables

Predictive†
Multiple

Contexts

Model Tested
with Different

Cohort

Performance
and

Background

Behavior &
Attitude

Performance
Behavior and

Attitude

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

[17] Institution 1968 � � �
[40] Institution 1997 � �
[47] Institution 2010 � �
[11] Institution 2014 � �
[51] Institution 2014 � �
[21] Program 2001 �
[44] Program 2003 �
[1] Program 2009 �
[19] Program 2011 �
[42] Program 2011 � �
[27] Course 1979 � � �
[41] Course 1986 �
[53] Course 2001 � �
[6] Course 2006 � � � � �
[20] Course 2006 �
[52] Course 2013 �
[8] Course 2015 �
[4] Course 2015 � � �
[24] Course 2016 � � �
[2] Course 2017 � � �
[10] Course 2017 � � � �
� Course 2018 � � � �
[12] Module 1994 �

†Checkmark indicates predictive modeling, unmarked indicates descriptive modeling.

We continue in Section 2 by describing prior work on predicting students’ learning outcomes
from multiple disciplines. Our research questions are then provided in Section 3. Section 4 describes
the context of our study, including a brief discussion of the Peer Instruction pedagogy and the role
of the studied courses in the computer science curriculum. In Section 5, we describe our modeling
process and evaluation of the data analysis. Section 6 provides our results, and Section 7 offers a
discussion and exposition of broader implications.

2 BACKGROUND

Predictions of student outcomes at universities and colleges have been investigated at all levels:
retention at the institution level, completion/graduation at the program level, success at the course
level, and understanding at the module level within a course. Due to differing timescales and out-
comes of interest, different predictors have been used at each level. Modeling techniques and how
they are evaluated also vary widely. Table 1 provides a high-level comparison of the present study
and the prior studies discussed below.

We note that predicting student outcomes has been a rich area of study for decades. Prior studies
have focused on modeling students’ performance to improve retention rates, predict exam scores,

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

18:4 S. N. Liao et al.

or provide timely aid to at-risk students. The earliest studies concentrated on immutable factors
that students hold at the start of class, such as gender, age, and SAT scores [40]. Additional factors
have been added in recent research including student attitudes [16], student behaviors during the
term [2, 7, 54], and the use of in-class formative assessment data [24]. However, the vast majority
of previous modeling techniques are either based on data that may be difficult for an instructor
to obtain, applied to a single course, applied at a single institution, or modeled and tested with a
single term of data.

2.1 Types of Information Used for Prediction

A variety of independent variables has been used in generating prediction models. To simplify
presentation, we have chosen to classify these variables as presage variables or in-progress vari-
ables. Presage variables refer to those variables that are available or determined before modeling
is initiated; for example, high school Grade Point Average (GPA) or math background. However,
in-progress variables are measures gathered in the context of the outcome being assessed; for ex-
ample, midterm grade or timings of assignment submissions. Columns 4–7 in Table 1 indicate the
kinds of independent variables that were used in prior work.

We further subdivide presage variables into (1) performance and background variables (e.g., high
school GPA, gender, age, socioeconomic status) and (2) behavioral and attitudinal variables (e.g.,
study habits, motivation). We similarly divide in-progress variables into (1) performance variables
and (2) behavioral and attitudinal variables.

Research-based use of student data depends greatly on how the data is collected and its availabil-
ity to researchers. For example, most performance and background presage variables are already
collected automatically for other purposes and stored in registrar or admissions databases. That
said, this data may not be readily-available for instructor and researcher use. Similarly, class-level
in-progress performance variables (e.g., compilation errors, keystroke-level logging) are often not
captured by standard learning management systems and, even when such data is available, might
not be released by research boards for incorporation into research.

The rest of this section first examines how researchers evaluate the success of their studies and
then surveys a variety of related projects. We then describe how our present study relates to prior
work in predicting outcomes in computing.

2.2 Model Creation and Evaluation

The modeling methods for predicting student outcomes are generally statistical, ranging from sim-
ple correlation studies to machine-learning models such as regression, decision trees, and random
forests.

Authors of some studies sought to demonstrate the robustness of their techniques by applying
their methods at different institutions, on different courses, using different instructors, and so on.
Robustness is particularly important at the course and module levels: this would suggest that one
modeling technique could be used across the curriculum. Column 9 in Table 1 indicates whether
authors of prior work successfully applied their methods in multiple contexts.

Model evaluation techniques vary in the literature as well. Some researchers use descriptive
modeling, where relationships between independent and dependent variables are studied on the
training set itself. This is useful for studying relationships in past data, but is not intended for mak-
ing predictions about future occurrences. For such predictions, researchers use predictive model-
ing, where part of the data (the test set) is held back and used to evaluate the accuracy of the
model. Column 8 in Table 1 indicates whether prior work employed predictive modeling. In these
predictive approaches, the test set can be created in one of two primary ways. The first is to divide
a single dataset into training and test sets. This requires only one dataset, but can be problematic as

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

A Robust Machine Learning Technique to Predict Low-performing Students 18:5

it does not necessarily show predictability for a new cohort (of students, of a course, etc.). The sec-
ond is to gather (at least) two datasets from different cohorts and use one cohort to build the model
and the second to evaluate the model. This latter approach is preferred as it shows predictability
across cohorts and prevents a model from being overfitted to a single cohort. That said, this form
of data collection is time-consuming, and making predictions across cohorts is complicated by nat-
ural variation between cohorts. The last column of Table 1 distinguishes between these predictive
modeling methods.

Last, there is considerable variation in the metric used to evaluate the model, making it difficult
to compare one model to another (and hence to directly compare or contrast prior work). Some
models simply measure the correlation between predictive factors and outcomes, while other mod-
els generate predictions. Predictive model accuracies are often reported either as a single accuracy
level (i.e., what percentage of all students are correctly classified as either at-risk or not-at-risk),
or more generally as the area under a Receiver Operating Characteristic (ROC) curve, referred to
as the AUC [36]. One important strength of this latter method is that ROC curves quantify the
tradeoff between model sensitivity (i.e., the percentage of all at-risk students correctly classified
by the model as at-risk) and specificity (i.e., the percentage of all not-at-risk students correctly
classified by the model as not-at-risk).

