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WEIGHT ELIMINATION IN SERRE-TYPE CONJECTURES
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ABSTRACT. We prove the weight elimination direction of the Serre weight conjectures as formu-
lated by [Her09] for forms of U(n) which are compact at infinity and split at places dividing p in
generic situations. That is, we show that all modular weights for a mod p Galois representation
are contained in the set predicted by Herzig. Under some additional hypotheses, we also show

modularity of all the “obvious” weights.
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1. INTRODUCTION

Let p be a prime. In 1973, Serre conjectured that every irreducible odd 2-dimensional Fp—
representation 7 of Gal(Q/Q) comes from a modular form. He later refined the conjecture into
the strong form which asserts that every such 7 arises from a modular form of a specific minimal
weight and prime to p level determined by the local properties of 7 [Ser87]. The recipe for the
minimal weight is more subtle than the minimal level, and, as Serre suggested at the time, reflects
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the deeper structures of a “mod p Langlands philosophy.” The landmark proof of Serre’s original
conjecture due to Kisin and Khare-Wintenberger relies crucially on knowing that the weak form
implies the strong form.

The first comprehensive conjecture for Hilbert modular forms is due to Buzzard-Diamond-—
Jarvis (BDJ) [BDJ10]. The weight £ > 2 is replaced by the notion of Serre weights, irreducible
representations of GLa(IF,) in this case. Furthermore, there is no longer a notion of minimal weight,
rather, BDJ define a collection of Serre weights for which a given 7 should be modular. The weight
part (weak = strong) of the BDJ conjecture is now a theorem due to work of many people
[GK14, New14, GLS14, GLS15].

Building on work of Ash-Doud-Pollack [ADP02]| and others, Herzig formulated a vast gener-
alization of the weight part of Serre’s conjecture to tame n-dimensional Galois representations
which was further extended by Gee-Herzig—Savitt [Her09, GHS]. In our earlier work with S. Morra
[LLHLM18, LLHLMa], we establish the weak implies strong conjecture for tame 3-dimensional Ga-
lois representations (and for definite unitary groups unramified at p). However, results for n > 3
were limited to a few partial results [BLGG, GG12, Gao|. In this paper, we establish the weight
elimination direction of the weight part of Serre’s conjecture for n-dimensional Galois represen-
tations in generic situations, namely, the set of modular weights is a subset of the set of weights
predicted by [Her09].

To describe these conjectures, let F' be an imaginary CM number field unramified at p. Let F'T
be the maximal totally real subfield. Assume F # Q and that all primes of F'™ above p split in F.
Let G be a unitary group over F't which is isomorphic to U(n) at each infinite place and split at
each prime above p. Let 7 : Gal(F /F) — GL,(F,) be an irreducible odd continuous representation.

A global Serre weight is an irreducible representation V' of GL,,(Op+ ,) which are all of the form
®@yjpVe with V, an irreducible representation of GL,,(k,) where k, is the residue field of F't at v.
In Definition 4.2.5, we define what it means for 7 to be modular of weight V. Roughly speaking,
this means the Hecke eigensystem associated to 7 appears in a space of automorphic forms for G
of weight V. For each place v, fix a place v of F' dividing v, and define p,, := F|Gal(F5/Fg)’ We now
state the main theorem.

Theorem 1.0.1. Let 7 : Gal(F/F) — GL,(F,) be an irreducible odd representation. Assume p is
unramified in F and that, for all places v | p of F*, p, is (6n — 2)-generic (cf. Definition 2.2.5).
Then,

7 is modular of weight ®,, V, — V, € W?(ﬁfjs) forallv|p

vlp
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where W*(p) is defined by [Her09).

The set W (75%) is an explicit collection of irreducible representations of GL,(k,) given by a
representation-theoretic recipe. [Her09, Conjecture 1.1] predicts that the reverse implication should
also be true when p,, is semisimple for all v (assuming 7 is modular). In fact, we prove a partial con-
verse which shows the modularity of a subset of the predicted weights as discussed below (Theorem
1.0.4).

