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ABSTRACT. We prove in generic situations that the lattice in a tame type induced by the com-
pleted cohomology of a U(3)-arithmetic manifold is purely local, i.e., only depends on the Galois
representation at places above p. This is a generalization to GL3 of the lattice conjecture of Breuil.
In the process, we also prove the geometric Breuil-Mézard conjecture for (tamely) potentially crys-
talline deformation rings with Hodge-Tate weights (2,1,0) as well as the Serre weight conjectures
of [Her09] over an unramified field extending the results of [LLHLM18]. We also prove results
in modular representation theory about lattices in Deligne—Luzstig representations for the group
GL3(Fy).

CONTENTS

Introduction
Breuil’s lattice conjecture
Serre weight and Breuil-Mézard conjectures
Representation theory results
Notation
Extension graph
Definition and properties of the extension graph
Types and Serre weights
Combinatorics of types and Serre weights
Serre weight conjectures
Background
Etale w-modules with descent data
Semisimple Kisin modules
Shapes and Serre weights
Serre weight conjectures
The geometric Breuil-Mézard conjecture
Lattices in generic Deligne-Lusztig representations
The classification statement
Injective envelopes
Proof of the structure theorem in the general case
Breuil’s Conjectures
Cyclicity for patching functors
Gauges for patching functors
Global applications
Addendum to [LLHLM18]

Tk W W

10
13
14
20
20
22
24
27
28
35
56
56
99
72
83
83
88
90
97



SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 2

References 101



SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 3

1. INTRODUCTION

One of the most important developments in the Langlands program in recent years has been the
p-adic local Langlands correspondence for GLy(Q)). Unfortunately, extending this correspondence
even to GLg(K) has proven to be exceedingly difficult and all evidence suggests that the desired
correspondence will be much more complicated. On the other hand, there has been some progress
on several avatars of the p-adic local Langlands correspondence, namely, (generalized) Serre weight
conjectures, geometric Breuil-Mézard conjecture, and Breuil’s lattice conjecture. These conjectures
inform our understanding of what the sought after p-adic correspondence should look like. In this
paper, we prove versions of each of these three conjectures for GL3 (/) when K/Q), is unramified.

1.1. Breuil’s lattice conjecture. Motivated by Emerton’s local-global compatibility for com-
pleted cohomology, [CEGT16] constructs a candidate for one direction of the p-adic local Lang-
lands correspondence for GL,(K). Namely, they associate to any continuous n-dimensional @p—
representation p of Gal(K/K) an admissible Banach space representation V(p) of GL,(K) by
patching completed cohomology. However, the construction depends on a choice of global setup,
and one expects it to be a deep and difficult problem to show that the correspondence p — V(p) is
purely local.

In [Brel4], Breuil formulates a conjecture on lattices in tame types cut out by completed coho-
mology of Shimura curves which is closely related to the local nature of V(p). This conjecture was
proven subsequently in the ground-breaking work of Emerton-Gee-Savitt [EGS15]. Our first main
theorem is a generalization of Breuil’s conjecture to three-dimenional Galois representations and
the completed cohomology of U (3)-arithmetic manifolds.

Specifically, let p be a prime, F/F* a CM extension (unramified everywhere), and r : Gp —
GLg(@p) a Galois representation. Let A be the Hecke eigensystem corresponding to 7, which
appears in the cohomology of a U(3)-arithmetic manifold. Choose a place v|p of F'* which splits in
F, and let H be the integral p-adically completed cohomology with infinite level at v. One expects
completed cohomology to realize a global p-adic Langlands correspondence generalizing the case
of GLy,q. That is, by letting v denote a place of F' above v and Gp, be the absolute Galois

group of Fy, the GL3(Fy)-representation on the Hecke eigenspace H [A] corresponds to 7|g, via a
hypothetical p-adic local Langlands correspondence (when the level outside v is chosen minimally).
In particular, the globally constructed object H[A] should depend only on 7|g,, .

Suppose that 7 is tamely potentially crystalline with Hodge—Tate weights (2,1,0) at each place
above p. For simplicity, in the introduction we suppose that r is unramified away from p, although
our results hold if 7 is minimally split ramified. Assume that each place v|p in F* splits in F' and
fix a place vlv for all v|p in F*. Let o(7) be the tame type corresponding to the Weil-Deligne
representations associated to T\GF5 for all v|p under the inertial local Langlands correspondence.
Throughout the introduction, the tame type o(7) is assumed to be sufficiently generic. If r is
modular, then by classical local-global compatibility, H[A][1/p] contains o (7) with multiplicity one.

Theorem 1.1.1 (Breuil’s conjecture, cf. Theorem 5.3.5). Assume that p is unramified in F*, and
that 7 satisfies Taylor-Wiles hypotheses and is semisimple at places above p. Assume the level of
H outside p is minimal with respect to r. Then, the lattice

(1)’ :=o(r)NH[N C o(7)

depends only on the collection {r|Gp_}o|p-
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Let H be the mod p reduction of H , so that H is the mod p cohomology with infinite level at
places above p of a U(3)-arithmetic manifold. We prove the following “mod p multiplicity one”
result (cf. Theorem 5.3.4).

Theorem 1.1.2 (Theorem 5.3.4). Keep the assumptions of Theorem 1.1.1. Let o(7)? be a lat-
tice in o(7) such that its mod p reduction (7)? has an irreducible upper alcove cosocle. Then
Homp, (5(7)7, H[)]) is one dimensional.

These theorems should be compared to Theorem 8.2.1 and Theorem 10.2.1 in [EGS15] in dimen-
sion two. In the special case where p is split in '™ and 7 is irreducible above p, both theorems
were proven by the first author in [Lel§].

The main ingredients used in [EGS15] are the Taylor-Wiles patching method, the geometric
Breuil-Mézard conjecture for potentially Barsotti-Tate Galois deformation rings (building on work
of [Brel4]), and a classification of lattices in tame types (extending [Brel4, BP13]). When we
began this project, only the first of these tools was available in the case of GL3. The analogue
of potentially Barsotti-Tate Galois deformation rings are potentally crystalline deformation rings
with Hodge-Tate weights (2,1,0). In [LLHLM18], we develop a technique for computing these
Galois deformation rings when the descent data is tame and sufficiently generic. We discuss in §1.2
the geometric Breuil-Mézard conjecture for these rings. The representation theoretic results are
discussed in §1.3.

It is worth mentioning several key differences which distinguish our situation from [EGS15].
Breuil’s conjecture for GLy gave an explicit description of the lattice o(7)? in terms of the Dieudonné
module of r|g,,_. We prove abstractly that o(1)% is “purely local” (Theorems 5.2.3 and 5.3.5), but

without giving any explicit description of the lattice. The lattice o(7)? is determined by the
parameters of the Galois deformation ring but in a complicated way.

Let o(7)? be a lattice in o(7) whose reduction has irreducible cosocle 0. To prove Theorem
1.1.2, we show that a certain (minimal) patched module My (o(7)?) is free of rank one over the
local Galois deformation ring (with patching variables) Roo(7) (Theorem 5.1.1). In fact, this result
is also a key step in our proof of Theorem 1.1.1. In loc. cit., the analogue of this result is Theorem
10.1.1 where they show that the patched module of any lattice with irreducible cosocle is free of
rank 1. In our situation, it is no longer true that all such patched modules are cyclic. Rather, this
is only true when the cosocle o is upper alcove in every embedding. As a consequence of this, one
can deduce that the isomorphism class as an Ry (7)-module of My (o (7)?) is purely local for any
lattice o(7)?, however, it need not be free.

For the proof that M. (o(7)7) is free of rank one when o is upper alcove, we induct on the
complexity of the deformation ring. The simplest deformation rings resemble those for GLo and
so we follow the strategy similar to [EGS15]. For the most complicated deformation rings, we
build up Mu(o(7)?) from its subquotients relying on the description of the submodule structure
of reduction &(7)? discussed in 1.3 and crucially intersection theory results for components of mod
p fiber of the Galois deformation ring.

1.2. Serre weight and Breuil-Mézard conjectures. There is an analogous global context for
a mod p Galois representation 7 : Gp — GL3(F) whose corresponding Hecke eigensystem m appears
in the mod p cohomology with infinite level at v of a U(3)-arithmetic manifold. One expects H[m]
to correspond to ?|GF5 via a hypothetical mod p local Langlands correspondence. Furthermore,

if we let W, (7) be the set of Jordan—Hélder factors in the GL3(OF;)-socle! of H[m] and Tlag, is

1 strictly speaking the Hecke eigenspace H|[m] is a smooth representation of G(F,"), where G/F;r is a reductive

group having a reductive model G, over OF+ together with an isomorphism ¢3 : G, ((’)F+) = GLg(OF;)).
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tamely ramified, [Her09, GHS18] predict that W, (7) = W (7|7, ), where T r, denotes the inertia
subgroup of G, and W*(7| I ) is a set which is explicitly defined in terms of 7|7, . We have the
following version of the weight part of Serre’s conjecture (cf. Theorem 5.3.3).

Theorem 1.2.1 (The weight part of Serre’s conjecture). Assume that p is unramified in F*, and
that 7 satisfies Taylor—Wiles hypotheses, has split ramification, and is semisimple and sufficiently
generic at places above p. Then W, (F) = W (7|1, ).

In [LLHLM18], we prove this theorem with the additional assumption that p is split in F™.
The strategy is to show the numerical Breuil-Mézard conjecture for the simplest deformation
rings (where the shape has length at least two) using [LLHLM18, §6.2]. The key new tool is a
more conceptual and robust combinatorial technique for computing the intersection between the
predicted weights W’ (7|7, ) and the Jordan-Hdlder factors of a type, and which is developed in
§2. This allows us to induétively prove that all predicted weights are modular.

Using a patching functor which is constructed globally, we show that the generic fibers of tamely
potentially crystalline deformation rings of Hodge—Tate weight (2,1, 0) are connected for p generic
and deduce the full numerical Breuil-Mézard conjecture for these Galois deformation rings. Using
the numerical formulation, we prove the following geometric version of the Breuil-Mézard conjecture
(cf. [EG14], Proposition 3.6.1).

Theorem 1.2.2 (Proposition 3.6.1). Assume that T|q, 1is semisimple and sufficiently generic.

There is a unique assignment o v p(c) taking Serre weights o € W (F|g,. ) to prime ideals in

the unrestricted framed deformation ring RE‘G such that the special fiber Spec (R?lcp ) of the
F 5
of Hodge—Tate weight (2,1,0) and tame type

potentially crystalline framed deformation ring R%G
Fy

T, is the reduced underlying subscheme of

U Seec (B, /o).

o €W (7|1, JNIH(o(7)

Moreover, this is compatible with any patching functor.

1.3. Representation theory results. In order to deduce Breuil’s lattice conjecture from the
Breuil-Mézard conjecture we need (and prove) new results on integral structures in Deligne-Lusztig
representations, which may be of independent interest. The main theorem (Theorem 4.1.9) is a
classification of integral lattices with irreducible cosocle in tame types, by means of an extension
graph, which plays a key role in the proofs of Theorems 1.1.1 and 1.1.2.

We now briefly describe the extension graph. In §2.1, we introduce a graph on the set of p-
regular Serre weights (with fixed central character), with vertices corresponding to p-regular Serre
weights and adjacency between vertices described in a combinatorially explicit way. We then show
in Lemma 4.2.6 that two vertices are adjacent if and only if the corresponding Serre weights have a
non-trivial GL3(IF,)-extension between them, justifying the terminology. This gives a natural notion
of graph distance dgpn between two p-regular Serre weights. Theorem 4.1.9 states the following.

Theorem 1.3.1 (Theorem 4.1.9). Assume that R is a sufficiently generic Deligne—Lusztig repre-
sentation of GL3(F,). (In particular, the Jordan-Hdlder factors of R occur with multiplicity one.)
If o is a Jordan—Holder factor of R, let R® be the unique lattice up to homothety with cosocle o. If

0,0’ € JH(R) and that dgpn (0, 0’) = d, then:
(1) o' is a direct summand of the d-th layer of the cosocle filtration of R’;
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(2) if o" € JH(R) is such that dgpn(o, 0”) = d + 1 and dgpn(o’, 0”) = 1 then R’ has a
subquotient which is isomorphic to the unique non-split extension of o’ by o”; and

(3) ifR"/ C R? is a saturated inclusion of lattices, then p®R° C R is also a saturated inclusion
of lattices.

The argument is involved, using a mixture of local and global techniques, but we can distinguish
two main steps in its proof. In the first step (§4.2.3 and 4.2.4), we prove the first two items of
Theorem 1.3.1 in the case when o is a lower alcove weight of defect zero (cf. Definition 2.3.8 and
Theorem 4.2.16). The proof uses methods from the modular representation theory of algebraic
groups, embedding R’ in a Weyl module with non-p-restricted highest weights. The key local
argument is a careful study of the restriction of algebraic representations to rational points (Propo-
sition 4.2.10), which lets us constrain the submodule structure of (part of) the GL3(FF,)-restriction
of an algebraic Weyl module in terms of the extension graph. This method does not work for all
weights o € JH(R), as the corresponding lattices will not always have simple socle, and thus can
not be embedded into a Weyl module.

In the second step (§4.3), we reduce the theorem for the remaining lattices to the case treated
in the first step. We relate the first two items and the last item of Theorem 1.3.1. The last item,
a statement in characteristic zero, is amenable to an inductive analysis. First, we show that for
a fixed weight o € JH(R), item (3) of Theorem 1.3.1 actually implies the other two items (cf.
Proposition 4.3.16). This crucially uses Theorem 1.3.1(3) in the case d = 1 (cf. Proposition 4.3.7),
which is proved using the computation of deformation rings in [LLHLM18], combinatorics of §3, and
the Kisin—Taylor—Wiles patching method. This argument follows the suggestion in [EGS15, §B.2]
that tamely potentially crystalline deformation rings strongly reflect aspects of local representation
theory through global patching constructions.

Next, we show that the first two items of Theorem 1.3.1 applied to R and its dual in the case
of lower alcove defect zero weights imply Theorem 1.3.1(3) in the case of lower alcove defect zero
weights. From this starting point, an inductive argument proves Theorem 1.3.1(3), thus concluding
the proof of Theorem 1.3.1.
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Pillen for many helpful conversations. We would also like to thank Matthew Emerton, Toby Gee,
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Nos. DMS-1128155, DMS-1802037 and the Alfred P. Sloan Foundation. DL was supported by
the National Science Foundation under agreements Nos. DMS-1128155 and DMS-1703182 and an
AMS-Simons travel grant. Finally, the authors express their utmost gratitude to the anonymous
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1.4. Notation. If F is any field, we write Gp & Gal(F/F) for the absolute Galois group, where
F is a separable closure of F. If F is a number field and v is a prime of F we write G, for the
decomposition group at v and If, for the inertia subgroup of Gp,. If F' is a p-adic field, we write
Ir to denote the inertia subgroup of Gp.

We fix once and for all an algebraic closure Q of Q. All number fields are considered as subfield
of our fixed Q. Similarly, if £ € Q is a prime, we fix algebraic closures Q, as well as embeddings
Q < Q. All finite extensions of Q, will thus be considered as subfields in Q,. Moreover, the
residue field of Q, is denoted by [Fy.
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Let p > 3 be a prime. For f > 0 we let K be the unramified extension of Q, of degree f. We
write k for its residue field (of cardinality ¢ = p/) and O = W (k) for its ring of integers. For

€ . € L T .
r > 1 we set e, o p/™ — 1 and fix a compatible system of roots m, o (—=p)er € K. We write e for

e1 and 7 for 7. Define the extension L = K(7) and set Ay of Gal(L/K). The choice of the root
7 let us define a character

(,Nc}7r : AO — W(kﬁ)x

s 00

whose associated residual character is denoted by w;. In particular, for f = 1, w, is the mod
p cyclotomic character, which will be simply denoted by w. If F,/Q, is a finite extension and
Wg, < Gp, denotes the Weil group we normalize Artin’s reciprocity map Artp, : F,\ — W]",EB in
such a way that uniformizers are sent to geometric Frobenius elements.

Let E C @p be a finite extension of QQ,, which will be our coefficient field. We write O for its

ring of integers, fix an uniformizer w € O and let mp = (w). We write F o /mpg for its residue
field. We will always assume that E is sufficiently large. In particular, we will assume that any
embedding o : K < Q, factors through £ C Q,,.

We fix an embedding og : K < E. The embedding oy induces maps O — O and k — F; we
will abuse notation and denote these all by gg. We let ¢ denote the p-th power Frobenius on k£ and
i

def _ . . def ~
set 0; = 0p o @~ ". The choice of oq gives wy = 0gowyr : Ix — O, a fundamental character of

niveau f. We fix once and for all a sequence p = (Pn)nen where p, € @p satisfies p? 41 = pn and

po = —p. We let K, def U K(pn) and Gk def Gal(@p/Koo).

neN
Let p : Gx — GL,(E) be a p-adic, de Rham Galois representation. For ¢ : K — E C @p, we
define HT,(p) to be the multiset of o-labeled Hodge-Tate weights of p, i.e. the set of integers 4

such that dimg (p ®s, K (Cp(—i))GK # 0 (with the usual notation for Tate twists). In particular, the
cyclotomic character has Hodge-Tate weights 1 for all embedding o < E. For p = (u5); € X*(T)
we say that p has Hodge-Tate weighs p if

HT,;(p) = {115, 112,55 - -+ bin i}

The inertial type of p is the isomorphism class of WD(p)|7,., where WD(p) is the Weil-Deligne
representation attached to p as in [CDT99], Appendix B.1 (in particular, p — WD(p) is covariant).
An inertial type is a morphism 7 : I — GL,,(F) with open kernel and which extends to the Weil
group Wi of Gg. We say that p has type (u, 7) if p has Hodge-Tate weights p and inertial type

given by (the isomorphism class of) 7.

Let G % GL3,p, denote by T' C G the torus of diagonal matrices, and write W (resp. Wi, resp.

W) for the Weyl group (resp. the affine Weyl group, resp. the extended affine Weyl group) of G.
We let X*(T) denote the group of characters of T', which we identify with Z3 in the usual way. Let
R (resp. RY) denote the set of roots (resp. coroots) of G and Ar C X*(T') the root lattice. We
then have

(1.1) W, = Ag x W(G), W = X*(T) x W(G).

Let €} and &) be (1,0,0) and (0,0, —1) respectively. Let G be SL3/r with torus T Let
Aw = X*(T9") denote the weight lattice for G4, Let X°(T) denote the kernel of the restriction
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map X*(T) — Aw. We write 1 and ey for the images of €| and &} in Ay, respectively. We
define in a similar fashion the various Weyl groups Wder pwder, Wder for Gde*. Note that we have
canonical isomorphisms W = W9 and W, = Wder,

Let S be a finite set. For each v € S, let F be an unramified extension of @, of degree f3, and
let k5 be the residue field of F5. Let J be the set of ring homomorphisms [ ;. ¢ k5 — F. If we fix
an embedding o5 : k5 — F and set o3; to be o590 ™" then J is naturally identified with the set
of pairs (v,i3) with v € S and iy € Z/f;. In applications, S will be a finite set of places dividing
p of a number field F. Sometimes, § will have cardinality one, in which case we might drop the
subscripts from f; and ky and denote the single unramified extension Fy of Q, by K.

Let G be the algebraic group [ [5c5 Resy sk, GL3 with T'j the diagonal torus and center Z,. Let
G be the base change G X, F, and similarly define T' and Z. There is a natural isomorphism
G = Hiej GL3/p. One has similar isomorphisms for T, Z, X*(T), R, R where R (resp. R)
denotes the set of roots (resp. coroots) of G. If u € X*(T), then we correspondingly write
=i 7 Hi = Y ses My We use similar notation for similar decompositions. Again we identify
X*(T) with (Z*)7 in the usual way and let £} ; and 5 ; be (1,0,0) and (0,0, 1), respectively, in
the i-th coordinate and 0 otherwise. Let R™ C R (resp. RY" C R") be the subset of positive
roots (resp. coroots) of G with respect to the upper triangular Borel in each embedding. We define
dominant (co)characters with respect to these choices. Let X7} (T') be the set of dominant weights.
We denote by X () C X7 (T) be the subset of weights A € X% (T') satisfying 0 < (X\,a¥) <p—1
for all simple roots @ € Rt. We call X1(T) the set of p-restricted weights. Let n} € X*(T) be
(1,0,—1) in the i-th coordinate and 0 otherwise, and let 1" be >, ;n; € X*(T). Let n; € X*(T)
be (2,1,0) in the i-th coordinate and 0 otherwise, and let n be >, ;7 € X*(T). Then 7 is a lift
of the half sum of the positive roots of G. s

Let W be the Weyl group of G with longest element wy. Let W, and W be the affine Weyl group
and extended affine Weyl group, respectively, of G. Let Ap C X*(T') denote the root lattice of G.
As above we have identifications W = W, w, = Wg , E ~ WY and isomorphisms analogous to
(1.1).

The Weyl groups W, W, W, act naturally on X*(T). The image of A € X*(T) via the injection
X*T) — E is denoted by t). Our convention is that the dot action is always a p-dot action
iLe. thw -y = tp)\’LU(M +n) —n.

Recall that for (a,n) € RT x Z, we have the root hyperplane H, L N+ n,0Y) = np).
An alcove (or sometimes p-alcove) is a connected component of the complement X*(T') @z R \
(U(a,n) H,,). We say that an alcove C is p-restricted if 0 < (A4 n,a") < p for all simple roots
a€ R and X € C. If Cy € X*(T') ®z R denotes the dominant base alcove we let

E+ det {w e E :w - Cy is dominant}.

and

—+ ~ =t - . .
w, df {welW :w-C,is prestricted}.

~ ~ oy . . . . .
Let wy, = (wp,;) € W, be the element wgt_,. The discussion in this paragraph also applies for G,

from which we define the dominant base alcove Cy, Wﬂ and Wf“ for G.

There is a Frobenius action on X*(ZT'), denoted by 7 and an induced action of m on W defined
by m(w)(m(A)) = w(w(X)). If A € X*(T) then m(A\)3;, = Ay;,—1 under the standard identification
and similarly 7(s)z; = 53, -1 for an element s of one of the Weyl groups above.
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Let G3¢* be [I3cs Resy, jr,SL3 with torus Tde. Let G be the base change G4 xp, F, and
similarly define T9°. Let Ay, = X*(T9) denote the weight lattice for G, Let X°(T) denote

the kernel of the restriction map X*(T') - Ay,. We write €1, and e2; for the images of 5’172- and

. . .. . . —~der ——der,+
e}, ; respectively. We define in a similar fashion the various Weyl groups wder, wgef, w W ,

E(lier’Jr for Gder (and Wder’Jr, Wfl ot for @), with analogous product decompositions.

Let «, 3,7" denote the generators for the affine Weyl group W, of GL3 given by reflection over
the walls of Cp with o, 3 € W and 47 is the affine reflection. Note that «, 8 satisfy a(e}) = €} and
Bler) = e1-

Let S3 denote the symmetric group on {1,2,3}. We fix an injection S3 — GL3(Z) sending s
to the permutation matrix whose (k,m)-entry is 6y 4(m) and 0y 4m) € {0,1} is the Kronecker §
specialized at {k,s(m)}. We will abuse notation and simply use s to denote the corresponding
permutation matrix. We consider the embedding X*(T) < GL3(F((v))) defined by A — v* where
then v(®?9 is the diagonal matrix with entries v®, v?, v¢ respectively. In this way, we get an
embedding W < GL3(F((v))). Finally for m > 0 and a collection (B}),=o,...m of square matrices
of the same size, we write H;ﬁ:o Bj=By-Bj----- Bp,.

Let V be a representation of a finite group I'" over an E-vector space. We write JH(V') to
denote the set of Jordan—Holder factors of the mod w-reduction of an O-lattice in V. This set is
independent of the choice of the lattice.

If R is a ring, we let Irr(Spec (R)) denote the set of minimal primes of R.
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2. EXTENSION GRAPH

In this section, we give a description of the extension graph of generic irreducible representations
of the group G dof Gy(Fp) and describe the constituents of the mod p reduction of generic Deligne—
Lusztig representations of G. This also gives a description of the set W7(p) of predicted Serre
weights defined by Herzig [Her09]. In §3, we use these descriptions to prove the Serre weight
conjectures. The distance in the extension graph also plays an important role in computing the
cosocle filtration for the reductions of lattices in tame types in §4.3.

2.1. Definition and properties of the extension graph. The surjection X*(7') — Ay iden-

tifies p-restricted alcoves of GLj3 and SL3. Let Cy and C denote the p-restricted lower and upper
alcoves, respectively, of the weight space of GL3, so that A o {Co,C1}7 is naturally identified
with the set of p-restricted alcoves for G (or G9°" when convenient). Our alcoves are fundamental
domains with respect to the dot action, so the base alcove will have a vertex at —n. For nota-
tional convenience, we sometimes write 0 and 1 instead of Cy and C; so that A is identified with

{0,1}7. We recall some notions from §1.4. Let X;(T) denote the set of p-restricted weights of G
and Cy € X(T') ® R denote the lowest alcove (Cp)ics. We consider Eder = Ay X W acting via the
p-dot action on Ay, ®R. Let Eferﬂr C Eder denote the set of elements which take C'; to an element
of A. There are six elements of W namely id, (12)t_ (e, 205 (23)t_(cy—cy), (123)t y, (132)t ¢y,
and (13)t_(c, 4e,)-

Observe that the inclusion Ay, — Eder (resp. X*(T') — E) induces an isomorphism (9" :
Ay /Ap 5 W™ /W3 (resp. 1+ X*(T)/Ap(= X*(2)) 55 W/W,). Let P € Ay x 103" be the
subset of pairs (w,w) with (3 (—7~H(w) + Ap) = W . We similarly define P ¢ X*(T) x EY
Note that restriction gives a natural surjection P —» Pder,

Lemma 2.1.1. The map
B:Plr 5 Ay x A
(w, w) = (w, m(w) - C)
s a bijection.
de

Proof. The map 3 is a bijection because t“*" is a bijection and wger acts simply transitively on the
set of alcoves for GI°. ]

Let u be an element of Cy/(p — ) X°(T). We will often have some lift of  in X*(7) in mind,
but what we write will not depend on the choice of this lift. We define a map

(2.1) P — XH(T)/(p— =) X (T)
(W, W) =" - (n—n+w),

where (W', w') € P is a lift of (w,w). The map (2.1) does not depend on the choice of lift. Then we
define

T, Ay x A— XY(T)/(p - ) X(T)
to be the composition of 871 with (2.1).
Definition 2.1.2. We say that a weight A € X*(T) is p-regular if (A +n,a") ¢ pZ for all positive
coroots o € RV,

Note that a p-regular element belongs to a unique alcove.
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Define A’va to be the set

{welAy wtp-—nely}
(taking the image of pn —n in Ay,). Let Tx, be the restriction of ftL to A}y, x A. We establish
some basic properties of Tt,,.

Proposition 2.1.3. (1) (Any lift of ) Tru(w,a) in X*(L) is p-reqular and is in alcove 71 (a).
(2) The map T, is injective.

Proof. For (1), suppose that (', w’) € P is a lift of 57!(w, a). Then u—n+w' is p-regular in alcove
C by definition of A}, so that Tv,(w,a) = @' - (p —n+ ') is p-regular in alcove 771 (a) = w - C,,.

For (2), suppose that Tt,(w,a) = Tr,(v,b). Let (w',w') and (v/,7) € P be lifts of 3~ (w, a) and
B~ (v, b), respectively. Then @' - (p—n+w') =2 - (u—n+v') (mod (p—m)X°(T)), from which we
conclude from the definition of P9 that w’|z = v/|z (mod 3X*(Z)). Combining this with the fact
that @ = b from (1) and using ¢, we see that @' = 7’ (mod X°(T)). This implies that w =v. [

Proposition 2.1.4. Let y € X*(T) be a character. We have:

AeX(T)/(p—m)XYT): X is p-reqular and
A=pu+n)lz e p-m)X"(Z)

Proof. The inclusion of the left hand side of (2.2) in the right follows from Proposition 2.1.3(1) and
the formula for Tv,. We show now the reverse inclusion. Let A be an element in the right hand
side of (2.2). Then we let

e a € A denote the unique alcove that contains m(A);

w' € X*(T) be such that (A — u+1n)|z = (1 —pr1u'|z;

w € Ay be the image of w';

(W' ') € P be alift of 7 (w,a), and

vbe \—uw - (p—n+w) € Ap.

Then (w'~t(v) +w',@') € P is a lift of 71 (w1 (v) + w,a), so that Tr,(w' "1 (v) + w,a) = A in
X*(D)/(p —m)X(D). 0
Proposition 2.1.5. Let A —n be a lift of Tv,(e,Cy) and B~1(e,Cy) = (¢, w). Then

Tea(v,a) = Te,(w (V) +¢,a)

(2.2) T, (Al x A) =

for (v,a) € Ay, x A, where w € W is the image of 0.
Proof. Let (V/,7') € P be a lift of 71 (v,a). Similarly, let (¢/,@") € P be a lift of (¢, w). Then
Tea(v,a) =7 -(A—n+1)
=7 (@ (p—n+e)+v)
=70 - (p—n+e +w ()
= Tr,(wH(v) +¢,a).
(]

Recall that a Serre weight is an irreducible Fj-representation of G. Each Serre weight is obtained
by restriction to G from an irreducible algebraic representation of G of highest weight A € X;(T),
and this process gives a bijection between from X1 (T)/(p — ) X%(T) to the set of Serre weights of
G (as described in [Her09, Theorem 3.10], cf. also the beginning of § 4.2 below). If A € X;(T), we
write F'(A) for the Serre weight corresponding to A\. We say that a Serre weight F is p-regular if



SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 12

F = F(\) where A € X1(T) is p-regular (cf. Definition 2.1.2). Given p € Cy and (w,a) € Al x A,
we get a corresponding p-regular Serre weight F(%t,(w,a)). Proposition 2.1.3(2) and 2.1.4 show
that F(Tr,(—)) induces a bijection between the set Af;, x A and the set of p-regular Serre weights
of G with the same central character as F'(i — 7).

Definition 2.1.6. We say that (w,a) and (v,b) in A}j, x A are adjacent if there exists j € J such
that both a; = b; and w; = v; for ¢ € J with i # j, a; # b;, and

(2.3) wj —vj € {0, £(e1,; — €2,5), £e1,5, Fe2,5}

If FF and F’ are p-regular Serre weights we say that they are adjacent if we can write F' =
F(%Tr,(w,a)) and F' = F(Tr,(v,b)) for some p-regular u € Cy/(p — m)X°(T) and some (w,a)
and (v,b) which are adjacent in A’;V x A. By Proposition 2.1.5, this definition does not depend
on the choice of the lowest alcove weight © € C,. Indeed if F = F(%ty(w,a)), F' = F(Tv,(v,b))
are adjacent p-regular Serre weights and A € C such that F(A —n) and F(u — n) have the same
central character, then F(Tvy(w(w —¢),a)) = F(Try(w,a)) and F(Try(w(v —¢€),b)) = F(Tru(v, b))
for some w € W and € € Ay, and (w(w — €),a), (w(v —¢€),b) are again adjacent since the set in
(2.3) is W-invariant.

Remark 2.1.7. Geometrically, A{fv is the intersection of Ay, with a translate of a p-alcove, and two
pairs (w,a) and (v,b) are adjacent if and only if w and v are either equal or neighbors (i.e. differ
by a W-conjugate of a fundamental weight), and either w # v and a and b have different labels in
the unique component where w and v differ, or w = v and a and b differ in exactly one component.
Note that for any (w,a) € A% with all its neighbors in Af;,, there are 777 adjacent vertices.

Definition 2.1.6 endows Aﬁ/ x A with a graph structure with edges given by adjacency. By the
above description, this graph is connected and thus it is endowed with a metric. By Proposition
2.14, any p € C, thus endows the set of p-regular Serre weights with the same central character
as F'(u —n) with a metric. By Proposition 2.1.5, the metric on a fixed set is independent of the
choice of p.

Definition 2.1.8. Given p-regular Serre weights F, F’ with the same central character, we denote
their distance by dgpn(F, F'). In particular, F and F' are adjacent if and only if dgpn(F, F') = 1.

We conclude this section by showing the relation between p-regular Serre weights and G-extensions.
We start by recalling the following definition

Definition 2.1.9. Let A € X*(T') be a weight. We say that A lies n-deep in its alcove if for all
aV € RY>T, there exist integers m,, € Z such that pm, +n < (A+n,a") < p(my +1) —n. We have
the analogous definition for weights in X™*(T).

For instance, a dominant weight A\ € X*(T) lies n-deep in alcove Cjy if n < (A +1n,a") <p—n
for all i =0,...,f — 1 and all positive coroots oV € RV'™.

A Serre weight F' is said to be n-deep if we can write F' = F'(u) for some p € X1(T') which is
n-deep. We call the graph on the p-regular Serre weights defined by adjacency the extension graph.
The terminology is justified by the following theorem.

Theorem 2.1.10. Let F, F' be Serre weights which are both 6-deep. Then Extl(F, F') # 0 if and
only if ' and F' are adjacent.

Proof. This is Lemma 4.2.6, whose proof only uses modular representation theory and does not
rely on any results from other sections. g

Remark 2.1.11. We partition the set of vertices (w,a) into two sets, according to the class 3;a;
mod 2 (by interpreting a; € {0,1}).This makes the extension graph into a bipartite graph.
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2.2. Types and Serre weights. Now suppose that S contains exactly one element v, and let K
be Fj. An inertial type is a representation 7 : I — GL3(FE) with open kernel which extends to
the Weil group of K. An inertial type is tame if it factors through the tame inertial quotient. All
our tame inertial types are defined over O and we use 7 : Iy — GL3(F) to denote the reduction to
the residue field.

Tame inertial types have a combinatorial description which we will now recall (cf. [Her09, (6.15)]
or [GHS18, Definition 8.2.2]). Let (w,u) € W x X*(T). As in [Her09, (4.1)] or the paragraph
preceding [GHS18, Definition 10.1.12], for any (v,0) € X*(T) x W, define

(2.4) ) (w, 1) = (own(0) ", o () + pv — cwn(0) ' n(v))

and we write (w, u) ~ (w’, ) if there exists (v, o) such that *) (w,u) = (', ). The following
describes all isomorphism classes of tame inertial types for K.

Definition 2.2.1. Define an inertial type 7(w, 1) : Ix — GL3(0O) as follows: If w = (so,...,s7-1),
then set s, = sgsf_157_2---s1 € W and a € X*(T') such that oy = pp and a; = 81_182_1 S8
for 1 < j < f —1. Let r denote the order of s,, and set f’ = fr. Then,
2o<k<r—1 a((l)c) pr
def Sk< sk(i
(2.5) T(w, p) = @ Wy v

1<i<3

where a(0) := Z;.:é ajp’ € Z3. Note that (w, p) ~ ((sr,1,...,1),a) and 7(w, ) =2 7((sr,1,...,1), @)
by construction.

Definition 2.2.2. Let 7 be a tame inertial type.

(1) We say that 7 is regular if the characters appearing in the right hand side of (2.5) are
pairwise distinct.

(2) We say that 7 is n-generic if there is an isomorphism 7 2 7(s, A + ) for some s € W and
A € X% (T') which is n-deep in alcove C,.

(3) We say that p : Gx — GL3(F) is n-generic if p*|, = 7 for a tame inertial type 7 which is
n-generic.

(4) A lowest alcove presentation of T is a pair (s,u) € W x X*(IT') where u € C, such that
T = 7(s, u +n) (which by definition exists exactly when 7 is 0-generic).

Remark 2.2.3. The notion of genericity given in [LLHLM18, Definition 2.1] is slightly different than
Definition 2.2.2(2) above. In particular, an inertial type which is n-generic in the sense of Definition
2.2.2(2) is a fortiori n-generic in the sense of [LLHLM18]. Furthermore our notion of genericity
differs from that of [GHS18, Definition 10.1.12] by a shift by 7.

Remark 2.2.4. If 7 is 1-generic then 7 is regular.

Now let S have arbitrary (finite) cardinality rather than one. For s € W and u € X*(T), we can
define sy and py in the evident way. Then we set 7s(s, 1) to be the collection (75(s3, 147))zes-

The notions of regular and n-generic are extended in the evident way to a collection 7s(s, ) of
tame inertial types. Similarly, there is an evident notion of n-generic for a collection ps of Galois
representations py : Gp, — GL3(F) for v € S.

We now introduce the Deligne-Lusztig representations which are relevant for this paper. See
also [GHS18, §9.2] and [LLHL19, §2.2], though we note that our context is slightly more general
than [LLHL19, §2.2] since S may have size greater than one. Let (s, ) € W x X*(T) be a good pair
([LLHL19, §2.2]). Following [GHS18, Proposition 9.2.1 and 9.2.2], we can attach to (s, 1) a genuine
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Deligne—Lusztig representation Rg(u) of G & Gy(Fp) defined over E (taking E to be sufficiently

large). Note that Rs(p) is denoted as R(s, p) in [GHS18].