2.3 Institution- and Program-Level Modeling

The top rows of Table 1 summarize some of the work discussed in this subsection. Of primary
interest at the institution level is institutional retention. Many studies have emphasized the use
of presage variables, which allow prediction even before a student matriculates [38]. While such
work has met some success, it quickly became apparent that in-progress variables, such as first-
term GPA, were generally more predictive than presage variables [17]. As a result, recent work
often includes in-progress variables in addition to presage variables [40, 47].

We make a distinction among (1) descriptive modeling, (2) predictive modeling tested on a sep-
arate test set collected from the same cohort, and (3) predictive modeling tested on future cohorts.
Although we suggest that (3) is core to the goal of building and using models to help students,
none of the prior work in Table 1 at the institution and program level tested the models on future
cohorts. As examples of (1), some researchers [40, 47] assess the quality of their regression models
using the models themselves. Exemplifying (2), other authors [11, 51] generate predictive models
and provide prediction results. However, those authors test their models on a test set pulled from
the same cohort on which training occurs, which may cause the models to overfit to that cohort.

Program-level prediction has focused on program entrance criteria and early identification of
struggling students. Unlike for institutional-level modeling, the prior work largely focuses on de-
scriptive modeling rather than predictive modeling. For example, in the medical sciences, it is
generally found that presage variables (e.g., entrance exams, high school GPA) are correlated with
student performance in the program [21, 44], but it is not reported whether these variables can be
used to predict student outcomes with any degree of accuracy.

2.4 Course-Level Modeling in Computing

There are numerous studies predicting student outcomes at the course level in other fields (e.g.,
biology, chemistry, and physics [39], among others). Fully detailing this broad area of study here
would be space prohibitive. As such, we focus on work occurring in the context of the present
study: computer science.

In computing, prediction has been focused on student performance in introductory computing
courses. Modeling student outcomes began in the late 1970s with early work using presage data
to predict student performance on assessments or final course grades [27, 41]. In-progress data in

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

18:6 S. N. Liao et al.

the form of attitudinal surveys have also been used to predict exam scores [53]. Both presage and
in-progress variables have been combined effectively using regression analysis to predict student
programming performance [6].

Other in-progress variables have also been used to determine student performance. In the mid
1990s, the in-progress variable of programming progress was used to aid intelligent tutoring sys-
tems [12]. Recent work identified the in-progress variable of clicker data resulting from Peer In-
struction courses as a robust predictor of student performance on final exams [35].

Another primary source of data for prediction using in-progress variables is code snapshots of
student programming activity. To gather these data, researchers used an instrumented program-
ming environment that regularly records the student’s current program in a log file. The approach
was then to assess student knowledge by comparing two successive code snapshots. Early ap-
proaches examined compiler errors [20, 52], while later work also considered runtime errors [8].
Ahadi et al. improved on these works by employing machine learning; making predictions on a
separate term; and adding the correctness of test cases and the number of steps taken to complete
assignments as in-progress variables [2, 4]. Ahadi et al. assigned 24 programming assignments in
the first week of the class and these assignments mirrored what was required of students on the
final exam. Although such data may facilitate early-term modeling efforts, it requires significant
out-of-class effort in the first week from students, which could be discouraging.

Similarly, Castro-Wunsch et al. examined many machine-learning models, and applied the
trained model to a test set from a subsequent term [10]. That work achieved accuracies between
67% and 72% and failure group accuracies (i.e., sensitivities) between 61% and 77% on the sub-
sequent cohort depending on the model [10]. However, echoing the concern from Ahadi et al.,
Castro-Wunsch et al. trained their models using data from students completing a large number of
programming assignments in the first 4 weeks of class. While it is possible to assign this many
assignments in the first few weeks of the term, such an approach requires significant additional
effort from the students.

Most closely related to the present study is recent work where student clicker responses were
used for modeling student learning in an introductory computer programming class [24]. As with
our present study, this data is available without any extra work for the instructor if the instruc-
tor has already adopted clicker questions in class. Treating a student’s response to each clicker
question as a predictive variable for the student’s final exam score, Liao et al. [24] used principal
component analysis to identify the most predictive clicker questions. The authors then built a lin-
ear regression model based on those questions to predict final exam score. The model was trained
on students from one cohort and tested with students from the subsequent cohort, achieving 76%
accuracy. That work, however, does not demonstrate the efficacy of the modeling approach across
institutions and courses.

Considering the research in this subsection in its totality, what is missing is (1) a robust tech-
nique based on easily obtainable student data that is capable of making predictions for multiple
courses across a curriculum and at multiple institutions, and (2) evaluation of these techniques
as they would be applied in real-world instructor settings (e.g., using a model built in a previous
term to make predictions for a subsequent term). These are the main contributions of the present
article.

3 RESEARCH QUESTIONS

Based on gaps identified in the previous section, this article has two primary research questions:

RQ1: Can a single modeling technique be designed to reliably predict student outcomes
across multiple institutions?

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

A Robust Machine Learning Technique to Predict Low-performing Students 18:7

RQ2: Can that modeling technique also reliably predict student outcomes across a range of
courses in the curriculum of a chosen discipline?

4 STUDY CONTEXT

In this section, we describe the Peer Instruction pedagogy and briefly explore its known benefits
for students (which may partially explain its increased adoption in computing). Next, we provide
context regarding the courses in the computer science curriculum that appear in this study.

4.1 Peer Instruction

Peer Instruction (PI) [15] is a student-centered active learning method. It was invented in the 1990s
for introductory Physics courses, and was later adopted for computer science. It consists of the use
of in-class multiple choice questions to which students respond once individually and then again
following a group discussion. In many cases, including those in this study, students use clickers to
submit their responses. Following the two responses, instructors lead a class discussion about the
question to provide common understanding and instructor expertise on the relevant material.