Remark 1.0.2. (1) When n = 3 and p splits completely in F*, this result is due to [EGH13,
HLM, MP, LMP].

(2) When p, is not semisimple, there is no explicit conjecture but one expects there to be a
strict subset W7 (p,) € W () which predicts the modular weights. When n = 3, this will
be taken up in [LLHLMb].

(3) Our methods are purely local and so at least with some technical assumptions a version
of Theorem 1.0.1 should hold in other global setups as well, for example, unitary Shimura

varieties.

A key feature of the BDJ conjecture and a motivation for the generalizations is the relation
between the weight recipe and p-adic Hodge theory properties of the local representation p,. Let
K/Q, be a finite unramified extension and consider p : G — GL,(F,). When n = 2, the weight
recipe is in terms of existence of the crystalline lifts of p in small (between [0,p]) Hodge-Tate
weights. In Herzig’s conjecture, one expects (at least for p semisimple) that W7’ (p) should also
be predicted by the existence of crystalline lifts in small weights (cf. §1.5 or §5 of [GHS] for a
detailed discussion). However, the range of “small” Hodge—Tate weights is now [0, (n — 1)p] and to
determine reductions of n-dimensional crystalline representations in this range is still well-beyond
the current technology in p-adic Hodge theory.

We consider another local problem, namely, reductions of tamely crystalline representations with
fixed (parallel) Hodge-Tate weights n := (n — 1,n — 2,...,0). A tamely crystalline representation
is a @p—representation of Gx which becomes crystalline when restricted to G, for L/K a tame
extension. The descent from L/K is then encoded in a tame inertial type 7. For short, we will call
these representations of type (1, 7). For generic 7, we give a complete description of the semisimple
Galois representations which are reductions mod p of representations of type (n,7) (cf. Theorem
3.2.1 and Theorem 4.4.3).

If p is a Galois stable lattice in a representation of type (1, 7), then by deep results in integral
p-adic Hodge theory due to Kisin [Kis06] building on work of Breuil, one can associate a semilinear
algebra object, a Kisin module 9T with Hodge type n and descent data of type 7. A. Caraiani and
the third author [CL18] construct a moduli stack of Kisin modules Y™ with Hodge type < n and
tame inertial type 7. An upper bound on which 5 can arise as the reduction of a representation
of type (n,7) comes from a description of the special fiber of Y7. To describe the special fiber,
[CL18] relates Y7 to a local model M (n) constructed by Pappas and Zhu [PZ13]. The special fiber

of M(n) is a closed subscheme of an affine flag variety. The coherence conjecture of Pappas and
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Rapoport, proved by Zhu [Zhul4], allows [PZ13] to describe the special fiber as a union of affine
Schubert cells resolving a deep and long-standing question in the subject.

By classifying mod p Kisin modules of type (1, 7), we arrive at a combinatorial upper bound for
the semisimple p that arise as the reduction of a representation of type (1, 7) in terms of a subset
Adm(n) C W of the extended affine Weyl group of GL,, called the n-admissible elements originally
introduced by Kottwitz and Rapoport. More precisely, we assign to any semisimple p a relative
position w(p, 7)* € W called the (dual) shape (Definitions 2.1.2, 3.2.11, and 3.2.19). (Technically,
the shape is a data associated of a Kisin module with descent data, but in generic situations, there

is a unique Kisin module which corresponds to 7.)

Theorem 1.0.3. (Theorem 4.4.3) A (6n — 2)-generic semisimple Galois representation p has a lift
of type (n,7) if and only if w(p,7)* € Adm(n).