Definition 2.2.5. Let (s,pu) € W x X*(T) be a good pair and let n > 0. We say that Rs(p) is
n-generic if there exists an isomorphism Rs(u) = Ry (u') where p/ — 7 is n-deep in alcove C (note
that the evident generalization of [LLHL19, Lemma 2.2.3] implies that (s, 4') is good). By [GHS18,
Proposition 9.2.1] and the evident generalization of [LLHL19, Proposition 2.2.4], when n > 0 then
7s(s, p) is n-generic (cf. Definition 2.2.2(2)) if and only if R(x) is n-generic.

By inflation, we consider R4(p) as a smooth [[5;.5 GL3(OF;)-representation. We recall some
basic results on Rs(p). Let o(75) be a smooth GL3(Op,)-representation associated to 7 as in
[CEGT16, Theorem 3.7], and let o(7s) be the [[;c5 GL3(OF, )-representation Qzeso(75).

Proposition 2.2.6. Let p—n € X*(T) be 1-deep in alcove C. Then:

(1) ([DL76, Theorem 6.8]) Rs(u) is irreducible.
(2) ([LLHL19, Corollary 2.3.5]) o(7s) can be taken to be Rg(u).

We conclude this section with some background on Serre weights associated to semisimple Galois
representations. Let Ts be a collection of tame representations 73 : Ip, — GL3(F) which extend
to Gr,. By [GHSI18, Proposition 9.2.1], one attaches to 7; an E-valued representation V' (73) of
GL3(ky). Let V(Ts) be the G-representation ®zcsV (Ty). When T is Ts(s, ) for a good pair (s, i),
V(Ts) is isomorphic to Rs(n) ([GHS18, Proposition 9.2.3]). We write pg|r,, for the restriction to
inertia of the collection pg.

Let wy, e wot_y € W. Recall the self-bijection R on p-regular Serre weights defined in [GHS18,
§9.2]:

def ~
R(F(X)) = F(wp - A).
Definition 2.2.7. [GHS18, Definition 9.2.5] Let pg be a collection of 2-generic semisimple Galois
representations py : Gp, — GL3(FF). The set of predicted weights for pg is defined to be

_\ def ——
W (ps) ©{R(F) : F € JH(V (psip)) } -
If 75 is a collection of tame inertial types 75 : Ip, — GL3(0O), we furthermore define
W(ps, 7s) € W (ps) N IH(o(7s))-

Remark 2.2.8. The condition that pg|s. is 2-generic is to ensure that the elements of JH(V (ps|1x))
are all O-deep, so that R is defined (cf. Lemma 4.2.13).

Recall from [GHS18, Definition 7.1.3] that there is a subset Wepy (5) € W7 () of obvious Serre
weights of p. The set Wy (pg) is defined in the evident way.

2.3. Combinatorics of types and Serre weights. Recall the notation pg from the previous
section. We will always assume that py is 2-generic and semisimple for all v € § in what follows.
The following proposition describes W,y (ps) in terms of the extension graph.

Proposition 2.3.1. Assume that pg is a collection of semisimple Galois representations. Suppose
that ps|ipg = Ts(s,A), where A —n is 3-deep in Cy. Then Wopy(ps) is the set

(F(Sex(s(w), 7(@) - Cp)) + & = wt_y 1,y € Wy "}

Proof. This follows from [LLHL19, Corollary 2.2.13 and (2.6)]. O
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Definition 2.3.2. Define

ot (€1+€2,0),(51—52,0),(82—61,0)
E0 = (071)7(5171)7(5271)
(070)7(5170)7(5270)

Define ¥ € 537 < Ay x A.

The set of predicted weights W7 (pg) and the Jordan-Holder factors of a Deligne-Lusztig repre-
sentation Rgs(u) will be described in terms of the “triangle” ¥y inside Ay x {Cy, C1} (see Figure

1).

(w,a) = (1 +€2,Co)

(w,a) € {(&1,Cp), (e1,Ch)} (w,a) € {(e2,C0), (g2,C1)}

(w,a) = (e1 — £2,Co)

(w,a) € {(0,Co), (0,C1)} (w,a) = (e2 — £1,Co)

FIGURE 1. The set X.

Definition 2.3.3. Define the following subsets of Y:

EObV d:ef (€1+€270)7(€1 _5270)7(82_5170)
0 (071)7(8171>7(6271) ’

T €5, \ Db,
We say that (w,a) € X is obvious (resp. inner) in component i if (w;,a;) € NPV (resp. (w;,a;) €
yinn).
We define an involution r of Afj, x A by r(w,a) = (w,a’) with a; # o for all i € J.
Proposition 2.3.4. Let p € X*(T). Suppose that V(psliz,) = Rs(p +v) where v € Ag and
p+ v —mn is 3-deep in alcove Cy. Then W' (pg) is F(Tr,(tysr(X))).

Proof. By Proposition 2.3.1, Wy, (ps) is given by

(F (Tt (s(w), m(@) - Cp)) & = wit 1 € Wy ).

Since v € Ay, we have T, 1, (s(w), m(w) - Cp) = Try(s(w) + v, m(w) - Cp). By the generalization of
Jantzen’s formula in [Her09, Appendix, Theorem 3.4], the reduction of Rs(u + v) is given in terms
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of reductions of Weyl modules. The fact that p + v — n is 3-deep implies that these Weyl modules
decompose in a generic pattern. Hence W’ (ps) is given by [GHS18, Proposition 10.1.8], which is

F{Ttu(tys(w), a) | @ = wt_y1, € Wy " 7(@) - Cy 1 a}).

This set is precisely F/(%t,(t,sr(X))). O

Proposition 2.3.5. If v € X*(T) such that v+n € Ap and p+v —n is 3-deep in alcove C, then
TH(R (i + 1) = P(Stu(t,5()).

Proof. Since t; o R o T, = Tr,or, F(Try(w,a)) € JH(Rs (X — 1)) if and only if F(Tv,(r(w,a))) €
RJH(Rs(\))) = W(pg) where V(plirg) = Rs(A). The result then follows from Proposition
2.3.4. g

Definition 2.3.6. For any @ € W, we set Rs(p) & R, (p+ w(0)), where w € W is the projection

of w.

~ —~d
There is an action of W on Ay, x A where it acts through W “ on just the first factor (via the
usual action, not the dot action). By Propositions 2.3.4 and 2.3.5, we have the following:

Proposition 2.3.7. Let w € W t, and assume that u + w'(0) —n is 3-deep in Cy. Then the
set JH(Rg-1(p)) is F(Te (0 (%)), If w € W, and V(pslip,) = Ra(p), then the set W' (pg) is
F(%Fru(w(r(%))))-

For the rest of this section, fix a character p such that yu — 7 is 3-deep in Cy and an element
seW.

For (sw,a) € Ajj, x A, we let O'EZZ)) = F(%r,(sw,a)). When the pair (s,u) is clear from the
context, we will simply write o(,, ) instead of JEZ’Z )) to lighten notation. Let w € W t, such that
sw—H(X) C Al x Aand p+ sw'(0) — n is 3-deep. Then the map

(2.6) @) = JH(Ryg1 (1)

(8,2)
(w1(w),a)

is a bijection by Proposition 2.3.7. Similarly, if V(ps|s,) = Rs(1t), then the map

W Hw,a) = o

(2.7) r(Z) = W (ps)

r(w,a) — oﬁiﬁl)
is a bijection.

Definition 2.3.8. We say that o € JH(R,z;-1(p)) is an outer (resp. inner) weight for R o

Ryg-1(p) in component i € J if 0 = 0(g-1(4),q) With (wi,a;) € S (resp. (ws,a;) € BF™). We
define the defect of o with respect to R as

(2.8) Defr(o) & #{i € J such that o is an inner weight of R in component i}.

Similarly, if V(ps|izg) = Rs(p), we say that o € W' (pg) is an obvious (resp. shadow) weight for
Ps in component i € J if 0 = 0,y q) With (wi,a;) € 3§V (resp. (wj,a;) € SH™). We define the
defect of o with respect to pg as

def

(2.9) Def;,(0) = #{i € J such that o is a shadow weight of pg in component 4}.
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We give the set Yy the structure of a graph in Table 1. We write 20‘7 for the corresponding

product graph. The above bijections respect the notion of adjacency for JH(R,z-1(x)), W*(ps),
and 257.

TABLE 1. The graph X

0(61 +82,0)
M\
O(g1—¢2,0) O(£1,0) 9(0,0) O (g9,0) O(g9—¢1,0)

g

We now describe the intersections of JH(Ryg-1(p)) and W (pg) for Pslarg = Ts(s,p) in terms

of the action of W on Ay using Proposition 2.3.7. We first introduce a subset of E, the admissible
set, which appears in Corollary 2.3.11 and again in §3.

Recall from §1.4 that W denotes the extended affine Weyl group of G ot GL3/p. The choice of

the dominant base alcove endows W with a Bruhat order which is denoted by <. We also have the

natural generalization of the Bruhat order < on E associated to the choice of the dominant base
alcove.

Definition 2.3.9. Let A € X*(7T"). We define
Adm(\) = {@ € W | @ <ty for some s € W}
Similarly, for a weight © = (p;); € X*(T) define

Adm(p) = [ Adm(p;) c W
J
Remark 2.3.10. For combinatorics of weights as in this section, we use the dominant base alcove
and the corresponding affine reflection 4 = t(1,0,—1)(13) as a generator for Wder. When working
on the Galois side, as in §3, the anti-dominant base alcove appears naturally, and the analogous
set AdmY(n) for the anti-dominant base alcove plays an important role (see Definition 3.1.1 and
the discussion before). The affine generator for the antidominant choice of base alcove is v =
(13)t(1,0,—1)- Note that in [LLHLM18] everything is in terms of anti-dominant and so what we call
Adm(n) there we denote by Adm"(n) here.

For @ € W, define ¥z & ¥ N w(r(Xo)). Similarly, for w € W, let ¥5 & ¥ n w(r(X)). One
can directly compute these sets using Figure 1. For example, using Figure 2, one can check that
Y& is empty if and only if w is not in Adm(n)X%(T) (in essence, [LLHL19, Proposition 4.4.2] is a
generalization of this fact). Otherwise, see Table 2 for a description of ¥ .

Corollary 2.3.11. Let w € W t,. Assume that both u—n and p+ sw=1(0) —n are 3-deep in C,,.
The set R(JH(Rs(p))) N JH(R 5-1(1)) ts the set of weights aﬁs’“)) where (w,a) € Xg-1. Similarly,

(w,a

the set JH(Rs(n — 1)) N R(JH(Rsz(1n — 1))) is the set of weights o) where (w,a) € ¥g.

(w,a)
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Proof. By Proposition 2.3.7, one can reduce the case where s = id. In that case, (2.6) and (2.7)
imply that the set of Serre weights in the intersection R(JH(Rs(1)))NJH(Ryg-1 (1)) is Tr, (w0~ HZ)N
r(X)). We conclude by noting that w () Nr(X) = r(X4-1). The statement for JH(R(u — 1)) N
R(JH(Rsz(p — 1))) is proved similarly. O

TABLE 2. Intersections

wt_y Y& wt_1 Y&
YraBa =ty 0,1) {(e1+¢€2,0)} afoyt =tq01) {(0,1)}
BytBa=tq 10 {(e1, D)} afytB =t11,0 {(e2 —€1,0)}
aytaf =t {(e2,1)} Bytayt =t 11 {(e1 —€2,0)}

504'7-'_ {(81 - 5230)7 (Q’ 1)} O‘ﬁ')ﬁ_ {(52 - 8170)7 (Oa 1)}
afa {(0,1),(0,0)}
(0,1), (0,0) (0,1), (0,0)
pa {(51—52,0), (61,1)} of {(52—61,()), (52,1)}
(0,1), (0,0), (€2,1) (0,1) (e1,1) (e2,1)
o (&0 &2, 1) 1d {0 &8 o)

Not all elements of Adm(7)t_; appear in the table. There is an order three symmetry

of Adm(n)t_; induced by the outer automorphism of Wder, and we include at least
one representative for each orbit.

Lemma 2.3.12. If (w,a) € Ay, x A\ 7(X), there exists w € W ,t, such that (w,a) € W (%) and

w ¢ Adm(n).
Proof. We can work one component at a time, and thus reduce to the case where #J = 1. This
can then be checked directly using Figure 2. O

Corollary 2.3.13. Let A € X1(T) be 5-deep and p—n € C be 3-deep. If F(\) ¢ R(JH(Rs(n))),
then there exists a 3-generic Deligne—Lusztig representation Ry (p') such that F(\) € JH(Ry (1))
but

R(JH(Rs (1)) NIJH(Ry (') = 0.
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yraBa

Bytart Ba af apfy*tp
Bay™ Bap afy*

a-reflection 5-reflection

FIGURE 2. The standard apartment of SL3. Labeled alcoves are alcoves in Adm(7n).

Proof. If the central characters do not match, i.e., (A—pu+n)|z ¢ (p—7)X*(Z), then any Deligne-
Lusztig representation which contains F'(\) works. Otherwise, by Proposition 2.1.4, there exists

(sw,a) € Ay, x A such that o) = F()). Moreover, since F(\) ¢ R(JH(R,())), we have
(w,a) ¢ r(X). By Lemma 2.3.12, there exists w € W,t, \ Adm(n) such that (w,a) € w1(3). We
take s’ = sw™! and i = p+sw1(0) so that Ry (') = Rgg-1(u). Since (w,a) € (%), w—w~1(0)
is in W (X)), where X denotes the image of ¥ in Ay,. A direct computation shows that since X is
5-deep, p + sw(0) — 1 is 3-deep in C. By Proposition 2.3.7, we have that F(\) € JH(Ry(i')).
By Corollary 2.3.11 and the remark before it, we have that R(JH(Rs(p))) N JH(Ry (/) = 0. O
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3. SERRE WEIGHT CONJECTURES

In §3.1-3.3, we improve results of [LLHLM18] on Kisin modules and étale ¢p-modules with descent
data. Most of these results are generalized to GL, in [LLHL19]. In §3.2, we prove a key structure
result relating the Frobenius of a Kisin module with tame descent data to the Frobenius of the
corresponding étale ¢-module (Proposition 3.2.1). This plays an important role in computing
the Galois representation associated to semisimple Kisin modules (Proposition 3.3.8) and later
establishing an explicit geometric Breuil-Mézard conjecture (see §3.6). The remainder of §3.3 is
devoted to bounding reductions of potentially crystalline representations of type (n,7) for the
purpose of weight elimination (Theorem 3.3.12).

In §3.4, we connect the results of §3.1-3.3 with the combinatorics of Serre weights from §2.3. In
particular, Proposition 3.4.2 describes the intersection of the set of predicted weights of a semisimple
p with the set of Jordan-Holder constituents of a Deligne-Lusztig representation, as a function of
its shape. In §3.5, we prove the Serre weight conjectures for semisimple p by matching the number
of predicted Serre weights to the number of irreducible components of the Galois deformation rings
which were computed in [LLHLM18, Theorem 3.5.3]. In §3.6, we prove a geometric Breuil-Mézard
conjecture which assigns to each (predicted) Serre weight a prime ideal of the universal framed
deformation ring (Proposition 3.6.1). In §3.6.1, we make this assignment explicit for certain tamely
potentially crystalline deformation rings. The explicit ideals play an important role in the proof of
Breuil’s lattice conjecture in §5.

Throughout this section, we assume that S = {v} unless otherwise stated, and write K & F;.
We drop the subscript v from notation in this situation. The set J is identified with the set of
embeddings K < FE and also with Z/fZ using our chosen embedding oy (cf. Section 1.4). For
1 € J, we will use the word component ¢ and embedding ¢ interchangeably.

3.1. Background. In this subsection, we recall some basic facts on Kisin modules with tame

descent data. We start with the following involution on W, which naturally appears when passing
NV —_—

from Kisin modules to G, _-representations. We let W (resp. WV) be the partially ordered

group which is identified with E (resp. W) as a group, and whose Bruhat order is defined by the
antidominant base alcove (and still denoted as <).

~ ~ =V =
Definition 3.1.1. Define a bijection w — w* between W and W as follows:

(1) For w = (w;) € W define w* = (wj) € W by w} = wJT_ll_j.
(2) For v = (v;) € {(v*v(z) define v* i(l/j*) € X*(T) by v; =vp1-;.
(3) For w = wt, € W define w* € W by w* = t,~w*.
Note that w — w* is an antihomomorphism of groups. For j € J we write w} for the j-th
component of w*.

Let 7 be a tame inertial type which we always assume to be 1-generic. Fix a lowest alcove
presentation (s, u) for 7 (Definition 2.2.1).

If s = (s0,...,57-1) and p = (pj)o<j<f—1 € X*(I), we take s, & 505f_15f—2---51 € W and
sy € X*(T) such that oy ) ; = syt sj_l(uj +nj) for 1 <j < f—1and o )0 = o+ 10-

Let r € {1,2,3} be the order of s, and write K’ for the unramified extension of @Q, of degree
def
= fr.

Remark 3.1.2. In [LLHLM18], the notion of lowest alcove presentation does not appear. Everything
is written for presentations of the form 7((s-,1,...,1), ) (see, for example, the beginning of
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[LLHLM18, §2.1, §6.1]). In the notation of loc. cit., cv ) ; = (a1,5,a2,5,a3,;). The element

Sor (s7tsyt ... s}ﬂl, syt .sJTEQ, s h ) eW,
has the property that s (o)) = g +n, and hence O30 (((87,1,...,1), asw)) = (s,n+mn). The
element s, is called the orientation of o, ([LLHLMI18, Definition 2.6 and equation (2.2)]).

If r = 1, we say that 7 is a principal series type. Otherwise, we write 7’ for the base change of
7 to K'/K (which is just 7 considered as a principal series type for Gg+). We record the relevant
data for 7/. Define a’(s’u) € X*(T)Hom(W'F) =~ Xx*(T)" (using a choice of embedding of) : k' < F
extending o) by
a/(S,u),j+kf def S;k(a(&“)’j) for0<;j<f—-10<k<r-—1.
If 75 (w', 1') is the analogous construction of tame types over K’ for (w',u') € (W x X*(T))"
as in Definition 2.2.1, then 7/ 2 TKI(l,O(/(s“u)) by direct comparison using (2.5). The orientation

sh. € W' of a'( ) in the sense of [LLHLM18, Definition 2.6] is given by

87
(3.1) Stk = SE sorj for 0<j < f-1,0<k <r—1
(compare with [LLHLM18, Proposition 6.1]).
! def

Let I = K'(m,) = K'((—p)77 1) and A’ & Gal(L//K') € A % Gal(L'/K). Note that 7 defines

a O-valued representation of A’. For any complete local Noetherian O-algebra R with residue field

[’ finite over F, let &1/ p W) ®z, R)[u']. We endow &, r with an action of A as follows:

for any g in A/, g(v') = g(—t")u’ and ¢ acts trivially on the coefficients; if o € Gal(L'/Q,) is the

Uy

lift of Frobenius on W (k') which fixes m,, then o/ generates Gal(K’/K) acting in natural way on
W (k') and trivially on both «/ and R. Set v = («/)?"' =1, and note that

(S .r)=" = (W(k) @z, R)[v].
As usual, ¢ : 61/ p — &/ g acts as 0 on W (K'), trivially on R, and sends «’ to (u/)?.

If 7 is a principal series types, let Y[O’h]7T(R) be the category of Kisin modules over L' with tame
descent of type 7 and height in [0, h] as defined in [CL18, §3]. More generally, we have the following:

Definition 3.1.3. An element (9, ¢ox, {g}) € YIM7(R) is a Kisin module (9%, ¢an) over G/ g
([LLHLM18, Definition 2.3]) with height less than h together with a semilinear action of A which
commutes with ¢gn such that for each 0 < j < f/ — 1

M) mod o =7V ®o R

as A’-representations. In particular, the semilinear action induces an isomorphism gy : (o )*(90) =

M (see [LLHLM1S, §6.1]) as elements of Y0/h7(R).

Remark 3.1.4. As explained in [LLHLM18, §6.1], the data of an extension of the action of A’ to
an action of A is equivalent to the choice of an isomorphism coy : (of)*(9M) = M satisfying an
appropriate cocycle condition. We will use both point of view interchangeably.

Remark 3.1.5. The appearance of 7V in the definition is due to the fact that we are using the
contravariant functors to Galois representations to be consistent with [LLHLM18] as opposed to
the covariants versions which appear in [CL18, EGH13|. In [LLHLM18], we didn’t use the notation
7V. Instead, we included it in our description of descent data by having a minus sign in the equation
before Definition 2.1 of loc. cit. The notion of Kisin module with tame descent data of type 7 here
is consistent with what appears in loc. cit.
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Definition 3.1.6. An eigenbasis of M € YO".7(R) is an eigenbasis § = (5’(1'))]., for 9 considered
as a Kisin module with descent data of type 7’ in the sense of [LLHLM18, Definition 2.8], which is

compatible with the isomorphism tgy: by letting B’(jl) = (f{(j/)7 fé(j/), f?’)(j/)) then

M) = (o) (am)) ) 2 )
A9 B, 59 (AT, U0, 00y

for all 0 < j/ < f/ — 1, where the isomorphism on the left hand side is obtained from [LLHLMIS,

_ Bl(j”rf)‘ (

Lemma 6.2]. For short, the compatibility above will be written as ton (5’ U l)) See also

[LLHL19, Definition 3.2.8].)

3.2. Etale p-modules with descent data. The main result of this subsection is Proposition
3.2.1, describing the Frobenius action on étale p-modules with tame descent data.

Let Og g (resp. Og 1) be the p-adic completion of (W (k’)[v])[1/v] (resp. of (W (K")[w'])[1/]).
Recall from [LLHLM18, §2.3], that for a complete local Noetherian O-algebra R we have the cate-
gory ®- Mod$ (R) (resp. - Modfitd’L,(R)) of étale (¢, O¢ g Q’AQZP R)-modules (resp. étale (¢, (Qg,Lm@ZpR)—
modules with descent data from L' to K’). There is an analogous definition of ®-Mod$:(R)
and ®- Modle7L(R). Given (M, ) € YIOMT(R), the element 9 ® Og 1/ is naturally an object
®- Mod%; 1/ (R).

We define an étale p-module M € &-ModSt(R) by

M def (m ® OS’L/)AZI

with the induced Frobenius. This defines a functor from Y%"7(R) to ®-Mod%t(R). Finally,
recall the functor gy : ®-Mod$(R) — &/- Mod‘at/(k)(R) from [LLHLM18, §2.3]. It is obtained by
considering the f-fold composite of the partial Frobenii which acts on M©).

Let R be a local, Artinian O-algebra with finite residue field F. We have the usual functor V7,
from ®- Mod$t(R) to representations of Gk over R. Recall from [LLHLM18, §6.1] the functor

Ty - YIORT(R) = Repp(Grk..)

which is defined as (91, w9n) — Vi (M). From now onwards, we write T, for the functor which
was written as Ty, in [LLHLM18, §6.1].

We can now state the main result of this section, which is a sharpening of [LLHLM18, Proposition
2.26].

Proposition 3.2.1. Let 7 be a 1-generic type with lowest alcove presentation (s,u). Let M €
Y[O’h]’T(R) and B be an eigenbasis of M. Let sor = (Sor,j); be the orientation for T and write

AW =Matg (65, o) forj €{0,..., f =1} Let M= (M@ Og 11)A~! € B-ModF(R).
Then there is a basis § = (f9)); for M such that

Matf(gbs\])) = A(j)s;fv“;Jr";.

Proof. The proof is a direct computation using [LLHLM18, Proposition 2.26 and Proposition 6.1].

Let oy, and (s;, ;) be as in the discussion after Remark 3.1.2. Let B = (710D G g0y
M Matgy (¢4, ) for 0< 5" < f'—1.

or,j’+1

be an eigenbasis for M and write AU")
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For any 0 < 7/ < f/ — 1, set

-1

(J ) / i 3
Aop) = D Al it €L
=0

where —j' + 4 is taken modulo f’ (compare with [LLHLM18, §2.1]). Then

O 2l 100, e 00, it 90

is a basis for M0 & (MU 1/ )A = for 0 < j/ < f/ — 1
For any 0 < j' < f/ — 1, a direct computation (using [LLHLM18, Proposition 2.13]) shows that
the matrix for ¢§{/l2 M) D igh respect to the bases above is:

j 16" _ g G'+1)
! 3 —1/ /\pa _a
SOr,j/_;,_lA( )(Sor,j’—f—l) (u ) (s,0) " R(s,p)

G

13"

Since pag,) —a this is same as

/
a(svu)hf/_l_j,’
/ 3 (s -1, o 11t
(32) SOI‘,j/+1A( )($0r7j/+1) v (s,), f1—1—3 .

Define 38 by BU") = f’(]
the matrix for <b f ) with respect to 5 is given by

, (reordering the basis vectors). Let ' = j+if for 0 < j < f—1. Then

Or]

(3.3) A(j’)(slor j’+1)_15, ./U(s;r’j,)*l(a’(s’u),flflfj ) A(J) D

using (3.1), Remark 3.1.2 and the fact that AU") only depends on j’ mod f (cf. [LLHLMIS,
Proposition 6.9]).

Finally, recall that the eigenbasis B is required to be compatible with toy : (o )*(9%) =2 90 as in
Definition 3.1.6, which gives L (ﬂ’ (@) = p/@"+H -1 Hence 3 descends to a collection of ordered
bases (f9))o<;<s—1 of the M(J) (M1 /4/])2=1)U) such the matrix for the partial Frobenius map
M) — MUFD is given by (3.3).

([l

Proposition 3.2.2. Let M € YIOMT(R) and let M = (M @ Og 1,)2=! € &-Mod¥(R) be the

associated étale p-module over K.

If § is a basis of M and BW & Matf(gbg\j,z) are the matrices of the partial Frobenii, then the étale
ol -module eg(M) is described by
-1
Matf@) (¢'{\/1(0)) = H @’ (B(f_]_l))-
§=0

Lemma 3.2.3. Let p : G — GL3(F) be semisimple and 0-generic. Let M € ®/- ModW(k)( )
such that Vi (M) = plgy_ . Assume there exists so € W, X = (X\;) € X{(T) and a basis for M

such that the ¢ -action on M is given by Dsy'v* where D € T(F) and p i z]’:o p'A; € X¥(T).

Then by letting s = (so,1,...,1) € W,
V(plix) = Rs(A).
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Proof. Let k be the order of sy and write u = (u1, 2, 1u3) € X*(T). Then

k-1 k=1 _f(k—1—m) k-1 k—1 _fm
k H 2m=0P o Dm0 P M met
¢f (el) - < Dso'rn(l)> v ( )GZ = ( D86n+1(2.)> v 0 ( )62‘

m=0

k=1 ¢
Zm:op mﬂsgn—o—l(i)

Hence 7|z, is isomorphic to @7, Wy, ¢ . The lemma now follows from (2.5). O

3.3. Semisimple Kisin modules. The statement of [LLHLM18, Theorem 2.21] gives a classifi-
cation of Kisin modules with descent datum which can arise as reductions of potentially crystalline
representations with Hodge Tate weights (2,1,0)/. In this subsection, we identify Kisin modules
which correspond to semisimple Galois representations in an explicit way (Theorem 3.3.12).

For F//F finite, let Z(F') € GL3(F'[v]) be the Iwahori subgroup of elements which are upper
trlangular modulo v. Recall from §3.1 the partially ordered group W W (resp. WV) which is identified
with W (resp. W) as a group, but whose Bruhat order is defined by the antidominant base alcove
(and still denoted as <). For any character u € X*(T), we define Adm" (u) as in Definition 2.3.9
but for antidominant base alcove.

Let h be a positive integer. As before, let 7 be a 1-generic tame type with fixed lowest alcove
presentation (s, u). Recall from [LLHLM18, Definition 2.17] the notion of shape:

A Kisin module 91 € Y[O’h]’T(IF’ ) has shape w if for any eigenbasis 3, the matrices (A(j))j =
(Matg (qu sor]+1(3))) have the property that AV) € Z(F')w; Z(F').
For a non-principal series type, we define the shape of a Kisin module M € Y%7 (F) in terms of
its base change BC(9), see [LLHL19, Definition 3.2.11] or [LLHLM18, Definition 6.10] for details.
For any A € X*(T) effective (i.e. A\; = (a;;); with a;; > 0 for all 4, j) and h > 0, let YA C
YI0M7 denote the closed substack defined in [CL18, §5] (cf. also [LLHLM18, §2.2]). Then for any

finite extension F'/F, YA7(F') ¢ Y% L7(F’) is the subgroupoid consisting of Kisin modules with
shape in Adm" ().

_ o _ —v
Definition 3.3.1. Let 7 be a principal series type, and let w = (wo,wr,...,wr_1) € W .

Definition 3.3.2. Let 7 be a 3-generic type with lowest alcove presentation (s,u) and let 7 :
Gk — GL3(F). Assume there exists 9; € Y7(F) such that T75,(M5) = pla,_. We define
w(p,7) € Adm"(n) to be the shape of M.

This is well-defined because there exists at most one Kisin module 9, with height in [0, 2] such
that T7,(M5) = pla,.. ([LLHLMI8, Theorem 3.2] for a principal series type, and §6.2 and the
discussion before Lemma 6.13 in loc. cit. for the general case).

Remark 3.3.3. More generally if #S > 1, for w = (wy)pes we define w* as the collection (w%)zes,
where each w’ € Eg is as in Definition 3.1.1. Similarly if 75 is a collection of 3-generic tame inertial

type and pg is a collection of Galois representations, we let w(pg, 7s) ' (@(py, 75) )ves-
We now introduce the notion of semisimple Kisin module of shape w.

Definition 3.3.4. Let M ¢ Y7 (F), where F//F is a finite extension. We say that 9 is
semisimple of shape w = (w;) if there exists an eigenbasis 5 of 9t such that

AV) e T(F'[v])w,
for0<j<f —1.
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Proposition 3.3.5. If M is semisimple of shape w, then T;,(9N) is semisimple.

Proof. If 9 is semisimple, we can choose a basis such that AY) € T(F'[v])w; where F'/F is a
finite extension. Using this basis, we see by Proposition 3.2.1 and 3.2.2 that the matrix for the
étale o/ -module go(M[1/u/]*=1) lies in T(F'((v)))s for some s € W. If s has order d, then i}, ()
restricted to the unramified extension of K, of degree d is a direct sum of characters (as p t d) and

so T3, (7M) is semisimple. O
Proposition 3.3.6. If M is semisimple of shape @ = (wj), then there exists an eigenbasis 5 such
that

AV =@ for0<j< f-2,  AYY e T(F)w; .
Proof. See [LLHL19, Proposition 3.2.16]. O

Definition 3.3.7. For any w = (wjty,) € Ev, define M(w) € ®-ModS(F) to be the free étale
p-module over O¢ g ® IF of rank 3 such that the matrix of

¢&2:.A40Eﬂ” — M(w)Ut)
is given by w]-v)‘j (with respect to the standard basis).

Proposition 3.3.8. Let (s, 1) be a lowest alcove presentation of 7. If MM € YORL7(F) is semisimple
of shape w € Ev, then
T3a(O) 1y 2 Vie(M(@8™ty4p2))|1c = T (w, v + 1)

where ws*t,» = w*t,~. (Note that since both Tj,(M) and Vi (M(Ws*t,+4r)) are tame, they
canonically extend to G .)

Proof. This is the special case when n = 3 of [LLHL19, Corollary 3.2.17]. For sake of completeness,
we include an argument here.

The first isomorphism follows from Proposition 3.3.6 combined with Proposition 3.2.1.

Let w, v satisfy ws*t,~ = w*t,~. One easily checks that the ¢/-action on eo(M(w*t,« p+)) €
/- Mod%t,(k) (F) is given by H;;& wj_lvpj(”j*”j) using Proposition 3.?.2.

Let s € W. The ¢/-action of eo(M((styrywn(s)~1)*)) € ®7/- Mod%(k) (F) is given by

f-1 _ f-1 _
H sjfleflsjflvpjs]'(yﬁ_n‘j) =571 H w;lvpﬂ(uj-l-nj) S;il-
7=0 7=0
We conclude that eo(M(w*t, yp+)) = eo(M((styrpwn(s)™1)*)). Therefore, Vi (M (w*t,« 1)) =
Vi (M((sty4qum(s)~1)")).

As (w,v+n) ~ (swr(s)L, s(v+n)), by [LLHL19, Proposition 2.2.4] and [Her09, Lemma 4.2], we
reduce to the case where w; = 1 for ¢ # f — 1. The second isomorphism then follows from Lemma
3.2.3.

O

Proposition 3.3.9. Let p,p’ be semisimple representations of G. Assume there exists MM semisim-

ple of shape w such that Tj,(IMM) = bl . Then p'|1, = pli, if and only if there exists a semisimple
M of shape & such that Tjd(ﬁ,) = Dlog., -
Proof. This follows from counting unramified twists using Proposition 3.3.6. g

The remainder of the subsection is devoted to results used for weight elimination.
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Lemma 3.3.10. If p : Gxg — GL3(F) admits a potentially crystalline lift of type (\,T), then so
does p* (after possibly replacing E with a ramified extension).

Proof. Fix a characteristic 0 lift p of p which is potentially crystalline of type (A, 7). Then by
enlarging the coefficient ring of p, we can always find a lattice whose reduction is semisimple by
[Enn, Lemma 5(2)]. O

The following two Theorems are key inputs in weight elimination by giving an upper bound on
the semisimple representations which are reductions of potentially crystalline representations of

type (A, 7).

Theorem 3.3.11. Let p: Gxg — GL3(F). Assume that p has a potentially crystalline lift of type
(A, 7) where A € X*(T) is effective. Assume that either (1) T is a reqular principal series type or (2)
A =mn and T is 3-generic. Then, for a sufficiently large h, there is a Kisin module m el’[o’h]’T(F) of
shape W = (Wo, w1, ..., wp—1) € Adm"(X) such that Tj;(IM) = pla,.__ . In particular, M € YA ().

Proof. See [LLHL19, Theorem 3.2.20]. O

Theorem 3.3.12. Let p be a semisimple representation of Gx and assume T is a 1-generic tame
type. Assume that either (1) p is a direct sum of characters or (2) A =n and T is 3-generic.
If there exists a Kisin module M € Y7 (F) such that T;,(M) = pla,.__, then there exists a finite

extension F'/F and a semisimple Kisin module m e YA (F') such that (after extending scalars)

T;d(fml) = DlGy,. - Furthermore, we can take F' = TF in case (2).

Remark 3.3.13. Theorems 3.3.11 and 3.3.12 together say that for a fixed 3-generic type 7 the
set of semisimple p|r, which arise as reductions of potentially crystalline representations of type
(n,7) are in bijection with a subset of Adm"((2,1,0))/. In fact, it turns out this admissibility
condition exactly captures those semisimple p which are reductions of crystalline representations
of type (n, 7). Checking this is equivalent to checking that the potentially crystalline deformation
ring of type (n,7) of the semisimple p corresponding to w € Adm"((2,1,0))/ is non-zero. When
w is such that ¢(w;) > 1 for all 4, this non-triviality follows from [LLHLM18, Table 7]. When
K = Q,, [LLHLM18, §8] shows the non-triviality for all admissible w. For general unramified K
and admissible w, the non-triviality of the deformation ring will follow from Theorem 3.5.3 below.

Proof of Theorem 3.3.12. We first treat the case where p is a direct sum of characters. Let Mgy =
M[1/u'] be an étale p-module with descent datum for L'/K (i.e., a semilinear action of A). Since
there is an equivalence of categories between étale p-modules over L’ with descent datum to K and
G, -representations (cf. [LLHLMI18, pg. 24] for principal series case and §6.1 in general), if p is
a direct sum of characters then Mgq = M1 © Mo @ M3 where each M; is stable under ¢4, and
the descent datum.

Let Y/\’\/;;d be the Kisin variety parametrizing lattices in Mgyq which lie in Y7, [LLHLMIS,

Definition 3.1] defines Yj}gd in the principal series case. In general, Yﬁ;d is the closed subscheme
of fixed points of Y/i‘/iz; under the natural action of of. The torus T'= G2, acts on Mgy by scaling
individually in each factor. As a consequence, we get an algebraic action of T" on the projective
variety Y/(\/;:d.

Any such action has a fixed point over some finite extension F'/F. Let m c Y/(\/;:d (F") be a

T-fixed point. Let x; : T — G,, denote the projection onto each coordinate and set ﬁ; ot (ﬁ/)m.

Then
(3.4) M =M, &My & M.



SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 27

Since the T-action commutes with ¢aq,, and A, each ﬁ; is stable under both, hence ﬁ; is a rank
one Kisin module with descent datum. Any choice of eigenbasis which respects this decomposition
shows that 9 is semisimple. Because M is in YA (F ), it is semisimple with an admissible shape
w € AdmY (\).

Now suppose that 7 is 3-generic, but p is not necessarily a direct sum of characters. In this
case, the Kisin module 9 of type (1, 7) is unique by [LLHLM18, Theorem 3.2]. We make a base
change to the unramified extension K /K of degree 6. Let 7 be the base change of 7 to K, and let
M = BC(IM) be the base change of the Kisin module M. Since M is the unique Kisin module of
type (n,7), by the above argument, it must be semisimple.

