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ABSTRACT

Given the long-standing concern about students failing introduc-
tory programming courses, there is a need for interventions that
may aid those students. In this work, we examine the potential
benefit of three interventions based on prior computing education
research (CER) or STEM education research literature: mindset
interventions, the use of “Thinkathons” as an alternative to pro-
gramming labs, and metacognitive interventions to encourage more
productive study habits. We conducted an in-class study that con-
trolled for both time-on-task and selection bias to investigate the
potential benefits of integrating these interventions into the ex-
isting footprint of an introductory computing course. Despite the
previously reported promise of the interventions we implemented,
our findings were that in this context these techniques had only a
mild positive effect for some students. We discuss possible reasons
why these techniques are less successful than instructors might
hope and argue for the need for more research on this topic.

CCS CONCEPTS

« Social and professional topics — Computing Education.

KEYWORDS

CS1, intervention, thinkathon, metacognitive

ACM Reference Format:

Sophia Krause-Levy, Leo Porter, Beth Simon, and Christine Alvarado. 2020.
Investigating the Impact of Employing Multiple Interventions in a CS1
Course. In The 51st ACM Technical Symposium on Computer Science Education
(SIGCSE °20), March 11-14, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3328778.3366866

1 INTRODUCTION

The problem of student retention and success in early programming
courses is a challenging and long-studied problem. Decades of work
has uncovered barriers students face in CS1 courses, including
conceptual [39], pedagogical [30], and social [13] barriers. Since
then, a myriad of improvements have been shown to help improve
retention and student success [14, 28, 31, 32].

However the problem is far from solved. CS1 failure rates re-
main high [43] and participation from students from some groups
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remains low [27]. Struggling students face challenges on a num-
ber of fronts including social-psychological (specifically, inclusion),
metacognitive, and cognitive (deep conceptual understanding).

Students with less prior computing experience and women gen-
erally have a lower sense of belonging in the field (inclusion) [4,
18], while women also report a lower self-efficacy in computing
(metacognition) [4]. Women and students from racial and ethnic
groups underrepresented in computing often face a hostile culture
and are more likely to internalize any struggle as a sign that they
do not belong in the discipline [13].

On the cognitive side, solid understanding of fundamental pro-
gramming concepts in early programming courses is important for
students’ later success [21, 41]. Unfortunately, with enough time
and assistance, many lower-performing students succeed on pro-
gramming assignments (PAs) with a “hack until the program works”
approach, and come away without understanding the underlying
concepts [23]. This can hurt them as they try to build on these
concepts, and in their performance on written exams, where they
cannot rely on the compiler or autograder.

In the last decade both mindset and cognitive interventions have
shown some promise in addressing inclusion and cognitive chal-
lenges both in and outside of computing. First, growth mindset and
values interventions have been shown to improve student perfor-
mance and retention in STEM courses, particularly for students
from underrepresented groups [2, 3, 8, 12, 16, 17]. On the other hand,
a recent large multi-institutional study found that growth mindset
interventions improved interest in CS but not performance [5]. Sec-
ond, the concept of a “Thinkathon”—a session in which students
solve progressively more difficult problems on paper—was shown
to have a positive impact on students’ exam grades, and students
perceived a high amount of value from it [7]. However, this initial
experience report was not a formal study and suffered from threats
to validity including selection bias and time-on-task.

This study seeks to explore the following research question:
Can combining previously identified promising intervention tech-
niques within a standard structure of a CS1 course significantly
increase students’ performance and what value, if any, do students
perceive from these interventions?