The efficacy of PI has been shown in various disciplines including physics [15, 55], biology [48],
mathematics [25, 28], and computer science [29–33, 45, 46]. These studies discovered that PI im-
proves students’ learning and their attitudes about learning [15, 55], enhances student partici-
pation and understanding [25], and fosters learning even when none of the discussion group
members knows the correct answer [48]. In computing, PI has been shown to enhance student
learning [46], lower course failure rates [29], and increase the retention rate of students in the
major [33]. Moreover, PI is effective in a variety of computing course subjects, including program-
ming, theory, and systems courses [23, 30].

By virtue of using PI coupled with clickers, students naturally generate clicker data in each
lecture. In the present work, we leverage this automatically-collected data, and require no further
data collection or generation.

4.2 Course Contexts

Table 2 describes the courses used in our study. They are all undergraduate courses, with the
top three courses in the table at the lower division level, and Advanced Data Structures (Adv.
DataStruct) and Computer Architecture (Architecture) at the upper division level.

All courses except for Architecture are programming-intensive courses. In those courses, stu-
dents complete programming projects using a particular programming language. The CS1 courses
focus on learning how to code, while CS2 and Adv. DataStruct focus on implementing software
applications using concepts learned in class.

CS1 is traditionally the first introductory programming course for students. As such, the ma-
jority of students are in their first or second year of study. Our dataset includes two CS1 courses.
One was taught in the Python programming language (CS1-Python) and the other was taught in
the Java programming language (CS1-Java). CS2 is the programming course after CS1. Here, stu-
dents learn how to write more modular code, often with object-oriented concepts. In addition, CS2
teaches fundamental data structures and how to use them to support interfaces and abstraction.
The CS2 course for our study used the same language as the corresponding CS1: Java. Adv. DataS-
truct teaches more sophisticated data structures material than what is typically covered in CS2 and
used the C++ programming language. The Computer Architecture course teaches students about
computer systems, specifically how computer processors function.

In summary, the present article covers a wide range of courses with respect to course level
(lower- or upper-division) and curricular material (programming, data structures, architecture).

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

18:8 S. N. Liao et al.

Table 2. Courses Used in the Study

Course Description
Lower/upper

Division

CS1-Python Learn basic grammar of the Python programming
language. Course topics include variables, datatypes,
functions, conditionals, and loops. Also learn intro-
ductory sorting techniques.

Lower

CS1-Java Learn basic grammar of the Java programming lan-
guage. Course topics include variables, methods, con-
ditionals, and loops. Programming exercises concern
simple image and audio processing.

Lower

CS2-Java Learn essential data structures including arrays, lists,
stacks and queues. Analyze runtime of different data
structures. Compare different sorting algorithms.

Lower

Adv. DataStruct Learn advanced data structures including trees,
hashtables, skip lists, Huffman coding, and Graph
Search in the C++ programming language.

Upper

Architecture Introductory computer architecture. Learn ISAs, per-
formance, single/multi-cycle processors, pipelining,
and caches

Upper

To our knowledge, no prior work has predicted at-risk students across such a broad spectrum of
courses.

5 STUDY METHODOLOGY

To answer our research questions, we developed a modeling technique and applied it to data from
five courses across two institutions. In this section, we describe our dataset and how the collected
data was processed to generate prediction models. Additionally, we describe how the generated
models were statistically analyzed.

5.1 Data Collection

Our data were obtained from three instructors across two public universities in North America.
Detailed information for each course is provided in Table 3. All courses from institution A are 10
weeks long, while CS1-Python at institution B is 12 weeks long. The study, including collection
and analysis of this data, was approved by our Institutional Review Board (IRB).

Two of our courses are CS1 offerings at different institutions: CS1-Java from Institution A and
CS1-Python from Institution B. In addition to using different programming languages, we note
that topic coverage and ordering differ as well. Unfortunately, these differences limit comparisons
between the two courses.

The data for each course consists of two different terms of data taught by the same instructor.
The earlier term was used to train our prediction model and the later term to test that model. We
will refer to the earlier term as the training set and the later term as the test set. Clicker responses
were naturally collected in class, because all the instructors in our dataset taught their courses
using Peer Instruction.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

A Robust Machine Learning Technique to Predict Low-performing Students 18:9

Table 3. Dataset Details

Course Institution Instructor Training Set (Size) Test Set (Size)

CS1-Python B Y Fall 2013 (192) Fall 2014 (142)
CS1-Java A X Fall 2014 (373) Fall 2015 (374)
CS2-Java A X Spring 2014 (169) Spring 2015 (176)

Adv. DataStruct A X Fall 2013 (197) Winter 2015 (191)
Architecture A Z Fall 2015 (339) Fall 2016 (266)

5.2 Data Preprocessing

The data used in this study consists of student clicker responses (both individual and group) and
raw final exam scores. The available clicker question data comprises every question that the in-
structor asked, along with all student responses, though only a subset of these questions is used
for modeling and prediction, as described below. The data uses unique anonymous identifiers to
protect students’ identities.

• Selecting clicker questions: Our model learns to use specific clicker questions to predict
course outcomes, so our data must consist only of questions that are present in both terms
of a course. Thus, for each course, we discarded any question that was not present in both
the training and test set.

As our goal is to perform early identification of at-risk students, we also discarded clicker
questions that were asked after week three in each course. Week three was chosen because
the midterms were not administered until at least week four. (Later, in Section 6.4, we will
explore how prediction accuracy changes in later weeks.) We also removed students who
did not respond to any clicker questions in this three-week time frame.

• Labeling question correctness: For each clicker question, we assigned 1 for correct, -1
for incorrect, and 0 for unanswered. This assignment of a unique value (0) for unanswered
questions differs from the approach taken by Liao et al. [24], who used data imputation to
statistically predict missing clicker responses. Data imputation relies on patterns in avail-
able responses to guess missing data values. One concern with imputation is that the im-
puted responses may be inaccurate, particularly when a student answers few questions.
More importantly, we believe that student non-response to a question is a signal in itself,
distinct from a correct or incorrect response.