Recall the notion of gauge basis [LLHLM18, Definition 2.22]. Fix a gauge basis 3 of 9 and let B

be the induced gauge basis on 9. The eigenbasis 52 for M which puts the partial Frobenii in the
form as in Proposition 3.3.6 is also a gauge basis. By [LLHLM18, Theorem 4.16], 3 and B, differ by
embedding-wise scaling by torus elements. We conclude that the matrices for the partial Frobenii
with respect to 3 and hence 3 are monomial. Since the only monomial matrices Z(F)@Z(F) are
T (F[[v]])w, we see that M is semisimple.

O

3.4. Shapes and Serre weights. We continue to assume S = {v}. We compute V(p|1, ) in terms

of shape for a semisimple p. This will effectively allow us to determine W (p) N JH(co(7)) for a
3-generic tame type 7 (Proposition 3.4.2) via the combinatorics of §2 (especially Corollary 2.3.11).

[0,h],T

Proposition 3.4.1. Let (s ,u) be a lowest alcove presentation of . Let M €Y (F") be semisim-

ple of shape w = (w;) € W . Then:

V(T3aM)|1c) = R (1 + n).
Proof. By Proposition 3.3.8, T05,(9)|r,, = 7(w,v + n) where ws*t,» = w*t,~. By [GHS18, Propo-
sition 9.2.3], o

V(T5aOM)|1x) = Ruw(v +n)
Finally, an easy calculation shows that Rz« (1 + 1) = Ry (v + 1) using Definition 2.3.6. O

Proposition 3.4.2. Let 7 be a 3-generic type with lowest alcove presentation (s, ) and let M €
YI0RLT (B be semisimple of shape W = (w;) € Ev. Let p : Gg — GL3(FF) be semisimple and
3-generic and assume that pla,_ =Ty (M). Then

W' (p,7) < W (5) N IH(o () ))—{0 S (w,a) € Sge b C JH(R (i + 1))

(w,a)
Proof. This follows from Corollary 2.3.11 and Proposition 3.4.1.
O

Remark 3.4.3. There is an explicit list of elements of Adm"(2,1,0) given in [LLHLM18, Table 1].
The effect of the involution w — w* is, in addition to reversing the order of components, to reverse

the order of the word and to turn v = (13)v%~1 into *. In particular, (-)* defines a bijection
between AdmY(2,1,0) and Adm(2, 1,0).

3.4.1. Type elimination results. We assume throughout that 5 : Gx — GL3(F) is 6-generic.

Proposition 3.4.4. Let 7 be a 1-generic tame inertial type. If p is 6-generic and arises as the
reduction of a potentially crystalline representation of type (n,7) then

W (p™, 1) # 0.
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Proof. First, assume that 7 is 3- g@eric By Theorem 3.3.11 combined with Lemma 3.3.10, there
exists M € Y7 (F) such that Tjj;(IM) = p**|g,.__. In fact, by Theorem 3.3.12, we can take 91 to be
semisimple of shape w = (w;) € Adm"(n). By Proposition 3.4.2 and Table 2, we conclude that

W7, 7) # 0.

If 7 is not 3-generic, then Proposition 3.4.5 below shows that p does not arise as the reduction of
potentially crystalline representation of type (n,7) for any such 7. ([l

Proposition 3.4.5. Let n > 4 and assume that p : Gx — GL3(F) is n-generic. Assume that p
arises as the reduction of a potentially crystalline representation of type (n, ) where T is a 1-generic
tame inertial type. Then T is (n — 3)-generic.

Proof. By Lemma 3.3.10. we can assume that p is semisimple. The result follows now from
[LLHL19, Proposition 3.3.2]. O

3.5. Serre weight conjectures. We are now ready to prove an abstract version of the Serre
weight conjecture as well as a numerical Breuil-Mézard statement. In this section, we allow S to
have arbitrary (finite) cardinality.

3.5.1. Setup and summary of results. Recall from §1.4 that S is a finite set and Fy is a finite
extension of @@, for each v € S, and k3 is the residue field of F;. For Definition 3.5.1 below, we
will not require that F3 an unramified extension of QQ,. In applications, F' will be a fixed global
field, S will be a set of places in F', and Fj will be the completion at v of F. Let pg be a collection
(pv)veg where py : G, — GL3(F) is a continuous Galois representation. Let RY = RE| denote the
unrestricted universal framed deformation ring of p;. Fix a natural number A and let

R = (®R§) [x1,z2,...,2z5] and Xoo = SpfReo
veS
If 75 is an inertial type for G, , then let R? = R%f be the universal framed deformation ring of
Py of inertial type 73 and (parallel) Hodge-Tate weights (2,1,0). If 75 = (73)ses, then let

®RI“ ®— ® RC R and X (7s) = SpfReo (75).

vES vES
Let d + 1 be the dlmenswn of Xoo(7s) (the dimension is independent of 75 by [Kis08, Theorem

3.3.4]). We denote by R;, R, etc. the reduction of these objects modulo w.

Let K5 be the group GL3(OF;) and K be the product |[;.s K7 Results towards the inertial
local Langlands correspondence (cf. Proposition 2.2.6(2)) associate a @p—valued K3-representation
o(75) to a 1-generic tame inertial type 75 (and o(75) can be realized over O).

Definition 3.5.1. Let Repy (O) denote the category of continuous K-representations over finitely
generated O-modules and Mod(X ) the category of coherent sheaves over X

A weak minimal patching functor for ps = (ps)ves is defined to be a nonzero covariant exact
functor Mo : Repg (O) — Mod(X ) satisfying the following axioms:

(1) For each v € S, let 7; be an inertial type for Gg,. Let o(7s) be the K-representation
QR o(ry). If o(rs)° is an O-lattice in o(7s), then My (0(7s5)°) is p-torsion free and is
vES
maximally Cohen-Macaulay over R (7s);

(2) If Moo(R1(pe)) is nonzero, then py has a semistable lift of type 73(1, uz) for all v € S.



SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 29

(3) if o is an irreducible [[5. g GL3(k7)-representation over F, the module M (o) is either 0 or
maximal Cohen—Macaulay over its support, which is equidimensional of dimension d; and

(4) the locally free sheaf M (0(7s5)°)[1/p] (being maximal Cohen-Macaulay over the regular
ring Roo (7'3)[%]) has rank at most one on each connected component.

Assume that a weak minimal patching functor M., for pg exists. Following [GHS18, Definition

3.2.6], let WBM(pg) be the set of irreducible G-representations (recall that G & [1 GL3(k3)) o
veS

over F such that My (o) is nonzero (note that a priori this set depends on the choice of My). For
a finitely generated R..-module M with scheme-theoretic support Spec A of dimension at most
d, define e(M) to be d! times the coefficient of the degree d-term of the Hilbert polynomial of M
(considered as an A-module). In particular e(M) is the Hilbert—Samuel multiplicity of M as an A
module when dim A = d, and is 0 otherwise.

We now assume that for all v € S, Fy is an unramified extension of Q,. Recall Definition 2.2.7
of W' (ps).

Theorem 3.5.2. Suppose that pg is semisimple and 10-generic, and that My is a weak patching
functor for ps. Then for all Serre weights o, e(Mx(0)) = 1 if 0 € W' (pg) and e(Mux(c)) = 0
otherwise. In particular, WBM(ps) = W' (pg).

Theorem 3.5.3. Let K/Q, be a finite unramified extension of degree f. Let p : Gx — GL3(IF)
be a continuous, 10-generic, and semisimple Galois representation, and let T be a tame inertial
type. If T is not 1-generic, R7 is 0. If T is 1-generic, then the number of irreducible components of
=7 def

R; =

is Cohen—Macaulay. Moreover E% is reduced and its components are formally smooth of the same
dimension.

R7 /@ is equal to the number of elements in W’(p, 7). The ring RZ is a normal domain and

The proofs of Theorems 3.5.2 and 3.5.3 appear in §3.5.3.

3.5.2. Types, weights, and the Breuil-Mézard philosophy. In this subsection, we describe the basic
inductive argument towards the proofs of Theorems 3.5.2 and 3.5.3.
Recall that we have a length function ¢ : WV — Z.

Lemma 3.5.4. Let K/Q), be a finite unramified extension of degree f. Let p: Gx — GL3(F) be a
semisimple Galois representation. Let T be 5-generic with lowest alcove presentation (s, p). Assume
that V(pl1,) = Rsa+(u +n) where w = w(p,7) = (Wo,...,ws—1) € Adm"(n) with £(w;) > 1 for
every j. Then E; % 0 and the number of irreducible components of E; is equal to the number of
elements in W*(p, 7). The ring R7 is a normal domain and is Cohen—Macaulay. Moreover E; 18
reduced and its components are formally smooth of the same dimension.

Proof. By Proposition 3.4.1, our hypotheses implies that there exists a Kisin module ﬁﬁ e Y7 (F)
such that T7,(M5) = plg,_, and that w = w(p, 7). In [LLHLM18, §5.3, §6], we gave an explicit
presentation for RZ whenever the length of w; is at least 2 and the type 7 is 5-generic. For each
shape, there were at most two cases depending on ﬁp. By Proposition 3.3.9 and Proposition 3.3.12,
whenever p is semisimple, ﬁp is semisimple in the sense of Definition 3.3.1 and so ﬁﬁ lies in the
special locus for the given shape.
We claim that
#Irr (Spec (E;)) = H24*E(ﬁj)

J
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and that Rg is reduced and Cohen—Macaulay. Indeed, from Table 7 in loc. cit. , we see that E; is
the completion of a tensor product over F of rings of the form F[X], F[X,Y]/XY at the maximal
ideal generated by the variables X,Y. Since such a tensor product is Cohen-Macaulay, so is its
completion by [Stal9, Tag 07NX]. Since such a tensor product is reduced and excellent (being
a finite type F-algebra), its completion is reduced by [Stal9, Tag 07NZ]. Finally, we also note
that since each irreducible components of such a tensor product is smooth, the completion of the
irreducible components stay irreducible and are formally smooth.

This implies the remaining properties (see the proof of [LLHLM18, Corollary 8.9]. Note that the
reducedness of ETF implies R7 is a normal domain).

Finally, we compare this with the size of W7 (5, 7), which is [ jed #Z(w;_) by Proposition 3.4.2
using Table 2. O
Corollary 3.5.5. Suppose that for each v € S, py : Gp, — GL3(F) is a semisimple Galois
representation and Ty is a 5-generic tame inertial type satisfying the hypotheses of Lemma 3.5.4.
Let 75 be (5)ves- Then e(Rx(7s)) is equal to #W” (pg,Ts).

Proof. This follows immediately from Lemma 3.5.4 and [EG14, Lemma 2.2.14] and properties of
tensor products of representations. O

Proposition 3.5.6 (Weight elimination). Suppose that for each v, p; : Gp, — GL3(F) is a 10-
generic Galois representation. Then

WEM(ps) c W' (p%).

Proof. Suppose that o is a Serre weight such that o € WBM(pg) \ W’ (5%). Note that WEM(pg)
satisfies the (evident generalization of) [Enn, Axiom (WE)| by 3.5.1(2). By [Enn, Theorem 8] and

[LLHL19, Remark 2.2.8], pg is 10-generic implies that o is 3-generic. Then ¢ € JH(o(7s)) for

. def . . . . .
some collection 75 = (73)3es of 1-generic tame types (for example taking a tame principal series
type containing o). Since pg is 10-generic, we see by Proposition 3.4.5 and Definition 3.5.1(1)
that My (0(7s)) # 0 implies that 75 is 7-generic. By Lemma 4.2.13 below (whose proof only uses
modular representation theory and is independent of the results in §3), o is 5-deep.

By Corollary 2.3.13, 75 above can be taken so that W*(p%,7s) = 0 and o € JH(o(7s)). By
Proposition 3.4.4, p is not the reduction of a potentially crystalline representation of type (nz, 75)
for some v € S. By Proposition 3.3.10, p; is also not the reduction of a potentially crystalline
representation of type (13, 75) for some ¥ € S. Then X (7s) = ), and My (o(7s)°) = 0 for any
O-lattice o(7s5)° in o(7s). By exactness of My, Mso(0) = 0 which is a contradiction. O

Remark 3.5.7. Instead of appealing to [Enn|, one can show that provided that pg is generic enough,
every element of WBM(pg) appears as a Jordan-Holder factor of the reduction of some 1-generic
tame type as follows. Even though not all Serre weights come from the reduction o(7s) for a collec-
tion 75 of 1-generic tame types, they do occur in the reduction of V) ® o(7s) where X is sufficiently
large (independent of p). The results of §3.3 hold also for potentially crystalline representations of
type (Ag + s, T5)ses (possibly with a stronger genericity hypothesis), and then the same argument
as in the proof of Proposition 3.5.6 gives the result.

[¢]

Given a collection 75 of tame inertial types and a O-lattice o(75)° in o(7s), we write (75)° to

denote the reduction of o(7s)° modulo w.

Lemma 3.5.8. Suppose that for each v € S, py : Gr, — GL3(F) is a semisimple Galois repre-
sentation and Ty is a H-generic tame inertial type satisfying the hypotheses of Lemma 3.5.4. Let


https://stacks.math.columbia.edu/tag/07NX
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SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 31

7s = (T5)ses- Let o(1s)° be an O-lattice in o(7s). Then either Moo (5(75)°) = 0 or e(My(c(75)°))
is equal to e(Reo(Ts)), and the alternative does not depend on the lattice.

Proof. The generic fiber of X (7s) is irreducible since its special fiber is reduced (see Lemma
3.5.4). Then since My (o(7s)°) is maximal Cohen-Macaulay over X (7s), either M (o(7s)°) has
full support on Xoo(7s) or Moo (0(7s)°) is 0. The lemma now follows from the proof of [LLHLM18,
Proposition 7.14]. O

Lemma 3.5.9. Suppose that p; : Gp, — GL3(FF) is semisimple and 7-generic for all v € S. If
o € W’(ps) has defect & then there are tame inertial types T and 7L satisfying the hypotheses of
Corollary 3.5.5 such that if 7s = (T5)ves and Tg = (T)zes, we have

(1) o € W?(ﬁsﬁs) - Wr](ﬁsﬁs)

(2) #W* (B, 75) = 20 and #W (ps, 75) = 291

(8) all Serre weights in W' (pg, 7s) and W’ (pS,TS) have defect at most 6 and if § > 0, o is the
unique Serre weight in W' (pg, 75) with defect §;

(4) if 6§ = 0, for any o’ € W*(ps) of defect O which is adjacent to o, one can choose the TS
above so that W' (pg,75) = {0, o'}.

Proof. This is essentially a consequence of results in §2.3. Suppose that V(psl|r. ) = Rs(p) with
p — 1 T-deep in alcove Cy, and label W7 (pg) by 7(X) as in Proposition 2.3.4. Let @ = (Wy)zes =
(W;)ics € Adm(n) and 7s be the tame inertial type with lowest alcove presentation (sw™!, u +
sw(0) —n), where w € W is the image of w. Then u+ sw1(0) — 7 is 5-deep in alcove C|, so that
Ts is b-generic. Corollary 2.3.11 says that

W (s, ms) = {ovenn, i r(w,a) € [[ (21}
eJ
where E~_1 =YoNw; ' (r(30)). If £(w;) > 1 for all i, then Ts satisfies the hypotheses of Corollary
3.5.5 (notmg that ¢(w ) ¢(w*) by the proof of [LLHL19, Lemma 2.1.3], where the lengths are as
elements of Wv and W respectively).
Let (w,a) = ((wi,a;)); be such that o = o We will construct the required types by

r(w,a)
appropriately choosing (w;);.

If (wi,a;) € B, we can find an element @w; € Adm((2,1,0)) such that £(@;) = 4 and T -1 =
{(wiya;)}. If (ws,a;) € TP, we can find an element w;t_1 € {afBa, B8, aya} such that X1
contains exactly {(wj,a;),r(w;,a;)}. This choice of (w;);cs gives a type 7s = (73)ses such that
o € W (pg,7s), #W'(pg,7s) = 2%, and all weights in W7 (pg, 7s) have defect at most 6.

To construct 75 satisfying (2) and (3), we proceed similarly. We first deal with the case § > 0.
In this case, we can find a jo € J such that ¢(wj,) = 3, and consider any w} < wj, of length 2.
Then

2~71 C 2~/ 1

.70 .70

and has size 4 (see Table 2). Furthermore, E~/ 1\E~_1 C X¢". Let @' be such that @, = w;

if i # jp and {E; is the element chosen above. Then the type Tg such that o(75) = Rygn-1 (1)
satisfies items (2) and (3).

Finally, assume that 6 = 0. Let o’ € W?(ﬁs) be a defect 0 weight adjacent to o, and write
(s )

o = = 0t ar)’ Then there is a unique jo € J such that (' Wy » @ as.) # (wjy, aj,). There are six possible

pairs {(w], a;), (wj,a)} € 39PY which are adjacent in the Table 1, each of which is X_—1 for some
.7



SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 32

length three non-shadow element w (see [LLHLM18, Table 1]). We let 75 be the inertial type
corresponding to @’ such that w; = w; for ¢ # jo and @;0 chosen as in the previous sentence. This
gives the type satisfying items (2) and (3) and (4). O

Remark 3.5.10. From Table 2, we see that the type 7s constructed in Lemma 3.5.9 is uniquely
characterized by requiring that o € W’ (pg, 7s) and #W” (g, 7s) = 2°. We call it the minimal type
of o with respect to p.

In what follows, our pg = (p3)ses Will be assumed to be 10-generic, so that Proposition 3.5.6
applies. We observe that if 75 is a 3-generic tame type, then 7(7s5)° is multiplicity free for any
choice of lattice o(7s)°. Then

e(M(a(15)°)) = D e(Mu(o))

ocJH(o(7s))
by Definition 3.5.1, and in fact

e(Mc(a(15)7)) = Y e(Mx(0)).
O-GW? (FSS,TS)
Finally, observe that if g is 10-generic and W” (5, 7s) is nonempty, then 75 is 7-generic by Propo-
sition 3.4.5.

Lemma 3.5.11. Suppose that p; : G, — GL3(FF) is semisimple and 10-generic for allv € S. If
there exists o € WBM(pg) with defect 0, then for all o' € W*(ps), e(Muo(0')) = 1. In particular,
WPM(ps) = W (ps).

Proof. We first prove the lemma assuming o’ has defect 0 by induction on d & dgpn(o, 0’). By
Lemma 3.5.9, one can choose a 1-generic tame type 7s such that W7 (pg, 7s) = {o}. Note that 7s
is then 7-generic under our assumptions. Then e(My(0)) = 1 by Corollary 3.5.5 and Lemma 3.5.8.
This establishes the case d = 0.

Suppose that ¢’ € W’ (ps) has defect 0 and that d > 0. Then there is a ¢’ € W' (pg) adjacent
to o', with defect 0, and such that dgpn(o, 0”) = d — 1. We choose a type 75 as in Lemma
3.5.9(4) for the adjacent weights ¢’ and ¢” and an O-lattice o(75)° in o(75). Then by inductive
hypothesis My (0”), and hence My ((75)°), is nonzero. By Corollary 3.5.5 and Lemma 3.5.8,
e(Mx(a(75)°) = 2. We deduce from the inductive hypothesis that e(M(0’)) = 1.

We now prove the general case of the lemma by induction on the defect. Suppose that o’ €
W”(ps) has defect 6 > 0. We choose 75 as in Lemma 3.5.9 (and an O-lattice o(7s)? in o(7s))
taking ¢ to be o/. By Lemma 3.5.9(2) and (3), W7 (pg,7s) contains a weight of lower defect.
The inductive hypothesis implies My (c(7s)°) is nonzero. By Lemma 3.5.8 and Corollary 3.5.5,
e(Muo(7(75)°)) = 29. By Lemma 3.5.9(3) and induction, e(Mu(7(75)°)) —e(Muo (")) is the number
of weights in W7 (pg, 7s) \ {o'}, which is 20 — 1. We conclude that e(Mu(c”)) = 1. O

Lemma 3.5.12. Suppose that p; : G, — GL3(F) is semisimple and 10-generic for allv € S. If
o € WBM(pg) has defect 6 > 0, then there exists ' € WBM(pg) with defect less than 6.

Proof. Choose 7s and 75 as in Lemma 3.5.9 and fix lattices o(7s)° and o(75)°. Then My (o(7s)°)
and My, (0(75)°) are nonzero. Hence by Lemmas 3.5.8 and 3.5.9(2) and Corollary 3.5.5, e(Mu (7(75)°))—
e(Muoo(5(15)°)) = 2°. By Proposition 3.5.9(1), e(Mxo(7(75)°)) — e(Moo((75)°)) is the sum of
e(Mx(0")) as o’ runs over the Serre weights in W (pg, 75) \ W*(ps, 7s). By Lemma 3.5.9(3), the
Serre weights in W’ (pg, 75) \ W (ps, Ts) have defect less than 6. We conclude that there must be
a Serre weight o’ € WBM(pg) of defect less than 6. O
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3.5.3. Proofs.

Proof of Theorem 3.5.2. Since My, is non-zero, there is a Serre weight o € WBM(pg) € W (ps) by
Proposition 3.5.6. By induction on the defect using Lemma 3.5.12, we can assume without loss of
generality that the defect of o is 0. The theorem now follows from Lemma 3.5.11. U

Remark 3.5.13. Our axioms for Mo, imply that if o € JH(o(7s)), then the support of M (o) is a
(possibly empty) union of irreducible components of Spec R (7s). As Spec Ry (7s) is the preimage

of
Ts Q
Spec ®5€SR5 C Spec ®568R”

inside Spec R, we have shown that if o € WBM(5g), then the scheme-theoretic support of M. (o)
is irreducible with generic point given by the preimage in R, of a prime ideal in ®’6€ SR%.

We now give two examples of weak minimal patching functors using the setup from [LLHLMIS,
§7.1]. Recall the definitions from loc. cit. of F/F™T, E;, G+, and 1y (see also §5.3). Suppose that
71 Gp — GL3(F) is

e automorphic (of some weight) in the sense of [LLHLM18, Definition 7.1];
e satisfies the Taylor-Wiles hypotheses in the sense of [LLHLM18, Definition 7.3]; and
e if 7 is ramified at a finite place w ¢ 3, of F' then w|p+ splits in F' (we say that 7 has split
ramification outside of p).
Then [LLHLM18, Proposition 7.15] constructs a weak minimal patching functor for 7 in the sense

of [LLHLM18, Definition 7.11], which we will denote M. Let h be the corresponding integer.
For each v € E;, choose a place v of F' lying above v. Let S, be the set {v: v € E;}. Let ps,

be (p3)ves, Where we define py d:efﬂGFN : Gp, — GL3(F). Define Ry, Roo(7s,), etc. as before with
respect to h above. Let K be Hsp K3 as before. and the proof of [LLHL19, Proposition 4.2.6].

Proposition 3.5.14. Let My, : Repy (O) — Mod(X) be the functor My o [Tzes, vw- Then Mx
is a weak minimal patching functor for ps, .

Proof. Definition 3.5.1(2) follows from the proof of [LLHL19, Proposition 4.2.6]. The remaining
properties follow easily from definitions and [LLHLM18, Proposition 7.15]. O

Now suppose that p > 3 and K/Q, is a finite extension. Let 5 : Gx — GL3(F) be a continuous
Galois representation with a potentially diagonalizable lift of type (n,7), such that R7 is formally
smooth. For example, if p is 6-generic and semisimple, we can take 7 so that if w(p,7) = (w;);,
then ¢(w;) = 4 for all j. We now construct a weak minimal patching functor for 5 (here #S =1 in
the notation of Definition 3.5.1).

[EG14, Corollary A.7] constructs a CM extension F/F*, a choice of places S, above ¥} as
before, and an automorphic Galois representation 7 : Gp — GL3(IF) satisfying the above itemized
properties such that there is an isomorphism K = F; and F\GFE = p for all v € §p. Fix a

place v € S, and let R be R%@)@U,GE;’U,#UR%W [xz1,...,zn]. Note that R is as defined in
§3.5.1 (by increasing h, and the assumption of formal smoothness of R%) and we identify R, with
R%Gp @@U,GZ;,U,#}R [x1,...,2n]. Let Xoo = SpfRs as usual. We abusively let K be the

o,
group GL3(Ok) (the meailing of each K will be clear from the context). Fix a lattice o(7)° in the
K-module o(T).

Let MOO be the weak minimal patching functor for 7 constructed above. The following proposition
follows from the construction of 7 and Proposition 3.5.14.
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Proposition 3.5.15. Assume the above setup. Let My, : Repy (O) — Mod(Xs) be the functor

Then My is a patching functor for p.

Corollary 3.5.16. Suppose that ps is a collection of continuous Galois representations satisfying
the properties of p in Proposition 3.5.15Then there exists a patching functor for ps.

Proof. We can take the completed tensor product of the patching functors constructed in Proposi-
tion 3.5.15 for each pg. O

Proof of Theorem 3.5.5. Suppose that 7 is not 1-generic. We claim that R7 = 0. It suffices to show
that after restriction to G for any unramified extension K’/K, p does not have a potentially
crystalline lift of type 7 and Hodge-Tate weights (2,1,0). Moreover, after such a restriction, 7 is
still not 1-generic and p is 10-generic. We can then assume without loss of generality that 7 is
principal series. By [LLHL19, Remark 2.2.8], 7 is not 2-generic and p is 10-generic in the sense of
[Enn, Definition 2.2]. Then p does not have a potentially crystalline lift of type 7 and Hodge—Tate
weights (2, 1,0) by [Enn, Proposition 7].

If 7 is 1-generic and R7 # 0, then Proposition 3.4.5 implies that 7 is 7-generic. Proposition 3.4.2
implies that W7 (5, 7) # 0. Suppose that 7 is 1-generic and W7 (5, 7) # 0. By Proposition 3.5.15, a
patching functor M, for p exists. For any Op-lattice o(7)° C o(7), Moo(co(7)°) # 0 by Theorem
3.5.2. This implies that R7 is nonzero.

We now show that if 7 is 1-generic and R7 # 0 then

-7

(3.5) e(Ry) = e(Muo(a(7)%)).

As R; # 0 we deduce from Proposition 3.4.5 that 7 is 7-generic. The proof of (3.5) is now obtained
by a direct genegalization of the arguments of [LLHLM18, §8], so we only explain the key details.
There is a ring R% of the same dimension as F;[[Xl, --- X3¢] which is a power series ring over the
completed tensor product over F of rings Rin [LLHLM18, §8] and E%%V
[LLHLM18, Table 7], and which admits a surjection to E;[[Xl, --- X3¢]. Then we have

e(Ry) = e(Mxo(a(7)%))

for any O-lattice o(7)° C o(7) by computing both sides using [LLHLM18, Table 7, Propositions
8.5 and 8.12] and Theorem 3.5.2 (using that 5 is 10-generic). The proof of [LLHLM18, Proposition
7.14] implies

for some M and w from

e(Muo(a(7)%)) < e(Rp).
Then we must have that e(é%) = e(R%[[Xl, - Xsr]) = e(ﬁ%) by the above surjection. Furthermore,
R7 is reduced and Cohen—Macaulay by the same argument as in the proof of Lemma 3.5.4.Then
R%[[Xl, -+ X3¢] is isomorphic to }NZ% by [LLHLM18, Lemma 8.8] and the desired properties of R%
hold because they do for R7. The desired ring theoretic properties of R7 follow from the proof of
[LLHLM18, Corollary 8.9]. O

Remark 3.5.17. Since the number of irreducible components of E; is equal to #W7(p, 1), E; is

reduced and My (3(7)°) has full support over Ry (7), the proof of Theorem 3.5.3 shows that the
irreducible support of M., (c) must be different for each o € W7 (p, 7).
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3.6. The geometric Breuil-Mézard conjecture. We now show that weak minimal patching
functors can be used to assign components in deformation rings to Serre weights.

Proposition 3.6.1. (1) Let p be as in Theorem 3.5.3. There is a unique assignment o — p(o)
for o € W*(p) such that p(c) C R%' is a prime ideal and

(3.6) Spec (R))= | Spec (RS/p(0))
ceW?(p,T)

for any tame type T where the right-hand side is given the reduced scheme-structure. More-
over, the image of p(co) in E; is a minimal prime ideal and (3.6) is the decomposition of
E; into irreducible components.

(2) If My is a weak minimal patching functor for ps = (py)zes, then the scheme-theoretic
support of Moo(®pesos) is Spec (Roo/ Y zes #(05)Roo).

Proof. We first prove uniqueness. Suppose there is such an assignment. This closely follows the
procedure of induction on the defect with respect to W’(p) in the proof of Theorem 3.5.2. If the
defect of ¢ € W’(p) is 0, then by letting 7 be the minimal type of ¢ with respect to 7 we have
LW’ (p,7) = 1 by Lemma 3.5.9. Then we must have p(c) = AnnRQR%. If the defect of o is § > 0,
then choose 7 be the minimal type of o with respect to p as in Léomma 3.5.9. Then by induction
and Lemma 3.5.9(3), there is a unique component of Spec (R;) whose defining ideal is not p(c’)
for some o' € W (p, 7) of lower defect. Then p(c) must be this defining ideal.

We now show existence of an assignment. By Proposition 3.5.15, there is a weak minimal patching
functor M for p, which we fix. By Remark 3.5.13, the generic point of the scheme-theoretic support
of My (o) is of the form p’(0) R for some prime ideal p’(0) C RﬁD. We claim that o — p/(0) is an
assignment satisfying (3.6). Indeed, since the generic fiber of R7 is connected by 3.5.3, Spec Roo(T)
is the scheme-theoretic support of My (a(7)°). On the other hand, M (c(7)°) is filtered by My (o)
for o € W¥(p, 1) so that the support of M., (&(7)°) is

(3.7) )  Spec (Roo/p'(0)Rex).

ocW?(p,T)

(3.7) is a decomposition of R (7) into irreducible components by Remark 3.5.17. Finally, we
observe that this statement descends to E;.

We now show part (2). Suppose that M., is a weak minimal patching functor for pg. Let
0 = ®Ryexoy € W’ (ps). Again by the proof of Theorem 3.5.2, the scheme-theoretic support of
Myo(0) is Spec Roo/(D 5es P(0)3Roo) for some prime ideals p(o)y C Rﬁmﬂ. We will show that
p(0)7 = p(03), where p is the assignment in part (1). We induct on 6 = Def; (o). If § = 0, then
one can choose Ts as in Lemma 3.5.9 so that R (7s) = Reo/p(c). We conclude that p(o)y = p(oz)
for all v € S in this case. Suppose that § > 0. Again choose 75 as in Lemma 3.5.9. Then by the
inductive hypothesis, for any weight o/ = ®zesoh € W' (ps, 7s) with o’ % o, the scheme-theoretic
support of My (0”) is Roo /(D ges P(0%)Roo). Since the generic fiber of Spec (@gGSR%z) is connected
by 3.5.3, by item (1) the scheme-theoretic support of Mu,((7s)°) is

(3.8) lJ  Spec (Roo/(D_p(0h)Roc)).
o' eW?(pg,7s) vES

From this, we see that since e(My(0)) = 1, the scheme-theoretic support of My (o) is forced to be
Spec Roo/ (D _ges 9(05) Ro)- O
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We have the following refinement of Proposition 3.6.1(2).

Lemma 3.6.2. Assume p is 10-generic. Let 7s = (73)5es be a collection of tame inertial types and
let V' be a subquotient of 5(7s)° for some O-lattice o(1s)° in o(7s). Define the closed subscheme
Xoo(V) < Spec Ro to be the reduced subscheme underlying Usesnvy Supp(Mos(0)). Then the
scheme-theoretic support of Muo(V) is Xoo(V). In particular if Mo (V) is a cyclic Roo-module,
then Mo(V) = Roo/I(V') where

Proof. Since p is 10-generic, there is nothing to prove unless 7g is 7-generic. The proof now fol-
lows exactly as in the second paragraph of the proof of [EGS15, Proposition 8.1.1]. We recall
the argument. The support of M (V) is (the topological space) X oo (V) since My (V) is filtered
by Mo (o) for o € JH(V). It suffices to show that the scheme-theoretic support of My (V) is
reduced. The scheme-theoretic support of Mo (V) is generically reduced (since the same is true
for Moo (7(75)°)). Now since each M, (o) is maximal Cohen-Macaulay over Ro.(7s) (by Defini-
tion 3.5.1(3) and the fact that dim Roo(7s) = d), and the maximal Cohen—Macaulay property is
preserved under extension (by the characterization of depth in terms of Ext groups), M (V) is
maximal Cohen—Macaulay over Rs(7s). This guarantees that the scheme-theoretic support of
M (V) has no embedded associated primes, and hence is reduced. ]

3.6.1. Matching components. Recall that Proposition 3.6.1 gives a canonical parametrization of
the irreducible components of the special fiber of the potentially crystalline deformation ring R7
in terms of W7 (p, 7). Given a lowest alcove presentation (s, —7) of 7 = 7(s, ) we will define in
item (4) below explicit rings 7%%’v, building on [LLHLM18, §5.3.1, §8]. The rings R Xpl YV will be
formally smooth modifications of Fg. Thus, Proposition 3.6.1 gives a bijection between minimal

plv and W’(p, 7). On the other hand, by Corollary 2.3.11, the data (s,u) gives a

description of W (p,7) as a(( " )) for (w,a) € ¥g. In this subsection, we will make the bijection

xpl v

primes of R

between minimal primes of R and Y5 explicit. This will be needed in Section 5, where we

need to check relations between 1deals corresponding to various subquotients of (7)° for certain

lattices o (7)°.

We begin by recalling the relationship between E%p;’v and E;. For the rest of this section,
we assume p is 10-generic. Recall that we have chosen a lowest alcove presentation E, uw—mn) of
7 =7(s, ). We assume that R # 0, and thus 7 is 7-generic and there exists a unique 9t € Y7 (F)
such that T)j,(9) = p|a,_ . Let @ = w(p,7) be the shape of M and let M = & (OM[1/u])A=1. We
also recall the notion of gauge basis [LLHLM18, Definitions 4.15, 6.11], and we fix a gauge basis 3
for 9. We also fix a framing (i.e. a basis) for p. Recall from [LLHLM18, Definition 2.11 and §6]
(see also the discussion after [LLHL19, Definition 3.2.8], which is more aligned with the notation of

. . i) def (i)
this paper) the notation A®) = Matﬂ(ém,sor,iﬂ(zz))’ ‘
descent data of type 7 and s, € W the orientation of 7 = 7(s, y1). We say that A® is the matrix

for an eigenbasis  of a Kisin module 9t with

of the i-th partial Frobenius qbg;t) soritn(3) with respect to the eigenbasis 5.
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We have the following canonical diagram (cf [LLHLM18, Diagram (5.9)]:

(3.9)

—,8,0 f.s. —expl,V —r3
Spf( ﬁﬁ,ﬁ ) s Spf( ﬁiﬂ ) Dﬁﬁ
f.S. r f.S. r J{fg
=T —T7,0 fs. —expl,V 3f <N,T
Spf(R;) = Spf(Rg; ;) ——— |Spf(Rg 4 )/Gm}<—> Y
ét,00 f-s. &t !
P- ModM d- Modﬂ

where f.s. stands for a formally smooth morphism. We explain the diagram:

(1)

ELBLD’ RT,D

i p W are defined in [LLHLM18, §4.3, §5.2, §6.2]. They parametrize various defor-
mation problems of 5 and 91 with extra data such as framings on Galois representations
and gauge bases on M. We note that in loc. cit., we used the symbol u for what we call i
in this paper.

- Mod% (resp. ®- j’\t/’lD) denotes the groupoid of étale p-modules deforming M (resp.
deformations with a basis on the associated G ,_-representation).
Y%T is the groupoid whose values on a local Artinian F-algebra A is given by the groupoid of

pairs (M4, 74) where My € Y7 (A) and 4 : Ma®@4F = M is an isomorphism in Y7 (F).

The groupoid ﬁ%ﬂ parametrizes the same data plus the data of a gauge basis lifting 3. By
[LLHLM18, Theorem 6.12 |, there is an action of G on 5%6 by scaling the gauge basis, and

one has [Dgf/é%{c] = 17. By [LLHLM18, Theorem 4.17 and §6.2], ﬁﬁﬁ is representable

by R%B = @i(RCXpl)p flat, red /o5 Over R—, we have a universal pair (9"™V, 3%V) and

hence the universal matrices of partial Frobenii A"V By construction, (Rf;pl)p'ﬁat’ red /o5

is a quotient of the power series ring over F generated by (suitable modifications of) the

coefﬁcients of the entries of A(@).univ Subject to certain “finite height” equations. The map
! is the map sendlng MUY o (Pruniv[L])A=

The ring Rexlolv ® ﬂXpiv. We recall the description of each component ring from

[LLHLM18] (see also Table 3 below). We let (a,b,c) € F3 be the mod p reduction of
5;i1_i(ﬂf—1—i) € X¥(T) =7
(a) When ¢(w;) > ReXp _V is the quotient of the power series ring over F generated by

(suitable modlﬁcatlons of) of the coefficients of the entries of A®"Y by an explicit

list of relations given by [LLHLMI18, §5.3 and Table 7]. In this case, we even have

the rings RBXP1 V and diagram (3.9) can be lifted to a diagram over O with the same

properties, cf [ZLLHLMIS, Diagram (5.9)].
Note that, strictly speaking, [LLHLM18, Table 7] only has entries for w; belonging to

a certain set of representatives under the action of the outer automorphisms of W,.
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(b) When ¢(w;) = 1: By symmetry, we may assume w; = «f;. The matrix AW pag the

form
o c11 C12 + ey 13
A(z),umv = vc§1 Co9 + vdaog C23
ve31 V39 c33 + vC3g

~ def —d 1L,V
Set C3p = 65202167226‘” We define ReXp to be the quotient of the power series ring
21

—% * —% * —%
IF[[Clla c12, €13, €22, €23, €31, €32, €33, d22, c12 - [012}7 Co1 — [621]7 C33 — [033]]]
by the relations:

ciice3 =0, C33C11C32 = C13€31C32,

c11daoacyy = %031013532, c13c23¢32 = 0,

023031532 = 0, ((I — b)613631d22 + (C — b)clgggzcsl + (—1 —a—+ C)0230310T2 = 0,
* a—=c ~ * (_1 —a+ C) ~

C12C33 = m013032, C22C33 = m@s%%

*
C91€33 = €31C23.