We implemented a quasi-controlled experiment by intervening
in the weekly 50-minute closed-lab session of an introductory pro-
gramming course (“CS1”) at a large research university in North
America. We replaced on-computer coding exercises with paper-
based scaffolded code comprehension and writing exercises (follow-
ing the Thinkathon model) targeting the same learning outcomes.
We also included metacognitive tasks to support study skill de-
velopment and inclusion and values reflections to foster growth
mindset and belonging. In particular, we used values interventions
and study skills interventions. We compared this model to a model
of the course that used solely coding-based labs without any reflec-
tion. Perhaps surprisingly, we found no strong evidence that these
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interventions generally improved students’ performance, though
we found no evidence that they hurt. In addition, students generally
viewed the intervention labs less favorably than the standard labs.
This work has three main contributions. First, we performed a
careful implementation and study of a combination of promising
interventions in a CS1 course. The results conflict (at least some)
prior findings, which allows us to gain a more nuanced understand-
ing about when these interventions may be successful and when
they may not. Second, as we found students did not appreciate the
interventions, we offer possible explanations for why and what
might be done differently in the future. Third, our findings suggest
that these interventions might have a positive effect for women,
providing another reason to continue exploring this line of work.

2 BACKGROUND
2.1 Interventions

Designing effective interventions for struggling students is notori-
ously challenging. One reason is that intervention strategies that
have shown high potential for success require significant resources
and commitment from both the educator and student. One promis-
ing intervention for low-performing students is Supplemental In-
struction (SI), a peer-facilitator led program where students receive
additional coaching on how to approach challenging material. SI
participation is widely shown to correlate with higher exam grades
and lower failure rates [9]. Yet SI requires significant support from
the teaching team as well as effort and time from the students.

Part of the benefit of SI is that it focuses not only on content, but
also on helping students improve their study skills. Lighter-weight
interventions that use targeted and well-timed study skills feedback
have also shown to be effective in some cases. One study showed
that students who met with professors after their midterm exams to
discuss changes to their study strategies improved their subsequent
midterm score significantly relative to students who only received
an email about study skills and those who received no interven-
tion [10]. Another study found that psychology students who chose
to attend an in-person study skills training course midway through
the term improved their subsequent exam grades [6].

Recently, a line of lightweight interventions based on psychology
have gained attention for their potential to increase students’ inter-
est, and potentially performance, in their courses. Growth mindset
interventions are one intervention technique specifically aimed at
helping students develop a mindset that intelligence is malleable,
rather than fixed, and to see failure as an opportunity for growth
rather than a sign of not being good enough. Early work suggested
that growth mindset based interventions might improve academic
outcomes [11], but more recent work has failed to show this [38].

Recent studies have also shown the promise of lightweight
mindset interventions that target students’ values, particularly for
first-generation and underrepresented minority students in STEM
classes. In two studies, a simple values affirmation intervention in
which students wrote about values that were personally important
to them reduced the achievement gap for first-generation students
and underrepresented minority students in an introductory biology
class [16, 19]. A similar intervention based on Expectancy-Value
Theory [44] in which students wrote about why the course material
was personally relevant to them showed similar results [17]. Other
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work has explored the value of providing metacognitive scaffolding
to aid in programming assignment completion [25, 34].

The success of lightweight metacognitive and mindset inter-
ventions in computer science (CS) is not clear. Exam wrappers—a
post-exam reflective technique designed to improve students’ study
skills—showed no effect on students’ performance in introductory
CS courses in a carefully designed two-university study [40]. Mean-
while, growth mindset interventions have had mixed results in CS.
Cutts et al. found students’ test scores improved with a six week
mindset intervention [8]. In contrast, a correlation study examining
the relationship between students’ course grades and their mind-
sets in 3rd year CS courses found a non-significant relationship
between mindset and success [20]. Another intervention conducted
across multiple institutions also found no significant difference in
the mindsets between experimental and control groups [37]. No-
tably, a recent, large, multi-institutional study on growth mindset
interventions in C courses found that these interventions increased
students’ interest in CS but did not improve their performance [5].

Given these conflicting results and the varying study designs,
it is important to continue to explore the contexts in which these
interventions may have value. It is also worth exploring whether
null results could be because each intervention on its own was
too small to produce a result, and whether combining multiple
interventions might give sufficient power to yield a change.

2.2 Code Writing and Code Understanding

The impact of understanding early concepts on later performance
has been demonstrated in several studies. The theory of learning
edge momentum says that students who do better early on tend to
continue to do better and widen the gap from those who struggle
early on because the concepts tend to build on each other [35]. This
phenomenon has been revealed in analyses of final exam questions,
where early concepts appear on the majority of the questions on
the exam, even those designed to focus on the concepts learned
later in the course [29, 33].