• Defining the At-risk and Not-At-risk Groups: Classifying students into two groups al-
lows us to perform binary classification, where our model tries to predict whether a student
in the test set will score in the top 60% or the bottom 40% of the final exam. Recent work
uses a 50% cutoff [4, 10], i.e., simply predicting whether students are in the top or bottom
half of the class, but we selected the 40% cutoff, because the instructors in our study felt that
this was closer to the boundary where students were actually at-risk of failing the final or
the course. However, we note that this cutoff was a choice, and the model could be trained
to meet different thresholds, potentially with different accuracy levels.

5.3 Model Generation

Figure 1 illustrates our model generation process. At a high level, a machine-learning model is
built based on the training set (student clicker data and exam scores in one term) and that same
model is then used to predict student outcomes in the test set. Specifically, to build the model, we
used support vector machines (SVMs) with the radial basis function kernel to train one prediction
model for each course. We selected SVMs as they provided the most consistent AUC values across

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

18:10 S. N. Liao et al.

Fig. 1. Our machine-learning process.

our datasets and courses compared to other machine-learning models (logistic regression, decision
tree, and random forest).

As accuracy may vary based on the particulars of choosing a machine-learning process, we
provide more specific details of our methods both for future replication of these results and to
inform instructors of how they might perform similar modeling. We note that ongoing work aims
to provide instructors with a tool to fully automate this entire process.

After conducting the data preprocessing steps described in the previous subsection, we trained
the models. We used a well-known package in R named kernlab [49] for model generation. The
following steps describe our training process in detail:

(1) We generate a SVM model, using three modeling parameters: cost, sigma, and classweight.
There is an inherent tradeoff between overfitting to the training set and making accurate
predictions on the test set. Both cost and sigma influence this tradeoff. Classweight pro-
vides a mechanism for indicating the severity of different types of classification errors; for
example, it enables a model to apply a larger penalty to misclassifying an at-risk student
than a not at-risk student. As a model’s accuracy depends on these parameters, we per-
form a design space search by using different combinations of those parameters. To tune
those parameters, we partition the training set (data from the first term) into two subsets:
2/3 of the data as the “training subset” and the remaining 1/3 as the “validation subset.”
Using different parameters, we build models with the training subset and evaluate their
performance based on the resultant AUC for the validation subset. When building these
models, we use 10-fold cross validation to avoid model overfitting. Ultimately, we select
the parameters (cost, sigma, classweight) that produce the highest AUC.

(2) Given these parameters of cost, sigma, and classweight, we build the SVM model using
the entire training set (the first term of data), again using 10-fold cross validation. The
resultant model is then used to evaluate performance on the test set (the second term of
data).

5.4 Model Evaluation

The purpose of our modeling is to identify students at risk of failure as precisely as we can. While
overall accuracy can give us a sense of the percentage of students who are misclassified by the
model, it does not reveal the tradeoff between different types of errors that our model might make.
Any binary decision model can produce two types of errors: it can incorrectly classify an at-risk

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

A Robust Machine Learning Technique to Predict Low-performing Students 18:11

Fig. 2. Classification categories.

student as being not-at-risk, or it can incorrectly classify a student who is not-at-risk as being
at-risk. These errors, along with the two possible correct outputs, are shown in Figure 2, which
shows the confusion matrix for the possible outcomes of the classification versus the ground truth
of each sample.

In this sense, sensitivity (i.e., recall) and specificity are more useful measures than simple pre-
diction accuracy. Sensitivity measures how accurately a model can detect at-risk students, whereas
specificity measures how accurately the model identifies not-at-risk students. The definitions of
sensitivity and specificity are as follows:

Sensitivity =
TR

TR + FNR
, Specificity =

TNR

TNR + FR
.

The SVM model outputs the probability of each student being at-risk. By selecting different
probability cutoffs for what is considered at-risk, we can trade off the sensitivity and specificity of
a given model. For example, suppose that we wish to maximize sensitivity at the expense of speci-
ficity. Then, the solution is simply to predict that everyone is at-risk, yielding a sensitivity of 1.0
and specificity of 0.0. This, however, would be wasteful of limited instructor resources that could be
deployed to help the students who were truly at-risk. For this reason, specificity is also important:
it indicates how many not-at-risk students are properly identified as not needing assistance.

Receiver Operating Characteristic (ROC) curves [18] are a well-established metric for model
evaluation in machine learning, which plot both sensitivity and specificity in a two-dimensional
plane. An ROC curve is more comprehensive than other standard metrics in that it provides various
combinations of sensitivity and specificity with respect to classification probability thresholds. In
addition to the ROC curves themselves, we provide the Area Under the ROC Curve (AUC) as an
additional measure of model effectiveness.

6 RESULTS

In this section, we evaluate the performance of our models for the courses included in this study.
We begin by examining how well the models perform both across multiple institutions and across
the CS curriculum. Then, we explore how modeling performance changes through the term, by
adding clicker data from later weeks.

6.1 Multi-Institutional Analysis (RQ1)

Addressing Research Question 1, we examine whether the modeling approach is successful across
institutions. Figure 3 provides the ROC curves for the two CS1 courses taught at different
institutions.

In Figure 3, the gray line is y = x and represents what one would expect if the model were sim-
ply guessing randomly. As such, an ROC curve of y = x would have an AUC of 0.5. The ideal ROC
curve is one that hugs the upper left hand corner as this would indicate that the predictions are ex-
ceptionally accurate. The shaded areas of Figure 3 indicate the confidence intervals of specificities

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

18:12 S. N. Liao et al.

Fig. 3. Cross-institutional ROC curves.