These equations comes from [LLHLM18, Proposition 8.11] and its proof, by restoring
the units ¢jy, ¢3; and ¢35 (which were set to be 1 in loc. cit.); the first 6 equations above
are deduced from the equations appearing in the statement of loc. cit. (where da3 above
is denoted by ¢, in loc. cit.), the seventh and eighth equations above appear in the
proof of loc. cit., and the last equation above is implicit in loc. cit. (where we solved

c33 using the p-saturation of the 2 by 2 minor condition). In particular, R xpl, _V is a

formal power series ring over the ring R appearing in [LLHLM18, Propos1t1on 8.11].
(c) When #(@;) = 0 the matrix A"V has the form:

- e + e C12 c13
A@univ VCo1 coo + 1}032 C23
vC31 V€39 c33 + veig

We define Re pl to be the quotient of Flc;;, ¢ —[Cix)s 1 < 4,7,k < 3] by the relations

ciicjj = Ofor i # j, cric23 =0 c31c22 = 0, c33c12 = 0,
C12C23 = C22C13, C11C32 = C12€31, C21C33 = C31C23
and

(=1 —a+c)cyeess + (=1 —a+ b)cgachs — (—1 — a + ¢)cageza = 0

(a —b)chzc1n + (=1 — b+ ¢)essel; — (@ — b)esess =0

(b —c)ciicaz + (@ — ¢)eq1cse — (b — ¢)eracor =0

C11C9C53 + C22C]1C33 + C33C11Cho — C11C23C32 — C39C13C31 — C33C12€C21 + C13C32C21 = 0.
These equations comes from [LLHLMI1S8, Corollary 8.4], by restoring the units cj,
(which were set to be 1 in loc. cit.) and we added the equation ci2cs3 = 0, which was
missing in loc. cit. and which is obtained by the 2 by 2 minor condition on A®@:WiV_ Ip
particular, R— J_V is a formal power series ring over the ring R appearing in [LLHLM18,
Corollary 8.4]. .
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Note that each object with a superscript [ receives a éig—action, corresponding to changing the
framing on the Galois representation.
We now justify the diagram:

e We claim that there is a canonical isomorphism [Spf (ﬂﬁ D) / GLg] = Spf (R RO v) When

¢(w;) > 1 for all 4, this is [LLHLM18, Theorem 5.12, Theorem 6.14 and Table 7]. When
(w;) < 1 for some i, this follows from the same arguments as [LLHLM18, §8] together
with Theorem 3.5.2, as explained in the proof of Theorem 3.5.3. This justifies the existence

and the properties of the first row of Diagram (3.9). It is clear from the construction

that the G/ action on ﬁ-ﬁﬁ preserves Spf (Re—xmv) Let (M-, Bw.r) be the restriction of

(oopuniv gunivy o § pf(Rgy REPL v) Thus the map ¢, sends My , to My - e (M, T[ A=t

e The second row is obtalned from the first row by quotiening by the G2 action coming from
scaling the gauge basis, hence inherits all properties from the first row. The top squares
are Cartesian. .

e The second column is obtained from the first column by quotiening by the GLs-action
coming from changing the framing of the Galois representation, hence the bottom square
is Cartesian.

The following Proposition finishes our justification of the diagram:
Proposition 3.6.3. Assume that T is 3-generic and that M < YW’T(F) is semisimple of shape
w = (wy). Let B be a gauge basis for M. Then the map
i Y — ®-Mods,
18 @ monomorphism.

Proof. We need to prove that the map on the groupoids of F[e]/(2)-points

Van (Fle]/(€%)) — @-ModSy(Fle]/(€%))
induced by ¢/ is fully faithful. But this follows from [LLHL19, Proposition 3.2.18], noting that the
right-hand side is equivalent to Repp/.2(G k.. )5 in loc. cit. O

Diagram (3.9) gives a bijection between the set of minimal primes Irr (Spec (R )) and Irr(Spec (Rgpl V)) =

1, Irr(Spec (Rﬁplv)). By Proposition 3.6.1, this set is in bijection with the set p(o) for o €

W’ (p,7). On the other hand, by Proposition 3.4.2, we have a bijection
H Zﬁ: :> W?(pv T)
i

(CAD)

(w,a) — O ()

The following Theorem is the main result of this subsection, which computes the above bijections
in terms of the explicit rings:

Theorem 3.6.4. Assume p is 10-generic. Via the above bijections, we have
H ar - HIrr Spec (R eXpiv)) — Irr(Spec (E%))

((wi’ ai))i — ((C(Wfflfiﬂfflfi)R%i;iv)i — ]J(O'((i’f;))),
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expl \Y

where ¢, 4,) 15 the minimal prime ofR is given by Table 3.

expl v

Remark 3.6.5. Note that Table 3 only gives the ideals ¢(y, 4,) € Ray _for a set of representatives

for wy_;_; € Adm"((2,1,0)) for the action of the outer automorph1sms of WY. This is sufficient
because this action corresponds to changing the lowest alcove presentation of 7.

We now describe the strategy of proof. The main idea is that by the proof of Proposition 3.6.1,
the prime p(o) can be characterized by the relation (3.6) for a specific type 7" (inducting on defect
of o). Namely, one can use the minimal type 7/ of o with respect to p. For this type, each
component of w' = w(p,7’) has length > 3. Furthermore, the minimal type 7' has the property

that Spr; C Spfﬁ% inside Spfﬁg . Thus it suffices to determine the subset of Irr(Spec (7%%?))

which occur in RZ. This is achieved by “matching” the universal étale p-module over a union

of irreducible components of RexP1 "V with the universal étale p-module living over Eg (or rather
—expl,V
Rﬁ,@, ).

The precise formulation of this matching mechanism is given by the following:

Lemma 3.6.6. Let 7 = 7(s,u) and 7" = 7(s', /). Assume that RT,R%/ # 0, and the running

hypothesis that p is 10-generic. Consider diagram (3.9) for R%, RT , constructed using the above
presentations. We decorate the objects that occur in the diagmm for 7' with the same symbol as

those in the diagram for T but with a superscript’ added (so we have, e.g. W', Mg 1, etc.). Assume

that there are ideals I, (resp. I') fﬂXpi (resp. 7%}0115) such that

e I, I’ are intersections of minimal primes.
—5expl, V/I Rexpl V/I,

U

e There is an isomorphism Rgy;

o There exists an isomorphism of étale - modules between the base change of Mg - to Rexlol v/I

and the base change of Mgy . to R%Pt;/[’ compatible with the above ring homomorphism.

Let J (rep. J') denote the intersection of minimal primes in R% (resp. E%) which correspond to 1

(resp. I'). Then, J and J' induce the same ideals in ES.

Proof. Our hypotheses implies there is an isomorphism

(310) ( expr/I) ~ ( expr/I/)

~

®- Mod%
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Pulling this back along the map ®- Modit/’lD 31 ives a commutative diagram
(3.11) Spf (R 19 ~ S f(R;F P10y
Is fs
Spt(R;/J) Spf (Rf /)
=0 =0
Spf(R;) Spf(R;)
6,0

ét,0 .

where we use [LLHLM18, Proposition 3.12] to see that the natural map Spf (R ) — @- Mod
monomorphism (as p 10-generic implies ad(p) is cyclotomic free). But this implies that Spf ( 5 /)

and Spf(ﬁ; /J') define the same subfunctor of ®- Modit/’llj, hence also the same subfunctor of

Spt(R,). O

In practice, we will apply the Lemma by matching matrices of partial Frobenii:

Corollary 3.6.7. Keep the notations and setting of Lemma 3.6.6. Assume that there exists z =
(Z:)i € W) with corresponding z* = (z}); € W, and z is the image ofE in WY, such that s’ = sz*
and i’ = p+ s2*(0). Write (I;); for the collection of ideals in R— ’_ giving rise to I, and write
AW for the matriz of the i-th partial Frobenius of Mg - with respect to Bw,r, and let (I)); and A

be the analogous objects for /. Assume that:

expl v —expl,V

e The isomorphism Rg; =~ /1 = Rf/ /T is induced by a collection of isomorphisms RGXPI V/I =

—expl, V/I,

’~/

° For each 1,
A(f_l_i) mod If—l—i = A,(f_l_i)zf_l_i mod I}—l—z’
via the above isomorphisms.
Then the same conclusion as Lemma 3.6.6 holds.

Proof. This follows from Lemma 3.6.6, Proposition 3.2.1 and the fact that Zs*t,~ = st . O

Remark 3.6.8. Note that the second condition in Corollary 3.6.7 implies in particular that
(3.12) @), = @%).

where Z(”,Z’ @) denote the reductions modulo the maximal ideal. We now explain how in the
situations where we apply Corollary 3.6.7 we can always arrange this.
If we have p semisimple and 7, 7/, 2 as in Proposition 3.6.9, then

~ ~f~

(3.13) wW=w?z
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Furthermore, for any choices of gauge bases 3, §', for Mz . and Mg+ respectively, one has
a9 ¢ T(F)w; and A’ @ ¢ T'(F)w; by Proposition 3.3.6. Let M7 denote the element of Y7 (F)
with eigenbasis Sop such that the partial Frobenii is given by (Z,(i)'z})i. (Note that i)ﬁ'@’T €
Y7 (F) because it has shape w € Adm"(n).) Since Zs*t, = s™t,, (EITIQZ’T)A:l >~ (Myr )21
by Proposition 3.2.1. Thus, ng(m;m) = 5. By the triviality of Kisin variety (see [LLHLM18,
Theorem 3.2)), mgﬂﬁ = Mg - and By defines a gauge basis of Mg . Thus, by replacing Boy by
Bow (this can be done by scaling by an element of T'(F) by [LLHL19, Proposition 3.2.22]), we can

then ensure that condition (3.12) holds. In all the matching the we perform below, we will always
assume that the gauge bases have been chosen so that condition (3.12) holds.

The following Proposition describes all the types 7" for which we need to perform some matching
with 7.

Proposition 3.6.9. Assume p is 10-generic. Let 7 = 7(s,u) be a tame inertial type such that
R; # 0, and let @ = @(p,7) = (@;);. Let (w,a) = (wi i), € [1; Zar and o = o) € W (p, 7).

(w,a)

Let 7' be the minimal type of o with respect to p, cf. Remark 3.5.10. Then:
o Forz* = (zF); € W, as given by Table 3, we have 7' = 7(s', )/') where
s'=s2", ' =p+s2%0)

e w(p,7)z=w; and
o« Wi(p,7') c Wi (p,7).

Proof. This is immediate by computing the pairwise intersections among ¢, w; (r(2¢)) and z; (o).
]

Proof of Theorem 3.6.4. By Proposition 3.6.9 and the proof of Proposition 3.6.1, for each o €
W’ (p, ) with minimal type 7/ with respect to 5, we need to show that the intersection of minimal
primes
f-1 | f-1 |
—=expl,V —expl,V
ﬂ (Z c(wi,ai)Rﬁ,w > = Z ( ﬂ c(wz',ai)Rﬁ@ )
(w,a)GEﬂE*(E) =0 =0 (wi,ai)ezoﬁgf (Eo)
—expl,V . . . / =0 .
of Rg; -~ corresponds to the intersection of primes N p(o') of R;. But this follows from
’ o' €W (p,r")
Corollary 3.6.7 (which allows us to work for each i separately) and the explicit computations in
Subsection 3.6.2 below. O

We record the following lemma, which follows from Theorem 3.6.4, for future use. Let w =
w(p, 7). Suppose that ¢(w;) > 2 for all 0 < i < f—1. Let N o >, (4 —l(w;)), and Ry &
expl,V

@?f:l()[[:nj, yj]/(xjy; — p). In this case, there exists a formally smooth map Ry — Rﬁw , which

we fix. We think of Ry as a subalgebra of R%p%’v. For o € W (p,7), let p™Pl (o) C Reﬁx%’v be
the prime ideal corresponding to the weight o. The minimal prime ideals of R%p;v’v containing w

are of the form ((Zj)évzl + (w)) %p{lﬁ,v where z; € {x;,y;} for all 1 < j < N. Define z;(c) so that

PP (0) = (((0))), + (@) Rt
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Lemma 3.6.10. Assume that p is 10-generic and that {(w;) > 2 for all0 <i < f—1. For o1 and
02 € W?(ﬁ7 7—):
#({Zj(al)}éyzlA{Zj(C’Z)}évzl) = 2dgpn(01, 02)

where A denotes the symmetric difference.

Proof. From the aBa, af and Ba row of Table 3, we check that if o1, oo € W’ (p,7), then
pePl (1) 4 pPl(gy) is a prime ideal of Reﬁxpgv of height
dgph(O'l, 0'2) + 1.

On the other hand, the height of the intersection of ((z;); + (@)) + ((zg)] + (w)) is easily seen to
be

1

S#({H LA L) + 1

0

For convenience, we list in the Table 4 the length 4 shapes and their universal families over
—expl,V
Rﬁ@j .

3.6.2. Ezplicit computations. In this section, we record the matching of matrices of partial Frobenii
needed in the proof of Theorem 3.6.4. We are always in the setting of the theorem. In particular,
we have two types 7, 7/ with chosen presentations related by the element 2* together with matrices
of partial Frobenii AU=1=9 A/(/=1=) We will fix i throughout.

We will frequently recall presentations of rings from [LLHLM18], and since we work in char-
acteristic p, all occurrences of the symbol e in loc. cit. will become —1 here. We let (a,b,c) and
(a/,V/,¢') € F3 be such that (a,b,c) = s;H(wi) mod p, (a',¥,c) = (si)71 (1)) mod p. Note that
(a', b, ) =Zr_1-i(a,b,c). These are the structure constants that feature in the presentation of our
explicit rings. We will also replace occurrences of the symbols c;j in loc. cit. by d;j, as we wish to

decorate objects associated to 7" with a prime superscript.

Case wy_1_; = afty. From [LLHLM18, Table 5], the matrix of the partial Frobenius AW=1-1) hag
the form

—1
c31c12(c5y) c12 c13 + vcis
ey, C22 23 + vda3
ves UC§2 (031023 (631)_1 + Ud33)

. —expl,V . . _ _ _
The ring Rﬁwf_l_i is the quotient of F[c12, c13, c22, c23, das, €31, d33, 13 — [C13], ¢51 — [€51], ¢io — [€55]]
by the relations

(3.14) c12¢23 — c2¢13 = 0;

cac31 = 0;

capc13 — dazciz = 0;
c12((b — c)dszcy; + (@ — b)esidas) = 0;
(—1 —a—+ 0)623632 = (—1 —a—+ b)622d33.

Note that all equations except for the last one are mod w reductions of equations in [LLHLM18,
§5.3.3]. We explain how to justify the last equation from the computations in [LLHLM18, §5.3.3],
which was implicit in [LLHLM18, Table 7]. For the remainder of this paragraph, we adopt the
notation of loc. cit. We have cia((a — b)esichs + (b — ¢)c3 chs) = pz*. From the equation ciyciz —
PCiaChy — chscia = 0, replacing p by (2*)71(c12((@ — b)csichs + (b — ¢)chychs)) we deduce that cy3 is
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a certain multiple of cj2. Finally using the equation cjaceg = coac13 and canceling out ¢1o (as it is
a unit after inverting p), we get an equation solving cs3 in terms of the remaining variables. The

mod w reduction of this equation gives the last equation above.

—expl,V
The minimal primes of Rg; P By, 1€
[3

c0,0) = (c12, €22); €1y = (012, C31); C(e1—e0,0) = (€31, d33); ¢0,1) = (c22, (b— c)ds3c3y + (a — b)csidas).

expl v

(Note that in Rg; there are no more relation than those listed in (3.14). Indeed, let R be the

f—l—z
quotient of F[[Clg, €13, €22, €23, da3, €31, d33, 15 — [Cl3], 5y — [Ezj]’ Chy — Fv;a]]] by the relations (3.14).
Then the discussion above proves that there is a surjection R — %pif s A direct check on the

relations (3.14) shows that R is reduced, equidimensional of the same d1mens10n as RemXp;j .

with the same Hilbert—Samuel multiplicity. Therefore the surjection is an isomorphism, see Lemma

, and

3.6.11 below.) We need to perform matching for the ideals ¢ o), ¢(c; 1) €(c; —es,0), T0(0) & ¢(0,1)¢(0,0)-
We provide details for the matching of the ideal ¢y in Table 3. We have

expl v

Ry sy /¢0,0) = Fldas, c51, dss, i — [e13], 31 — [€51], ¢y — [C3o]]
and
0 0 wvcig
AV=1=D mod co,0 = | veh 0 wdss

VC31  UC3y Ud33
On the other hand, @}_l_i = afanty, ¥ = ayt, (d )V, ) = (c—1,a,b+1) and A’=179) has the
form
v’y 0 0
vich,  vehh
vidy ek
Now we note that 2y 1_; = t(_1,)(123) and

PES

0 0 wvcig vl 0 0 0 0 w
vey, 0 wdys | = [ vichy  wvehh 1 0 O
vesp vcy,  vdss Ungl VChy  Ch% 0 v O
under the isomorphism
—expl,V ~ —expl,V
W, o /S0 = Ry @
given by the change of variable
k ! x * / % /
Co1 = €22, €13 = 41> daz = ¢y,
/ * / % !
€31 = C32, C3g = C33; ds3 = ds;.

Such a change of variable is allowed provided the units that are matched with each other agree
modulo the maximal ideal, because ¢y5 = 5, ¢} = €3 and 55 = €5, as elements of F (see Remark
3.6.8). Thus 3.6.7 applies and we are done with this case. The matching for ¢, _, o) can performed
in a similar fashion.

Next we provide details for the matching of ¢(, ;). We have

X IV * —% * —% * —% *
;npwf . Z/C(El, ]F[[C22a0237d23,d337013—[013]7021—[021]a032—[032]]]/((—1—a+c)023032—(—1—a+b)022d33)-
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Moreover
0 0 vCly
(f—1—1) *
A mod Cler,1) = | vear  Cc22 c23 + vdas
0 wvciy vds3

On the other hand, @}71% = afypty, ZF =18, (d/,0,c) = (c—1,a+1,b) and A’/=179) has the
form

vy 0 0
i

AU = vc’Zlg_;UQdél chh C/2/3

*

v¥Cyy 0 wesy
The ri REXPLV is th . T VA A N %] ) x %]k 211 bv th
e ring fgg g i the quotient of F[ch,, d5, ¢y, chy, ¢4 — [€13], cs — [h5], ¢ — [ca5]] by the

’ —1—1

relation
(=1 —a' + b))y sl — (b — ')y chs = 0.

Now we note that

0 0 Ve, v2eld 0 0 0 0 v!
vcy  caa  coz+udag | = [ vy +vPdhy by chy v 0 0
0  wciy vdss v2cl, 0 w5/ \0 1 0
under the isomorphism
—expl,V /C ~ —expl,V
Map—1-i/ - (E1) = o,
given by the change of variable
/ / U
C22 = Ca3, €23 = Ca1, da3 = dyy,
/ * ! x % / x k / x
d3z = C31, €13 = 4115 Co1 = C22; €32 = C33-

We finish the matching in this case.
Finally, we explain the matching of the ideal rog def ¢(0,1) N ¢(0,0) = (c22). We have

—expl,V _ _ _
Y frog = Fless, das, a1, dis, cis—[cis): chi— (231, o —[2al] / (cra (b—c)dsacy +(a—B)ennds)).
Moreover
' 631612(C§2)_1 C12 d33012(6§2)_1 + 1)613
AY=179 mod g = vy 0 vda3
V€31 UCE;Q vd33

On the other hand, @}_1_i = afaty, Zf = a, (d,V,) = (b,a,c) and A’V has the form

/ / / Jx\—1 I / /x\—1 E3
cl1 Clicsa(csy) 33¢11(c31) " + vl

A== — o vehh VChs
vess VCho vdfs
The ring ROPVY is the quotient of F[c]|, chs, cho, dis, iy — [Ch1], 5y — [Cool, ¢3 — [€15]] by the
W, 11> €235 €32, (33, €31 31)5 €22 22)> €13 13
relations

/ /

chi((a’ — ¥)chscsy — (a' — )eiidss) = 0.
(We remark that the form of the (3,3) entry of A’(/=1=9 is as above because in the notation
of [LLHLM18, §5.3.1] we have ¢33 = —ys4c13¢5; = 0 mod p since ci3ch; = ci1¢33 mod p and

yssc11 =0 mod p.)
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Now we note that

-1 -1 -1 -1
c31¢12(C5,) c12 dszcia(chy) ™ + ey iy () d33ch (1) + vl 0 10
(oS 0 vda3 = 0 vehy VCh3 1 00
vesy vehy vds3 ves) vChy vdlys 0 01
under the isomorphism
expl v *expl \Y
9nwf 1— z/mo - m,w}_l_i
given by the change of variable
/ / !
c12 = iy, 31 = Co, da3 = dag3,
U * ! x * /%
d3z = dz3, Chy = 4], Ca1 = Ca2; €13 = €13
Case Ws_1_; = aty. From [LLHLM18, Table 5], the matrix of the partial Frobenius AY/~!1=%) has
the following form:
ci1 c12 +vchy c13
vCyy  Co2 + vdao C23
ve31 VC39 €33 + vC33
~ def cgacs;—daac3y . expl v . .
Set ¢z2 = —2——=. Recall from item (4b) above that Rg; _is the quotient of
21 —1
Flei, e12, e13, €22, €a3, €31, C32, €33, d22, Clg — [ETQL 051 — [€31], 33 — [e33]]
by the relations:
ci1c3 = 0, C33C11C32 = C13€31C32,
* b—c * ~ ~
C11daaCyy =~ C51C13C32,  C13C23C32 =0,
~ ~ % *
cazcz1Caz = 0, (a = b)eigesidan + (¢ — b)egczacy; + (=1 — a + ¢)eazeziciy = 0
* a—=cC ~ * (_1 —a-+ C) ~
C12€33 = —C13C32 C22C33 = 7———————C23C32
BT a—b BT (—1—a+b)
C51C33 = C31C23.
1,V . : . . - :
(Note that ReXp By 1S formally smooth of relative dimension 3 over the ring R defined in
K3
[LLHLM18, Proposmon 8.11].)
We provide detail for the matching of the ideal ¢(., ;). We have
expl v —F d * —k * —k * —k 1 b * 1
mwf 1 Z/‘(eh [c22, 23, €32, 22,021—[021]7012—[012],033—[033]]]/((— —a+b)caacy3—(— —a+6)023032)
and
0 vCly 0
A(f_l_z) mod Cler,1) = UC§1 Co9 +vdoy o3
0 VC39 VC33

46

On the other hand, @}_1_i =apfB, zf =pByT6, (d,V,d)=(b—1,a+1,¢) and A'(F=1-1) hag the

form
v2el 0 0
E3 /
v(cy Fudyy) ey chy
v2cy, 0 wudgl
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expV
flz

The ring R

relation

: : / U / / / = / =/ / =/
is the quotient of F[cyy, dy, ¢y3, ¢y, 11 — [E11], ¢ — [eh3], 53 — [c33]] by the

(—1— '+ 1)y s — (0 — )iy s = 0.

We now note that

0 vCEy 0 v2ely 0 0 0 vt 0
/ /
vehy e+ uday e | = [v(chy +odhy) b s v 0 0
0 vE32 (o v2cl, 0 wdk/ \0 0 1
under the isomorphism
—expl,V —expl,V
g1/ ) = Ry
Mwys_1-4 L mLah
given by the change of variables
* /% * /% /
Cig = Cq1, Co1 = Co9, d22 = d21
/ / * / %
€23 = Ca3 €32 = C31 C33 = C33-

We now explain the matching of the ideal mg2 c(€2 0) N Cey1) = (c11,C32). We have

L,V _ _ _
;pwf - Z/mEQ = 0137023,031,d22,CT2*[CT2L051*[031]7C§3*[C§3H/031((a*b)013d22+(*1*G+C)CT2C23)'
Moreover
. 0 vCly 13
AU=1=0 mod wo,, = | ve, vdaa 23

V31 Udnggl(Cgl)fl 023031(631)714-116;3

On the other hand, 75}71724 = aya, Z¥ = yTa and (d,V,c) = (b,c — 1,a+ 1) and A’U~179) has
the form
vl vc’}2 0
UC33C91 (¢55) (033d22(023) + vchy) g

The ring ReXpl v

relation

: : / / / / / —/ / —/ / —/
@, is the quotient of Flcy, ¢y, dyy, ¢33, 4T — [A11], 53 — [e53], ¢35 — [c53]] by the
7

Cg3((—1 —a + )y — (1 =0 + )i '22) =0.

Now we note that

0 ey c13 vcﬁﬁ vc’}Q E) 01 0 X
* _ * —
V€ vdag X c23 ) = VCyy ) vdyy ) Co3 0 0 v
* — * — * / /! ! %\ — / ! /% — /! *x /
vegr vdaacsi(cy) c23c31(ch)” + ves. UC33C51 (Ca3) v(cggdan(ca) ™ +uegs) g v 0 0

under the isomorphism

expl v *expl v
mwf 1— z/m52 - 7/ N} 1—i
given by the change of variables
* Ik _ ko Ix*
Co1 = €23, €31 = (33, C12 = C11

/ / % K3
dag = C9y c13 = €9, Co3 = dyy C33 = C39.



SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 48

Case Wy_1_; = t1. From [LLHLM18, Table 5], the matrix of the partial Frobenius AY~1=%) has the
following form:

c11 + UCTl C12 C13
VC21 co2 + 1)032 C93
VC31 VC32 c33 + UC§3
expl v

Recall from item (4c) above that Rg;
the relations

. . x .
L s the quotient of Flc;;, ¢ — [Gii)s 1 < 4,7,k < 3] by

CiiCj5 = 0 for ¢ 75 j, C11C23 = 0 C31C29 — 0, C33C12 = 0,
C12C23 = (C22(13, C11€32 = C12C31, C21C33 = C31C23
and
(=1 —a+c)c9e33 + (=1 —a+ b)eaacss — (—1 — a + ¢)caseza = 0
* *
(a —b)czgc11 + (=1 — b+ c)egsel; — (@ —b)eizezr =0
(b—c)ciica2 + (a — ¢)cr1¢39 — (b — ¢)ciaco1 =0
* * * *k * * * *k * _
C11C99C33 + C22C11C33 + C33C11C99 — C11C23C32 — C99C13C31 — C33C12C21 + C13C32C21 = 0.

(Note that ReXplfv_l__ is formally smooth of relative dimension 3 over the ring R defined in

[LLHLM18, Corollary 8.4].)
We provide detail for the matching of ¢(ggy = (c11, c22, €33, €13, 23, C12)-

We have .
—expl, * _ . .
ﬁ?@#lii/cm’o) =TFlcij, i —[Gap)s 1 <7 <i<3, 1 <k<3]
and
‘ vel; 0 0
AU=1-19 mod C0,0) = | vear veyy 0

VUC31 UC32  UChs
On the other hand, @}_1_i = afayt; and A’ (f=1-9) has the form
vy 0 0
2021 vehs 0
vich  ucgy 5]
We note that zp_1; = t(;9,_1) and

v, 00 v’y 00 v 0 0

vegr vy, 0 | = |0y w0 0 10

UC31 UC32  UChs v2031 VChy  Chh 0 0 v
under the isomorphism

—expl,V / —expl,V
MWy _1—4 ¢, 0) ﬁ’,w}flﬂ.
given by the change of variables
cij = cjifor 1 < j <i <3, Chie = Crpefor 1 < k < 3.

We now explain the matching for the ideal g def ¢0,0) N ¢0,1) = (c22, €33, C23, C3C12 — C13C32).
We have

LV _ _ _
Ly /o = Flers, e, 1, e,y — (), e~ €3], g — [l (e15((a—c)ehaesn — (b—c)esaenn)
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(we have used the relations
c33c12 — c13¢32 = 0, c33c11 — c13¢31 = 0, (a —c)caaerr — (b —c)cracar =0
1L,V
holding in R iy L / g). Moreover
1

-1 -1
, ci3c3i(ciz)” +ocly cisesa(cz)” s
AU mod g = vea1 V€5 0
veay V€32 VC3a

On the other hand wy_;_; = afa =z}, (d',V, ) = (¢,b,a) and A’ (f=1-9) has the form

Ay i)t 011d33(031) L+ udy

/ *
0 VCos vChq
vl vl vdsg
expl,V . : / / / ! /% —/ % /% —/ * / % —/ *
The ring Ry is the quotient of F[c}y, chs, by, diss, 1% — [E15], s — [E55], ¢4t — [55]] by the

wf 1—1¢
relation

chp((a" = b)chgchyy — (' = ) chadyz) = 0.
We now note that

—1 -1 / A/ /x\—1 /g /x\—1 /
ci13e31(cs3) ™ + vl ci3esa(cis) €13 A1 chicha(cs)) clydzs(cs)) ™ +vels 00
Vel (o 0 |=10 vchh vChs 0 1
/ / !
ve31 VC32 VC3g Ul VCso vdsg 10

under the isomorphism
expl v / ~ 5expl,V
oy =

mwf 1—i 0, ~/—1—1'
given by the change of variables
/ / !
C13 = Cq1,» C21 = Cag, C31 = d337
_ * 1% ® 1% * 1%
€32 = C32; €11 = A13; Cog = C22; €33 = C31-

Case wy_i_; = Baty and aBaty. : The computations of these two cases are very similar to those
we already performed and are left to the reader.

3.6.3. Ideal relations in deformation rings. In this subsection, we collect some results about sums
of intersections of minimal primes in the potentially crystalline deformation rings RZ. These com-
putations play a crucial role in §5.1, where they are used to compute the value of a patching functor
on certain representations as the limit of the value of the patching functor on simpler pieces of the
representation.

Thanks to Theorem 3.6.4, all computations that we need to perform can be done on the rings
—expl,V
M, o W1

We will frequently make use of the following:

~given in Table 3. We continue to adopt the notation and setting of Theorem 3.6.4.

Lemma 3.6.11. Suppose we have a surjection of rings g : S — R. Assume that R and S are
equidimensional of dimension d, have the same number of minimal primes, and S is reduced. Then
g is an isomorphism.

Proof. The first two hypotheses imply that the kernel of ¢ is nilpotent, since g induces and isomor-
phism between the underlying topological spaces of Spec (R) and Spec (S). But since S is reduced,
this kernel must in fact be 0. U

o O =
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. . —=expl,V
Ideal relations in Rﬁ,id .
Lemma 3.6.12. In the ring R%pilciv, we have

(oo N e(ey,0)) + (0 N ey 0)) = Mo

Proof. An elementary check on the list of generators of the ideals 1o, ¢, g) and ¢(, o) (cf. Table
3) shows that

0o M ¢(c;,0) =2 (€33, Ca3, C22), 100 M €(cy,0) 2 (€33, Ca2, C13C32 — C12C33).
In particular (again by looking at the list of generators of tg), we have (toNe(z, o))+ (o Nc(e, ) 2
tog. The reverse inclusion is obvious. ]
. —expl
Lemma 3.6.13. In the ring REPYY e have

Mm,id

100 N €2y 0) N €(ey,0) = (C22,C33)-

= . . . 1
Proof. We let R be the ring with the same presentation as T%%Iz (iv except that all c;fj are set to

1. As explained in [LLHLM18, Corollary 8.4], there is a natural identification of REPY with the

M,id
REPLY AN the

M,id
ideals that we consider come from R, and are given by generators with the same name.

From Table 3, we immediately obtain (c22, c33) € twoMe(, 0)MN¢(e, 0y, and hence we need to prove
that the surjection

(3.15) R/(c22,c33) = R/ (000 N¢(cy 0) N €(ey.0))
is an isomorphism. The ring on the right-hand side is equidimensional of dimension 3 and has 4 min-
imal primes. By Lemma 3.6.11, it suffices to show that ﬁ/ (c22, c33) is reduced, is equidimensional
of dimension 3, and has 4 minimal primes.

Now E/(CQQ, c33) is the quotient of the power series ring Feci1, ¢, 1 < 4,5, < 3, ¢ # j] by the
ideal generated by the following elements:

power series over R with 3 variables, and we can work with the ring R instead of

C11€23, C12€23, C11€32 — C12C31,
C31C23, C23C32, RC11 = C21C12,
C11 — €13€31, C11 — C12C21 — C13€C31 — C23C32 + C21C13C32

for some k € F* depending on (a, b, ¢). By standard manipulations, we conclude that }NB/ (c22,c33) is
isomorphic to the quotient of the power series ring F[c;;, 1 < 4,7, < 3, i # j] by the ideal generated
by the following elements:

C31C23, C23C32, C12€23,
c31(c12 — c13¢32), c13(ke31 — ca1632), c21(c12 — c13€32)
.. ~  def ~  def .

hence, by writing ¢1o = c12 — ¢13¢32, €31 = KC31 — C21C32 We obtain

R/(c2,c33) = Flci2, €31, €23, €13, €21, €32] / (C12€31, C12€23, C12€21, C31C23, C31C13, C23C32).

This latter ring is easily seen to be equidimensional of dimension 3 and has 4 minimal primes.
It is furthermore reduced since it is the quotient of a power series ring by an ideal generated by
squarefree monomials. ]

From Lemma 3.6.13, the same argument used in the proof of Lemma 3.6.12 gives the following:
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—expl,V

i » Wwe have

Lemma 3.6.14. In the ring
(m() Nz, N C(E%O)) + (m() N1, N C(z-:l,O)) =1tog N C(e1,0) N C(e2,0)

Proof. From Table 3, we immediately deduce that (tooNtwe, Ne(., 0)) 2 (e33) and (N0, Ne(e, o)
(c22). The conclusion now follows as in Lemma 3.6.12 by noting that (ca2,c33) = 100 N ¢(, )

C(€270).

0D Iv

. . —=expl,V
Ideal relations in RﬁXp .
o

Lemma 3.6.15. Consider the ring ROPLY (cf. Table3) and let Iy, e €(0,0) N €(0,1) M €(e4,0)-

M,
Then

(1) Iz, = (11653 — c13¢31, C23€31, Ca3(C32¢5, — daacar)),
(2) ¢(er,1) N 0,00 N C(eq,0) = (€11, C13€31),
(3) ¢0,1) N €0,0) = (€23, c11€53 — c13€31).