We first use the “only if” direction of Theorem 1.0.3 to reduce weight elimination (Theorem
1.0.1) to a representation theory/combinatorics problem. For simplicity, assume that K = Q,.
If F()\) is a Serre weight for GL,(F,) with p-restricted highest weight A\ which is not in W7(p),
one has to exhibit a tame GL,(Ok)-type o(7) such that F'(\) is a Jordan-Hoélder factor of the
reduction o (7) and w(p,7)* is not n-admissible. Initially, this might seem daunting since there are
many types which contain F'(A). In fact, it suffices to consider only the types which “obviously”
contain F'(\), namely, the Deligne-Lusztig representations Rs(wy, - A + 1) for s € W(GL,,) (see §4
for undefined notation). Precisely, we show that if for all s € W(GL,,), the shape of 5 relative to
Ry(wy, - X+ 1) is n-admissible then F(\) € W’(p). The argument uses alcove geometry to relate
admissibility to a description of W’ (p) in terms of dominant p-restricted alcoves and linkage due to
Herzig. In turn, we use this relationship, together with Theorem 1.0.4 below and global arguments
to establish the “if” direction of Theorem 1.0.3.

We now discuss our second main theorem which represents partial progress towards the other
direction of the weight part of Serre’s conjecture. Among the predicted weights, there is a dis-
tinguished subset Wey (5) C W*(p) called obvious Serre weights. Obvious weights are defined
precisely in Definition 7.1.3 of [GHS], but roughly correspond to the Hodge-Tate weights (with an
n-shift) in which p has a crystalline lift which is the direct sum of inductions of characters from
unramified extensions. When n = 2, there are only obvious weights so the naive generalization of
the weight part of Serre’s conjecture would be that Wy, (p) are exactly the modular weights. De-
spite their name, the modularity of these weights is by no means obvious. However, they are more
easily accessed via automorphy lifting techniques. For example, [GG12] obtains essentially com-
plete results on modularity of ordinary obvious weights in the ordinary setting. In [BLGG], they
prove modularity of the obvious weights when n = 3 and obtain partial results when n > 3. Using
Theorem 1.0.1 and a generalization of part of [LLHLM18] on potentially crystalline deformation
rings, we extend these results to GL,,:
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Theorem 1.0.4. Let 7 : Gal(F/F) — GL,(F,) be an irreducible representation satisfying Taylor-
Wiles conditions. Assume p is unramified in F and that, for all places v | p, p, is semisimple and

(6n — 2)-generic. If T is modular of any obvious weight, then T is modular of all obvious weights.

Before giving an overview of the paper, we summarize the relationship between the methods and
results of this paper and those of [LLHLM18] which is for n = 3. The results about shapes of mod
p Kisin modules and the triviality of the Kisin variety under genericity conditions in §2-3 of loc.
cit. generalize directly to the n-dimensional setting. Establishing these generalizations is enough to
the prove the only-if direction of Theorem 1.0.3. The only-if direction is the necessary local input
to establish weight elimination (Theorem 1.0.1).

To prove Theorem 1.0.4, we compute certain potentially crystalline deformations which requires
generalizing arguments of §4-5 of loc. cit. The deformation rings are computed explicitly in loc. cit.
for all shapes. Here, we compute the deformation rings only for shapes of the form translation by
a permutation of (0,1,...,n — 1) (when n = 3, this corresponds to the shapes afay and fyay
appearing in Tables at the end of loc. cit.). For these special shapes, the deformation rings turn
out to be formally smooth and this is the necessary local input to prove Theorem 1.0.4.

We now give an overview of the paper. In §2, we begin with some background on affine Weyl
groups, Serre weights, tame types, and inertial local Langlands. In §3, we prove the main local
results in p-adic Hodge theory. Sections 3.1-3.3 are direct generalizations to n-dimensional Galois
representations of results of [LLHLM18, LLHLMa] on Kisin modules with descent data. In §3.4,
we show, if p has special shape with respect to 7, then the potentially crystalline deformation ring
of type (n,7) is formally smooth and deduce the existence of potentially diagonalizable lifts.

The main theorems appear in §4. Weight elimination is in §4.2. Modularity of the obvious
weights is in §4.3, and in §4.4, we complete the proof of the Theorem 1.0.3, the local reduction
problem using global input.