Fig. 4. Cross-curricular ROC curves from institution A.

with respect to the given sensitivities. Each curve has a point labeled with three numbers. The first
number is the probability threshold selected by the training dataset for the best combination of
sensitivity and specificity. If this probability threshold (first number) is selected, then it produces
the specificity (second number) and sensitivity (third number) for the test dataset.

From this figure, we can see that the ROC curve for both courses is significantly better than
random. The ROC curve of CS1-Python (AUC = 0.79) is better than that of CS1-Java (AUC = 0.67).
Indeed, both specificity and sensitivity are higher for CS1-Python than CS1-Java.

For each of these CS1 courses, we find that our modeling approach provides reasonable classifi-
cation predictions. The AUC is well above 0.5 (0.79 and 0.67) and at the best probability threshold,
the models offer specificities of 0.74 and 0.62 and sensitivities of 0.76 and 0.64. We discuss how
these metrics compare to prior work in the next subsection.

Given the differences between institutions and courses, it is to be expected that the models
would result in slightly different prediction accuracies. In Section 7, we discuss possible sources
of this difference.

6.2 Analysis across Courses in the CS Curriculum (RQ2)

Focusing now on Research Question 2, we examined PI clicker data for four different courses across
the CS curriculum. Figure 3(b) along with Figure 4 are the ROC plots of four different courses taught
at the same institution covering material ranging from introductory to advanced computing topics.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

A Robust Machine Learning Technique to Predict Low-performing Students 18:13

Fig. 5. Smoothed ROC curves.

Table 4. AUCs and 95% Confidence Intervals

Course AUC 95% Confidence Interval

CS1-Python 0.79 0.72–0.86
CS1-Java 0.67 0.61–0.72
CS2-Java 0.66 0.58–0.74

Adv. DataStruct 0.65 0.57–0.73
Architecture 0.71 0.65–0.77

The results are highly encouraging as the models are able to predict student outcomes for each
course reasonably well. Focusing on the best probability threshold for each model, we find that
the model consistently achieves a sensitivity between 0.60 and 0.70 and a specificity between 0.62
and 0.70. Similarly, the AUC for each course is between 0.65 and 0.79.

There is no truly comparable study in the literature against which to compare these results.
However, our results are consistent with recent studies predicting student outcomes across terms
using similar in-progress data in introductory computing courses [4, 10, 24]. Recall from Section 2.4
that one of these studies [24] used data that was similarly lightweight to our approach whereas
another study used data that was more heavyweight [10]. As such, our approach is more light-
weight and more broadly applicable than prior work while maintaining similar levels of prediction
Performance.

6.3 Overall Analysis

Figure 5 and Table 4 provide a summary of results for all five courses when modeling clicker data
from the first three weeks of the term. Note that the ROC curves have had their confidence intervals
removed and are smoothed to facilitate comparison across the five curves. From the legend of
Figure 5, we see that the AUCs of all courses are greater than 0.6, and that the five curves are all
above the y = x line. On average, the AUC and 95% confidence interval of the courses are 0.70 and
0.63–0.76, respectively. In addition, the lower bounds of the confidence intervals for all courses are
higher than 0.5, indicating that all of our modeling results are statistically different from random
guessing.

6.4 Prediction Accuracy over Time

Although the focus of this study is early prediction of student outcomes, we additionally wanted
to understand how prediction quality changed over time. Figure 6 provides prediction quality

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

18:14 S. N. Liao et al.

Fig. 6. AUC and 95% confidence intervals, adding more clicker data.

(AUC values) given progressively more data. For each week, the AUC value is obtained by us-
ing all clicker data up to that week (e.g., the AUC values at week 6 result from modeling clicker
data from week 1 to week 6). The shaded area of Figure 6 describes each AUC’s 95% confidence
interval.

The results show that the AUC generally improves as we add more clicker data. This is unsur-
prising, as predictions are made in the context of additional data, and data collected later in the
term is temporally closer to the exam than is earlier data. However, it is somewhat surprising that
the prediction quality often plateaus before the end of the term. For example, in Architecture, the
AUC only marginally improves over time; in CS1-Python, AUC increases until week 4, but the
improvement slows at that point. Although this is likely deserving of further study, recent work
on CS1 shows that the bulk of questions on a final exam require content from early in the term,
but that only a small fraction of these questions require content from late in the term [35]. It may
be that there is a similar effect in courses later in the curriculum; however, other possible expla-
nations exist including: Learning Edge Momentum—that course material builds on itself making
early material critical for later success [37], and stumbling blocks—that students encounter an
early difficulty and later struggle to overcome it [3]. We believe further inquiry is needed to better
explain this phenomenon.

Overall, the change in accuracy over time highlights a potential challenge for educators wishing
to intervene for students predicted to do poorly. More time in the course often improves prediction
accuracy but also reduces the time with which to alter a student’s trajectory and increases the
time during which misconceptions might compound. Week 3 was identified in prior work [35] as
offering reasonable accuracy early in the term; our data supports this finding.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

A Robust Machine Learning Technique to Predict Low-performing Students 18:15

7 DISCUSSION

In this section, we discuss some implications of our modeling method and key avenues for future
work.

7.1 Applicability of Prediction Methodology

This article proposes a prediction method based on easily obtainable student data that is capable of
detecting at-risk students early in the term. Importantly, our method enables an instructor to make
predictions before midterm exams are typically taken. Prior research suggests strong, positive
correlations between the midterm exam and final exam in typical CS1 courses [34], and we suspect
that this finding continues to hold throughout the CS curriculum. Accurate prediction prior to
midterm exams is therefore advantageous: it opens the possibility for an intervention to chart a
new course for the student prior to a weighty assessment.