Proof. As in the proof of Lemma 3.6.13, it suffices to work in the ring R which has the same
VvV

presentation as E%; except that all cfj are set to 1. Recall that c39 def ¢392 — dogcgy in R.
We start with item (1). From Table (3), we easily deduce

In, 2 (c11 — c13¢31, €23€31, €23C32)

i.e. a surjection
(3.16) R/(c11 — c13c31, cascst, casCan) — R/,

which we claim it is an isomorphism. Note that by construction the ring fi/ Ip, has three minimal
primes, and it is equidimensional of dimension 3. B

From [LLHLM18, Proposition 8.11], we immediately deduce that the ring R/(c11—c13¢31, C23¢31, C23¢32)
is isomorphic to the quotient of the power series ring F[cs1, c13, dog, C32, ca3] by the ideal generated
by the following elements:

b—c _
C13C31C23, c13¢31da2 — ﬁ0130327 C23C31,
€23C39, (a — 6)013631d22 + (C — b)013532 + (—1 —a+ 6)623631
i.e. by the ideal generated by
b—c_ -
c13(c3idar — p— bC32), C23C31, €23€32,
or equivalently, the ideal generated by
b—c b—c
c13(c31dog — C32), €23C31, ca3(c31dan — C39).
13(c31d22 p— 32) 23C31 23(c31d22 p— 32)

In other words, by an evident change of variables we have
R/(c11 — c13can, casean, caslan) 2 F[X,Y, Z, W, ] / (XY, Y Z,W Z)

and the latter ring is equidimensional of dimension 3 and has 3 irreducible components. It is
moreover reduced, since the ideal of relations is generated by square-free monomials.
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The argument to prove (2) is completely analogous and we only sketch it. It is immediate to
obtain from Table 3 the inclusion ¢(., 1)N¢(9,0)N¢(ey,0) 2 (€11, c13¢31). From [LLHLM18, Proposition

8.11], we see that ﬁ/(cn, c13¢31) is isomorphic to
Fle1s, 23, €31, €32, d22] /(c13¢31, C13C32, C31C23C32, €31 (K23 — c13da2)) =
= F[c13, a3, c31, €32, d2a] / (c13¢31, C13C32, c3123),
for some k € F* depending on (a,b,c). The conclusion is obtained by an analogous argument to

the previous case.
The proof of item (3) is similar and left to the reader. (Note that ¢ 1) M c,0) 2 (c23,c11 —

c13¢31) and use the explicit presentation of R given by [LLHLM18, Proposition 8.11] to check that
R/(c23,c11 — c13c¢31) is reduced with 2 irreducible component of dimension 3). O

Lemma 3.6.16. In E%Xpl’v
,Q

(3.17)  (Ia, N c(sl,l)) + (Iao N C(ea,1) M C(a2—al,0)) = Ipo»
(318)  (€(ey,1) Me(0,0) M C(ez,0) M e(0,1)) + (€(er,1) N €(0,0) M €e3,0) N €ez,1) = Cer,1) N €(0,0) M €(es,0)
(3.19)  (c(0,1) N €0,0) N €(es,0)) + (0,1 N €(0,0) N C(ea—e1,0)) = €0,1) N €(0,0)-

, we have

Proof. We work in R and set €39 et c32 — doocs1. An elementary check on the list of generators of
the ideals In,, ¢(cy,1)s €(cy—ey,0) and ¢, 1) shows that

(Tag M€y 1)) 2 (c11 — c13¢31, c23€31), (Lo N €(ep,1) N €ey—er,0)) 2 (c23C32)
and we deduce (again by looking at the list of generators of I,) that

(IAO N c(61,1)) + (IAO N Clea,1) N c(€2—€1,0)) 2 IAO‘

The reverse inclusion is obvious.

Similarly, (611) - Cleq,1) N €(0,0) N C(e2,0) N Clea,1) and (011 — 013031) - Cleq,1) N €(0,0) N C(e2,0) N €0,1)-
Hence (¢(e;,1) M ¢(0,0) N €(e5,0) M €0,1)) + (¢(e1,1) N €0,0) N €e2,0) N ea,1)) 2 Cer,1) N €0,0) N E(es,0)-

The proof of item (3.19) is similar and left to the reader (note that c11 — c13¢31 € (¢(0,1) N ¢(0,0) N
C(cp,0)) and c23 € (€(0,1) N €(0,0) N €(cy—e1,0)))-
Remark 3.6.17. The ideal relation appearing in Lemmas 3.6.15, 3.6.16 are compatible with the outer
automorphism of wV. Explicitly, define 5 (123)t(9,0,—1) and let w — 5w ~! be the corresponding
outer automorphism on WV. Then § acts on >0 and the ideal relations of Lemmas 3.6.15, 3.6.16

holds for shape g with ¢, 4,) replaced by ¢ ( 51 (i) a.). As an example, for shape § the relation

(3.19) becomes (c(-,,1) N €(e;,0) N €0,0)) + (€(er,1) N €e1,0) N Cer—e2,0) = Cer,1) N ey ,0)-
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TABLE 3
Wy_1_it_1 AU-T=D) (wiy a;) € Xg+ o) z
) ver vely 0 (21 +€2,0) (c11) BytB
By ( vcy veze 0 )
v(es) +vd3y) vesp  Cig
cric = 0; (e2,1) (€22) a
(=1 —a+c)cfyezr — (=1 —=b+c)egoern =0
afy ( v2ery 0 0 ) (1 +€2,0) (c2) ayta
! v(ea1 + vday) co2  Chy
v(earcas(cay) Tt +vds1) veh, cs3
coc33 = 0; (e1,1) (c33) B
(=1—a+c)enchy + (b—c)dzgicn =0
afa e enes(ch) Tt dssen(chy) T+ vely (0,0) (e11) 7*
0 vChy veo3
vey veso vdss
(0,1) ((a = b)cagesn — (a — ¢)chydsz) id
c11((a —b)easesr — (@ — c)cizdss) =0
czera(chy) ™t e c13 + vy (e1,1) (c12,¢31) B
o8 ves, C99 ca3 + vdas
’ vesy vehy  czc3(chy) Tt + vdss
(61— £2,0) (es1,d33) Bytap
c12023 — €213 = 03
ce31 = 0;
chyc13 — dzgcia = 0 (0,0) (€12, €22) ayt
ci2((a — b)esrdas — (b — ¢)dsschy) = 0;
(=1 —a+c)eazchy = (=1 — a+b)cadss
(0,1) (c22, (b — c)dsscs; + (a — b)esidas) a
cir (ch)teriess + vel, €13 (e2,1) (da2,c11) vra
Ba 0 vday vch3
! vy ve32 ¢33 + vdss
(g2 —€1,0) (da2, c32) aytBa
ciiesg = 0;
dzz(clsul — cidsg) = 0;
c11((a — b)esachs — (a — ¢)daadss) = 0; (0,0) (c11,c13) Byt
(1+a—c)ezachzein = 01?((0 — b)esachy — (a — c)daadss)
(0,1) ((a = b)esachy — (a — ¢)daadss, c13chy — c11dss) B
. o . (e1,1) (c11, c13,¢31) ByTB
1?(};11 (CZ Iz;ﬁ ;: (£2,0) _ (c11, a1, 32¢3; — daacan) _ ’Ytraﬁ
o vea ves (cy)~Legrens + ve, (e2,1) (c11, c32¢hy — daoesr, (a — b)eizdar + (=1 — a + ¢)cascly) 7
- k 21 : 33 (62(7 51),0) ((:Qg,(lil 3205, — ()1,22(:31) (y;’?'ﬁfu
o 6 ) elati ) — 0,0 €11, €13, €23 Bay
see §3.6.2 for the relations among coefficients ©0.1) (11 — craeat, e, (@ — D)emdag + (¢ — 0)(caachy — daacst)) B
(e1,0) (ciiyi=1,2,3, c21,C31,C23) By Ba
cn +veqy 12 €13 (e1,1) (c31,¢33,¢11, (=1 —a+c)c —(—1— a+ b)cracly, carciz — ccly) | Br B
i veal Co2 + VC3y 3 (€2,0) (Ciiyi=1.2,3, C12,C31,C32) ayTap
vest vese €33+ vC33 (e2,1) (€12, c22, ¢11, (@ — b)earcrs — (=1 — b+ c)easciy, Ca1632 — C31C5) ayTa
see §3.6.2 for the relations among coefficients (0,0 (cii,i=1.2,3, c13,023,C12) aBaryT
0,1) (23, €33, €22, (@ — b)carezr — (a — ¢)e31¢5y, c32¢13 — C12C53) afa

The table records data relevant to Theorem 3.6.4. The first column records the

components of the shape w = w(p, 7). The second column records the form of the
matrix of partial Frobenius AY~1=% and the presentation of the ring R;;p;fv . in
terms of the entries of A~179_ The fourth column records the prime ideal C(wiaz)
in the statement of Theorem 3.6.4. The last column records the element z* € W,
that occurs in Proposition 3.6.9, which controls the minimal type 7 of the weight
given by the third column with respect to p. Thus 7/ = 7(sz*, u + s2*(0)). Note
that w(p,7) = w(p,7)Z"'. Finally, the structure constants that feature in the

epV

presentation of Ry _are given by (a,b,c) € Iﬁ‘f’, with (a,b,c) = si_l(ui) mod p.
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o 1 dof -
Wy_1_it_1 AU (Wi, ai) € X Wi = Ywi0) O Cwi1) &
C13C12 ((J§2)71 Cc12 c13 + 1)(373
vc;l 22 23 + Udzg
ve31 UC§2 631023(831)71 + Ud33
aff c12¢23 — c22¢13 = 0; (0,1), (0,0) (c22) a
coacz1 = 0;
c39c13 — dazcie = 05
c12((a — b)esidaz — (b — ¢)dszcsy) = 0;
(—1—a+c)easchy = (=1 —a+b)caadss
cin (c)eness + ey c13
0 ’UdQQ vc§3
chl V€39 c33 + vdss
« 0,1), (0,0 c13¢%, — c11d
6 cric30 = 0; ( ) ( ) ( 13€31 11 33) 5
daa(c13chy — c11dsz) = 0;
611((a — b)CSQng — (a — C)d22d33) = 0;
(14 a — ¢)eszcascis = ci3((a — b)esacss — (a — ¢)daadss)
o c11 c12 + Uy c13 (€2,1), (e2,0) (c32¢5; — dagcear, c11) vra
vcy  co2 + vda 23
vesy ve30 (c31) Lesicos + veks
see §3.6.2 for the relations among coefficients (0,1), (0,0) (c11¢55 — c13¢31, €23) Ba
c11 + vy c12 c13 (e1,1), (€1,0) | (€33, c11, €31, ¢fres — carcas) | By 8
id Ve €22 + VCy €93
ve3l vC32 €33 + VC34
see §3.6.2 for the relations among coefficients (e2,1), (e2,0) | (c11, c22, c12, Choc31 — C32¢21) | oyt
(0,1), (0,0) | (c22, 33, ca3, C33c12 — c13¢32) | Ba

The table records further data relevant to Theorem 3.6.4. The meaning of the

columns is the same as in Table 3.
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TABLE 4
@9,717it7l A (f=1=9) 73’/7171-1&—; A (f=1=1)
veld vchy 0
vy 0 0 0 v2chy 0
aBay ’U;Cél ’Uc:ﬁ /O Byary vchy  vChy +v3dhy  Chh
vidy vegp
(-1 =+ )yt = (=1 = '+ )elachy = 0
) ) ) A 0/1/2 s +/vd/13
* *
a1 wdyy g3 0 wvchy UCag3
BvBa 0 2%y 0 yaBa 0 0 V2
0 v2chy vy
(a/ — )cizehh — (a/ —b)chzchy = 0
aten 0
veip 0 welg v(chy +vdy) ey chy
aya vchy by vdyg aByp v2dy, 0 wvds
0 0 v
(=L —d' +V)cy s — (V' = )y chs =0
Ay ()Tt adiy ()T +udis vdy; s s
0 vehs vchg (chady (A1) Huch]) chy  chycha(cs) !
afa veksh VCho vdf, B8 vich 0 vehy
Cln((a/ = V)chschy — (a' - C/)C/zzdgs) =0 0/22((17, —)eiciy — (=1 —a' +V)eqy /11) =0
velh vy 0
UCh vdy, chy
yay vchchy (ch3) 1 v(chaday(chy) Tt Huchs)
(=1 —a' +)hach — (1 =V +)hidyy) =0

This Table records the relevant data for the type 7’ occurring in the proof of Theorem
3.6.4. The first column records the components of the shape w' = w(p,’).

The

second column records the form of the matrix of partial Frobenius A’ (/=1=9) and the
. . =expl
presentation of the ring R%, GY

f—1—14
. . D} 1’
constants that feature in the presentation of RZP j

Ml g,
where (a/,',c) = (s})7'(1}) mod p. Note that (s;)~!(u}) =zf_1-i(a,b,c) mod p.

7

in terms of the entries of A’(/=1=9_ The structure

are given by (a’,b', ) € Iﬁ‘g
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4. LATTICES IN GENERIC DELIGNE-LUSZTIG REPRESENTATIONS

The aim of this section is to classify lattices with irreducible cosocle in generic GL3(F,) Deligne—

Lusztig representations, providing the crucial representation-theoretic input to deduce Breuil’s
lattice conjecture from the weight part of Serre conjecture. The main result (Theorem 4.1.9)
states that the submodule structure of lattices with irreducible cosocle can be predicted using the
extension graph introduced in §2.
Qutline of the proof. Let R be a generic Deligne-Lusztig representation. We have two main steps in
the proof of the classification theorem: first, by local algebraic methods, we describe the reduction
of lattices with irreducible cosocles isomorphic to a lower alcove weight with defect zero (Theorem
4.2.16). Second, in §4.3, we introduce another notion of distance related to the second part of
Theorem 4.1.9, which we call saturation distance. It turns out that this notion is closely related to
the submodule structure of the reduction of lattices.

Using a crucial global input coming from the geometry of Galois deformation rings, we show that

(1) if measured from o the graph and saturation distance coincide, then the reduction of the
lattice with cosocle isomorphic to o is as predicted in Theorem 4.1.9 (Proposition 4.3.16);
and

(2) measured from a lower alcove weight of defect zero, the saturation distance and the graph
distance coincide (Proposition 4.3.17, which uses Theorem 4.2.16);

In contrast to the other notions of distance that we introduce, the saturation distance involves
lattices in characteristic zero, making it far more flexible. Taking advantage of this flexibility, we
finally show by an induction on defect that the saturation distance and the graph distance coincide,
completing the proof of Theorem 4.1.9.

Structure of §4. For R as above and o € JH(R), let R° denote the unique (up to homothety) O-
lattice in R with irreducible cosocle o and write R’ to denote its reduction modulo w. The first main
step is in §4.2. The argument uses the modular representation theory of algebraic groups to embed

R’ into the G & Gy (IFp)-restriction of a tensor product V), of algebraic Weyl modules with non p-
restricted highest weight (see §4.2.2 for the definition of V). The content of §4.2.3 is the description
of V,,|g provided by Theorem 4.2.7. This theorem describes the Jordan-Holder constituents of V,,|q
and the existence of non-trivial extensions between constituents at graph distance one (cf. the key
technical result Proposition 4.2.10). The embedding of R’ in V,, is constructed in §4.2.4. One
first proves the existence of a non-zero (and unique up to scalar) morphism R — V,. (Proposition
4.2.15); an inductive argument, using the description of the submodule structure of V|, then shows
that the image of this morphism contains all the constituents of R°. The submodule structure of
R’ is then obtained from that of Vi

The second part of the proof of Theorem 4.1.9 is the content of §4.3. The key insight is the
introduction of the auxiliary notion of saturation distance on JH(R) in §4.3.1 which relates the
position of saturated lattices in R?. Using a global input, we give in §4.3.1 a first coarse relation
between the saturation and the graph distance (cf. Corollary 4.3.8). Subsequently, we prove in §4.3.2
that the three distances are actually equal provided that o verifies an appropriate condition relating
its defect, its graph distance and its saturated distance (we say that o is mazimally saturated in R).
In particular, if o is maximally saturated in R, the structure of R’ is predicted by the extension
graph (Proposition 4.3.16).

We are hence left to prove that all constituents of R are maximally saturated. This is shown by
an induction argument in §4.3.3. The proof of Theorem 4.1.9 concludes this section.

4.1. The classification statement.
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4.1.1. Some generalities. Let C be a nonzero finite abelian category over F. Let M be a nonzero
object of C. A decreasing (resp. increasing) filtration % on M is a collection of subobjects F#™(M) C
M (resp. Fn(M) C M) for n € Z such that F"1 (M) C F*(M) (resp. Fn(M) C Fpy1(M)) for
all 7. A filtration .% is ezhaustive and separated if #™(M) = 0 for i sufficiently large (resp. small)
and Z"(M) = M for n sufficiently small (resp. large), and this property will always be assumed to

hold. We write gr' (M) & ;17(%\21) (vesp. gry (M) & ﬁfi(ljg\}))’ and omit .# from the notation if

it is clear from context. A filtration is semisimple if gr’s (M) (vesp. gr,’ (M)) is semisimple for all
n € Z. By shifting the filtration, we will assume that gr's (M) = 0 (resp. gr” (M) = 0) for n < 0
and that gr (M) # 0 (resp. grg (M) # 0). The length of a filtration is the maximal ¢ € Z such
that gré;l(M) # 0 (resp. gry (M) #0).

The socle of M, denoted soc(M) is defined to be the maximal (with respect to inclusion) semisim-

ple subobject of M. The radical of M, denoted rad(M), is the minimal (with respect to inclusion)
def

subobject of M whose corresponding quotient is semisimple. The cosocle of M is cosoc(M)
M /rad(M). We inductively define the radical and socle filtration on M: we set rad’(M) = M and

ef

let rad™(M) & rad (rad"'(M)), and set soc_1(M) = 0 and let soc, (M) be the inverse image,
via the canonical projection M — M /soc,_1(M), of soc (M /soc,—1(M)) C M/soc,—1(M). Then
the radical (resp. socle) filtration is a decreasing (resp. increasing) semisimple filtration. Moreover,
gr¥ (M) = cosoc(M) and gri’°(M) = soc(M). Since formation of cosocle (resp. socle) is right
(resp. left) exact, the filtration induced from the radical (resp. socle) filtration on a quotient ob-
ject (resp. subobject) is the radical (resp. socle) filtration. The lengths of the radical and socle
filtrations coincide, and we call this value the Loewy length of M, and denote it by ¢¢(M). Any
semisimple filtration has length at least £/(M), and we say that it is a Loewy series if its length
equals ¢0(M). If F is a decreasing Loewy series than we necessarily have

(4.1) rad" (M) € F(M) € s0cu(ag)—n—1 (M)

for all n € {0,...,00(M)}. We say that M is rigid if rad™ (M) = socyypr)—n—1(M) for all n.

We say that M is multiplicity free if every Jordan—Holder factor of M appears with multiplicity
one. We now suppose that M is multiplicity free. We say that o € JH(M) points to ¢’ € JH(M)
if there exists a subquotient of M which is isomorphic to a nontrivial extension of o by o’. We say
that a subset S C JH(M) is closed if o € S and ¢ points to ¢’ imply that ¢’ € S.

Proposition 4.1.1. The assignment of JH(N) to a subobject N C M gives a bijection between
subobjects of M and closed subsets of JH(M).

Proof. 1t is easy to see that JH(N) is a closed subset of JH(M). Suppose that S C JH(M) is a
closed subset. Let N be the minimal subobject of M with S C JH(N). Suppose that JH(N) \ §
is nonempty and contains o. If ¢/ € JH(N) points to o, then ¢’ is not in S since S is closed. By
replacing o by ¢’ repeatedly, we can assume without loss of generality that ¢’ does not point to o
for all o’ € JH(N). Let N’ be the maximal subobject of N such that o ¢ JH(N’). This maximality
implies that the socle of N/N' must be isomorphic to o. By the assumption above, there is no
subobject of N/N' which is an extension by o, and therefore N/N’ is isomorphic to o. Then the
existence of N’ contradicts the minimality of V. O

Suppose that M is multiplicity free and that % is a decreasing (resp. increasing) filtration
on M. For o € JH(M), we define d¥(0) (resp. di;(c)) to be the unique value n such that
Home (o, gr'% (M)) (resp. Home (o, gr; (M))) is nonzero. For .F semisimple, we say that o € JH(M)
F -points to o' € JH(M) if o points to o’ and the (shifted) induced filtration on the subquotient
which is isomorphic to a nontrivial extension of o by ¢’ has length two.
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If M is multiplicity free, we can attach a directed acyclic graph T'(M) and a subgraph I"z (M) of
['(M) (vesp. I'7 (M)) of T'(M)) where the vertices are in bijection with the Jordan-Hblder factors
of M and there is an arrow o — ¢’ in I'(M) if o points to ¢’ and an arrow 0 — ¢’ in I'¢(M)
(resp. in I'7 (M) if o .F-points to o’. An extension path (in M) is a directed path in T'(M), and
an extension path in .7 is a directed path in 'z (M) (resp. T'7 (M)). The following proposition is
immediate from the definitions.

Proposition 4.1.2. Let N be a subquotient of M. If F is a semisimple filtration on M, then it
naturally induces a semisimple filtration on N. Moreover, T'(N) (resp. T z(N) and T7 (N)) is the
mazximal subgraph of T(M) (resp. T.z(M) and T7 (M)) with vertices corresponding to JH(N).

Lemma 4.1.3. Suppose that M is multiplicity free and o € JH(M). If dM (o) > 0 (resp. d&5F (o) >
0), there is a o’ such that A, (0’) = dM (o) — 1 (resp. d&5F(0”) = &5 (o) — 1) and o’ rad-points to

o (resp. o soc-points to o).

Proof. We consider the radical filtration; the socle filtration is analyzed similarly. Let d = d™ (o).
Then the radical filtration on rad? " '(M) is a shift of the radical filtration on M by definition
and induces the radical filtration on rad?=!(M)/rad?*!(M). Then there is a o’ € JH(gr‘i;dl(M )
which rad-points to o, otherwise o would not be in the radical of rad? =1 (M) /rad?*t1 (M) which is

grd o (M). 0

Corollary 4.1.4. Suppose that M is multiplicity free and o € JH(M). Then there is an extension
path in the radical (resp. socle) filtration of length d™ () (resp. A5 (o)) ending (resp. beginning)
with o.

Proof. The case dM () = 0 (resp. d5°(0) = 0) is trivial. The induction step follows from Lemma

4.1.3. O

Lemma 4.1.5. Suppose that M is multiplicity free and F is an increasing semisimple filtration
on M. If o points to o’ then di (o) > di;(d").

Proof. Let d be dy,(c). By Proposition 4.1.1, #4(M) contains ¢’ as a Jordan-Hélder factor. Thus
Ay (o) > di;(0"). If d7; (o) = di;(0"), then there is a subquotient of M which is isomorphic to a
direct sum of o and ¢’. This contradicts the fact that o points to o¢’. U

Proposition 4.1.6. Suppose that M € C is multiplicity free. Then M is rigid if and only if
for every o € JH(M), there is an extension path in the radical (resp. socle) filtration of length
(M) —1—dM (o) (resp. L{(M) —1— d5F(0)) beginning (resp. ending) with o.

rad

Proof. First suppose that M is rigid. There is an extension path P,,q in the radical filtration of
length dﬁ‘gd(a) ending at o by Corollary 4.1.4. By rigidity, this is an extension path in the socle
filtration of length d, (o) = ¢/(M) — 1 — d53°(0).

Now suppose that there is an extension path in the radical filtration of length £4(M)—1—d, (o)
starting with o. Then

& (o) = (M) — 1 - dy (o)

by Lemma 4.1.5. The reverse inequality is implied by (4.1), and we conclude that gr] ;(A) and
gr?@)(cM),l,n(M ) are isomorphic, and thus that M is rigid. O

The following is self evident.

Proposition 4.1.7. Let M € C be multiplicity free. Then the dual object M* in the dual abelian
category C* is also multiplicity free. A decreasing filtration % on M gives rise to an increasing
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filtration F* on M*. Then the map sending o € JH(M) to o* € JH(M™*) extends to isomorphisms
of directed graphs T'(M) = T'(M*) and T (M) = T'7"(M)* where —* denotes the transpose of a
directed graph. In particular, if o9 — 01 — -+ - — 0y, is an extension path in .F , then o), — o) —
-+« = 0§ is an extension path in F*.

4.1.2. The main result. We now use the notation from §4.1.1 with C the category of finite F[G]-
modules. Let R be a 2-generic Deligne-Lusztig representation of G over E. By [Her09, Appendix,
Theorem 3.4] (see the proof of Proposition 2.3.5), R is residually multiplicity free. We will show
that the elements in JH(R) are p-regular in Lemma 4.2.13. If 0 € JH(R), then there exists a unique
(up to homothety) O-lattice R C R with irreducible cosocle isomorphic to o by [EGS15, Lemma
4.1.1], and we write R’ to denote its reduction modulo w. In §2, we defined a distance function dgph
on p-regular Serre weights. We now want to relate the graph distance to the submodule structure

of R”. To simplify notation, we fix R and write d7 (o) for d (o).

Definition 4.1.8. Let V be a set of (isomorphism classes of) weights o = F(u) with p p-regular.
Let 0 € V. Let I' be a directed graph with vertex set V. Then we say that I" is predicted by the
extension graph with respect to o if there is an edge from x; to kg if and only if dgph(/ﬁ, ko) =1
and dgpn (o, k1) < dgpn(0, k2) (see Definition 2.1.8).

Our main result on the representation theory side is the following:

Theorem 4.1.9. Let R be as above and 13-generic. Let o € JH(R). Then

(1) dgpn(o, k) = d2,4(r) for all k € JH(R), in particular,
U(R’) = 2Defg(0) + 3(f — Defg(0)) + 1;

(2) Frad(ﬁa) is predicted by the extension graph with respect to o;

(3) T(R’) is predicted by the extension graph with respect to o;

(4) R® is rigid; and

(5) if & € JH(R) and R* < R is a saturated inclusion, then plesn(%-9) R7 < R* js q saturated
inclusion.

Remark 4.1.10. By Proposition 2.3.5, every maximal geodesic in JH(R) starting from o has the
same length. Then item (4) follows from items (1), (2), and Proposition 4.1.6. Furthermore, (3)
and Proposition 4.1.1 gives a classification of submodules of R’, from which one can easily deduce
items (1) and (2).

The proof of Theorem 4.1.9 will be carried out in the following subsections.

4.2. Injective envelopes. We now relax our hypotheses on G, but keep much of the related
notation. Let G, be a connected reductive group over [, and let G be the base change G|, xF, F.
Assume that G is split, and isomorphic to G¢ xp, F where G is a connected split reductive group
over [F),. Let Qger be the derived subgroup of G, and let G e the base change Qger xp, F. Assume
that G is simply connected. Let G (resp. G9°7) be the finite group Gy (F,) (resp. GE(F,)). Let
F : G — G denote the relative Frobenius with respect to G,. There is an automorphism 7 of G,
and hence its based root datum, so that F oxw : G — G is the relative Frobenius with respect to
Gy. This definition of 7 is consistent with the special case introduced in §1.4. Let h be the Coxeter
number of G. We will eventually specialize to the case where G is a product of copies of GL3, so
that h = 3.

We define Proj(o) to be the projective hull of ¢ in the category of F[G]-modules. As F[G] is a
Frobenius algebra, we have an isomorphism Proj(c) = Inj(o) where Inj(o) denotes the injective
envelope of o (again in the category of F[G]-modules, cf. [Alp86, §6, Theorems 4 and 6]).
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4.2.1. Algebraic groups, Frobenius kernels, and finite groups. In this section, we compare injective
envelopes of weights for representations of Frobenius kernel and of finite groups. One goal is to
prove that, under genericity conditions, the graph distance introduced in §2.1 can be characterized
in terms of non-vanishing of Exté—groups (Lemma 4.2.6). We moreover introduce and describe a
non p-restricted Weyl module V), which will play a key role in the proof of a particular case of
Theorem 4.1.9

Let G, denote the Frobenius kernel of G and G;T denote the product of T and G; in G. We
similarly define Q‘fer and Q(lierzder_ The G-representation L(x) remains irreducible when restricted
to GiT and G, (cf. [Jan03, 11.3.10 and I1.9.6]) and we will use the standard notations Li(u) =
L(p)le, Li(p) = L(p)|g,T (cf. loc. cit.). We write Q1(1) to denote the injective envelope of the

irreducible representation El (1) in the category of Gy T-modules. It restricts to an injective envelope
of Li(p) in the category of G;-modules. As in the case of the finite group G, it is isomorphic to a
projective cover of Lj(u) as well. We recall the following important result.

Theorem 4.2.1. Assume that p > 2(h—1) and that G has no factors of type Ay. Then @1(/0 has a
unique G-module structure which will be denoted by Q1() in what follows. In particular, socg@Q1(p)

is isomorphic to L(p) since L(p) is the unique extension of Li(p). Assume that p € X1(T) is h—2-
deep. Then

(4.2) Q1(p)le = Proj(F(p)) = Inj(F ().

Proof. The first part of the theorem is well known, cf. [Jan03, 11.11.11]. In what follows we deduce
the isomorphism (4.2) from [Pil93, Lemma 6.1] (where it is stated when G is semisimple). It suffices
to show that Q1 (p)|q is injective and its socle is F'(u).

Claim 1. Let M be a G-module. Then socder (M| gaer) = socg(M)|gder. The analogous statement

holds true for G;T and Q‘lierzder and for the finite groups G and Gder,

Proof of Claim 1. Let Z & G/GY" (resp. Z, & G,/GS*). For e € {{, 1} the group Z, is
diagonalizable and hence, by the Hochschild—Serre spectral sequence [Jan03, 1.6.9(3)], the restriction

G Do . Lo .
functor Resa(;er (which is exact) induces a canonical isomorphism
e

(4.3) Extg (M, N) = H°(Zy, Extlge (M| gaer, N]|gaer))

Qiler
for all i € N and all G,-modules M, N. Since the G -restriction of an irreducible G,-module
G
égler
[Jan03, 11.9.6 (11)], this implies the required statement for the groups G, T, G{rT.

. def . L .
Since Z = G/G9 has order prime to p, we also have a canonical isomorphism

(4.4) Ext (M, N) = H%(Z, Exthae (M |gaer, Nlgaer)
for all 4 € N and all G-modules M, N which implies the statement in the case of finite groups. [

remains irreducible, we conclude that Res commutes with formation of socles and cosocles. By

Claim 2. Let v be a p-restricted weight. Then Q4 (v) \G(ljeerer is the injective envelope of Ly (v) |G(lierr_pde.r

asa G (ferzder—module.

Proof of Claim 2. By Claim 1, the socle of @1(1/) |Qlierzder is isomorphic to El(y)| Geryer It suffices
to prove injectivity. By [Jan03, 11.9.4], it is enough to prove injectivity for the the restriction to
Ger. As G{*" and G, are both finite, and G is closed in G, we deduce that Resg}ier maps
injectives to injectives (since it has an exact left adjoint cf. [Jan03, 1.3.5, 1.8.16]). - O
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We are now ready to prove (4.2). We show that Qi(u)|g is an injective G-module with socle
isomorphic to F'(u). By [Pil93, Lemma 6.1] (which holds also holds in the nonsplit case, cf. the
final remark of [Pil93, §11]) and Claim 2, we have

(4.5) Q1(1)|gaer = Inj(F ()| gaer),

so that Q1 (1t)|qaer is an injective G4"-module with socle isomorphic to F(u)]der-
We first show injectivity. The functor of G/G9-invariants is exact on the category of G/Gder-
representations. We hence obtain a canonical isomorphism

Homg (e, Q1(p)|c) = (Home (o, Q1 (1)|qaer))

and Homg (e, Q1(1)|g), being the composite of two exact functors, is therefore exact.

The socle of Qi(u)|g contains a submodule isomorphic to F(u) and its restriction to G4 is
isomorphic to F'(ut)|qaer. Thus, the socle of Q1(u)|q is isomorphic to F(p). (We are grateful to the
referee for simplifying the argument in our first version). (|

G/Gder

Recall that an irreducible G-module L(x), with k € X (T), is said to be p-bounded if (k, ") <
2(h — 1)p for all coroots @ € RY; a G-module is p-bounded if all its Jordan-Hélder factors are
p-bounded. Similarly, a G-module is defined to be m-deep if the highest weights of all its Jordan—
Holder factors are m-deep. The following lemmas will be used several times in the rest of this
section.

Lemma 4.2.2 ([Pil97], Lemma 3.1). Let M be a G-module. If M is 3(h — 1)-deep with p-bounded
highest weight, then

soc(M)]a = soct (M]g), rad’y (M) = radi; (M]c)

Proof. The statement on the socle filtration for G and G follows from the proof of [Pil97,
Lemma 3.1]. While loc. cit. assumes that Qger is split over [F),, the proof applies setting n = 1 and
using that L(pA1)|qgaer is isomorphic to L(mA;)|qder rather than L(A1)|qder. By duality, noting that
M is 3(h — 1)-deep if and only if its linear dual M* is 3(h — 1)-deep, and that SOCZZ(M)%(M*) =
(M /radi(M))* for e € {Gder G} we obtain the analogous statement for the radical filtration
(recall that ¢¢(M) is the Loewy length of M). The general case follows from Claim 1 in the proof
of Theorem 4.2.1. O

Corollary 4.2.3. Let p € X1(L) such that Q1(p) is 3(h — 1)-deep. Then

soc(Qu())]a = soc (Inj(F(p))), radg(Q1(p))lc = radg (Inj(F(n))).
Proof. This follows from Theorem 4.2.1 and Lemma 4.2.2. O

If v,k € X*(T) we let my(v) & dimp(L(k)),. Moreover we write v € L(k) as a shorthand for

(L(K))v # 0.

Lemma 4.2.4 (Translation principle). Assume that p > 2(h —1). Let A\, £ € X1(T). Assume
that for all weights v € L(§), the weights A + v belongs to the same alcove as A. Then we have the
following isomorphism of G-modules:
(1) L) @r L) = @ LA +v)ome),
vEL(§)

(2) (M) @r L&) = D QI(AJFV)@mg(V)'

veL(§)
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Proof. We first prove item (1). The isomorphism holds upon restriction to G{¢" by [Pil93, Lemma
5.1]. As the LHS and RHS of (1) have the same central characters, the GI*-isomorphisms extend
to G-isomorphisms by (4.3).

We now switch to item (2). By the same argument as above, we deduce from [Pil93, Lemma 5.1]
a G;T-equivariant isomorphism

(4.6) QN erLi©) = @ G+ v)¥mt),
veLi(€)

By item (1) and the isomorphism socg(@Q1(\)) = L(X) from Theorem 4.2.1, we have a G-equivariant
injection

(4.7) socg [ B @A+v)®M) | = @ LA+ v)®™) = L)) @F L(€) — Q1()) @ L(€).
veL(£) veL(E)

We claim that in the full subcategory of p-bounded G-modules the functor Homg (e, Q1(\) ®@r L(§))
is exact. Granting the claim we deduce from (4.7) a G-equivariant morphism

@ Q1A+ v)®me™) s Q1 (\) ®F L(€)

veL(§)

which is injective since it is injective on socles. The morphism is hence an isomorphism by (4.6)
(note that El(g),, = L(&), for all v € X;(T) since £ € X1(T)) and item (2) follows.

We prove the claim. It will be enough to prove that for any irreducible, p-bounded G-module
L(k) one has

(4.8) Ext; (L(x), Q1(A) @ L(§)) = 0.

As L(k) is p-bounded we can write £ = £(*) + pw, where x(©) € X;(T) and w, € X (T) satisfies
(we, V) < 2(h —1) for all coroots a¥ € R". Recall that Q1(\)|g,r = Q1(\). As Q1()) is injective
as a G;-module the Lyndon-Hochschild-Serre spectral sequence [Jan03, 1.6.6(3), 1.6.5(2)], together
with (4.6), provides us with an isomorphism

Ext (L(x), Q1(A) @r L(€))
o Extlg/gl (L(pw,{), Homg, (Ll(,i(o))’ @1()\) QR Ll(f)))

= EthQ/Q1 <L(pw,.§), I’IOH]Q1 (Ll(:‘i(o)), @ @1()\ + V))@mé(l/))
velLi(§)

p

Eme(v)
N Extlg(L(wn), L(M)) T A — kO € pXxXO(D)
0 else.

As (wy, ") < 2(h—1) < p—2 for all coroots " € R" it follows that w, lies in the lower p-restricted

alcove; in particular, there are no algebraic extensions between L(w,) and L(w) for any w € X°(T).
This establishes (4.8). O

4.2.2. The case of GL3. We now describe the modules Q1(u)|g in more detail in the case Gy is
[[5es Resk,/r,GL3 as in §1.4 and p € X;(T). We recall the alcove labeling for SL3 in [Hum06,

§13.9] and write
def

o {A B, C D, E F G, H, I, J}.
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If X € o let wxy € W, be the unique element such that wyx - Cg = X. For ¢ € J we define

wx; € W, in the evident way. For X € &/ 7 we also define @ x € W, in the evident way. In what
def

follows we let f = #J.

Assume from now on that p > 5 and p is 2-deep. Let p°P be wp - p and write P as the sum
> 157, Let Qq(p;) be the GL3 p-module defined in Theorem 4.2.1. Tt is rigid with Loewy length
20(Q1(p)) = 6+ 1 and is endowed with a Weyl filtration (cf. [Jan03, I1.11.13, I1.11.5(5), I1.4.19] see

also [Humo06, §13.9]) with submodule V,, Lof V(P +pnt), the GL3 /r-module obtained by extension
of scalars from the Weyl module for GL3/p, with highest weight w;¥ + pni. Moreover, the socle
filtration of Q1(u;) (cf. [HumO06, §13.9] for a concise reference; see also [AMO1, Proposition 8.4]
and its proof and [Jan03, §I1.D.4]) and V), (cf. [BDMI15, §4], see Table 6 below) are known. (The
condition that p is 2-deep is to guarantee that all V,, has maximal length; their Loewy length
in this case is 3 + 1.) In particular, one sees that V), is a multiplicity free submodule of Q1 (u;).
Then the G-modules Qi(x) and V, are defined to be the tensor products ®;Q1(u;) and ®;V,,,
respectively.

The module Q1 (u) is rigid with Loewy length £¢(Q1(n)) = 6f + 1. The socle filtration on Q1 (u)
is the tensor product of the socle filtrations Fil on Qq(y;) for ¢ € J, and the graph I'(V,,) is the
product [[,I'(V,,). In particular, V,, is rigid. Let Fil be the unique increasing Loewy series for
Q1(p); its restriction to V), is the unique Loewy series for V,.

Recall that an irreducible F[G]-module F" is said to be n-deep if we can write F' = L(u)|g(r,) for
some p € X;(T') which is n-deep. A F[G]-module is defined to be n-deep if all its Jordan-Holder
constituents are n-deep.