Student who struggle in CS1 exhibit patterns of just trying to get
the code to work, rather than deeply understanding why [23]. In
contrast, students who succeed tend to have mastery goals for learn-
ing the course content [45], and likely exhibit behaviors associated
with gaining a deeper understanding of the code behavior.

Studies that have explored the relationship between code tracing,
code explaining, and code writing [22, 24, 26, 36, 42] have shown
that code tracing is necessary for students to be able to write code
successfully. As such, Thinkathon interventions aim to help stu-
dents with deepening their understanding of code behavior through
code reading, tracing, and explaining exercises. Our study explores
the context of engaging students in code understanding for the
sake of deep concept learning as part of weekly labs. This stands in
contrast to the original Thinkathon intervention which did so in
the context of helping students prepare for the final exam [7].

3 INTERVENTION

With the knowledge that many interventions in CS1 fail, we de-
signed a multi-faceted intervention to combat the three previously
identified challenges that students face—inclusion, metacognitive,
and cognitive—drawing from the most recent knowledge on why
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CS1 students struggle and the most promising intervention tech-
niques from CS and other disciplines. Our goal in combining these
interventions was to maximize the potential to improve student
outcomes, but we discuss the risk of overloading students in Sec-
tion 6.2. In this section we describe the components of our complete
intervention, which was implemented in the closed lab of a 10-week
introductory computing (CS1) course. Details of the experiment
we ran to evaluate the intervention are given in the next section.
Throughout this section we sometimes paraphrase the intervention
prompts (without losing their meaning) for brevity; for replication
purposes we provide the complete prompts at [1].

3.1 Inclusion

Students responded to two prompts drawn from the literature on
growth mindset and expectancy-value theory.

Overcoming Struggle: In week 1, we asked students to respond
to a prompt based on the Growth Mindset lesson plan from
https://mindsetkit.org/: Write a letter to a future student
of your class about a struggle you have overcome. Tell this student
your story and give them advice on what they should do next time
they encounter an obstacle when learning something new.

Value Reflection: In week 4, we implemented a utility-value inter-
vention similar to [17] in which students responded to the following
prompt: Explain how what you are learning in [CS1] is important
to you, personally. You might (but do not have to) address any of
the following: How does it connect to what you are learning in other
courses? How is it relevant to your life outside of [CS1]? What will
learning this material enable you to create that is valuable to you?

3.2 Metacognitive

Students engaged in two interventions designed to help them focus
on the areas of the course they were struggling with most.
Learning Reflection: In Week 6, right after the midterm exam,
students responded to the following prompt: Reflect back on last
week’s exam. Choose one problem that you got incorrect that you feel
reveals a concept or skill that you are not 100% sure about.

(1) What concept or skill is your selected problem related to?

(2) What actions did you take to learn/practice this knowledge or
skill in preparation for the exam?

(3) How confident were you in this before the exam? Why?

(4) Looking back, what specific actions could you have taken to
better learn this skill or concept? What specific actions will you
take NOW to better learn this skill or concept?

Study Skills: In Week 9, to help students prepare for the final
exam, we prompted them for two concepts about which they were
confused using the following prompt ((1)-(4) were repeated):

In this warm up you will be asked to list two concepts or topics that
you feel you have learned well, and two concepts or topics you feel
you need more information on/practice with.

(1) Give one topic or concept you feel you have learned well?

(2) What makes you confident about your learning?

(3) Give one topic or concept you feel you still need more practice
with, or give one specific question you have.

(4) What specific action(s) will you take BEFORE NEXT WEEK'S
LAB to help you learn it better or get your question answered?
[Examples of acceptable and unacceptable responses also given.]

1084

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

In the following week, students filled out a yes/no form to verify
whether they had completed their action(s).