1.1. Acknowledgements. We would like to thank Matthew Emerton, Thomas Haines, Florian
Herzig, and Stefano Morra for many helpful conversations, and Florian Herzig for detailed comments
on an earlier draft of this paper. We thank the referees for very detailed and helpful feedback which
greatly improved the paper. We would also like to thank the Institut Henri Poincaré for their
hospitality during part of this project. The first author was supported by the National Science
Foundation under agreements Nos. DMS-1128155 and DMS-1703182 and an AMS-Simons travel
grant. The second author was partially supported by the National Science Foundation under grant
No. DMS-1801963.

1.2. Notation and Conventions. Fix n > 2. Let p be a prime with p > n. Fix a finite
unramified extension K/Q, of degree f. Let k denote the residue field of K of cardinality ¢ = pl.
Let Ok := W (k) be the ring of integers of K. We denote the arithmetic Frobenius automorphism
on Ok by ¢, which acts as raising to p-th power on the residue field. Let G = Gal(K/K). Let
I denote the inertia subgroup and Wy the Weil group.



WEIGHT ELIMINATION IN SERRE-TYPE CONJECTURES 6

Let E/Q, be finite extension assumed to be sufficiently large such that for any unramified
extension K'/K of degree the order of an element of S, x S,,, E contains a copy of K’. Let O be
the ring of integers of E with uniformizer w and residue field F. We fix an embedding o of K into
E (equivalently an embedding k into F). Define o; = 0g o ¢ 7.

For r > 1, we fix a compatible system of (p"/ — 1)st roots w, = (—p)ﬁ € K. The choice
of root w; defines a character wy, : Ix — Op. Using our choice of embedding o¢, we get a

fundamental character of niveau f
W =000 We, : Ix — O,

We fix once and for all a sequence p := (p,)nen Where p, € @p verify p 4+1=Dpn and pg = —p. We

let Koo := | K(pn) and Gg, := Gal(Q,/Kx).
neN
Let G = Resy p, GLy. Let T' C GL;, be the diagonal torus and I’ = Resyp, 7', a maximal torus

of G. Let Z C T denote the center of G. Let W(G) = W(GLn)Hom(k’F) denote Weyl group of
G. Similarly, let X*(T') be the (geometric) characters of T', which is equipped with an action of
Frobenius . We have an action of 7 on W(G) by the formula 7(w)(7(v)) = w(w(v)). There are
isomorphisms W (G) = W(GL,)! and X*(T) = X*(T)/ where the j-th entry corresponds to the
embedding ;. Under this identification, the action of 7 is such that if v = (v;) € X*(T), then
w(v); = vj_1. Let Ap C X*(T') (resp. Ap C X*(T')) denote the root lattice for GL,, (resp. G).

Let W, (resp. W) denote the affine Weyl group and the extended affine Weyl group for GL,,.
Similarly, we will use W, = W({ and ;W ~ W/ to denote the (extended) affine Weyl group of G.
Recall that

W, = Ag x W(GL,), W = X*(T)x W(GL,)

and similarly for W, and ;W We use t, € W to denote translation by v € X*(T'). The action of =
on X*(T) and W(G) extends naturally to W.

Let RY C R (resp. RTY C RY) denote the subset of positive roots (resp. positive coroots) in the
set of roots (resp. coroots) with respect to the upper triangular Borel subgroup in each embedding.
Define dominant (co)characters with respect to this choice of positive roots.

We fix an isomorphism X*(7') = Z" in the standard way, where the standard i-th basis element
g; =(0,...,1,...,0) (with the 1 in the i-th position) of the right-hand side correspond to extracting
the i-th diagonal entry of a diagonal matrix. Dually we get a standard isomorphism X, (7T") = Z",
and let {¢)} denote the dual basis. Let 9 = (n —1,n —2,...,0) € X*(T) be a fixed lift of the
half sum of positive roots for GL,,. Define n = (ng,n0,...,n0) € X*(T). In the paper, sometimes
we will consider simultaneously the group G = Resy,/p, GL;, for multiple k. In such a situation, the
symbol 7 will be used for the above element for any of the groups that appear, and it will always
be clear which group it occurs in. Note that 7; = ng for any j.