Lemma 4.2.5. Let p € X*(T) and n € N and w € w. If u is n-deep in alcove a, then w - u is
n-deep in alcove w - a. In particular, if p € X1(T') is n-deep, then Q1(p) and V, are n-deep. If
€ Xi(T) is n+ 2-deep, then Q1(p)|c and Vy,|g are all n-deep.

Proof. The first two claims are easy. To prove the final claim, first note that the Jordan—Holder
factors of Qi(u)|c and V,|g are the same, and so it suffices to prove the claim for L|g where
L € JH(V,,). Suppose that L is isomorphic to L(A) and A = A + pwy. Then

Llg 2 L\ + 7w)) = Sccp(muy) LA +€)™mn )

by Lemma 4.2.4(1). The result now follows from the fact that |(e,a")| < 2 for any € € L(nw)) and
any positive root o € R™ of a simple factor of G. O

Assume p1 is 6-deep. By Corollary 4.2.3, the socle filtration on Inj(F'(u)) is given by (Fil, Q1(1))|c-
Since Inj(F (p)) is rigid (it is isomorphic to Proj(F'(p))), this is the unique increasing Loewy series.
One can use Lemma 4.2.4 to compute gr,, Inj(F(1)). We do this in the case n = 1 to compute
G-extensions, justifying the name “extension graph” introduced in Section 2.

Lemma 4.2.6. Assume that p; is 6-deep for all i and let o ) F(p). Then dgpn(o, k) = 1 if and

only if EXt(l}(li, o) # 0, in which case the dimension of the Ext group is 1.

Proof. Since p is 6-deep, Q1(p) is 6-deep by Lemma 4.2.5, so that Q1(u)|e = Inj(F'(n)) by Corol-
lary 4.2.3. It suffices to show that [gr; Q1(u)|g : k] < 1 and that dgpn(o, k) = 1 if and only if
[gr; @1(n)|G @ k] = 1. Note that gry Q1(p) = @i(er; Q1(pi)) @ @), L(1;). Let wy, be the element

of W, so that A & @;1 - is in A. The length of gry Q1(n) is 3f with Jordan—Hélder factors of

the form L(w - u) for 3f choices of w. Writing w as t,,_ w4 with w4 € @T, the 3f choices of w
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. . ~ . . o5t
correspond to w_ = 0, f-:’u, or 5’27i for some ¢ € J, with w4 the unique element in W, so that
to_wy is in W, and wiw, - A = wpw, - A.

It suffices to show that
L(w - p)la
is multiplicity free and contains exactly the weights of the form F(Tty,(w, 7(wp w, - A))) with w
a permutation of mw_. (Here, w as the first argument of Tty is understood to be the image of w
in Aw)
We have isomorphisms
(49)  L(@- e = L@ - 1) © Lirw_)lo = Buepmo o Fs - p+w)mmi®),

where the second isomorphism follows from Lemma 4.2.4. On the other hand, the pair (w, 7 (w4 ;w,,-
A)) is f(w, w4 w,) with B as in Lemma 2.1.1 since we have that t,m(w; ,w,) € W,. Then by
definition, we have

(410)  F(Tersg(ow, w4, - A))) = F(i405, - (A+w)) = F(is -+ wsw,w),

where wiw,, is the image of wyw, in W. We conclude by combining (4.9) and (4.10). O

4.2.3. Study of the Weyl module V,,|c. We now assume that p € X1(T) is such that ;1 € B and push
the analysis in Lemma 4.2.6 further to describe V,|q in this case. Recall that G dof Resy, r, GL3

and that G dof Gg X, F. Recall that T' C G is the diagonal torus, and Ay is the weight lattice of
G Let An’ C Ay be the convex hull of the W-orbit of 1. Explicitly, we have

Ay ={ ()i € Ay, vi €0, £e1s, oo, 15, £(e1, —24), (261 —€24), H(e1i — 262,)}}
We define the subgraph A<,/ ) C A, x A as follows:

Aj%o def (w,a) € An/ xA :a;=0if w; = wng for some w € W}

The main result concerning V,, is the following.

Theorem 4.2.7. Let u € X (T) be a p-restricted weight such that u is 2-deep in alcove B.
(1) The translation map e ooy : Agflﬁomr”) x A— X1(T)/{(p— m)X°T)) induces a bijection:
Ty, 1 Ay 0) = JH(V,lG)
(w,a) = 0(y.q)-
(2) We have

1 ifd=dgpn(o01), Olwa))
Vil o) = ¢ 40— Cemlo0D: oo
if d < dgpn(001), O(w,a)
for all (w,a) € Ay 0)-
(3) Assume that pn 6-deep. Then there exists a G-submodule U C V,|q such that:
(a) U is multiplicity free;
(b) JH(U) = JH(Vula);
(c) if we denote the restriction Fil |y by Fil, for any o € JH(U) we have [gry(U) : o] =1
if and only if d = dgpn(0(0,1), 0); and
(d) if (w,a), (W'sa') € Az 0), then 0y q) points to o 4 (with respect to U) if and only
if dgph(0(0,1) T(w,a)) = deph(0(0,1), Tt ar)) and dgph (0w a)s T(urary) = 1. In particular
L(U)°P (i.e. the graph obtained from T'(U) by reversing the direction of the edges) is
predicted by the extension graph with respect to o (g 1)-
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Proof of 4.2.7(1)-(2). We first show that the image of Tvy, contains JH(V,|c). Let w € W, such
that [V}, : L(w - p)] # 0. It suffices to show that Try, contains

(4.11) JH(L(@ - )c).

~ ~ ~ =+
The proof is similar to that of Lemma 4.2.6. There is a decomposition w = t,,_w where wy € W, .
Again, L(w - p)|g is isomorphic to L(w4 - p) ® L(mw_)|q, which is isomorphic to

@ F(@s - p+ 6)@mw,(€)
eeL(mw_)

by Lemma 4.2.4. As in the proof of Lemma 4.2.6, the summand F'(w - pt + €) 18 0 (woe,n(@.-@p-A))-
Then (4.11) is contained in the image of Tty, by an analysis of the weights of L(rw_). Indeed,
W -y is in one of the alcoves in the set {4, B,C, D, E, F,G}7 so that w_; can be taken to be one
of 0, €14, €24, and n} for all ¢ and if w_ ; is 7} then w, ; = wp,.

Item (1) follows from (2) and the above paragraph. We now prove item (2). With w as above,
we define n;(w;) € N by

(&0, ) (Vi) + L(W; - ;)] # 0.
Let 0 < d < 3f. Since V), is multiplicity free, it suffices to show that

(4.12) P L@-we

contains weights of the form o, ) with multiplicity one if (w, a) € A~y 0) and the distance between
(wi,ai) and (0;,1;) is nyz—1;(wy—1;) for all ¢. If v € L(ww_) is a permutation of 7w_, then it appears
in L(mw_) with multiplicity one. Thus o(. (@, @,).4) appears in (4.12) with multiplicity one. A
casewise analysis, using the fifth column of Table 5 and the description of the socle layers of V,,; in
[BDM15], shows that the distance from (v;, m(w, -1, - Wp r-1;) - A) to (0, 1;) is ng-1;(wWy-1;). For
example, if n -1;,(Wy-1;) = 2, then w_ ;1;is €} 1, or e, and w, ;-1; is trivial. Then v; is a
permutation of £1; or 2. 7 7 ]

_l’i

We now move to the proof of Theorem 4.2.7(3). We start with the following preliminary lemma.

Lemma 4.2.8. Let p € X1(T) be a p-restricted weight which is 2-deep in alcove B. There exists a
G-submodule U C V,)|g such that JH(U) = JH(V,|g) and

1 if d = dgpn(0(0,1)s O(w,a))
(4.13) [era(U)lc : 0(wa)] = : o o
d () 0 if d# dgpn(o(0,1)s Owa));

where gr is with respect to Fil e o |- In particular, U is multiplicity free.

Proof. The notation in this proof is complicated by necessity. To illustrate the simple underlying
idea, we first present the proof in the case that f = #J = 1. We have the following:
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For the alcove a, there is a decomposition w, as the product t,, s where w, 1 € WN/fr and
wq,— € X*(T'). Let A be wp - p. Then

L(@aiip - w)lG = L@ - N) = L(@as - A+ pwala 2 (L@ - N) © Lipwa )l

Omu, _ (W)

= (L@ N) ® Lwa))|6 = Bucrun ) Lot - A+w)G

= @weL(wa,,)F(‘Et,\Jrn(w,a))@mwa,_ (@)

)

where @ is the unique pX*(T')-translate of a lying in {A, B}. The third isomorphism above follows
from the Steinberg tensor product theorem, and the fifth isomorphism follows from Lemma 4.2.4(1).
We see then that gr;(V),)|q is isomorphic to the multiplicity-free direct sum of F'(Ttyy(w,0)) where
w is a permutation of 0, €1, or 2. Similarly, gry(V),)|c is isomorphic to the multiplicity-free direct
sum of F'(Teyiy(w,1)) where w is a permutation of €; or 2. Finally, gr3(V,)|q is isomorphic to
Buwerm) F (Feary(w, 0))™ ). Then, we can take U to be the preimage of Buwerm) F (Featn(w,0))
in V,|q. It is then easy to check that U satisfies the required properties.
We now proceed to the general case. Let ¢ € J. We have an exact sequence of G-modules

0 — rad(V,,,) — Vi, 2% L(u$® + pnl) — 0,
which gives the exact sequence

0 — rad(V, ®V — Vi = L(ps® + pn}) ®Vu]—>0
JF JFi

Then L(;® + pnl) ® ®#Z~ Vii;la is isomorphic to

L(H;) ) (V;Ufwz ®L 777'('2 ® VM]|G
jFi, T

Then we claim that
/ ~ @mn;” (w)
Vies ® L(N7i) = @uer(n )V
as G-representations. We have an embedding

W)

(4.14) Virs @ L1l) = Q1(tims) © L0fes) = ey ) @ (pims +w) 0"
where the last isomorphism follows from Lemma 4.2.4. Since:

(1) V,,, ® L(n,;) contains all the Jordan-Hdlder factors of the right-hand side of (4.14) with

highest weights in alcove G (using Lemma 4.2.4), and
em. s (w)
(2) & L) Vi fg’ is the minimal submodule of the right-hand side of (4.14) containing

all the Jordan—Hélder factors (counted with multiplicities) with highest weights in alcove
G (using the cosocle filtration of V,, _,1.,),

&m,y (W)
there is an injective map ®pery )V 45 = Vi ® L(n.,) which must be an isomorphism since

the domain and codomain have the same length.

Let U; be the preimage of
@ L") @ Vi ® ® Viila
weL(n}),w#0 J#i, i

in V,|g. Let U be the intersection M;U;. We claim that U has the desired properties. If
d < dgph(U(O,l)a U(w,a))7 then (4.13) holds by Theorem 4.2.7(2). If d = dgph(o'((),l)a U(w,a))7 then
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lerg(Vilg) @ 0wl = 1 and [gry(U;) : 0, q)) = 1 for all i by the proof of Theorem 4.2.7(2). We
conclude that [gr (U) : o(,.q)] = 1.

We now suppose that d > dgpn(0(0,1); O(w,q)) and use the notation of the proof of Theorem
4.2.7(2). Suppose that o(, 4 is a Jordan-Hdlder factor of L(w - u)|c Ngry(U). Then there is some
i such that n,—1;(wy-1;) > d; where d; is the distance from (w;,a;) to (0;,1;). More precisely,
Ny—1;(Wr—1;) is 3 and (w;, a;) is (0;,0;). However, one can check as in the proof of Theorem 4.2.7(2)
that L(w-p)|cNgry(Uy-1;) does not contain any weight of the form oy, o) with (w;, a;) = (0;,0;). O

Proposition 4.2.9. Let A, 0 be 6-deep in an alcove in {A, B, C, D, E, F, G}7. Then Ext{(L(6), L(\))
is at most one dimensional, and it is one dimensional if and only if X\ and 0 are linked and lie in
adjacent alcoves (i.e. there exists ig € J such that \; = 0; for all i # ig and N\, and 0;, lie in
different alcoves sharing a face).

Proof. We immediately reduce to the case of GL3. Using (4.3), it suffices to consider the case of
SL3, where the result follows from [And87, §4.1]. O

Let p € X1(T) be a p-restricted weight 6-deep in alcove B. Let w, y € W, be elements such that
the alcoves containing A & w0 e y-parein {A, B, C, D, E, F, G}7 and Extlg(L(Q), L(\)) #0.
Note that A, 6 are both 6-deep in their alcove by Lemma 4.2.5.

Let ip € J be as in Proposition 4.2.9. Let M be a non-split extension of L(6) by L(\), which is
unique up to isomorphism by Proposition 4.2.9.

Proposition 4.2.10. If Fy and Fy are in the socle and cosocle of M|, respectively, with [M|q :
Fol =1=[M|g : Fi]| and dgpn(Fo, F1) = 1, then there is a subquotient of M| which is a nonsplit
extension, unique up to isomorphism by Lemma 4.2.6, of I by Fy.

Proposition 4.2.10 will be proven in several steps. Let A be AY +pwy and 6 = 6° + pwy so that \°
and 0° are in X;(T) and w) and wy belong to {075/1,1755,17"7;}‘7- We begin with an algebraization
lemma.

Lemma 4.2.11. With M and ig defined as above, assume moreover that \; is p-restricted for all
i # ig. Then there is an injection M — Q1(A\°) ® L(pwy) = ( Qiziy Q1(Ni)) @ Q1(N,) ® L(pwy)
whose restriction to G is an injective hull.

Proof. The proof follows closely the argument of [Pil97, Lemma 3.1] (which is in turn based on
[And87, Lemma 2.2]). There is an injection

soc M =2 L(\Y) @ L(pwy) — Q1(\°) @ L(pwy).
This extends to an injection M < Q1(A\) ® L(pw,) since
Extg(L(0), Q1(%) @ L(pwy)) = 0

by the proof of (4.8). Both Q1(\°) ® L(pw,) and M are 6-deep by Lemma 4.2.5. By Lemma 4.2.2
the restriction to G of the map M < Q1(\°) ® L(pwy) is an isomorphism on socles, and is thus
essential. The restriction Q1(\’) ® L(pwy)|q is an injective object by Lemma 4.2.4 and Theorem
4.2.1. 0

We begin with the following special case of Proposition 4.2.10, from which the general case will
follow by the translation principle.

Proposition 4.2.12. If )\; is p-restricted for all i # ig, the conclusion of Proposition 4.2.10 holds.
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Proof. We assume that dgpn (Fo, F1) = 1. Fix nonzero maps Proj(F1) — M|g and M|q — Inj(Fp),
unique up to scalar. If suffices to show that the composition

(4.15) Proj(F1) — M| — Inj(Fo)

is nonzero. The first map factors through Proj(F})/rad?(Proj(F})) since the Loewy length of M|q is
two. The second map factors as M|g < Inj(M|g) — Inj(Fy) where the second map is a projection
to a direct summand. Applying gr; to the composition

Proj(F1)/rad®(Proj(F)) — M|g < Inj(M|g) — Inj(Fp),
we obtain
(4.16) Fy < gri(M|g) — gr; Inj(M|g) — gr; Inj(Fp),

where the grading is with respect to the socle filtration. It suffices to show that the composition
(4.16) is nonzero.

By Lemma 4.2.4, Fy (resp. F}) is isomorphic to F()\') where N = A0 + ¢, (resp. F(° + &) for
some €) € L(mwy) (resp. g € L(mwy)). Then using Lemma 4.2.11, (4.16) can be rewritten as

L(0° + eo)lc = L(O)la = (81 (Q1(A") ® L(pwr)))lc — (&1 Q1(\° +€x))la,
where the second map is the restriction of a map of G-modules. By Lemma 4.2.2, the socle filtrations
of Q1(\?) ® L(pwy) and Q1(\°) ® L(mwy) both induce the socle filtration on Q1(A\°) ® L(pwy)|a.
Applying Lemma 4.2.4 to Q1 (A\°)® L(7w)) and using the description of Q1(A\°+v) in [Humo06, §13.9],
we see that the graded pieces of the socle filtration of Q1(A\°) ® L(ww)) are gry, (Q1(\°)) ® L(mwy).
We claim that the graded pieces of the socle filtration of Q1(A°)® L(pw)) are gr, (Q1(A°)) ® L(pwy).
Taking the tensor product of the socle filtration on Q1(\°) with L(pw)) gives a semisimple filtration
F (as follows from Steinberg’s tensor product theorem). Moreover, since the restrictions Q1(\°) ®
L(rwy)|g and Q1(A°) ® L(pw))|g are isomorphic, Lemma 4.2.2 implies that the dimensions of the
graded pieces of the socle filtrations of Q1(\°) ® L(7wy) and Q1(\°) ® L(pw)) agree. A dimension
consideration implies that F is the socle filtration.
In particular, we have

g (%) @ Lipen)) = @D (Lipwn) @ (g1 @1(0) @ R L) ).
i i
The algebraic map L(#) < gry(Q1(A\Y) ® L(pwy)) factors through the direct summand
L(A*) @ (gr; Q1(N,)) ® L(pwy)

by alcove considerations, where A% def > £io Ai. (Note that A\; = /\? and 6; = \; for all i # ig.)

Additionally, the map Fy — gry Inj(Fp) = (gr; Q1()N))|g factors through the direct summand
LX) @ (g1 Q1(X;,))l,
where N0 =", Zio A., since if j # 4o, then the highest weights of the Jordan—-Holder factors of
(@0 ® (e QX)) )le

lie in the same alcove as the highest weight of L(A\") except exactly at embedding j. Thus it suffices
to show that the composition
(4.17) L(0° +co)lc = L()]c — L(A®) @ (gr1 Q1(A3,)) ® L(pwa)la — LX) @ (gr; Q1(X;,))la

is nonzero.
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The G-module gry Ql()\?o) is the direct sum of three irreducible modules in alcoves A, C, and D
(resp. B, E, and F) if )\?0 is in alcove B (resp. A). Let wy, wy, and w3 be the elements of W, such
that wy - A, wy - A, and w3 - A are the alcoves A, C, and D (resp. B, E, and F)), respectively. Let
@p € W, be the element such that B = @p - A. The natural identification X*(T)\W /Q = {A, B}
where = Staby;(A) and the fact that 6f) is in alcove A (resp. B) if A}, is in alcove B (resp. A)
shows that X*(T")y;,,wpQ = X*(T)w;Q for any j € {1,2,3}. Moreover, it is not difficult to check
that

3
X* (T, W = [ [ X*(T) ;.
j=1

This implies that there exists unique j € {1,2,3} and w € X*(T') such that
(4.18) t,we’iogjiowB(i’DAt,wMoin{DB)‘l = t,wwj,

where wy € W, is the unique element such that wy - )\?0 € A, or equivalently that w A—wy 4, Wi, Wp €
Q. Then we have that

0% + pw = bub—wg iy Yio * Hig = WjWAL—wy ; Wi * Hig = WjW) - AL
so that by construction, w € X*(T') is the unique weight such that L(@?O + pw) is a Jordan-Hoélder
factor of gry Q1(A}). We now consider w as an element of X*(T) in the ip-embedding.

We now proceed casewise. If wy (resp. wp) is 0 then gry(M|q) (resp. gri(M|g)) is irreducible,
and so the map M|g — Inj(Fp) is injective (resp. the map Proj(Fy) — Mg is surjective) and the
composition (4.15) is nonzero.

Now assume that wy and wy are both nonzero. At most one of wy and wy can be 1720. By duality,
we can and will assume that wy # ;. Then wy is either ¢} ; or e, . We assume that wy is €5 ; ,
the other case being symmetric. So if A, is in alcove D (resp. F'), then 6;, is in alcove E or F
(resp. C, D, or G) by Proposition 4.2.9. We claim that if wy is E’MO (resp. 5’2720 or 7 ), then the w
defined above is €5 ; + (1,1,1);, (vesp. 0 or &1 ; ). Indeed, since t_,w; - A € {A, B} by (4.18) and
w;-A € {A,B,C,D,E,F} by definition, w;, is in {0,&],e5} + X°(T). From (4.18), we see that
w=wp—wy (mod Agp). These two facts determine w.

A morphism

L(Bi0) = L(62, + pop) — (g1, Q1(\%)) @ L(pwn)
must factor through L(@?O +pw’)® L(pwy ) for some w’. By construction, w’ must be w. We conclude
that the map
L(0) = L(A") @ (gr; Q1(A,)) © L(pwy)
factors through L(6° + pw) ® L(pwy). It suffices to show that the composition

L(6° + eg)lc = L(9)la = L(6°) ® L(pw) ® L(pwa)lc — LN™) @ (gr1 Q1(X;,))|a
is nonzero. .

Let €y € L(mw)) be such that A% +&, and §°+ &) are in the same W-orbit under the p-dot action.
Similar to an earlier argument, of the three simple Jordan-Hblder factors of L(X""0)® (gr; Q1(X],)),
only the restriction to G of one of the form L(6°+¢,)® L(pw’) for some w’ contains F; & F(0%+¢g) as
a Jordan—Holder factor. By construction, w’ must be w. It now suffices to show that the composition
(4.19)

L(6° + eg)lc = L(6° + mwy)lc = L(B)|c —L(6°) © L(pw) ® L(pw)|a

%L(GO) ® L(mwy) @ L(pw)|g — L(G0 +¢€4) ® L(pw)|a
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is nonzero. Moreover, the multiplicity [L(8" + £}) ® L(pw)|g : F1] is one.

Assume now that wy is not E’MO. Then using the assumption that [M|q : F1] = 1 so that g # 0,
one can check that F} appears in L(0") ® L(pw)® L(pwy)|q with multiplicity one, we see that (4.19)
is nonzero.

Finally, we assume that wy is €/ ; . Let € be e — &\ which is in L(7w) by the composition (4.19).
Note that € # €} (mod X°(T)). The weight F} appears with multiplicity two in @,,AGL(WA)L(GO +
vy) ® L(pw)|a, with multiplicity one in each of L(6° + €}) ® L(pw)|g and L(° + & —m(1,1,1);,) ®
L(pw)|g. Assume for the sake of contradiction that the composition (4.19) is zero. Then the image
of the composition of the first four maps of (4.19) is contained in L(§° +¢&—n(1,1,1);,) ® L(pw)|c-
In particular, since € # £} (mod X°(T)), the image of the composition of the first three maps of
(4.19) is not stable under the involution action on L(6°) ® L(pw) ® L(pwy)|a = L(0° +p(1,1,1);,) ®
L(pwy) ® L(pwy)|g which permutes the last two tensor factors. Since F} appears with multiplicity
one in L(0)|g, this implies that the image of

L(6° + p(1,1,1);,) ® L(pws — p(1,1,1);5) < L(6° 4+ p(1,1,1);,) ® L(pwy) ® L(pwy),

which induces the second map of (4.19), is not stable under this involution action (note the key
role played by Lemma 4.2.11). However, the unique submodule of L(pw)) ® L(pw)) isomorphic to
L(pwg —p(1,1,1),,) is the submodule where this involution acts by —1. This is a contradiction. [

Proof of Proposition 4.2.10. We write A and 6 as \° 4+ pwy and 6° + pwy, respectively, where A and
09 are p-restricted weights. Write wy as wy 4, +wf\° where wy ;, (resp. wf\o) is 0 away from (resp. at)
embedding ig. Similarly write wg as wg ;, + wéo. Then wio equals wéo by assumption, and so we set
wio & wi\o = wéo. Let M;, be the unique up to isomorphism nontrivial extension of L(6;,) by L(\;,)
and let M" be ®;.;,L(\;) so that M is isomorphic to M;, ® M*. Then M| is isomorphic to

M;y @ M®|g = M, @ (Q)L(A)) @ L(pw™)|a

i#i0
= M;, @ (QL(N)) @ L(rw™)|c.
110
Let M’ be M;, @ (@ L(\?)) ® L(rw™). By Lemma 4.2.2, we have that soc(M’)|c = soc(M'|¢) =

iio
soc(M|g) = soc(M)|q, so that
soc(M') = L(\;,) ® (®L(x\?)) ® L(mw™).
iio
Similarly, we have that

cosoc(M") = L(0;,) ® (®L()\?)) ® L(mw™).
i#io
The socle and cosocle of M’ can be decomposed using Lemma 4.2.4. Fix a direct sum decomposition
cosoc(M') = @jM{?j into simple modules. Using the known dimensions of Extlg groups between
simple modules and the fact that M’ is rigid of Loewy length two, one sees that the minimal
submodule M} of M’ whose projection to cosoc(M') contains Mj ; has length exactly two. Thus
the natural surjection ©M; — > M = M’ is an isomorphism by length considerations. More
explicitly, if Mj ; is isomorphic to L(A%+pwy i, +me®) for some £ € L(w™), then Mj ; is isomorphic
to L(6° + pwg s, + wme™) for the unique element w € W such that these weights are linked.
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The alcoves of F1 and Fy differ only in embedding 9. Then by Lemma 4.2.6, the corresponding
elements of Ay, under T, for any appropriate ¥ must be the same for all embeddings except for
m(ig). By the above explicit description, we conclude that Fj is in J H(M{J|G) if and only if Fj is
in JH(Mg ;|c). So it suffices to prove the proposition for M in place of M. This now follows from
Proposition 4.2.12. O

Proof of Theorem 4.2.7(3). Let I' be the directed graph with vertices JH(U) = JH(V,|c) so that
there is a directed edge o1 — o9 for o1 and o2 € JH(V,|g) if and only if dgph(a(07l), o1) >
dgpn(0(0,1), 02) and dgpn (01, 02) = 1. Note that the first condition ensures that I' is acyclic.

We claim that IT" is a subgraph of I'(U). Let o1 and o3 be in JH(U) with dgpn(o1, 02) = 1. Let
dj = dgpn(o(0,1), 05) for j = 1 and 2 and suppose that d; > da, so that di = d2 + 1. Then by
Lemma 4.2.8, di?°(0;) is d; for j = 1 and 2. Moreover, by Theorem 4.2.7(2) and parity reasons,
[gra, (V)| = o] = 6k for j and k in {1, 2}. Using that every non-trivial extension which can occur
in the layers of V), does occur (see Table 6), it is easy to check that there is a unique length two
subquotient M of Filg, (V,,)/ Filg,—1(V,) such that o1 and o2 appear in JH(M|g) with multiplicity
one. By Proposition 4.2.10, there is a subquotient of M|g which is a nonsplit extension of o1 by
oo. For multiplicity reasons, this must also be a subquotient of U. Hence, there is a directed edge
from oy to o9 in I'(U).

We now claim that if T" is a subgraph of a directed graph I'' such that:

(1) T and I'" have the same vertices;

(2) T is acyclic; and

(3) o1 — o9 is a subgraph of I only if dgpn(01, 02) =1
then IV = T. Since I'(U) satisfies these conditions ((3) follows from Lemmas 4.2.5 and 4.2.6), this
would complete the proof.

Assume o1 — o9 is a subgraph of I'V. By (3) and the geometry of the extension graph, we have
that dgpn(0o(0,1), 71) = dgpn(0(0,1), 02) * 1, and hence it is enough to prove that dgpn(0(0,1), 01) =
dgph(a(07l), o2) + 1. Suppose otherwise. Then o9 — 07 is a subgraph of T by definition and thus a
subgraph of I. But this contradicts (2). O

4.2.4. The embedding construction. We start with the following observation.
Lemma 4.2.13. Let R be an n-generic Deligne—Lusztig representation. Then R is n — 2-deep.

Proof. If we write R = Rs(u + n) with p being n-deep it is hence enough to prove that o, . is

n — 2-deep for any obvious weight o, ) in JH(R). This follows from Proposition 2.3.4. O

From now onwards, we assume that p is 6-deep in alcove B. (By Lemma 4.2.13, the Deligne—
Lusztig representation R < Rs(u°P+n') is therefore 4-deep.) We write o°P & F(u) = F(%tu0044(0,1)).

Note from Proposition 2.3.5 that the unique element o € JH(R) satisfying dgpn(o, 0°P) = 3f
(i.e. having maximal graph distance from o°P) is

def
o = F(u™ +5(1')) = F(Teporn(s(n), 0)).
To ease notation, we write A & poP + s(n') (hence o = F(\)).

Lemma 4.2.14. Let p € X1(T) be a weight such that p € B is 6-deep and R i Rs(u°? +1'). Set

gop F(p) and let o & F()\) € JH(R) be the unique constituent at mazimal graph distance. We
have:

[j(0) : 0] = [Vila : 0] = [U : o] = [gr3p(Vula) - o] = 1.
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Proof. The equations [V,|g : o] = [U : 0] = [gr3;(Vu|g) : o] = 1 follow from Theorem 4.2.7(2). The
equation [Inj(c°P) : o] =1 is proved similarly using Theorem 4.2.1. O

Proposition 4.2.15. Let pu € X1(T) be a weight such that pu € B is 6-deep and R & Rs(uP + 7).
Set gp & F(p) and leto o F(X\) € JH(R) be the unique constituent at maximal graph distance. Let

R be an O-lattice in R with irreducible cosocle isomorphic to o. There is an injection v : R — U.

Note that the map ¢ is unique up to scalar, as there is a unique up to scalar non-zero morphism
Proj(c) — U by Lemma 4.2.14.

Proof. Since ¢°? € JH(R’), there is a unique up to scalar nonzero map

(4.20) R’ — Inj(o°P).
We first prove that the map (4.20) factors through the embedding
(4.21) U < Inj(o*P)

or, equivalently, that the composite of (4.20) with the natural projection Inj(c°P) — coker(a)
is zero. As formation of cosocle is right exact, and R’ has irreducible cosocle isomorphic to
o, the image of the composite map R’ — coker(a) is either zero, or has irreducible cosocle o.
By Lemma 4.2.14, we know that o is not a Jordan-Hélder constituent of coker(a), and therefore
Homg (R, coker(a)) = 0. Now the image of this nonzero map contains o as a Jordan-Hélder factor.
Since the minimal submodule of U containing o as a Jordan-Hélder factor has length 97, which is
the length of R’, by Theorem 4.2.7(3) and Proposition 4.1.1, this map must be an injection. [

Theorem 4.2.16. With the hypotheses of Theorem 4.1.9, assume moreover that o is a lowest
alcove weight with Defp(o) = 0. Then Theorem 4.1.9(1)-(4) hold.

Proof. By Remark 4.1.10, it suffices to prove Theorem 4.1.9(3). This follows from Theorem 4.2.7(3)
and Propositions 4.2.15 and 4.1.2. ]

4.3. Proof of the structure theorem in the general case. The aim of this section is to deduce
Theorem 4.1.9 from the particular case in Theorem 4.2.16. For this, we introduce a third notion of
distance called the saturation distance (see Definition 4.3.4). The first step is to show an inequality
between the graph and saturation distances (Corollary 4.3.8) and then proceed further in §4.3.2
to prove that under appropriate conditions on o € JH(R) (i.e. when o is mazimally saturated) the
notions of graph, saturation, and cosocle distances (dZ,,(x)) actually coincide (Proposition 4.3.16).
The agreement of the three distances is equivalent to Theorem 4.1.9, taking into account Lemma
4.3.12. In §4.3.3, we show that all weights are maximally saturated, thus concluding the proof of

Theorem 4.1.9.

4.3.1. Notions of distances. In what follows, R is a 3-generic Deligne—Lusztig representation. Recall

that if o € JH(R) we write d ; as a shorthand for dg;. We establish some properties of d7 ;. We

deduce the following from Lemma 4.2.6.
Corollary 4.3.1. Assume that R is 6-deep and o € JH(R). Then dgpn(o, 0') < d9,4(c") for all

o' € JH(R).

Proof. The assumption that R is 6-deep implies that all the elements in JH(R) satisfy the hypotheses
of Lemma 4.2.6. If k € JH(R) and k+1 = d%,4(k), then Ext{, (gr*(R"), ) # 0. Hence Ext{, (k' k) #
0 for some ' € JH(R) with d794(x’) = k. Equivalently, dgpn(k, ) = 1 by Lemma 4.2.6. If
d =dZ 4(0"), we conclude that there is a sequence of weights ¢; for 0 <4 < d — 1 such that oy = o,
oq =o', and dgph (04, oi41) = 1 for all i. Hence dgpn(o, 0’) < d. d
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Lemma 4.3.2. Let 0, 0y € JH(R). There is a unique minimal subrepresentation Qg (1) € R®
containing o1 as a Jordan—Hoélder factor. Moreover, we have that

(1) cosoc(Qs(01)) = o1; and
(2) Qa(o'l) is the image of any monzero map Rm _ EU.

Proof. Let Q,(c1) be the image of any nonzero map R™' — R’ . It is clear that cosoc(Qy(01)) £ 07.
Suppose that M C R’ is a subrepresentation containing o1 as a Jordan—Holder factor. As R is
multiplicity free, R’ /M does not contain o1 as a Jordan—Holder factor, and hence the composition
Qo(01) = R” — R’ /M is 0, or equivalently, Q,(01) C M. O

Lemma 4.3.3. Let 0 and o1 € JH(R) and let 0o € JH(Qy(01)). If n = d7}4(02), then we have
Homg (02, g 4(Qo(01)) # 0. Moreover A2, (o2) > d%,4(o1) + dZL(o2).

rad

Note that, a priori, the inequality may be strict, so that what we call the cosocle distance dZ, (k)
from o to k is not a priori necessarily a metric.

Proof. Since formation of cosocle is right exact, we see that the map R —» Qs (07) is strictly
compatible with the radical filtrations. This proves the first claim.

Let .Z = {Fil*(R")}\, be the decreasing filtration defined by Fil*(R”) = rad®*t%a()(R?) (i.e. Z
is the radical filtration of R” shifted by d7,(c1)). Under the inclusion Q,(01) <> R’, Z induces
a semisimple filtration on Q,(01), beginning at 0. So, with the radical filtration on the domain
and .% on the codomain, this inclusion is compatible with the filtrations. This immediately gives

4%,4(02) — A% (1) > 7 () for any o3 € JH(Qu (). 0

rad rad

We now introduce a third notion of distance on the set JH(R) and give a comparison result with
the graph distance (Corollary 4.3.8). To do this, we make crucial use of a global input (Proposition

4.3.7). We also use these results to deduce some basic results about I'iaq(R’) (see, for example,
Lemma 4.3.12).

Definition 4.3.4. Let 01, 02 € JH(R). Let R?' be an O-lattice with irreducible cosocle o and fix
a saturated inclusion of lattices R72 C R?. The saturation distance (with respect to R) between
o1 and o9, noted by dsat (01, 02), is defined to be the unique integer d such that de"l C R°2is a
saturated inclusion.

Remark 4.3.5. We indicate a justification for the existence of the integer d in Definition 4.3.4. Given
two O-lattices A1 and As in an E-vector space V, there is a unique d € Z such that @w?As C A; is a
saturated inclusion. If V, Ay, and A5 are obtained from base change from an unramified subfield of
E, then in fact w? is a power of p up to units. Since R, R, and R°? are defined over an unramified
extension of Qp, the integer d in Definition 4.3.4 exists.

The following lemma is clear:

Lemma 4.3.6. The saturation distance is a metric on JH(R).

The following proposition is the main global input.

Proposition 4.3.7. Let R be a 13-generic Deligne—Lusztig representation. Let 01,09 € JH(R) be
such that dgpn (01, 02) = 1. Then dgat(o1, 02) = 1.
Proof. Let 7s be the collection of tame inertial type such that o(7s) = R. We can and do fix

a collection pg of semisimple 10-generic Galois representation such that if w & w(ps,Ts), then
((w;) > 2 for all i € J and o1 and 09 € W' (pg,7s). (Note that the condition that R, hence
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Ts, is 13-generic guarantees that pg is 10-generic by the argument of Proposition 3.4.5) Fix a
weak minimal patching functor M, for pg, which exists by Corollary 3.5.16. Recall R;nilﬁ "5 from

1Py
[LLHLM18, Definition 5.10].
For i € {1,2} define the modules
\ def NS o~ 75,85,
MC/>0<RO-Z> = MOO(RUZ)®(®~ESRE ) <®”JES ﬁ~ﬂﬁ~ )
v P v

def 3 > T’ﬁ?i’ﬁ’D
v Ps OR1]

Similarly define R/ (7s) and E;(TS). Then M/ (R°") is p-torsion free and maximally Cohen-
Macaulay over R, (7s), and generically of rank one, and similarly M/ (o;) is maximally Cohen-
Macaulay over R._(7s).

We recall the setup of Lemma 3.6.10. The ring R/ (7s) is formally smooth over @563]%%{’1;,

where we write Mz € Y7 (F) for the unique Kisin module corresponding to p; as in Theo-

rem 3.3.12. By letting N &' > icqs(4 — L(wy)), the latter ring is formally smooth over Ry o

@j-v:l(’)[xj, y;]/(xzjy; — p) by [LLHLM18, §5.3.2] using that ¢(w;) > 1 for all ¢ € J. Fix an isomor-
phism Ry[t1,...,t] = R (7s). Let S C Ry[t1, ..., t] be the subring Z,[(x;, yj)j-vzl, (tj);?:l]]/(xjyj—
p);\le. If M’ is a maximal Cohen—Macaulay R/ (7s)-module, it is a maximal Cohen—Macaulay S-
module as well by [Gro65, Corollaire 5.7.10] and using that the maximal ideal of R, (7s) is the
only prime above the maximal ideal of S. The maximality follows from the fact that R, (7s) is
finite over S. It is convenient to work over S below since Spec S/pS is reduced.