3.3 Thinkathon

We adopted Thinkathons in all the labs from Week 2-10. (Week 1
was a warmup on how to use the lab machines for assignments.)
Based on the work of Cutts et al. [7], we had students work in pairs
on paper worksheets that asked students to identify terminology,
describe what specific line (or lines) of code accomplished, trace
through the execution of code and predict its output, identify po-
tential bugs, and explain (at a high level) the purpose of particular
pieces of code. We give an example of a problem from a Thinkathon
lab in Section 4.1; the complete Thinkathon labs and solutions are
available at [1].

4 STUDY DESIGN

To understand whether and how our multi-faceted intervention
would affect students’ experience and performance in an introduc-
tory computing course, we integrated all three interventions into
an offering of an introductory computing course (CS1) that uses the
Media Computation curriculum [15] in Java at a large US research-
intensive public university in the spring of 2019. There were two
sections of this course (each with an enrollment of 146 at Week
4), each of which met for two 120-minute class (“lecture”) sessions
each week. Both sections were taught by the same experienced
instructor (one of the authors of this paper). Class session mixed
lecture and active learning including peer instruction (based on
peerinstruction4dcs.org). Each class section was further
divided into three closed lab sections (for a total of six lab sections
of approximately 50 students each) that met weekly for 50 minutes
each. Labs were led by a graduate student teaching assistant in an
instructional computer lab. Students received a grade for attending
lab in their assigned section and on an end-of-lab quiz. Students in
the course also completed pre-class reading, weekly programming
assignments, and took two midterms and a final exam.

4.1 Experimental Setup

To control for time-on-task and to provide a feasible adoption model
(not requiring extra engagement on the part of the instructors or
students), we implemented the interventions in the existing foot-
print of the weekly closed lab session in this course. The instructor
randomly selected three of the six lab sections (two from one class
section, and one from the other) to complete the inclusion, metacog-
nitive and Thinkathon exercises during their lab time (experimental
group). All exercises were done on paper or using Google forms,
except in three cases (week 1, and half of weeks 8 and 10) where
students (also) performed some of the programming exercises from
the control section when it was critical to the programming assign-
ment. Thinkathon exercises were done in pairs, while reflections
were done individually. Students in the non-intervention (control
group) sections of the lab completed the lab exercises from pre-
vious offerings of the course, which included small programming
exercises, done in pairs. Students in all lab sections took the same
(brief) online quiz at the end of lab. After each lab, the control
and experimental versions of the lab materials and solutions were
e-mailed to the respective students. Table 1 provides an example of
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the differences between the experimental and control groups’ lab
section exercises and the corresponding programming assignment
(PA) all students were required to complete.

4.2 Data Collection

At the beginning of the course we collected baseline data on stu-
dents’ incoming average GPA, major, year in school, race/ethnicity
and gender. All of this data was collected from the university regis-
trar database. Gender (where students could select either Female
or Male) and race/ethnicity (where students had to select the one
choice they most identify with) had been self-reported by the stu-
dents upon applying to the university. After the course, we obtained
students’ final exam grades, overall final grade, and responses to an
end-of-course survey. All data was deidentified by a third-party (not
a member of the research team or the instructor) prior to analysis.
Our data set excluded students who opted out of the study as per
our approved IRB protocol.

4.3 Course Composition

As this offering of CS1 was in spring quarter, the course’s overall
population was somewhat atypical for CS1. Of the 222 students
who received a letter grade (not including W), 98% were non-CS-
majors, though 77% were taking the class to fulfill a major or GE
requirement. 53% of the students had sophomore standing, and 41%
had junior or senior standing.

The specific student demographics and overall numbers of stu-
dents were reasonably balanced between the experimental and
control groups, as shown in Table 2. Underrepresented minorities
(URM) include students who identify as Latinx/Chicanx or Black!.
We classified students as higher or lower performing based on their
incoming GPAs. Students whose incoming university GPA fell in
the upper half of the class’ GPAs were considered higher perform-
ing, and students with an incoming university GPA in the lower
half of the class were considered lower performing. The average
incoming GPA of students in the control group (3.2) was slightly
higher and not statistically significantly different from the average
incoming GPA of students in the experimental group (3.1) (two-
tailed t-tests assuming equal variance, p = .25). Average GPAs
for any given subgroup (e.g. women, URM, etc.) also followed this
same trend between the experimental and control sections, and
none were statistically significantly different.