We will always denote the duality pairing between a free Z-module and its dual (e.g. X*(T) and
X.(T)) by (,).
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For any ring S, we define M,,(S) to be the set of n x n matrix with entries in S. If @ = ¢; —¢;
is a root of GL,, we also call the (i,j)-th entry of a matrix X € M, (S) the a-th entry. We will
make use of both notations X;; and X, for this entry.

If P is a statement, the symbol dp € {0,1} takes value 1 if P is true, and 0 if P is false.

If W is a de Rham representation of G over E, then for each x € Hom(K, F), we write HT (W)
for the multiset of Hodge—Tate weights labeled by embedding s normalized such that the p-adic
cyclotomic character has Hodge-Tate weight {1} for every x. For u = (u;) € X*(T), we say that

an n-dimensional representation W has Hodge-Tate weights p if

HTO’j (W) = {,U'l,jv K255 - - 7Mn7j}'

An inertial type is a representation 7 : Iy — GL,,(F) with open kernel and which extends to
Wy . We say that an n-dimensional potentially semistable representation p : Gxg — GL,(F) has
type (u,7) if p has Hodge-Tate weights 1 and the Weil-Deligne representation WD(p) restricted
to I is isomorphic to 7. Note that this differs from the conventions of [GHS] via a shift by 7.

Let Artg : K* — Wf{b denote the Artin map normalized so that uniformizers correspond to
geometric Frobenius elements. For 7 an inertial type, we use o(7) to denote the finite dimensional
smooth irreducible (QTp—representation of GL,(Of) associated to 7 by the “inertial local Langlands
correspondence” (cf. §2.3). In fact, in all situations, o(7) will be defined over E.

If V' is a finite length representation, then we use JH(V) to denote the set of Jordan—Hdélder
factors.
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2. BACKGROUND

2.1. Affine Weyl group. Fix the dominant base alcove the apartment of (GL,,T") which defines
a Bruhat order on W, denoted by <. If € is the stabilizer of the base alcove, then W= W, x Q
and so W inherits a Bruhat order in the standard way: For wy,wy € W, and w € Q, wiw < wow
if and only if w; < w9, and elements in different right W,-cosets are incomparable. We also have
the natural generalization Q) for G and a Bruhat order on ;Wv

We now recall the definition of the admissible set as introduced by Kottwitz and Rapoport:

Definition 2.1.1. Let A\g € X*(T"). Then define
Adm()\g) := {@ ew | W < ty(g) for some w € W(GLn)} .
Similarly, if A = (\;) € X*(Z), then define Adm()) =[], Adm();) C W,

When working on the Galois side, it is natural to work with the partially ordered group Ev
(resp. WV) which is identified with W (resp. /VIV/) as a group, but whose Bruhat order, also denoted
by <, is defined by the antidominant base alcove. For any character p € X*(T'), define the subset
Adm" (u) C Ev as in Definition 2.1.1.

Definition 2.1.2. Define a bijection w — w* between WV and ;Wv as follows:
(1) For w = (w;) € W(G), define w* := (w}) € W(G) by w; = wjj_ll_j;
(2) For v = (vj) € X*(T), define v* := (vj) € X*(T) by v = vy_1-5
(3) For w = wt, € WV, define w* € W by w* := t,~w*.
Note that w — w* is an anti-homomorphism. By specializing to the case f = 1, we obtain a

bijective anti-homomorphism between WY and W.
We now record a few basic lemmas for later.
Lemma 2.1.3. We have @ < wy in W if and only if wi < wh in w.