For o € JH(R), Annp_(.5)(M/,(0)) is p(o) R (7s) by Proposition 3.6.1(2). For o € W (ps,Ts),
let p(o) be (Zj(a))jyzl + (w) where z;(0) € {zj,y;} for each 1 < j < N. Let pg(c) C S be the
preimage of p(o) R, (7s) for all ¢ € JH(R) so that pg(c) = (zj(a))j-v:l + (p) and SuppgM/ (o) =
Spec (5/ps())-

For all 1 < j < N, assume without loss of generality that z;(c1) = z; and let z; o zj(02).
Then by Lemma 3.6.10, #({z;};A{%;};) = 2. We assume without loss of generality that z; = y;
and z; = x; for j # 1. To simplify notation, let R; = R for i« = 1, 2. We fix a chain of
saturated inclusion of lattices kal C Ry C Ry with k > 1. Since R is residually multiplicity free,
c¥ coker(Rg + pR; < Rp) does not contain oy as a Jordan—Hoélder factor (as can be seen from
descent to an unramified coefficient ring). Thus,

SuppsMi(C)C  |J  Spec S/ps(o).
o€JH(R), 002

The scheme theoretic support of M/ (C) in Spec S is contained in Spec S/pS and is thus generically
reduced, so that by the proof of Lemma 3.6.2, the scheme-theoretic support of M/ (C) in Spec S
is a closed subscheme of

Spec (S/ ﬂ ps(o)).
o€JH(R), o#02

Since z1y2---yn € pg(o) for all o € JH(R) with o # o2, z1y2---yn annihilates M/ (C), or
equivalently

T1yz - YN M (Rr) © MU (Ra) + pMi (By).
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Symmetrically, we have
Y12 - - ynMbo(Re) € ML (0" Ra) + pMZ (Ro).
Combining these, we have
21y - yYny1ye - YN M (R1) C yiye - yn M (R2) + y1ya - - ynp Mo (Ra)
C ML (" Ry) + pML(Ra) + y1y2 - - ynp ML (Ry).
Simplifying and canceling p, we have
Ys -y MU (Ry) C p" MU (Ry) + ML (Ra) + y1ya - - - yn M (Ry).
Assume that k > 1. Then projecting via M/ (Ry) - M/ (R1) - M/ (1), we have the inclusion
Y3y Ml (01) Cyrya -+ yn Ml (o).

This is a contradiction, since M/ (o7) is free over (a power series ring over) F[y;,---yn], being
maximal Cohen-Macaulay over it. O

We deduce the following inequality:

Corollary 4.3.8. Assume that R is 13-generic and let o1, oo € JH(R). Then dgpn(o1, 02) >
dsat(Ulu 02)-

Proof. The proof proceeds by induction on dgpn (01, 02), the case dgpn(o1, 02) = 1 being covered

by Proposition 4.3.7. Pick a weight x € JH(R) distinct from o1 and o9 such that dgpn(o, &) +
dgph (K, 02) = dgpn(o1, 02). Then we have

dgph(o'la 02) = dgph(017 5) + dgph(ﬁy 02) > dsat(ala "i) + dsat(/ia 02) > dsat(o'la 02)-
]

We conclude this section showing that, under appropriate genericity conditions on the Deligne-
Lusztig representation R, the graph Frad(Ra) is predicted by the extension graph if its Loewy strata
are predicted by the extension graph (which is a weaker assumption, a priori).

Lemma 4.3.9. Assume that R is 13-generic. Let o1, oo € JH(R) be such that dgpn(o1, 02) = 1.

Let us fiz o € JH(R) as well as two saturated inclusions of lattices R?> C R and R°* C R°. Then
either R°2 C R°! or R°* C R°2.

Proof. We have dgpn (01, 02) = dsat(01, 02) = 1 by Proposition 4.3.7. Hence there exists an integer
k € 7Z such that

pk+lRa‘1 g Ra‘z g pk‘Ra‘l
is chain of saturated inclusions of lattices (see Remark 4.3.5). The first inclusion implies that
p*t1 R C R so that k + 1 > 0. The second inclusion implies that p~¥R?2 ¢ R so that —k > 0.
Hence k£ = 0 or —1 and the result follows. ]

Lemma 4.3.10. Assume that R is 13-generic. Let o, o1, 02 € JH(R) and fix saturated inclusions
R C R? fori=1,2. If A7 4(02) > d% 4(01) and dgpn(o1, 02) =1 then R72 C R'.

rad rad

Proof. By Lemma 4.3.9, either R C R°2 or R°?2 C R°'. Suppose that the former holds. Then
Qs(01) C Qy(02), and thus d7, 4(o1) > dZ, 4(02) by Lemma 4.3.3. This is a contradiction. O

rad

Definition 4.3.11. Assume that R is 2-generic and let ¢ € JH(R). We say that the radical strata
of R” are predicted by the extension graph if dgpn(o, o') = d%,4(c") for all o’ € JH(R).
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Lemma 4.3.12. Assume that R is 13-generic and let o € JH(R). If the radical strata of R® are
predicted by the extension graph, then Frad(ﬁg) is predicted by the extension graph with respect to
0.

Proof. Let 0;, and 0,11 be elements of JH(R) such that dgpn(o, 0;) = @ and dgpn(o, 0i41) =i + 1.
As the radical strata of R” are predicted by the extension graph we have dgpn(o, 0;) = d2,4(o;)
and dgph (0, 0i41) = d7 4(0is1)-

If dgpn (04, 0i41) = 1, then 0,41 € JH(Qo(0;)) by Lemma 4.3.10. By Lemma 4.3.3, we have

i+1=dlg(0it1) = da(oi) + d7(0it1) = i+ diig(oig)-

This implies that o;4; appears in the second layer of the radical filtration of Q. (c;), whose cosocle

is isomorphic to o; by Lemma 4.3.2(1). Then there is an edge from o; to ;11 in Tuq(R).
Conversely, if there is an edge from o; to g;41 in Frad(RU), then dgpn (04, 0i41) is 1 by Lemma

4.2.6. ]

4.3.2. Distance equalities. In this subsection, we define when a weight o € JH(R) is maximally
saturated. Crucially using Lemma 4.2.6, we show that if ¢ is maximally saturated, then the graph,
saturation, and cosocle distances from o are equal, and therefore the structure Theorem 4.1.9 holds
for R”. From now on, we assume that the Deligne—Lusztig representation R is 13-generic.

From Proposition 2.3.5 and the definition of defect (Definition 2.8), it follows that

(4.22) max {dgpn (0, k), & € JH(R)} = 3f — Defg(0).

Furthermore, if Defp(o) = 0, then there is a unique o°? € JH(R) which has maximal graph distance
from o.

Definition 4.3.13. Let 0 € JH(R). We say that the weight o is mazimally saturated in R if the
following property holds:

(4.23) If k € JH(R) verifies dgpn (0o, k) = 3f — Defg(0) then dsi (o, k) = 3f — Defr(0).

The following proposition motivates Definition 4.3.13.

Proposition 4.3.14. A weight o € JH(R) is mazimally saturated if and only if dgpn(o, k) =

dsat (0, k) for all k € JH(R).

Proof. The “if” part is clear. Let x € JH(R) be any weight and write d dof dgpn(o, k) and D oof

3f — Defgr(o). There are weights ¢ = oy, 01,..., op so that k € {o9,01,...,0p} C JH(R),
dgph (04, 0541) = 1 for all 0 < 4 < D — 1 and dgpu(o, op) = D. It is then easy to see that
dgph (04, 0j) = j —iif 0 <7 < j < D. We have the following chain of a priori inequalities
dsat(av UD) < dsat(0'7 "i) + dsat(/@ UD)

< dgph(av H) + dgph(’@ UD)

= dgph(av op)

= dsat(0'7 UD):
using Corollary 4.3.8 where the last equality holds by assumption. We conclude that the above

inequalities are in fact equalities and that dsat (o, k) = dgpn(o, K). O

The following lemma will be the key in relating the notions of saturation and cosocle distance.
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Lemma 4.3.15. Let d < ¢{(R’) and let

def
Od < O0d—1 ¢ ...« 01 < 090 —=0
be an extension path in Tra(R’) (note that % (c;) = i for all i € {0,...,d}). For each i €

{0,...,d} let us fix a saturated inclusion R C R°. Then we have a chain of (saturated) inclusions

Ra'd C Ro'dfl cC...C Ro'l C RO'O.

Proof. Since d? 4(0i41) =i+ 1> i =d7 4(0;) for 0 < i < d — 1, the result follows from Lemma
4.3.10. O

We can use Lemma 4.3.15 to show that all three notions of distance from ¢ agree in some
particular situations.

Proposition 4.3.16. If 0 € JH(R) is mazimally saturated, then Tw.q(R’) is predicted by the
extension graph with respect to o.

Proof. Assume that o is maximally saturated. By Lemma 4.3.12, it suffices to show that dgpn (0, 0’) =
47 4(c") for all o’ € JH(R). Let o’ € JH(R) and d = dgpn (0, o’). We have that Homg (o, gt*(R”)) #

0 for some k > d by Corollary 4.3.1. Assume for the sake of contradiction that £ > d. By the

definition of the radical filtration we may, and do, fix an extension path of length k+1 in I';,q (RU):
O'/=0'k<—0'k,1<—...%0'1<—0'0:(7.

Since dgpn (00, 0x) = d < k and dgpn (00, 03) < d72(0;) = @ for all i by Corollary 4.3.1, there exists
an index ¢ € {0,...,k — 1} such that

(1) dgpn(o0, 05) =i and

(2) dgpn(o0, oiy1) <i+1.
Moreover, since the extension graph is bipartite, we have that dgpn(00, 0i41) < i —1. By Lemma
4.3.15, there is a chain of saturated inclusions:

R0i+1 gRO’ZggRO’lgRO’

where, in particular, R%* C R is saturated as well. As dgpn(00, 0i41) = dsat(00, 0iy1) by Proposi-
tion 4.3.14, we further have p'~' R C R%+!. We conclude that p" ' R® C R% C R, and hence that
dsat (00, ;) < i—1. This contradicts (1) since dgpn (00, ;) = dsat (00, ;) by Proposition 4.3.14. 0O

We now use Theorem 4.2.16 to prove that lower alcove weights of defect zero are maximally
saturated.

Proposition 4.3.17. Let R be a 13-generic Deligne—Lusztig representation and let o € JH(R) be
a constituent with Defr(c) = 0. Assume that o = F(X\) where A € Xi(T) is in alcove A. Then o
is maximally saturated in R.

Proof. By Theorem 4.2.16, we can and do fix an extension path in Iyq(R’) with starting point

lef
09 = 01 0% = 037 < 0371 < ... < 01 < 0p. By Lemma 4.3.15 we have a sequence of saturated

inclusions:
R° D R°' D...D R93f-1 D R
where R7” C R is itself saturated. For each 0 <14 < 3f — 1, let n; be dsat(0y, 0°P). It suffices to
show that ng = dgpn(0o, 0°P) = 3f.
By Theorem 4.2.16, the reduction of the lattice in the dual Deligne-Lusztig representation R*

E———
with cosocle ¢V is rigid and F((R*)U ) is predicted by the extension graph with respect to V.
Noting that the reduction of the dual of a lattice is the dual of the reduction of a lattice and using
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Proposition 4.1.7, we see that I';.q (Rgop) is predicted by the extension graph with respect to ¢°P.

In particular, og < 01 <= ... < 0371 + 03y = 0°P is an extension path in Frad(Rg) and hence,
from Lemma 4.3.15 we deduce a chain of (saturated) inclusions

RO’OP ) pnsf—lRasf—l D...D panal ) pnORU

where we necessarily have n;_1 > n; for all i (as R%+! C R is saturated). In particular ng > 3f.
On the other hand, Corollary 4.3.8 implies that ng < 3f, so that ng = 3f. g

4.3.3. Induction on defect. In this subsection, we show inductively that all weights are maximally
saturated, starting from lower alcove weights as in Proposition 4.3.17. We conclude the section
with the proof of Theorem 4.1.9. We first start with the defect zero case.

Lemma 4.3.18. Let R be a 13-generic Deligne—Lusztig representation. If o € JH(R) and Defg(c) =
0, then o is mazrimally saturated.

Proof. We claim that if o aef 00, 01 € JH(R) such that Defr(ag) = 0, Defg(o1) = 0, dgph (00, 01) =
1, and o¢ is maximally saturated, then o; is maximally saturated. The result then follows from
Proposition 4.3.17 and an easy induction argument.

By Proposition 4.3.16, the graph I';,q(R’) is predicted by the extension graph. By duality (cf. the

proof of Proposition 4.3.17), the graph I';aq (Eg p) is also predicted by the extension graph. Hence

. . . . 50 .
we may and do choose two extension paths, of starting point o, in the graph I';aq(R ") having the
. op / / op op 7 1"
form: o 4= 0351 & ... 4 0y < 01 < 00 and oy < 0, = 035 9 4 ... 0] 00 where

ol, o € JH(R"). As the graph Frad(ﬁaop) is predicted by the extension graph, the extension
paths above induce extensions paths in R by “reversing the arrows and the endpoints”. Let
us fix saturated inclusions of lattices R, R C RO, R"l,RU(ljp C R°”. Since ¢ and ¢°P are
maximally saturated, we deduce that p3/~iR%: p3f~iRo C RO p3f-1Ro1 pR"(l)p C R°™ are
saturated inclusions as well.

By Lemma 4.3.15 we deduce the following chain of saturated inclusions:

(4.24) p IR C ... C pRs R5-1 C ... C R™
C < C <
p3fRO'1 C pSfRU RO’Op R°
< C < ¢
p?/ IR C ... C pRO R C ... C R

We claim that the inclusions p3f Rt C pR"?p and pR"Tp C R, obtained by composing the
saturated inclusions above, are saturated.

We first show that p3/ Rt C pR"(l)p is saturated. If not, then we obtain a chain of saturated
inclusion p3/~'R%* C pR’1" C R°”. We deduce that o is a constituent in image Qqor(c ) and

(o) O O'Op
hence d%.7 (o1) > d%4 (077) +d}y (1) > dgpn(0°P, 07P) + dgpn(oiT, 1) > 3f + 1 by Corollary 4.3.1
op

rad rad
and Lemma 4.3.3. On the other hand, as the graph I';,q (EOO ) is predicted by the extension graph
we have that d% ) (01) = dgpn(0°P, 01) = 3f — 1 contradiction.
The evident analogue of the previous argument shows that pR”?p C R is saturated as well.
Hence dgat (01, o7”) = 3. O

We now give the induction argument.
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Proposition 4.3.19. Let R be a 13-generic Deligne-Lusztig representation. Then any constituent
o € JH(R) is maximally saturated in R.

Proof. We induct on the defect § % Def r(o) for 0 € JH(R). The case § = 0 holds by Lemma
4.3.18. Suppose that § > 0. To ease notation, let d o 3f — d and pick a weight o4 € JH(R) such

that dgpn (0, 04) = d (in other words o4 € JH(R) is at maximal graph distance from o); we will show
that d = dgat (0, 04). Note that Defg(cy) < Defg(c). If Defg(o4) < Defg(o) then o4 is maximally
saturated (by induction on Defg(04)) and hence dgpn (0, 04) = dsat(0, 04) by Proposition 4.3.14.

We now consider the case Defr(c4) = Defr(c). By a direct check on the extension graph,
we see that there exists 041 € JH(R) with dgph(04, 04—1) = 1 and Defgr(04-1) = Defr(o) — 1.
Note that dgpn(04—1, 0) = d — 1. By induction, the weight 04— is maximally saturated, hence
dsat (04—1, K) = dgph(04_1, £) = A2 (k) for all k € JH(R) by Propositions 4.3.14 and 4.3.16.

Let R°4-1 C R?, R°4 C R be saturated inclusions of lattices. By Lemma 4.3.9, we are in one
of the following situations:

(1) R°¢ C R%-1 C R7;
(2) R%-1 C R C R°.

where the inclusions are all saturated.
Case (1). Taking k = o in the above, we have that dga (o, 04—1) = d — 1, and hence obtain
chains of saturated inclusions:

pd—l RO’ g Ra'd71 g Ra—

ul
R74

Assume for the sake of contradiction that dg. (o, 04) < d, i.e. that we have a factorization

p"'R7 ¢ R ¢ R
U
.

R4

Then, we necessarily have that dsat(o, 04) = d — 1. We obtain a commutative diagram:

pd—lRa( RodC ROd-1
d—1 po 50d —=04—1
("R @oF — R —5 R
#0

where the lower arrows are all non-zero.
In particular, o is a constituent of @Q)s, ,(cg4). By Corollary 4.3.1 and Lemma 4.3.3, we have
A7 (o) > A0 (0q) +d0% () > dgph(0a—1, 04) + dgpn(0g, o) = d+ 1. On the other hand, as 041

rad
is maximally saturated, d;* (o) = d — 1, a contradiction.
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Case (2). We now have a commutative diagram

RUd— 1C RUd C RO'

Lol

where again the lower arrows are non-zero. Exactly as in the previous case, we deduce that
A7 ((0a—1) > d%4(0q) +1>d+1.

We therefore may, and do, fix an extension path in the radical filtration of R’
g1 =0) 4 Of_1 4 ...+ 0y < 04 = 0.

. . lef : .
For notational convenience, we set k; = 0f_;- As k> d+1, and as 04— is maximally saturated,

we deduce as in the proof of Proposition 4.3.16 the existence of an index i € {0,...,k — 1} such
that

(1) dgpn(ko, ki) = dsat(ko, i) =% and

(2) dgph(ko, Ki+1) = dsat (Ko, Ki+1) < i+ 1, and actually dgpn(ko, Ki+1) <@ — 1.
Fix a chain of saturated inclusions R0 C R C -.- C R"k. Ttem (2) implies that R0 C R%i+1 C
p~ "t R The induced inclusion R* C R+ C p~*tlR"0 contradicts item (1). O

Proof of Theorem 4.1.9. (5) follows from Propositions 4.3.14 and 4.3.19. (1) and (2) follow from
Propositions 4.3.16 and 4.3.19. Note that T'y.q(R’) is a subgraph of T'(R”). Using Lemma 4.2.6
and the fact that T'(R”) is acyclic, I'(R”) must in fact be T'yaq(R”). This implies (3). O
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TABLE 5. Comparison between alcoves C;, affine Weyl group elements w;

and the graph.

’&71‘ er’i w,,i UA)/Z . A (w, a)ﬂ-i
id id to A (0,0)
(13)t,(5/1+5/2) (13)t,(6/1+5/2) to B (0,1)
(123)t_q, (123)t_, tey C (s(g5),0); s € S3
(12)ta2 (12)t*(5,1*€,2*l) t6/2 E (8(6%), 1); s € Ss
(132)t_q, (132)t_o tey D (s(}),0); s € S3
(23)ta1 (23)75_(6/2_5/1_’_;) tg/l F 8(5/1), 1); s €S53
(I3t aeirey | Ut qe) [ teraey | J | (s(eh +65),1); s € S3 and (0,1)
’&71‘ ZA&Z'7+ {171‘7, UNJZ . B (w, a)ﬂ-i
id id to B (0,1)
(13)t,(5/1+5/2) (13)t—(s’1+5’2) to A / (0,0)
(132)t (201 +az) | (132)I_2er—1) | ey E (s(€),1); s € S3
(23)t_a2 (23)t_€/2 t5/2 C (8(6’2),0); s € Ss
(123)t—(a1+2a2) (123>t*(25/2+l) t5l1 F (5(6/1), 1); s € S3
(12t (12 . | D (5(2,),0); 5 € 55
(13t aerrey | )t whey) [teraey | G | (s(e] +€5),0); s € S3 and (0,0)

For each element w* in the first column, we consider the decomposition w; = w; — -

Wi+ with (w; 1); € EJF. In the fourth column we write the alcove containing w; - A.
In the fifth column we write the mi-th coordinate of the points in the graph (with
origin p + n') corresponding to an irreducible constituent of (®;L(w; - 11;))|G-

Similar comments apply to the second half of the table. Note that in this case, we

. .. ~ ~ . ~ =5t -
consider the decomposition w; = w_; - wy; with wy; € W, wp and the graph has

origin in u°P + 7.
Finally, we have set oy and ap € X*(T') to be (1,—1,0) and (0,1,

—1) respectively.




SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE

TABLE 6. Graph of V(u°? + pn)

G
L(z4+p=2,y,2—p+2)®L(n')

/ \

E
L(z+p—2,0—p+1y—p+1)RL(s}) L(y+p—1,24p—1,2—p+2)RL(s})

C A D
L(y—1,2—p+1,2)®L(}) \L(zw—z.y.r—pm/ L(z,z4+p—1,y+1)®L(c})
B

(L(z.y.2)
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J
/// L(z+p=2.y.2—p+2)OL(1) \

I
L(y—1,2—12—p+2)®L(e}) L(y—1,2—1,e—p+2)®L(2eH+1)

E F
Ly—p+1)®L(s)) \ / L(y+p—1la+1,2)®L(eh)

A
L(z.y.2)

H
L(z+p—2.2+1y+1)®L(2¢ —1)

T~

Liz,=

L(z,y,2)®L(n') L(z+p—2,a+1,y+1)®L(eh)

The graphs of V(u°? + pr/) when f = 1 (and p is 2-deep). In the first (resp.
second) diagram p € X;(T) is upper alcove (resp. lower alcove). For each alcove
we write below the unique weight L such that L(z,y,z) T L. We remark that
gr;(V(puP + pn') = gri(Q1(wn)) if u = (x,y,2) is upper alcove, while gry (V (u°P +
pn’) @ L(u°P) = gri(Q1(p)) if u = (x,y, 2) is lower alcove.



SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE 83

5. BREUIL'S CONJECTURES

In this section, we deduce generalizations of Breuil’s conjectures on mod p multiplicity one and
lattices from the results in §3 - 4. In §5.1 - 5.2, we prove a version of Breuil’s conjectures for
abstract patching functors. Finally, we deduce the main results in §5.3.

5.1. Cyclicity for patching functors. In this subsection, we show that certain patched modules
for tame types are locally free of rank one over the corresponding local deformation space using
several inductive steps. The base case is Lemma 5.1.3. Each inductive step uses one of two
arguments in [EGS15, §10]. It is here that the results of §3.6.3 enter.

Recall from §1.4 that S is a finite set so that for each v € S, Fj is a finite unramified extension
of Q, of degree f5. For each v, let p; : Gp, — GL3(F) be a 10-generic semisimple continuous Galois
representation and let pg be (p3)ses. Recall the weak minimal patching functor setting of §3.5.
Suppose that pg|rs = Ts(s, p) for s € W and p € X*(T).

Let K be [[-.s K3. Suppose that My, is a weak minimal patching functor for pg (cf. Definition
3.5.1). For each v € S, let 75 be an 13-generic tame inertial type for Fj. Recall R%’B 9 from

1Py

[LLHLM18, Definition 5.10]. We let 7s be (73)z so that o(7s) is the K-module ®zes0o(75). Let

veS

ef o~ ~ 5,850
RL (7s) < R (T5)®(®UE$R?) (®5€3R—~6 )

and
def = = 7"1“”7177:'
M/ (V) MOO(V)®((§)5€5R;T’) (®GGSR—57~ )

for any subquotient V' of a lattice in o(7s).

We assume that R (7s) is nonzero. Then there exists w = (W5)ges = (Wi)ie Y € Adm" (n) such
that 7s = 7s(s(w*) ™1, p+s(w*)~1(0)) with the lowest alcove presentation (s(w*) ™!, u+s(w*)~(0)—
n) by Theorem 3.3.12 and Proposition 3.4.1. Note that wy = w(py, 7). Then, as exlpained in

Section 3.6.1, Spr;O(TS) (resp. SpfR. (7s)) is formally smooth over Spf(@zejRe ol @> (resp.

Spf(@lGJReXplz) if /(w;) > 1 for all i € J), where i = (v,i3). We consider R oo (Ts) (resp.

R._(7s)) both as a ®1ejR— v -algebra and a ®U€3R -algebra (resp. a ®l€jReXp1 v—algebra and

a ®U€5Rﬁﬂ—algebra). It is easy to see that M/ (V) is a cychc R/ (7s)-module if and only if Moo (V)
is a cyclic R (7s)-module. Moreover, M/ (V') is always maximal Cohen-Macaulay over its support.
It will often be more convenient to prove that M/ (V) is a cyclic R, (7s)-module, and we will switch
to M. (V) without comment. If o € JH(o(7s)), then recall from §4.1.2 that o(7s)? is the unique
O-lattice up to homothety in o(7s) with cosocle o.

Theorem 5.1.1. Let 75 be a 13-generic tame type and o 1/ F(\) € W'(pg,7s) such that for all
1€ J,
(5.1) Ar—1(sy € X1(T') is in alcove Cy if L(w;) < 1.

Then My (o(1s)7) is free of rank one as a Roo(Ts)-module.

The proof of Theorem 5.1.1 proceeds by proving cases of increasing complexity. We distinguish five
steps in the argument.

Lemma 5.1.2. If 0 € W*(pg), then M (0) is a cyclic Roo(7s)-module.
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Proof. The proof follows the methods of Diamond and Fujiwara ([Dia97]). Note that the support of
M (o) is formally smooth as can be checked from Theorem 3.5.2.Since M (o) is maximal Cohen—
Macaulay over its formally smooth support by Definition 3.5.1(3), it is free over its support by the
Auslander-Buchsbaum—Serre theorem and the Auslander-Buchsbaum formula. Since e(My(0)) =
1 by Theorem 3.5.2, the free rank is one. U

If V is a w-torsion K-module satisfying the hypotheses of Lemma 3.6.2, we write Roo(V) to
denote the quotient R, /I(V'). For the rest of this subsection, we assume that the weight o satisfies
the conditions of Theorem 5.1.1.

Lemma 5.1.3. Assume that {(w}) > 1 for alli € J. Let 0 € W*(pg,7s) and let V be a nonzero
quotient of a(75)?. Then My (V) is a cyclic R (Ts)-module.

Proof. If R._(7s) is formally smooth over O, then the result follows from Lemma 5.1.2. Suppose
otherwise. We use the notation of the proof of Lemma 4.3.7 with R = o(7s). Recall that for
o € JH(o(7s)), ps(o) = (zj(cr));vzl + (p). By Lemma 3.6.10, for oy and o9 € W’ (pg,7s), we have

(5.2) #({z(01)}jA{z(02)};) = 2dgpn(o1, 09).

Let 01 € W'(pg,7s) be such that dgpn(o, 1) = 1. Furthermore, fix a saturated inclusion

o(75)7* — o(1s5)?. Letting M & M! (o(7s)?) and M, & M! (o(7s)°'), we have a map M; —

M. By Proposition 4.3.7, o(7s)? /o (7s)°" is p-torsion, with Jordan-Holder factors determined by
Theorem 4.1.9. By the proofs of Lemmas 3.6.2 and 4.3.7, the scheme-theoretic support of M /M;
in Spec S is

(5.3) Spec (S/ N ps(a’)).

o’'€JH(o(15)7 /o(T5)71)

The sets {zj(01)}; and {z;(0)}; differ at exactly one component, say ji. The equation (5.2)
determines pg(o’) for all ¢/ € JH(o(7s)) from which one checks that z; (o) is in pg(o’) for any
o' € JH(o(75)7 Jo(1s)°"). By (5.3), we see that coker(M; — M) is killed by zj, (o). Similarly, we
have that coker(pM — M) is annihilated by z;, (01). Hence we have inclusions z;, ()M C M; and
zj, (o1)My C pM. Combining these, we have that pM = z; (0)zj, (01)M C zj, (01)My C pM. We
conclude that the above inclusions are equalities.

Applying the above argument for all o1 € W' (pg,7s) at distance one from o, we have that
M! (o) 2 M (0(75)?)/(ww,{zi(c)}i). The left hand side, and hence the right hand side, is cyclic
by Lemma 5.1.2. We conclude that M/ (c(7s)?) is cyclic by Nakayama’s lemma. Since M. (V) is
a nonzero quotient of M!_(7(7s)?), it too is cyclic. O

As in §2.3, let oy, q) & F(Try(sw,a)) (where (sw,a) € Afj, x A). Then W'(ps) = {0 :
(w,a) € r(X)}. Similarly, for w € Adm"(n), we have a bijection

(@")~H(2) = JH(o(rs))

(w,a) = 0(4.0)

where 75 & 7(s(w*) ™Y, p—s(w*)71(0)). In what follows, o € W*(pg, 7s) is a Serre weight satisfying
(5.1), and V is a nonzero quotient of o(75)?. We assume that for each i € 7, there exists a subset
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Sy C (wr)~1(Zo) such that

(5.4) I1=v: = H(V)
€J
(w,a) = 040 = F(Try(sw, a))
is a bijection. All representations we consider below satisfy this assumption.

In the following lemmas, we use a gluing procedure to show that M. (V) is cyclic in cases
where the set W” (ps,Ts) is of increasing complexity. In figures 7, 8,9, 10, and 11 we give pictorial
realization of the gluing procedure employed in the proofs of Lemma 5.1.4,5.1.5, 5.1.6, and 5.1.7,
respectively.

Lemma 5.1.4. Suppose that for eachi € J either {(w)) > 1 or Xy,; C {(w, 1), (0,0), (£1,0), (e2,0)}
for some w € {0, €1, e2}. Then My (V) is a cyclic Roo(Ts)-module.

Proof. Note that by condition (5.1) one has (w,1) € Xy,; whenever ¢(w]) < 1. In this case,
we assume without loss of generality that (w,0) € Xy;; (because the quotient of a cyclic module is
cyclic). Let Sy,; be the image of Zy; in Ay, under the natural projection. We proceed by induction
on
n=#{ieJ:{(w;) <1and #Xy; = 3}

If n = 0 then a casewise check shows that there exists w' € Adm(n) such that for alli € J, {(w]) > 1
and Xy; C X(g)-1. For example, if Xy; C {(0,1),(0,0), (e1,0)}, then one takes w; = Bat;. Let
745 be 7s(s(w)7H pu + s(@w')71(0)) where w' € W is the image of @w’. Then My (V) is a cyclic
Ro(75)-module by Lemma 5.1.3. Hence My (V) is a cyclic as a Ro-module, and thus it is a cyclic
as an Roo(7s)-module as well.

Suppose now that n > 0 so that there is an ¢/ € J such that #fvi, = 3 and {(w}) < 1. By
Theorem 4.1.9 and Propositions 4.1.1 and 4.1.2, there are quotients V! and V2 of V satisfying (5.4)
with the following additional properties

(1) By =Sy 5 U By,

(2) (w, 0) € Evl’i/ N EVQ,i’v

(3) #3v1 0, #Xy2 =2, and

(4) Xyj; =Xy, for all i #4" and j =1, 2.
For example, if Xy; = {(0,1),(0,0), (€1,0), (€2,0)}, then one takes ¥y, = {(0,1),(0,0),(e1,0)}
and Xy = {(0,1),(0,0), (2,0)} (cf. Table 7).

Let V3 be the quotient of V! and V2 satisfying (5.4) such that Sys; = Sy ;N Sy2; for all i. By
the inductive hypothesis, M/ (V'), M., (V?), and M/ (V?3) are cyclic. Let I; be Anng, (o) M/ (V7)
for j = 1,2,3. By (1), we have an injection V < V1@ V2. In fact, this injection lands in V! x 3 V2.
Comparing lengths, we see see that the injection V < V! x5 V2 is in fact an isomorphism, which,
using the exactness of My, (see Definition 3.5.1), gives the first isomorphism below:

ML(V) 2= ME(VY) X g vay M (V?)
= Ro(18)/T1 X e (rs) /15 Roo(T5)/ 12
= R (78)/Ti X re_(rs) /(11 +12) Roo(75)/ T2
= Rio(1s)/(I N I2).

The second isomorphism follows from Lemma 3.6.2. The third isomorphism follows from the fact
that Iy + I = I3 by Theorem 3.6.4, Table 3, Lemmas 3.6.12 and 3.6.16(3.19). We deduce in
particular that M/ (V) is cyclic. O
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We remind the reader that our parametrization of Serre weights o, ,) is “centered at pg”.
Thus 0,4 € W’ (ps) exactly when (w,a) € r(X), and O(wa) € JH(0(7s)) exactly when (w,a) €
(@)1(%).

Lemma 5.1.5. Suppose that for all i € J either £(w]) > 1 or
EVJ - (@:)71(20 \ {(V17 0)7 (V27 1)7 (’/37 0)})

where (v1,v2,v3) is (€1 —€2,€1,€1 +€2), (62 —€1,€2,61 +€2), or (61 —€2,0,69 —e1). Then M (V)
is a cyclic Roo(Ts)-module.

Proof. We note that #(Xyv,; Nr(Xg)) <5 for all i € J. We proceed by induction on n = #{i € J :
#(Zv,;Nr(Xp)) =5}. There is a unique w; € Adm(2,1,0) such that

(5:5) (@)™ (2o \ {(1,0), (2, 1), (v3,0)}) = (@) (Zo) N (@) ™" (Xo)-

One can check that if #((w})™1(Zo \ {(v1,0), (v2,1),(r3,0)}) N r(Xp)) < 4, then one of ¢(w})
and ((w}) is strictly greater than one. If we change the type 7s so that @} is replaced by w/,
but w}, are unchanged for i’ # i, there is still a surjection 7(75)” — V by (5.5) and Theorem
4.1.9. We can therefore assume without loss of generality that for each i, either ¢(w}) > 1 or
(@) (S0 \ {(,0), (2, 1), (3, 0)}) 17(S5)) = 5.

Suppose that n = 0. If £(w}) < 1 for some i € J, then #((w;)~1(Zo \ {(v1,0), (12, 1), (v3,0)}) N
r(X0)) = 5 by assumption. On the other hand, ¥y; N7 (3g) < 5, which implies that Xy,; Nr(Xy) C
{(w,1),(0,0),(¢1,0),(e2,0)} where w = 0,e1, or €2 by considerations of submodule structure.
Hence, there is a quotient V'’ of V such that V' is of the form in Lemma 5.1.4 and the induced map
M (V) = My (V') is an isomorphism by exactness of My, and Theorem 3.5.2. We are then done
by Lemma 5.1.4.

Suppose now that n > 0. Suppose that #(Xy,» Nr(Xg)) = 5 for some ¢ € J. This in particular
implies that #(Xv) = 6, by consideration of submodule structure given in Theorem 4.1.9. Then
V has a unique quotient V! such that Sy1,; = Sy; if i # i’ and E%/J., = Sy \ {(0}) v, 1)}
where vy = 0,e1, or €3 and vy # vy (cf. Figure 8 for an example in the particular case where
Wy = t1). Then My (V1) is cyclic by the induction hypothesis. There is also a submodule V2 C V
such that Sy2,; = Sy if i # ¢ and #5y2 0 = #(Sy2 N7r(S)) = 2 (cf. Figure 8; note also that
(0}) " (v4,1) € Sy since soc V2 C soc V). One can check that Ms(V2) is cyclic by the inductive
hypothesis. Then letting M” = ker(Muo(V) — Moo(V?1)) and M’ = My (V?), [EGS15, Lemma
10.1.13] implies that My (V) is cyclic. O

Lemma 5.1.6. Suppose that for all i € J either ((w;) > 1 or Ny,; C (w}) 1(Zo \ {(v,0)}) where
v is el — 9,69 — €1, or €1 + 2. Then My (V) is a cyclic R (7s)-module.

In the setting of Lemma 5.1.6 note that when ¢(w;) < 1 the condition Xyv; C (w}) ™1 (Zo\{(»,0)}),
v e {e1 —eg,60 —€1,61 + €2} is equivalent to #Xy; < 9.

Proof. We proceed by induction on
n=#{icJ d(w;)<1land Xy; ¢ (@;‘)71(20 \ {(v1,0), (12,1), (v3,0)}) for
(v1,v2,v3) = (€1 — €2,€1,€1 +€2), (€2 — €1,€2,61 + €2), and (g1 —€2,0,62 — £1)}.

The case n = 0 is covered by Lemma 5.1.5. Suppose that n > 0, and that ¢/ € J with {(w}) < 1
and

EV,Z" ¢ (7:52(’)71(20 \ {(Vl’o)v (V27 1)7 (V37 0)})
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for (v1,va,1v3) € {(e1 — €2,€1,61 + €2), (€2 —€1,62,61 + €2), (61 —€2,0,69 — 1) }. Assume without
loss of generality that Xy, = (w5) (2o \ {(,0)}), as the quotient of a cyclic module is again
cyclic. We can further assume without loss of generality that v = 1 + &2 (which implies that if
0 = 0(w,q), then (wyr,ay) = (@})~1(0,1)). Then there are quotients V! and V2 of V such that

(1) By =Sy UZy2 g,

(2) Evjﬂ' = EV,i for 4 75 " and j = 1, 2,

(3) Evlﬂ‘/ C (@?/)_1(20 \ {(81 — &9, 0), (51, 1), (61 + &9, 0)}), and

(4) Byz C (w5) (B0 \ {(e2 — €1,0), (e2, 1), (€1 +£2,0)})
(cf. Figure 9 for an example when w; = ). We now argue by induction as in the proof of Lemma
5.1.4 using Theorem 3.6.4, Lemmas 3.6.14 and 3.6.16(3.17) and 3.6.16(3.18). Note that the analogue
of Lemma 3.6.16 for the shapes 8 and v hold symmetrically (see Remark 3.6.5). U

Lemma 5.1.7. With V as described before Lemma 5.1.4, M (V) is a cyclic Roo(Ts)-module.