5 RESULTS

5.1 Performance

We first compared performance of students in the control vs. exper-
imental groups on the following metrics: average course grade, av-
erage final exam score, average programming assignment score and
percentage of students who withdrew from the course after week 4
or earned a D or an F (WDF rate). We then compared WDF rates
and final exam scores between experimental and control groups
for each of the subgroups given in Table 2 including women, men,
URM, non-URM, low-performing and high-performing. In all cases
we used p < 0.05 as a threshold for statistical significance.

!We did not have any students who identified as American Indian/Native American.
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Table 1: Example prompts from week 9 PA and Labs

Component | Prompt
PA | Write public getters and setters for each

instance variable in the class Participant:
getName, getWeight, getHeight, setName,
setWeight, setHeight, getBMI

Control Lab | Write the get and set methods for the major
variable in class Student (Done on the lab
machines)

Thinkathon Lab | Write the code (including the method header)
for a getter method and a setter method for
our new instance field — major for the class
Student (Done on paper)

Table 2: Number of Students by Group
Group || Experimental | Control

Overall || 114 108
URM || 23 22
Non-URM || 91 86
Female || 65 60
Male || 49 43
Lower Performer || 57 54
Higher Performer || 57 54

5.1.1  WDF Rates. We first looked for any correlation between
experimental vs. control group and WDF rate in the course. For
each group, we calculated the proportion of students who withdrew
or received a grade of D or F vs. those who received a passing grade
(A+ through C-). We compared these proportions using a y? test.
While the WDF rates were lower for the experimental condition
(10.5%) than for the control condition (14.8%), this difference was
not statistically significant (y? = .58,p = .45). We next ran the
same test for each of the subgroups in Table 2. Again, each of
the rates was slightly lower for the students in the experimental
condition than for students in the control condition, but none of
these differences were statistically significant.

5.1.2  Final Exam (and other) Scores. We compared the final exam
scores for students in the experimental group to those of students in
the control group using a two-tailed t-test assuming equal variance.
Average scores for each group are given in Table 3. Overall, final
exam scores between the experimental group (74.8%) and the control
group (73.6%) were not statistically significantly different.

When we examined the various subgroups to see if there might
be a differential effect for different groups, we found that most sub-
groups also did not show any significant differences between the
experimental and the control groups (see Table 3). The exception to
this trend was gender; women performed on average 7 percentage
points (4 actual points) higher on the final in the experimental
section than in the control section (a statistically significant dif-
ference), while men performed on average 7 percentage points (4
actual points) lower in the experimental section than in the control
section (though this difference was not statistically significant).
Because of the number of statistical tests we ran, we are hesitant
to read too much into these results, but this potential difference
motivates future study.
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Table 3: Final Exam Averages (of 54 possible points), includ-
ing only students who took the final exam. * indicates a
statistically significant difference between the experimental
and control groups (p < 0.05).

Experimental Control [
Group N Avg N Avg
Overall || 111 40.41 || 106 | 39.73
URM 21 36.44 22 | 36.85
Non-URM 90 41.33 84 | 40.49
Female® 63 41.62 60 | 37.64
Male 48 38.81 46 | 42.47
Lower Perform 55 35.05 53 | 34.18
Higher Perform 56 45.66 53 | 45.29

We also looked for performance differences in the programming
assignments and overall course grade. We found no statistically
significant differences in performance between the overall groups
or for any of the subgroups.

5.2 Students’ Perceptions

To identify students’ feelings towards the interventions, we admin-
istered a post-term survey in the final lab section of the quarter. The
survey included a section where students rated their agreement,
on a 5-point scale, with statements about course components. The
three statements relevant to the intervention are shown in Figure 1.