Proof. Suppose that ws has a reduced expression ([[,c;sa)7 Where each s, is an affine reflection
along a wall of the antidominant base alcove and 7 stabilizes the antidominant base alcove. Then

ws is the product

(2.1) <H T*s;;> ™,

acl

where 7 s¥ = 7*s* (7*) 7! (the order of factors indexed by I should of course be reversed from the

*

» is an affine

reduced factorization of ws). It is easy to check that 7* is in €2, and that each 7 s
reflection along a wall of the dominant base alcove. From this, we see that ¢(w3) < ¢(w2) (note
that the lengths are with respect to different sets of generating reflections). By symmetry, we see
that £(w3) = ¢(ws2) so that (2.1) is a reduced expression.

Since w1 < wsq in WV if and only if w; has a reduced expression (J],c;sqa)7 where J is some

subsequence of I and similarly for wy, the result follows. O
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Lemma 2.1.4. For w € ﬂN/V, we have w € Adm" (1) if and only if w* € Adm(u*).
Proof. This follows from Lemma 2.1.3. U
Lemma 2.1.5. Let A € X*(T) be a dominant weight. If t,s € Adm(\), then

max{|(v,a’)| [ " € R’} < max{|(\,a")[[a" € R"}

Proof. We reduce immediately to the case f = 1. By a result of Kottwitz-Rapoport (cf. Theorem
3.2 in [HCO02]), t, s is A-permissible which says in particular that v in the convex hull of Weyl group
orbit of A. The claim is that the inequality holds for any v in the convex hull. For this, we can
replace v with the dominant representative in its Weyl group orbit. Convexity then says that A —v
is an R-linear combination of positive roots where all of the coefficients are nonnegative. If o) is

the highest positive coroot, then for any positive coroot a, we have
(v,a”) < (v, ap).

It suffices then to observe that (v, o)) < (X, o)) which follows from that fact that o) is dominant.
O

Recall that p-alcoves of G are defined to be the connected components of
(X*(T) @ R\ | 0 (@ + 1) = ptov ey mez
Define the collection of p-restricted dominant weights
X1(T)={\ e X*(T) | 0 < (\a’) <p—1 for all simple positive coroots a"}.

A p-alcove C' is called p-restricted if C N X*(T') C X1(L). We say that A € X (T) is regular

p-restricted if furthermore (\,a") < p — 1 for all simple positive coroots V. Recall also that
X9T)={Ne X*(T) | (\,a") =0 for all coroots a"}.
Definition 2.1.6. Define the dot action of W on X*(T) @R by
w-x = (wt,) x=w(x+n+pr)—n.

In the literature, this is often thought of as an action of W (G) xpX™*(T), but it will be convenient
to include the p-scaling in the definition. Recall that the group W, acts simply transitively on the

collection of p-alcoves. Let Cy denote the dominant base p-alcove, i.e., the alcove containing 0.

Definition 2.1.7. Let A € X*(T') be a weight. We say that A lies m-deep in its alcove if there
exists integers n, € Z such that pn, + m < (A 4+ n,a") < p(ny, + 1) —m for all positive coroots
a¥ e RVT.

For example, a dominant weight A = (\;) € X*(ZT) is m-deep in C if m < (\j +no, ) <p—m
for all j =0,...,f —1 and all positive coroots af € R"*.
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2.2. Tame types and Serre weights. We begin with some setup. An inertial type 7 : Ix —
GL,(F) is a representation with open kernel which extends to the Weil group of K. An inertial
type is tame if it factors through tame inertia. All our tame types will be defined over O.

Tame inertial types have a combinatorial description which we will now recall (cf. [Her09, (6.15)]
or [GHS, Definition 8.2.2]). Let (w, ) € W(G) x X*(T'). Asin [Her09, (4.1)] (see also the paragraph
preceding [GHS, Definition 10.1.12]), for any (v,0) € X*(L) x W(G), define

(2.2) ) (w, 1) = (own(0) ", o () + pv — cwn(0) (V)

and we write (w, 1) ~ (w’, i') if there exists (v, o) such that ) (w, u) = (w', 1').