Our prediction method uses only student clicker responses from lectures, so is relatively light-
weight compared to methods that use other sources of data (e.g., presage factors) that may not be
accessible to instructors. One concern is that our method requires the use of clickers and the PI
pedagogy: What is one to do if they do not use PI? For two reasons, we suggest that this is not a
significant problem. First, we note that Peer Instruction has in fact gained significant traction in
computer science in recent years, with increased adoption by many instructors [31]. Second, we
note that this increased reliance on PI has led to PI curricula being developed and made freely-
available for many courses, including CS1, CS2, Operating Systems, Theory of Computation, and
Data Structures [22]. This is advantageous here, as prior work suggests that PI questions can be
productively used as quiz questions in an otherwise non-PI course [24]. For example, PI questions
could be asked at the start or end of class using clickers, or as online exercises before or after class
to eliminate clickers entirely. Our prediction method can then be applied to that data. Further work
is required to replicate accuracy of predictions in non-PI contexts.

It is unrealistic to assume that a course will remain constant from term to term. Natural changes
include variation among students, assignments, exams, scheduling, and ordering of content. Ide-
ally, educational research methods should be adaptable to the realities of teaching, not the other
way around. It is therefore important that a prediction method go beyond modeling a single course
to modeling present offerings using data from past offerings. We have demonstrated in this article
that our prediction method is well-suited to such realistic course contexts.

A powerful feature of our methodology is that it allows for instructors to set their own threshold
for what they categorize as “at-risk.” This enables instructors with substantial resources to poten-
tially intervene for a larger number of students or for instructors with more limited resources to
focus on a smaller group of at-risk students.

Last, we highlight our prediction performance across our two institutions and multiple CS
courses. Rather than possibly being confined to a particular course context, we have demonstrated
modeling facility across courses, instructors, and institutions.

7.2 Differences in Modeling Performance Across Courses

One of the larger challenges in evaluating our results is determining why one course offered better
early prediction accuracy than another. There are a number of confounding factors that may all
play a role in how predictable one course is versus another, including timing of important topics,
student differences, instructor experience with PI, and how closely the final exam aligns with the PI
questions. We suspect that the quality of the PI questions is a particularly important determinant
of prediction quality. For example, some PI questions are likely better than others in terms of
identifying students who hold misconceptions of core concepts, and it may be those questions

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

18:16 S. N. Liao et al.

that disproportionately improve prediction accuracy. We otherwise hesitate to posit theories on
which factors are more or less critical in the courses we have studied here, though we suspect that
many of these factors interact to influence the extent to which we can make accurate predictions.

7.3 Learning about Students from the Model

One of the promising elements of this work is that our models are successfully extracting some
measure of student understanding from student responses to PI questions. Prior work has used
Bayesian classification [35] and model variable importance [24] to reverse engineer the questions
that were most meaningful for predicting student outcomes. Unfortunately, it is more difficult to
extract meaning from advanced statistical and machine-learning models such as the model used in
the present article. We are encouraged by ongoing work in machine learning to extract meaning
from models, and believe advances in that area could lead to instructors extracting useful knowl-
edge about their students and questions from the model results.

7.4 Suggestions for Future Modeling

There are three particular features of our modeling methodology that we encourage researchers
to replicate and extend.

• Authentic real-world modeling: A considerable body of prior work uses a single term of data
to both validate the model and make predictions. However, these predictions are necessarily
made once the course is complete: they can inform modeling efforts but cannot be used to
help struggling students. Moreover, they do not take into account the dynamic nature of
courses as they shift from term to term. We suggest that, along with machine-learning
improvements, the community focus on cross-term predictions. We have demonstrated in
the present article the efficacy of present-day machine-learning algorithms, and it is time
to use what we have learned to help students.

• Cross-institution: Within computer science, we are starting to see best-practice pedagogi-
cal materials being adopted at multiple institutions. See peerinstruction4cs.org for one
example of this type of sharing. It is therefore increasingly likely that similar materials will
come to be used at multiple schools. This bodes well for modeling student outcomes, as
data from one institution may possibly be used to make predictions at others. That is, an
institution may not require “starting from scratch,” but can leverage prior-term predictions
from other schools.

• Cross-curriculum: The computer science education research community has invested
decades of research into understanding the progression of CS1 students. There is much less
known about students in courses that follow CS1. We have demonstrated that our modeling
does succeed in CS1 but also in several follow-on courses. There is therefore much to gain
by studying courses that have not received as much research attention to this point.

8 CONCLUSION

Identifying at-risk students early in the term of a course offers benefits to both instructors and
students. Instructors learn which students need more help, and students may receive that assis-
tance in time to improve their course outcome. Reducing failure rates has institutional benefits by
potentially reducing class sizes (fewer repeating students), improving retention of students in a
major, and reducing time-to-graduation. In this work, we propose a prediction methodology us-
ing support vector machine binary classification to identify at-risk students early in the term. We
demonstrate that this methodology can be effective at predicting students across different terms
of the same course for courses at different institutions, by different instructors, and across the

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

A Robust Machine Learning Technique to Predict Low-performing Students 18:17

computer science curriculum. As the methodology requires only data naturally collected when
teaching using Peer Instruction, the barrier for faculty to adopt and use this approach is relatively
low.

Increased student enrollment means that instructors are unlikely to know where individual
students stand. Coupled with that enrollment pressure, however, is the availability of powerful
machine-learning algorithms and in-situ data generated by students as a byproduct of learning
activities. The present article demonstrates a single modeling methodology that uses such data to
automatically make predictions of student performance in a variety of computer science courses.
Given the model accuracies in multiple real-world settings, ability to predict at-risk students early
in the term, and lightweight demands on instructors to collect the data necessary to make such
predictions, the clear next step for future work is to identify how to help these at-risk students.

ACKNOWLEDGMENTS

The authors sincerely thank the reviewers and the associate editor for their helpful suggestions
on this work.

REFERENCES

[1] Yousef Mohamed Abdulrazzaq and Khalil Ibrahim Qayed. 2009. Could final year school grades suffice as a predictor

for future performance? Med. Teach. 15, 2–3 (2009), 243–251.

[2] Alireza Ahadi, Arto Hellas, and Raymond Lister. 2017. A contingency table derived method for analyzing course data.

Trans. Comput. Educ. 17, 3, Article 13 (2017), 13:1–13:19.