Proof. We proceed by induction on
n=#{ieJ:lw;) <1and #Xy,; = 9}.

(In the definition of n, note that the condition #Xy; = 9 can be replaced by: for all v € {g; —
€9,69 — €1,61 + €2} one has Xy,; ¢ (wf) (o \ {(v,0)}).) The case n = 0 is covered by Lemma
5.1.6. Suppose that n > 0. Let i € J be such that {(w}) < 1 and #Xyy = 9 (equivalently,
((w}) <1 and Sy, = (@) *(Z0)). Then V has a quotient V! such that $y1; = Xy, if i # i’ and
Sviy = Sy \ {(@;) "1, 0)} where v =& — 3,69 — €1, or €1 + €2 (cf. Figure 11 for an example
when @}, = y7¢1). If the map Moo(V) = Moo (V') is an isomorphism, we are done. Otherwise,
there is a submodule V2 of V such that Xy2; = Sy if @ # ', #3820 = #(Sy20 Nr(So)) = 2,
and (@})"*(v,0) € Sy C 7(Xp). Then one argues as in the proof of Lemma 5.1.5. O

Proof of Theorem 5.1.1. Lemma 5.1.7 implies that M, (5(7s)?) is a cyclic Roo(7)-module. Nakayama’s
Lemma implies that My (0(75)?) is a cyclic Roo(7s)-module. By Theorem 3.5.2, M (o), and thus
My (0(75)?), is nonzero. By Theorem 3.5.3, R (7s) is irreducible and reduced, so that Definition
3.5.1(3) implies that M (0(7s)7) is a faithful R (7s)-module. Since a faithful cyclic module is
free of rank one, we are done. O

Finally, we show that the hypothesis of Theorem 5.1.1 is actually neccessary:

Proposition 5.1.8. Let 7s be a 13-generic tame type and o & F(\) € W (pg,7s). Assume that
for some i € J,

(5.6) Ar-1(s) € X1(T') is in alcove Cy and £(w;) < 1.
Then My (0(75)%) is not free as an Ry (7s)-module.

Proof. As we will not make use of this, we only give a sketch of proof. Unlike the rest of this
section we will parametrize the weights by centering around 7s, so that 7s = 7(s,u) and o, 4

means o, q) def F(%r,(sw,a)). In particular, W*(pg, 7s) consists of O(w,a) Such that (w,a) € Xg-.
We write 0 = 0, q), 50 (w,a) € X. For each i satisfying (5.6), we have a; = 0. If moreover

(wiya;) € X0 we set (wl,al) = (w;, 1), otherwise we set (w!,al) to be one of the two elements in

¥y that are adjacent to (w;, a;). For i not satisfying (5.6), we set (w}, a;) = (w;, a;). Thus we obtain

a weight o’ = O(w' o) Which satisfies the hypothesis of Theorem 5.1.1.

We now fix a saturated inclusion ¢ : o(75)? < o(75)? , and let C' denote the cokernel. Since
Moo (0(75)7") = Roo(Ts), Muso(2) identifies My (0 (75)?) with an ideal I(C) of Reo(7s). Thus we
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need to show that I(C') is not a principal ideal, and to do so it suffices to show that the image of
I(C) in Ry (7s) is not principal.
Let V denote the cokernel of © mod w. Using Theorem 4.1.9, we see that V' is multiplicity free,
and JH(V) N W7 (pg) consists of O(ve) 0 (V,¢) € B« \ [[; Bvei, where:
e if i does not satisfy (5.6), Xye; = Zgs;
e if i satisfies (5.6) and (w;,a;) € SP, Sye,; = {(wi, 0), (p1,1), (12, 1)} where {w;, p1, po} =
{0,e1,e2}; and
e if i satisfies (5.6) and (wj,a;) ¢ X§™, Zye; = {(w;,0), (w!, 1)} where w! is such that
{wi,wi,wl'} = {e2 — €1,0,e2}, {e1 —€2,0,e1}, or {e1 + 52,51,82}
Lemma 3.6.2 shows that Mo, (V) & Ry (75)/I(V), where I(V) is the intersection, over x € JH(V)N
W”(ps), of the ideals p(x) defined in Proposition 3.6.1. Note that the image of I(C) in Reo(7s)
is I(V)Roo(7s). Thus we need to show I(V)Ry ( 7s), or equivalently, I(V)E/OO(TS) is not principal.

Recall that there is a formally smooth map Ric jReXpl;E_ - R oo(7s). We claim that the ideal
I(V) comes from [ ' X N c(l,hci)}‘%%fﬂ; ) To check the claim, let ReXPIv o
(ui,ci)62~*\Evci v fﬁ_l_l
Ric jReXplwv_. We first check that RexDlv /I has the expected cycle. To do this, we check using
expl v —expl,V —expl,V
Table 3 that Rg; iy ’/(V C)ezﬂ . C(”ivci)Rﬁa,ﬁfrl_i is filtered by ﬁ%af’ﬁ_l_i/c(,,wcj) for
irCi w¥ Ve
xpl,V xpl,V
(vj,¢j) € Bg:\Xve;, and that N c(,,i,ci)Rgﬁlj By s is filtered by R~ f,wfi_l-i/c(”j’cj) for

(Viaci)ezm\zvc i

—expl,V

—expl,V
P & /I with factors of the form ®zeij~ - /p,,

(vj,¢j) € Yye ;. Thus we can filter the quotient Rg;

%
where the p; are minimal primes of R xpl > (note that taking completion is an exact operation). As

I'(im(¢ (mod w))) decomposes as a product over J, an inductive argument using Theorem 3.6.4

and the above filtration on R =xpL,v / I shows that the cycle of Re pLY / I is given by the components

of Re—Xpl 'V labeled by the Serre Welghts corresponding to I'(im(z (mod w))). In order to prove the

clalm we are left to show that I is a radical ideal. To see this, we make the following observation:
If R, S are two reduced local Noetherian rings over a perfect field k, and J, L are radical ideals
of R,S, then J ®j L is a radical ideal of R ®; S. This is because (R ® S)/(J ® L) embeds into
((R/J)®S)x (R®(S/L)) (as can be seen by choosing bases of J,L as k-vector spaces and extending
them to bases of R,S), and the latter ring is reduced. Finally, we note that in the situation above
the property of being a radical ideal is preserved by completion, so that J®L is also radical in
R®3S. The claim is proven.

By Nakayama’s lemma, the size of a minimal set of generators of I is given by the dimension

over [F of
®®1EJR%EIZ = ® m Cviyei) ®R%flwv IE‘)
CT e)ema\Bves -
Hence, it suffices to show that for i satisfying (5.6), N C(v1,c1) Ogonl.¥ F has dimen-
(Vi76i)625f\EVc,i wx~ wf~71 i
sion greater than one, which can be checked from Table 3. 0

5.2. Gauges for patching functors. In this subsection, we compute the image of maps between
patched modules for lattices in Deligne—Lusztig representations. This can be viewed as a calculation
of lattice gauges in families. The main ingredient for this section is Theorem 5.1.1, after which
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algebro-geometric arguments using the projection formula and the Cohen—Macaulay property prove
Theorem 5.2.3. We learned these arguments from M. Emerton.

We continue to use the weak minimal patching functor setting of §3.5. Let S, pg, Roo, Xoo,
and My be as in §5.1. Let 7s be (75)zes, where 75 is an 13-generic tame type. Let Xoo(7s) dof
Spec Roo(7s). It is a normal and Cohen-Macaulay scheme by (the proof of) Theorem 3.5.3. Let
Z C Xoo(7s) be the locus of points lying on two irreducible components of the special fiber of

Xoo(7s). Note that the codimension of Z C X(7s) is two. Let

. def
J:U = Xoo(15)\ Z = Xoo(Ts)
be the natural open immersion. Note that j and U comes from pulling back the open immersion

Jo : Up = Spf(@}?%”j) via the formally smooth map X (7s) — Spf(@Rgﬁ), where Uy is defined
veES veES
in an analogous way as U.

Lemma 5.2.1. The scheme U is regular.

Proof. The irreducible components of the special fiber of X, (7s) are formally smooth over IF, hence
the special fiber U of U is regular by the last part of Theorem 3.5.3. The dimension of the tangent
space of U at a characteristic p point is at most one more than the dimension of the tangent space
of U at that point. By p-flatness, the Krull dimension of U is one more than the Krull dimension of
U, and so U is regular at characteristic p points. Since the generic fiber of U, which is isomorphic
to the generic fiber of X (7s), is regular, U is regular. O

We now use the notation j* and j, which take quasi-coherent sheaves on X (7s) to those on U
and vice versa, respectively.

Lemma 5.2.2. Let o, k € JH(o(7s)) and let v : o(15)" — 0(75)7 be a saturated injection. For any
0 = @pesty € W (ps) let m(6) be the multiplicity with which 6 appears in the cokernel of 1. Then
the induced injection j* Moo (1) : 7" Moo (0(75)") = j* Moo (0(75)7) has image

(T »O)" O M(o(ms)7),
0eW? (bs)
where p(0) = D 5csP(05).

Proof. Note that j*(Meo(0(7s)")) and j* (Moo (o (75)?)) are locally free (of rank one), since they are
Cohen—Macaulay of full support over the regular scheme U (see Definition 3.5.1). Then the image
of j*Muo (1) is J®0, 7* (Moo (0(7s5)7)) where J is the ideal sheaf of the Cartier divisor corresponding

to the cokernel of j* My (¢). It is easily seen that J = j*(ngw?(pS) P(a)m(g)Roo(Ts))- Finally, we
have that

P TI »O™Re(rs)) @0, 5 (Molo(re))) 25 (- T 0O Rec(rs))i* (Moclo(rs)7))

0eW? (pg) 0eW?(Bs)
= II »O)"OM(o(ms)))
0eW? (Bs)
where the isomorphism follows from the fact that j* (M (0(7s5)7)) is locally free. O

Let ¢ be as in Theorem 5.1.1, so that My (c(7s)?) is cyclic.
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Theorem 5.2.3. With the notation of Lemma 5.2.2, suppose further that o is as in Theorem 5.1.1.
Then the induced injection Moo(1) : Moo(0(75)F) = Moo(0(75)7) has image

G (T PO Rec(rs) ) Moo 0 (7s)7).
W (ps)

Proof. If M is a Cohen—Macaulay sheaf on X (7s), then j,j*M = M since the codimension of Z
is two (cf. [HKO04, Proposition 3.5]). Hence the image of My (¢) is

g (T pO)" O Mu(o(rs)7))

W (ps)

by Lemma 5.2.2. Since My (0 (7s)?) is free over Ry (7s), we have that

G TT pO™OMu(os)) = 5d* (- TT #O)™ O Rc(rs) ) Muc(o(75)°):
0eW? (ps) 0eW? (ps)
U

Remark 5.2.4. As j comes from pulling back jg via Xoo(75) — Spf(@R?) and p(@) are ideals of
veS

Spf (/@?Rgﬂ), we see that the ideal
veS

i (T pO" O R) =dvis( TI 00" ORET) Rlrs)

0eW? (bs) 6eW? (Bs) ves
comes from an ideal in @gegRg.

5.3. Global applications. In this subsection, we deduce generalizations of conjectures of Dembélé
and Breuil on mod p multiplicity one and lattices, respectively (see [Brel4, Conjectures B.1 and
1.2]). Theorem 5.3.4 follows immediately from Theorem 5.1.1. While Theorem 5.3.5 also follows
from Theorem 5.2.3, it is crucial that the image of the map between two patched modules given in
Theorem 5.2.3 is described by an ideal. This is far from formal, and relies crucially on Theorem
5.1.1.

We use the setup in [LLHLM18, §7.1]. Let F//Q be a CM field with maximal totally real subfield
F* #Q and let ¥ (resp. X)) be the set of places of F* (resp. of F) lying above p. Let G+ be
a reductive group which is an outer form for GL3 which is quasi-split at all finite places of F'™ and
which splits over F. Suppose that G p+ is definite, i.e. that G(F,}) = Us(R) for all v[oo. Recall
from [EGH13, §7.1] that G admits a reductive model G defined over Op+[1/N], for some N € N
which is prime to p, together with an isomorphism

(5.7) v Gropn/ny = GLajop/w)
which specializes to ¢y, : Q(OFJ) 5 G(OF,) & GL3(OF,) for all places w € Y, with w|p+ = v.

Let U = UPU, < G(A;fi’p)) x G(Op+ ;) be a compact open subgroup. If W is a finite O-
module endowed with a continuous action of U we write S(U, W) to denote the space of algebraic
automorphic forms with coefficients in W:

def

SW,W) S {f: GIFNGAE) — W flgu) = u f(g) ¥ g € G(AR,),u € U}.
We define

def def ;.

S(UP, W) < lim S(UPU,, W) and S(UP, W) = lim S(UP, W/w")
Up s
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where in the first limit the subgroups U, < G(Op+ ,) run over the compact open neighborhoods of
1e Q((’)F+ ,p)-

For U as above, let Py be the set of finite places w in F' whose restriction v f w|p+ is a place
that splits in F' and at which U is unramified. Let P C Py be a subset of finite complement. Then
the universal Hecke algebra Tp = (’)[Tg), w € P,0<i<mn|on P acts naturally on S(U,W). Let
7 : Gp — GL3(F) be a continuous Galois representation. We let m C Tp be the maximal ideal
which is the kernel of the system of Hecke eigenvalues @ : Tp — [ associated to T, i.e. & satisfies

3 .
det (1 — 7 (Frob,,)X) = Z Y (N (w) (1) x7
Jj=

for all w as above. Then we say that 7 is automorphic if S(U, W), is nonzero for some U and W.
For technical reasons, we choose a place v; of F™ as in [CEGT16, §2.3]. We now fix U?P <
GALY
(1) (UP)y = G(Op+) for all finite places v of I~ which split in F' and do not belong to X U{v1 };

(2) (UP),, is the preimage of the upper triangular matrices under the map

)) to be the subgroup with:

G(Ops ) = Glkuy) = GLa(ks,)

(3) (UP), is hyperspecial maximal compact in G(F,") if v is inert in F.

Let 7 be an automorphic Galois representation. Let 2;{ denote the set of finite places of F'™
which are the restriction of the finite places of F' away from p where 7 ramifies. For each v € E(T ,
we let 73 be the minimally ramified type in the sense of [CHT08, Definition 2.4.14] corresponding
to 7|g,. and o(ry) be the GL3(OF,)-representation over E associated to it (cf. the beginning of

§5.3.1). We write o(,) def o(15) o v, which is a G(O FJ)—representation independent of the choice
of ¥]v. For each v € &7 fix a O-lattice o(7,)° in o(7,) and let Wyt be et 0(T)°.
0 0

We let TV denote the abstract Hecke algebra over O generated by the formal variables Té,j ),
where w runs over the finite places of F such that w|p is split in F and w|p+ ¢ S5 U YU o},

and by Téf) for j =1,2,3. For a G(A( )) module V over O, TV acts naturally on S(UPU,, W),
S(UP, W), and S(U?,W) where W = Wer @V (cf. [CEGT16, §2.3]), and we let m C T™V be

the maximal ideal as before. We will now assume that S(U, W)y, is nonzero for some choice of V'
above. In fact, one can show, by the proof of Proposition 6.0.2, that this is a consequence of the
hypothesis that 7 is automorphic.

In the remainder of this section we let 7 : Gp — GL3(F) be an automorphic Galois representation
that satisfies the Taylor-Wiles conditions in the sense of [LLHLM18, Definition 7.3]. We assume
furthermore that

(i) the extension F//F* is unramified at all finite places;
(ii) (split ramification) if 7 : Gr — GL3(F) is ramified at a place w of F, then v = w|p+ splits as
wws;
(iii) p is unramified in F'™ and all places in F'* above p split in F'; and
(iv) Tlgp, is semisimple for all w € %,

For each v € ¥.f, we choose a place 9]v of F and let S be the set {v|v € X} }. Let 55 be TlGp and

ps be (py)ves. We set K = dof [[5es GL3(OF;). Let M. be the weak minimal patching functor for

7 in the sense of [LLHLM18, Definition 7.11] constructed in [LLHLM18, Proposition 7.15]. As in
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§3.5, we let M, be My o Fes Lo, which is a weak minimal patching functor for pg by Proposition
3.5.14.
Along with the construction of My, (cf. [CEGT16, §2.8], [Lel8, §4.2], [LLHLM18, §7.3]) one has

a ring homomorphism R, = ﬁ(gng [x1,...,zn] — Tl(lfr;’ié(@F+,p)(W25r)m’ where T5215(0F+!p)(WE§)
is the image of T"™ in Endo (S(UPG(Op+ ), WE(T)) We also write m for the pullback in Ry, of
the maximal ideal of T%ié(OFﬂp)(WZo*)m' Then if WE; is a smooth, finite dimensional G(Op+ ,)-
representation over F one has

~ — =V
(5.8) (Moo(Wg)/m)" = S(UPG(Op+ ), Wy ® Wz ) [m].

where -V denotes Pontrjagin duals (cf. [Lel8, Theorem 4.1.5]).

5.3.1. Automorphy lifting. Recall from Proposition 2.2.6 that if v € S and 75 is a 1-generic tame
inertial type for I, we defined a GL3(Op,)-representation o(7z) over E corresponding to 73 by
results towards inertial local Langlands. We again let o(7s) be ®zcs0o(T3).

Theorem 5.3.1. Letr : Gp — GL3(E) be an absolutely irreducible Galois representation such that

(1) for all places w € ¥y, 71, is semisimple and 10-generic;

(2) r is unramified almost everywhere and satisfies r¢ = rVe 2;

(3) for all places v € S, the representation T|GFE is potentially crystalline, with parallel Hodge-
Tate weights (2,1,0) and with tame inertial type 15 (see [LLHLM18, Definition 2.1]);

(4) T satisfies the Taylor—Wiles conditions as above and T has split ramification; and

(5) 7 =2 T, () for a RACSDC representation © of GL3(Ap) with trivial infinitesimal character
such that Rzcso(7y) is a K-type for Qpesmy.

Then r is automorphic in the sense of [LLHLM18, §7.2].

Proof. Given Theorems 5.3.3 and 3.5.3, the proof of [LLHLM18, Theorem 7.4] goes through un-
changed. O

Remark 5.3.2. Compared to [LLHLM18, Theorem 7.4], we relaxed the hypothesis that p splits
completely to p being unramified. However, we also assumed that 7 is semisimple at all places
above p. The reason is that we only established the connectedness of the generic fiber of R7 when
P is semisimple (though we do know it for non-semisimple p in the case that all shapes have length
> 2). In work in progress, we will establish a counterpart of [LLHLM18, Theorem 7.4] for non-
semisimple representations. This will allow us to remove the semisimplicity hypothesis in a manner
similar to [LLHLM18, Theorem 7.4].

5.3.2. The Serre weight conjecture. Let 7 : Gp — GL3(F) be as in the beginning of §5.3. Recall
that for each v € ¥.f, we chose a place v]v of F' and set S to be the set {v|v € ¥} Furthermore,
we let p; be 7|g,_ and pg be (py)ses. Recall that K is the product [[5.5 GL3(OF;). Let W(7) be
the set of irreducible K-representations o over F such that

S(UPG(Op+ ), Wyt @ (07 0 [ ] t3))m # 0.

veES

We have the following version of the weight part of Serre’s conjecture.
Theorem 5.3.3. Let 7 : Gp — GL3(F) be a continuous Galois representation, satisfying the
Taylor- Wiles conditions. Assume that py d:ef?|GF~ is semisimple and 10-generic for allv € S, that

T is automorphic, and that T has split ramification. Then W () o [[5cs tv = W' (ps).
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Proof. We have that WPM(ps) = W(T) o [[;cs t5 by (5.8). The result now follows from Theorem
3.5.2. 0

5.3.3. Mod p multiplicity one. We continue using the setup from the beginning of §5.3. We have
the following mod p multiplicity one result.

Theorem 5.3.4. Let 7s and o € W (pg, 7s) be as in the statement of Theorem 5.1.1. Then
S<U”Q(OF+,p), (@(7s)7 e ] w)’ ®os ng) [m]
UEE;
is one-dimenstonal over IF.

Proof. By (5.8),
Mao(a(75)7) /m = Mas((r5)" 0 [ 12)/m= (5(U7G(0pr). (@(rs) o T] 15)" @0 Wi ) [m])

e} eSS
By Theorem 5.1.1, the dimension of My (G(7s)?)/m is one. O

5.3.4. Lattices in cohomology. Let r : Gp — GL3(FE) be an automorphic Galois representation as
in Theorem 5.3.1. We say that r is minimally ramified if r|g,_ is minimally ramified in the sense

of [CHTO08, Definition 2.4.14] for all v € 7. Following the notation of [LLHLM18, §7.1], let A be
the kernel of the system of Hecke eigenvalues o : T"™V — O associated to r, i.e. a satisfies
3 .
det (1 — " (Frob,)X) = > (=1 (N/g(w) & a(T¥) X7
j=0
for all w as above. We now set W & Wzar as in §5.3.3. By Theorem 5.3.1, S(UP, W)[)] is nonzero.
Since r is minimally ramified, r corresponds to a prime ideal of R as in [HLM17, Theorem 5.2.1].

By an abuse of notation, we call this ideal A. Note that we have that Ma /A = S(UP, W)3/\ by
(the proof of) [CEG*16, Corollary 2.11].

Theorem 5.3.5. Letr : Gp — GL3(E) be as in Theorem 5.53.1. Assume furthermore that r is min-
imally ramified. Let {T5}zes be a 13-generic tame type. The lattice o(r)° d:efa(T) NS(UP, W)\ C
o(r)NSUP,W)[A] ®o E = o(r) depends only on {r|g,_}ves-

Proof. Let pg be (7| )ses- Fix o € JH(o(7s)) as in Theorem 5.1.1, a saturated inclusion o(7s)? C

o(7s)?, and saturated inclusions o(75)® C o(7s)° for all x € JH(o(7s)). Let v(x) € O so that
v(k)Lo(1s)" C o(1s)? is saturated. Then o(75)° = ZHGJH(@) (k) Lo(rs)" for some y(k) € O
by [EGS15, Lemma 4.1.2]. It suffices to show that for each x € JH(o(7s)), the ideal (y(k)) C O

depends only on pg.
Observe that the image of the inclusion

O = Homy, (0(75)7, S(U?, W)[X]) = Homy, (o(7s)", S(U?, W)[A]) = O,
is given by the ideal (y(k)). By Schikhov duality, the natural inclusion
O = Homy, (S(UP, W)[A))4, (0(75)7)d) — Homy, ((SUP, W)[N)4, (a(75)")) = O,
is also given by the ideal (7(k)). By another application of Schikhov duality, the natural inclusion
O = Homy, (S(U7, W), (o(7s)") )¢ — Homu, (SW7, W)AD, (or(rs) 7)) = O,
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is also given by the ideal (y(x)). Since S(UP,W)[A]? is canonically isomorphic to the torsion-free
part of S(UP, W)/, the ideal (y(x)) gives the inclusion

Homy, (Moo /A, (U(Tg)”)d)d — Homy, (Moo /A, (O‘(Ts)o)d)d.
Again, note that Homy, (Ms /A, (0(75)7)9)4 is isomorphic to (the p-torsion-free part of)
Homy, (Moo, (9(75)7)%)"/A = Moo (0(75)7) /X,
and similarly for k. So the image of
(5.9) O = My(o(15)") /A = Moo (0o(75)°) /A= O
is given by the ideal (y(k)).
On the other hand, the image of (5.9) is given by
(55 ( TI #@™ Reclrs)) ) (Moc(o(7s)7)/A)
0w (ps)
by Theorem 5.2.3. Then (y(x)) is generated by elements in the ideal
3 (T PO Ruclrs))
0EW? (ps)
modulo the ideal A. By Remark 5.2.4, the above ideal comes from ®§€3R%’, hence the ideal

generated by its generators modulo A\ depends only on {r|g, }zes- O

Remark 5.3.6. In the hypotheses of Theorem 5.3.5, assume further that w(py, 75); has length at
least 2 for all ¥ € S and i € Z/f;. Then the lattice o(7)" can be described explicitly as in [Lel8,
Theorem 14].
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In the following figures we give a pictorial realization of the gluing procedure appearing in the
proofs of Lemmas 5.1.4-5.1.7. Recall that w}, = w(ps,7s)} -

FIGURE 7. Comparison of Yy ; in Lemma 5.1.4

e N

0-(5170) 0-(070) 0-(070) 0-(0’0) 0(5270)
From left to right with arrows pointing down, we have Yy ;, 3y3 s and Xy2 ;. The
edges correspond to adjacent pairs.

7(0,1) 7(0,1) 7(0,1)

FIGURE 8. Comparison of Xy and ¥y; ; in Lemma 5.1.5 when wjt_; = id

U(S] ,0) U(O,O) 0(62,0) 0(52761,0) 0(51 70) U(O,U) 0(52,0) 0(52761,0) a(Ez.O)

T

0-(52ﬁl) 0(5251>
Assume (vq,19,13) = (€1 — €2,€1,€1 + €2) and w)t_; = id. Then v4 = 2. From
left to right with arrows pointing down, we have EW , By, and Yy2 ;0 (a Weyl
segment). In red are the elements in T(Eo).

FIGURE 9. Comparison of ¥y; ; in Lemma 5.1.6 when wjt_; = «

T (a(0)

= /\\(

O (a(e1—e2),0) O(aler), 0/ O(a(e1),0 (a(0),0

(a(e1),1) (afe2),1
In the notation of Lemma 5.1.6 consider the case where v = £1 + €2 and w}, t 1=o
On the left we have ¥y ;, where we write the elements in 7(¥g) in red. Slmllarly
on the right for ¥y 5

a(ea—e1),0)
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FIGURE 10. Comparison of Xy; ; in Lemma 5.1.6 when wjt_; =~*

(y*+(0),1 T(y+(0),1

//\ /\\

96

T (y*(e1—¢2).0) O (v*(e1),0) T (y*(0),0 T(v*(e2),0) T (v*(e1),0) 9 (v*(0),0) (vF(£2),0) T (v*(e2—¢1),0)

~_ | I

(vt (e1),1) T(v+(e2),1)
In the notation of Lemma 5.1.6 consider the case where v = €1 +¢e2 and w}it_1 =7
On the left we have ¥y ;, where we write the elements in r(¥¢) in red. Similarly
on the right for ¥y ;

+n

FIGURE 11. Comparison of Xy; ; in Lemma 5.1.7 when wjt_; =~*

T(y+(0),1)

e e

I(y*+(e1).1) T (yt(e2),1) I(y+(e1).1) \
O(y+(e14¢2),0) O (vt (e1+€2),0)
In the notation of Lemma 5.1.7 consider the case where v = 1 +¢2 and w}it_; = vt
On the left, we have Xy (resp. X1 removing the dotted lower part), where we
write the elements in 7(X() in red. On the right we have one of the possible choices
fOI’ Zv2 il
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6. ADDENDUM TO [LLHLM18§]

In Theorem 1.1, the statement that “its special fiber is as predicted by the geometric Breuil—-
Mézard conjecture” means the following: under the assumptions of Theorem 1.1, the special
fiber of R(; 10T g reduced and the number of irreducible components is less or equal to
#(W? (p°°)NJH(c(7))), with equality if p is semisimple. This can be checked directly using
Theorem 6.14, Table 3, Table 7, Table 8, Propositions 8.5, 8.6, 8.12 and the results of
section §8.2.2.

In Proposition 3.4 the codomain of Ti,, should be replaced by

{(0.:90) | p€Reppigye) (G, 701 p mod £ 5 Tjy(0) |

After equation (3.7), we remark that if (94, pa,04) € DTﬁ’Dﬁ, then we have a canonical

isomorphism M4 @4 F = M.
After Definition 4.15, the symbol Y%’Q]’T(R) denotes the category of pairs (Mg, jr) where

Mp € YOA7(R) and jp : Mpr @p F = 9 is an isomorphism in YIOM7(F). A similar
comment applies to Y" (R).

Proof of Theorem 4.17: the ring R is p-flat and reduced by [Call8, Lemma 2.6].

The formula in Lemma 5.2 still converges in 3 Mat(R[1/p][u]) for R a complete local Noe-

therian flat O-algebra R. While it is possible to show it lies in O, for the computations
and the arguments in this paper, we only need that its formation is compatible with base
change.

In Corollary 5.13, T1,...,Tg should be replaced by T1,...,7y. Similar comment applies to
the displayed equation before Theorem 6.14.

In §5.3.2, “c11 = 0 modulo @w” should read “c;; and ¢33 = 0 modulo the maximal ideal”.
In §5.3.3, line —6 and —4, the cj; in the displayed equations must be replaced by ci3 .
Definition 7.1 should also define automorphic of weight V', level U, and coefficients W as
follows.

Definition 6.0.1. Let 7 : Gp — GL3(F) be a continuous Galois representation. Let V
be a Serre weight for G, U be a compact open subgroup of G(AR") x G(Op+,) which
is unramified at places v|p, and W be an O-module with a U-action for which the factor
G(Op+ ;) acts trivially. We say that 7 is automorphic of weight V', level U, and coefficients
W if there exists a cofinite subset P C Py such that

S(U,V & W)g #0

where m is the kernel of the system of Hecke eigenvalues @ : Tp — F associated to 7, and
@ satisfies the equality
3 .
det (1 — 7Y (Froby) X) = > (1) (N g (w)) Da(T¥) X7
§=0

for all w € P. We say that 7 is automorphic of weight V' (or that V is a Serre weight of
7) if 7 is automorphic of weight V', level U, and coefficients W for some subgroup U and
coefficients W as above. We write W () for the set of all Serre weights of 7. We say that 7
is automorphic if W(7) # 0.

In Definition 7.11(2), “automorphic of weight V” should be replaced with “automorphic
of weight V', level U, and coefficients W” where U is a fixed compact open subgroup of
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G(AR?) x G(Op+ ) which is unramified at places v[p and W is a fixed O-module with a
U-action on which the factor G(Op+ ;) acts trivially. This definition of patching functor
depends on the implicit choices of U and W.

(12) The definition of e(M), given before Proposition 7.14, is incorrect. The correct definition
of e(M) is the following: given a finitely generated R..-module M with scheme-theoretic
support Spec A of dimension at most d, define e(M) to be d! times the coefficient of the
degree d-term of the Hilbert polynomial of M (considered as an A-module).

(13) In the paragraph following the proof of Proposition 7.14, the definition of ¥ should exclude
primes dividing p.

(14) In the proof of Proposition 7.15, “automorphic of weight V” should be replaced with “au-
tomorphic of weight V', level U, and coefficients W” where U = Hv)(oo U, and U, is

e G(O,) for v which split in F except for vy,
e the preimage of the upper triangular matrices under the map

G(Oy) = G(kv) L—Nj GL3(kz)

if v = v, or
e a maximal hyperspecial maximal compact open subgroup of G(F),) if v is inert in F,
and W is an O-lattice in ®vezg‘7(7—ﬁ) o L3

(15) In the proof of Proposition 7.16 the tame inertial type 7’ should read: 7/ gef w; ((b+1)+p(b+1)) @

oy ((c=1)+pa) o (a+p(c-1)) .
(16) The proof of Theorem 7.8 also requires the following proposition, which is a level-lowering

result based on techniques in [Tay08]. The proof of Theorem 7.4, which was omitted, uses
the same techniques.

Proposition 6.0.2. Let 7 : Gp — GL3(F) be a continuous Galois representation with split
ramification outside p, which is automorphic and satisfies the Taylor- Wiles conditions. If T
s automorphic of a reachable weight, then it is automorphic of a reachable weight and level
U and coefficients W where U = ij(oo U, and U, is

e G(O,) for v which split in F' except for vy,

e the preimage of the upper triangular matrices under the map

G(0,) = G(k,) 5 CLa(ky

if v=wy, or
e o mazimal hyperspecial mazimal compact open subgroup of G(F,) if v is inert in F,
and W is an O-lattice in ®U€Ega(7-5) o 1.

Proof. If ¥ is automorphic of a reachable weight V', then S(U,V ® W)y, is nonzero for some
level U and coefficients W. Let V be ®,V, where V,, = V4 o 13. Choose tame types 7, such
that

e 1, is admissible with respect to 7;

o ((w(p, ™)) > 3; and

o Vz € JH(a(1y)).
Letting o be an O-lattice in ®,0(7,) o ty, we have that S(U,0 @ W)y is nonzero. By
[EGH13, Lemma 7.1.6 and Theorem 7.2.1], 7 ®p F, is isomorphic to the reduction of 7, :
Gr — GL,(Q,) for some 7 as in [EGH13, Theorem 7.2.1]. Let mp be the RACSDC
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automorphic representation of GL,(Af) obtained from 7 through base change. Choose a
totally real extension L™ of F'* such that

4J[L* - Ql;

L*/F* is Galois and solvable;

LY L*F is linearly disjoint from erﬁ(cp) over I

L/L7 is everywhere unramified;

p is unramified in LT;

vy splits completely in L;

if 7y, is the base change of mr to L and w is a place of L lying above v for v € E(T,
then 7y ,, has Iwahori fixed vectors and 7|7, is trivial.

One can define analogues of RY™ and RE"™ from [Geell, §5] as follows. Let S be the
union of {v;} and ©*. Let S be the union of f {01} and {v: v € X}, Let Sp, be the set of
places in L™ lying above places in S, and let S1. be the set of places in L lying above places
in 9. Let &1, p be the set of places in L lying over a place in Z* S 0 the set of places in

L lying over a place in 20 , and ¥ 1,1 be the set of places in L lylng over 7. Let & 1, be the
union of ELP and ELO Ifve ELP, let 75 be ) - o e ELO, let RP™ be the lifting

ring for 7|, parametrizing lifts whose characteristic polynomial is (X — 1)3. We let RY™v
be the universal deformation ring corresponding to the deformation problem

(F/F*.5,8,08,7,¢ 2pm ARG} U{RS Thest )

and we let Rg”“’ be the universal deformation ring corresponding to the deformation prob-
lem

(L/L+7 SL7 §L7 OEa F‘GL7 6_25[//[/+') {Rgl }gle:ng’l U {R§775}§€§L> )

The proof of [Geell, Theorem 5.1.4] shows that RY" is finite over Op. Indeed, RY™ is
finite over RE™ and RYE™ is finite over Of since (Rg”i“)red is isomorphic to an appropri-
ate Hecke algebra by the proof of [Guell, Theorem 3.4]. One replaces Fontaine—Laffaille
deformation rings with R97 for v € v Lp,» Which is geometrically integral by [LLHLM18,
§5.3].

That R is finite over Op implies that there is a conjugate self-dual lift r : Gp —
GLg(@p) of 7 which is minimally ramified outside p and potentially crystalline of type
((0,1,2),7,) at v for each v € ¥J. Moreover, we have that the restriction 7|g,, which
corresponds to a point of Spec R“"“’, is automorphic. Solvable base change then implies
that r is automorphic. Local-global compatibility implies that S(U, o ® W)y, is nonzero for
U and W as in the statement of the proposition. Then S(U, V' ® W)y, is nonzero for some
reachable V' € JH(7). O

This would then show that Mw(®UGE;E(Tv)°) is nonzero in the third paragraph (one
cannot directly cite Definition 7.11(2) because of the change above).
(17) In §8.1, after the proof of Lemma 8.2, the O-algebra RT B "~ has relative dimension 15 over

0.
(18) In Corollary 8.4, there should be the further relation cja2css3 = 0.

(19) The final sentence of Corollary 8.4 should be replaced by the claim that the ring R ’5 - Jw
is a quotient of R[[ e, —[e5l,xj, 1 <1 <3, 1<j<9]. This comment applies also to
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Proposition 8.11. These changes justify the dimension hypothesis in Lemma 8.8, which is
used in the proof of Proposition 8.6.

(20) In the proof of Proposition 8.11, we remark that cs3 = cozcsr(chy) ™t

(21) In the caption of Table 4, the coefficients are in .

(22) In the caption of Table 5, the coefficients are in R.

(23) The entry (1,3) of Table 6 should read “Leading term of the monodromy condition”.

(24) The missing entries in the second column of Table 6 can be read off from Table 5 and the

missing entry in the third column of Table 6 can be read off from Proposition 8.3.

(25) In Table 6, the Leading term of the monodromy condition for afa~y, the second ¢34 should

be removed. Moreover in the caption the ag )+1(i) for ¢ =1, 2, 3 should be bold.
J
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