Let r be the order of an element of S,. For any such r, we choose an embedding o(, of the
unramified extension K’/K of degree r into F extending og. Let ¢/ = p/"—1,e = p/ —1 and ' = fr.
Using our choice of ¢/-th root of (—p) in §1.2, we get a fundamental character wy : I — O such

e/

that w; = wy. The following describes all isomorphism classes of tame inertial types for K.
Definition 2.2.1. Define an inertial type 7(w, i) : Ix — GL,(O) as follows: If w = (so,...,s5-1),
then set s, = sosf_15/_2---s1 € W(GL,) and e € X*(T) such that ag = po, @¢j = 57 55" .s]l(uj)
for 1 < j < f—1. Let r denote the order of s;. Then,

Sog ..

. ) o a® pfk
(2.3) T(w, p) = &y wflogkg s
1<i<n
where a(?) := Zf;ol ajp’ € Z™. Note that (w, u) ~ ((s7,1,...,1),a) and 7(w, p) =2 7((s7,1,...,1), @)

by construction.

For any O-valued inertial type 7, we use 7 : Ix — GL,,(F) to denote the reduction to the residue
field. Note that since wy is the Teichmiiller lift of its reduction to F, for tame inertial types, T
determines 7.

We say that a pair (w,u) € W(GQ) x X*(T) is good if (T, 04,,) is maximally split (see [GHS,
§9.2] for the definitions of (T3, 0.,,,) and maximally split). This definition is consistent with [Her09,
Definition 6.19] by [Her09, Proposition 6.20]. As in [GHS, §9.2], which follows [Jan81], we attach a
Deligne-Lusztig representation to a good pair (w, u) € W(G) x X*(T') which we denote by Ry, ().
For any tame representation 7 : I — GL,(F) which extends to G, there is an associated E-
valued GL,, (O )-representation V(7) defined in [GHS| Proposition 9.2.1 (in loc. cit. it is denoted
V4(T)). By Proposition 9.2.3 of [GHS] if 7 = 7(w, u), then

(2.4) V(7T) = Ru(p)-

Remark 2.2.2. The condition that (w, u) is good guarantees that the Deligne-Lusztig representa-
tion Ry (u) is a genuine representation (and not only virtual, see [GHS, Proposition 9.2.1]). The
genericity condition defined below will guarantee that R, (u) is in fact (absolutely) irreducible over

E.

Lemma 2.2.3. Suppose that p—n € X*(T') is in alcove Cy. Then (w, ) is good for any w € W(G).
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Proof. Let (T, s) be the F*-stable maximal torus of G* and semisimple element s € TJ}F " corre-
sponding to (Ty,0w,,) as in [GHS, §9.2(ii)]. As in the proof of [GHS, Lemma 10.1.10], let s" be
(g}*(w_l))_lsF(g}*(w_l)) (recall that (g}*(w_l))_lF(g}*(w_l)) € N(T*) represents F*(w™!) as in
§9.2 of ibid.). By the proof of loc. cit., if the Weyl group of T} in Zg+(s), which is isomorphic to
Stabyy (s'), is trivial, then the claim follows. Suppose that s, is in Stabyy (s’) (which is generated
by reflections). Let d be the order of wrm as an automorphism of X*(7') (in particular, f divides
d). Then by the proof of loc. cit.,
d—1

(2.5) > v {p, (wr)'a)

1=0

is divisible by p? — 1. Since p — 7 is in Cy, this divisibility forces (u, (wm)’a") to be p — 1 for all i
v

or 1 —p for all 4. Thus either (wn)‘a" are highest coroots in R for all i, or they are lowest coroots

for all i (note that R" has exactly f highest coroots). This in turn implies that (wm)'a" = 7V

for all 0 < ¢ < d—1, by comparing the unique non-zero component on both sides. Since d > f, this
implies that w fixes wa for all i, and that s, € Staby,(s') for all i. We conclude that Stabyy (s') is
(8xiq)i and centralizes w. From this, we see that Zg«(s) is isomorphic to Resy, /g, GLg x I" for some
torus 7" and Ty is Ty x T" where Ty C Resy,/r, GL2 is a maximally split torus. Then by definition,

(T, Ow,p) is maximally split. O

Proposition 2.2.4. Let (w,u) and (W', 1) be in W(G) x X*(T). If (w,p) ~ (w', '), then the
tame inertial types T(w,p) and T(w', 1) are isomorphic. If w—n and u' —n are in alcove Cy and

the tame inertial types 7(w, ) and T(w', u') are isomorphic, then (w,u) ~ (w', 1').