[3] Alireza Ahadi and Raymond Lister. 2013. Geek genes, prior knowledge, stumbling points and learning edge mo-

mentum: Parts of the one elephant? In Proceedings of the 9th Annual International ACM Conference on International

Computing Education Research. 123–128.

[4] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015. Exploring machine-learning methods

to automatically identify students in need of assistance. In Proceedings of the International Conference on Computing

Education Research. 121–130.

[5] A. Bandura. 1977. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 84, 2 (1977), 191–215.

[6] Susan Bergin and Ronan Reilly. 2006. Predicting introductory programming performance: A multi-institutional mul-

tivariate study. Comput. Sci. Educ. 16, 4 (2006), 303–323.

[7] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2017. Blending measures of programming and

social behavior into predictive models of student achievement in early computing courses. Trans. Comput. Educ. 17,

3 (2017), 12:1–12:20.

[8] Adam S. Carter, Christopher D. Hundhausen, and Olusola O. Adesope. 2015. The normalized programming state

model—Predicting student performance in computing courses based on programming behavior. In Proceedings of the

International Conference on Computing Education Research. 141–150.

[9] Jennifer M. Case. 2015. A different route to reducing university drop-out rates. In The Conversation. Retrieved from

https://theconversation.com/a-different-route-to-reducing-university-drop-out-rates-40406.

[10] Karo Castro-Wunsch, Alireza Ahadi, and Andrew Petersen. 2017. Evaluating neural networks as a method for iden-

tifying students in need of assistance. In Proceedings of the Technical Symposium on Computer Science Education.

111–116.

[11] Nihat Cengiz and Arban Uka. 2014. Prediction of student success using enrollment data. Proceedings of the Workshops

held at Educational Data Mining: Workshop Approaching Twenty Years of Knowledge Tracing.

[12] A. T. Corbett and J. R. Anderson. 1994. Knowledge tracing - Modeling the acquisition of procedural knowledge. User

Model. User-Adapt. Interact. 4, 4 (1994), 253–278.

[13] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Mach. Learn. 20, 3 (1995), 273–297.

[14] CRA Enrollment Committee Institution Subgroup. 2017. Generation CS: Computer science undergraduate enroll-

ments surge since 2006. Computing Research Association. Retrieved from http://cra.org/data/Generation-CS/.

[15] C. H. Crouch and E. Mazur. 2001. Peer instruction: Ten years of experience and results. Amer. J. Phys. 69, 9 (2001),

970–77.

[16] Michael de Raadt, Margaret Hamilton, Raymond Lister, Jodi Tutty, Bob Baker, Ilona Box, Quintin Cutts, Sally Fincher,

John Hamer, Patricia Haden, Marian Petre, Anthony Robins, Simon, Ken Sutton, and Denise Tolhurst. 2005. Ap-

proaches to learning in computer programming students and their effect on success. Res. Dev. Higher Educ.: Higher

Educ. Chang. World 28 (2005), 407–414.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

https://theconversation.com/a-different-route-to-reducing-university-drop-out-rates-40406
http://cra.org/data/Generation-CS/

18:18 S. N. Liao et al.

[17] Edward M. Elias and Carl A. Lindsay. 1968. The Role of Intellective Variables in Achievement and Attrition of As-

sociate Degree Students at the York Campus for the Years 1959 to 1963. Technical Report PSU -68 -7. Pennsylvania

State University.

[18] J. A. Hanley and B. J. McNeil. 1982. The meaning and use of the area under a receiver operating characteristic (ROC)

curve. Radiology 143, 1 (1982), 29–36.

[19] Norhayati Ibrahim, Steven A. Freeman, and Mack C. Shelley. 2011. Identifying predictors of academic success for

part-time students at polytechnic institutes in Malaysia. Int. J. Adult Vocat. Educ. Technol. 2, 4 (2011), 1–16.

[20] Matthew C. Jadud. 2006. Methods and tools for exploring novice compilation behaviour. In Proceedings of the Inter-

national Conference on Computing Education Research. 73–84.

[21] David James and Clair Chilvers. 2001. Academic and non-academic predictors of success on the Nottingham under-

graduate medical course 1970-1995. Med. Educ. 35, 11 (2001), 1056–1064.

[22] Cynthia Lee, Leo Porter, Beth Simon, and Daniel Zingaro. 2012. Peer instruction for computer science. Retrieved from

http://www.peerinstruction4cs.org.

[23] Cynthia Bailey Lee, Saturnino Garcia, and Leo Porter. 2013. Can peer instruction be effective in upper-division com-

puter science courses? Trans. Comput. Educ. 13, 3 (2013), 12:1–12:22.

[24] Soohyun Nam Liao, Daniel Zingaro, Michael A. Laurenzano, William G. Griswold, and Leo Porter. 2016. Lightweight,

early identification of at-risk CS1 students. In Proceedings of the International Conference on Computing Education

Research. 123–131.

[25] Adam Lucas. 2009. Using peer instruction and I-clickers to enhance student participation in calculus. Prob. Resour.

Issues Math. Undergrad. Studies 19, 3 (2009), 219–231.

[26] National Center for Education Statistics. 2016. Total undergraduate fall enrollment in degree-granting postsecondary

institutions, by attendance status, sex of student, and control and level of institution: Selected years, 1970 through

2026. National Center for Education Statistics. https://nces.ed.gov/programs/digest/d16/tables/dt16_303.70.asp.

[27] Charles G. Petersen and Trevor G. Howe. 1979. Predicting academic success in introduction to computers. Assoc.

Educ. Data Syst. 12, 4 (1979), 182–191.

[28] Scott Pilzer. 2001. Peer instruction in physics and mathematics. Prob. Resour. Issues Math. Undergrad. Studies 11, 2

(2001), 185–192.

[29] Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013. Halving fail rates using peer instruction: A study of four

computer science courses. In Proceedings of the Technical Symposium on Computer Science Education. 177–182.