Figure 1 also shows the proportion of students in each group
who selected each response for each of the three statements. Be-
cause the “Strongly Disagree” and “Disagree” options had very
few or zero responses, for our statistical analysis we collapsed the
responses into three categories: Strongly Agree/Agree (“Agree”),
Neutral, and Strongly Disagree/Disagree (“Disagree”). We compared
experimental vs. control group responses using )(2 tests. As seen in
Figure 1, students were generally more positive (pink and red colors
on the right) in the control group; however, only the differences
in responses to the statement “lab helped me solve my PAs” were
statistically significant. This difference makes sense—because the
labs in the experimental section were done almost solely on paper,
it is not surprising that students did not see as much of a direct
connection to their programming assignments.

Table 4 shows rates of agreement and disagreement for each
of the subgroups for each of the three statements. The traditional
(control group) labs were consistently rated more positively than
the experimental group labs, though this difference was only statis-
tically significant in a few cases. It seems that the difference was
starker for underrepresented minority students, who had a rela-
tively more positive view of the traditional labs and a relatively
more negative view of the experimental labs.

5.3 Threats to Validity

The first threat to validity is the composition of the course, which
comprised nearly all non-CS-majors and non-first-year students
without prior programming experience. The difference between
this population and the course’s core audience of first-year majors
may impact the efficacy of the interventions; students may have
been more driven to simply pass the class than to earn an A.
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"lab helped me solve my PAs"

ool T I

"lab helped me with my learning"

control T T

"I enjoyed the lab experience"

Experimental T [
Control T I

0% 20% 40% 60% 80% 100%

B Strongly Disagree EDisagree ONeutral BAgree BStrongly Agree

Figure 1: Proportion of each response for each of the three
statements about the lab. PA=Programming Assignment

A second threat arises from the implementation of the Thinkathon
intervention. Although we had access to the original Thinkathon
materials and used them as a guide, our materials differed as they
needed to support students learning concepts for the first time—not
just an end of the term review. It is also possible that the Thinkathon
materials did not accurately match the learning goals of the control
labs, introducing an unintended difference between the two groups.

Third, there was likely unintended information flow between the
control and experimental groups as students were interleaved in
the same active-learning lectures. It is very likely that they shared
information about the labs either in class or when studying together.

Finally, the number of statistical tests run makes it difficult to
interpret which results might reflect an actual underlying difference.
Few of the differences we observed were statistically significant,
yet the trends were almost all in the same direction (experimental
labs were related to slightly better exam performance and lower
WDF rates, but slightly less positively received by students). We
must interpret these results as suggestions for further investigation,
instead of drawing direct conclusions.

6 DISCUSSION
6.1 Comparison to Original Thinkathon

Our goal was not to replicate the original Thinkathon design, but
to explore the value the Thinkathon approach would have if it
were not an opt-in, relatively time-unlimited activity. However,
we now suspect that some of the key components to the original
Thinkathon’s success were its link to the exam and the open-ended
time frame. The question remains whether the same gains could be
achieved for students who did not voluntarily attend these sessions.
In any future replication studies, we would at a minimum explicitly
draw a link between exam preparation and Thinkathon exercises.
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Table 4: Proportion of students who agreed and disagreed with each statement. Bold values indicate a statistically significant
difference between the experimental and control sections for a particular statement and subgroup.

Group N “lab helped me solve my PAs” “lab helped me with my learning” “I enjoyed the lab experience”
Exp | Ctl Experimental Control Experimental Control Experimental Control
Disagree/Agree | Disagree/Agree || Disagree/Agree | Disagree/Agree || Disagree/Agree | Disagree/Agree
Overall | 100 | 101 7.0% / 61.4% 5.6%/79.6% 2.6% / 69.3% 2.8%/ 82.4% 10.5% / 55.3% 4.6% / 69.4%
URM | 18 22 0.0% / 56.5% 4.6%/95.5% 4.4% / 60.9% 4.6% / 90.9% 8.7% / 34.8% 4.6% / 86.4%
Non-URM | 82 79 8.8% / 62.6% 5.8% /75.6% 2.2%/71.4% 2.3% / 80.2% 11.0% / 60.4% 4.7% / 65.1%
Female | 59 57 4.6% / 66.2% 6.7% / 80.0% 0.0% / 75.4% 3.3% / 83.3% 7.7% [ 60.0% 8.3% / 70.0%
Male | 41 44 10.2% / 55.1% 4.2% 1 79.2% 6.1% / 61.2% 2.1% / 81.3% 14.3% / 49.0% 0.0% / 68.8%
Lower Perf. | 48 47 5.3% / 56.1% 5.6%/77.8% 3.5% / 68.4% 1.9% / 77.8% 10.5% / 50.9% 1.9% / 68.5%
Higher Perf. | 52 54 8.8% / 66.7% 5.6% / 81.5% 1.8%/70.2% 3.7% / 87.0% 10.5% / 59.7% 7.4% | 70.4%