[30] L. Porter, C. Bailey-Lee, B. Simon, Q. Cutts, and D. Zingaro. 2011. Experience report: A multi-classroom report on

the value of peer instruction. In Proceedings of the Annual Joint Conference on Innovation and Technology in Computer

Science Education. 138–142.

[31] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert McCartney, Daniel Zingaro, and Beth

Simon. 2016. A multi-institutional study of peer instruction in introductory computing. In Proceedings of the Technical

Symposium on Computer Science Education. 358–363.

[32] Leo Porter, Saturnino Garcia, John Glick, Andrew Matusiewicz, and Cynthia Taylor. 2013. Peer instruction in com-

puter science at small liberal arts colleges. In Proceedings of the Annual Joint Conference on Innovation and Technology

in Computer Science Education. 129–134.

[33] Leo Porter and Beth Simon. 2013. Retaining nearly one-third more majors with a trio of instructional best practices

in CS1. In Proceedings of the Technical Symposium on Computer Science Education. 165–170.

[34] Leo Porter and Daniel Zingaro. 2014. Importance of early performance in CS1: Two conflicting assessment stories. In

Proceedings of the Technical Symposium on Computer Science Education. 295–300.

[35] Leo Porter, Daniel Zingaro, and Raymond Lister. 2014. Predicting student success using fine grain clicker data. In

Proceedings of the International Conference on Computing Education Research. 51–58.

[36] D. M. Powers. 2011. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and corre-

lation. J. Mach. Learn. Technol. 2, 1 (2011), 37–63.

[37] Anthony Robins. 2010. Leaning edge momentum: A new account of outcomes. In Computer Science Education, 20(1).

37–71.

[38] John E. Roueche. 1967. Research studies of the junior college dropout. Amer. Assoc. Junior Coll. (1967), 1–5.

[39] Philip M. Sadler and Robert H. Tai. 2007. Advanced placement exam scores as a predictor of performance in intro-

ductory college biology, chemistry and physics courses. Sci. Educat. 16, 2 (2007), 1–19.

[40] William E. Cohen Sadler and Frederic L. Kockesen Levent. 1997. Factors affecting retention behavior: A model to

predict at-risk students. In Proceedings of the Association for Institutional Research Annual Forum.

[41] Vicki L. Sauter. 1986. Predicting computer programming skill. Computers & Education 10, 2 (1986), 299–302.

[42] Sami Shaban and Michelle McLean. 2011. Predicting performance at medical school: Can we identify at-risk students?

Adv. Med. Educ. Pract. 2 (2011), 139–148.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

http://www.peerinstruction4cs.org
https://nces.ed.gov/programs/digest/d16/tables/dt16_303.70.asp

A Robust Machine Learning Technique to Predict Low-performing Students 18:19

[43] Karedn Shakerdge. 2016. High failure rates spur universities to overhaul math class. In The Hechinger Report. Retrieved

from http://hechingerreport.org/high-failure-rates-spur-universities-overhaul-math-class/.

[44] Shahireh Sharif, Larry Gifford, Gareth A. Morris, and Jill Barber. 2003. Can we predict student success (and reduce

student failure)? Pharm. Educ. 3 (2003), 1–10.

[45] B. Simon, M. Kohanfars, J. Lee, K. Tamayo, and Q. Cutts. 2010. Experience report: Peer instruction in introductory

computing. In Proceedings of the Technical Symposium on Computer Science Education. 341–345.

[46] Beth Simon, Julian Parris, and Jaime Spacco. 2013. How we teach impacts student learning: Peer instruction vs. lecture

in CS0. In Proceedings of the Technical Symposium on Computer Science Education. 41–46.

[47] Larry D. Singell and Glen R. Waddell. 2010. Modeling retention at a large public university: Can at-risk students be

identified early enough to treat? Res. Higher Educ. 51, 6 (2010), 546–572.

[48] Michelle K. Smith, William B. Wood, Wendy K. Adams, Carl E. Wieman, Jennifer K. Knight, Nancy Guild, and Tin

Tin Su. 2009. Why peer discussion improves student performance on in-class concept questions. Science 323, 5910

(2009), 122–124.

[49] Alex Smola, Kurt Hornik, Achim Zeileis, and Alexandros Karatzoglou. 2003. Kernel-based machine-learning lab. Re-

trieved from https://www.rdocumentation.org/packages/kernlab/versions/0.9-25.

[50] Louise Tickle. 2015. How universities are using data to stop students dropping out. In The Guardian. Retrieved from

https://www.theguardian.com/guardian-professional/.

[51] Bruno Trstenjak and Dzenana Donko. 2014. Determining the impact of demographic features in predicting student

success in Croatia. In Proceedings of the International Convention on Information and Communication Technology,

Electronics, and Microelectronics. 1222–1227.

[52] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin. 2013. Predicting performance in an introductory pro-

gramming course by logging and analyzing student programming behavior. In Proceedings of the International Con-

ference on Advanced Learning Technologies. 319–323.

[53] Brenda Cantwell Wilson and Sharon Shrock. 2001. Contributing to success in an introductory computer science

course—A study of twelve factors. In Proceedings of the Technical Symposium on Computer Science Education. 184–

188.

[54] Annika Wolff, Zdenek Zdráhal, Drahomira Herrmannova, and Petr Knoth. 2014. Predicting student performance from

combined data sources. Educ. Data Mining 524 (2014), 175–202.

[55] Ping Zhang, Lin Ding, and Eric Mazur. 2017. Peer instruction in introductory physics: A method to bring about

positive changes in students’ attitudes and beliefs. Phys. Rev. Phys. Educ. Res. 113, 1 (2017), 10.

Received May 2018; revised August 2018; accepted August 2018

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 18. Publication date: January 2019.

http://hechingerreport.org/high-failure-rates-spur-universities-overhaul-math-class/
PLX-HTTPS://www.rdocumentation.org/packages/kernlab/versions/0.9-25
PLX-HTTPS://www.theguardian.com/guardian-professional/