We believe that some of the negativity towards Thinkathon labs was
due to the expectation that the labs would help students prepare
for programming assignments. If we had provided students with a
direct connection between the Thinkathon labs and the exams, we
might have seen performance improvements and a less negative
stance towards Thinkathon labs.

Another key difference is the use of Thinkathon activities during
the developmental time of first learning a new computing concept
versus stimulating comprehension skills of materials at the end of
the term. Perhaps it is beneficial for students to first spend time
“just making it work” (as was the case for students in [7]) in order
to set them up for deeper understanding activities later.

6.2 Why Didn’t Non-Cognitive Activities Help?

We included metacognition and inclusion activities due to the
strong evidence in other fields on the positive impacts for under-
represented groups. However, impacts of such interventions specif-
ically in introductory programming courses have been mixed. A
large-scale study that was published while we were in the middle
of our study also failed to observe performance gains (or gender
differences) from growth mindset interventions in introductory
computing courses [5]. That paper also found what seems to be
common in introductory programming courses: students have a
pretty strong growth mindset orientation from the start.

In addition to potentially having a growth mindset from the start,
we believe three other factors might have contributed to the limited
impact of the interventions. First, the course was already heavily
laden with best practices. Peer Instruction, we suspect, already en-
courages a growth mindset through frequent formative feedback
and collaborative learning. Second, the students in the course were
mostly non-CS-major students who might not have been as moti-
vated to succeed, and non-first-years who might have developed
persistence and self-efficacy through their years in school. Third, it
is possible that the interventions were both too numerous and too
broadly targeted. Most students did not need all of the interventions
we offered, and receiving them all might have overwhelmed them
to the point where they could not focus on the intervention that
would have helped them.

6.3 Ideas for Future Studies

Replication studies are critical in helping our field understand the
robustness of a finding or theory. A single study almost always
has threats to validity and is often limited to a particular institu-
tion, course, student body, or instructor. Replication studies help
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us gain confidence and/or better understand nuanced conditions
where a finding is applicable. We identify the following considera-
tions to better explore and understand the conditions under which
components of our intervention could be more impactful:

e Replicate in fall term. First-year students may benefit
more from metacognitive supports.

o Tell students how the activities benefit them. Both for
Thinkathon and non-cognitive activities, explain how these
activities are meant to support their success in the course.

e Use Thinkathon activities as “exam preparation”. Exam
preparation may be better motivation for students.

¢ Do not hold Thinkathon in the computer lab. Students
may feel they are losing the opportunity to prepare for their
programming assignments by not working on the computer.

e Design Thinkathons to address all five original goals.
Perhaps support for Mastery Learning, allowing students to
work at their own pace, and having students complete the ac-
tivities individually are necessary conditions for Thinkathon
activities to support better test performance.

e Study the value of lab itself. The (essentially) null results
from this study raise the question of what learning value lab
provides. Perhaps students benefit from a social, supportive
environment, no matter what they are working on. Or per-
haps they would do just as well without it, which would be
valuable to know given the resources devoted to it.

7 CONCLUSION

We conducted a well-controlled study of a multi-faceted interven-
tion based on best-practices from the CER and STEM education
literature. Despite the seeming promise of the interventions, we
found that students generally were not that positive about them
and they had only minimal (if any) effect on students’ academic
outcomes in the course. These results raise questions about next
steps in improving outcomes for students in CS1. Further work is
needed to fully understand the value and limitations of employing
these interventions. Moreover, in this time of high enrollments and
large classes, it may be time to step back and reassess our basic
assumptions about how to help students learn introductory CS.
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