Proof. The first part follows from a direct computation. For the second part, (Ty,60,) and
(T, 0y ) are maximally split by Lemma 2.2.3. The second part now follows from [GHS, Propo-
sition 9.2.1]. O

Definition 2.2.5. Let 7 be a tame inertial type.

(1) Define 7 to be m-generic if there is an isomorphism 7 = 7(s, A+ n) for some s € W(G) and
A € X*(T') which is m-deep in alcove C.

(2) Define p : Gxg — GL,(F) to be m-generic if p*|7, = 7(s, A + 1) for A € X*(T") which is
m-deep in alcove C.

(3) We say that 7 (resp. p) is generic if it is n-generic (resp. 3n-generic).

(4) A lowest alcove presentation of T is a pair (s, u) € W(G) x X*(T) where u € C such that

T 2 7(s, pu+n) (which by definition exists exactly when 7 is 0-generic).

Remark 2.2.6. The results in §3.2 hold for 7 which are n-generic and p which are 2n-generic. For
§3.4, we will use 2n — 1-generic to control monodromy condition. In most of §4, p will be 6n — 2-
generic because of representation theoretic input and a reliance on [Enn] to eliminate weights near
the alcove walls. For example, Proposition 4.1.3 requires that the type to be 2n-generic which
combined with [Enn] forces p to be 6n — 2-generic. A more careful analysis would likely improve
this bound.
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Remark 2.2.7. Since the bounds for genericity do not depend on p, as p gets large, most semisimple

representations will be generic.

Concretely, 7 is m-generic, if there exists an isomorphism 7 = 7(s,A + n) with \; + n; =
(a1,5, a5, anj)
m <la;j—ag;| <p—m, foralll<i#k<n.

Remark 2.2.8. The notion of generic here is slightly stronger than that of [LLHLM18] when n =3
and [Enn] in general. Comparing with Definition 2.1 in [LLHLM18] and Definition 2 in [Enn|, we
see that if 7 is m-generic as in Definition 2.2.5 then it is m-generic in the sense of [LLHLM18, Enn].
If it is m-generic in the sense of [LLHLM18, Enn], then it is m — 1 generic in the sense of Definition
2.2.5. The difference being that the first inequality above is strict. Both [LLHLMI18, Enn| state
genericity as a condition on a presentation as in (2.3), that is, as a condition on the a;’s. To
compare the two definitions, note that if (s, ) is a lowest alcove presentation then o is in the
Weyl group orbit of p; + ;.

Definition 2.2.9. We say that a tame inertial type 7 is regular if the characters appearing in 7
as in (2.3) are pairwise distinct.

Note that 1-generic implies regular but regular is a weaker condition.

Definition 2.2.10. A Serre weight is an irreducible representation of GL,(F,r). If A € X1(T) is a
p-restricted dominant weight, then F'(A) denotes the associated Serre weight which is the socle of
be the (dual) Weyl module, W (), with highest weight A\. A Serre weight V' is regular if V = F())
for a regular p-restricted weight A\ (see discussion after Lemma 2.1.5).

We recall that the map A + F()\) induces a bijection between X1(T)/(p — 7)X°(T') and the set
of isomorphism classes of Serre weights (see [GHS, Lemma 9.2.4]).

Let wp denote the longest elements of W (G). Recall the self-bijection on regular p-restricted
weights defined by A — wyg - (A — pn) which induces a map R on regular Serre weights (pg. 54 of
[GHS]). If we let wy, := wot_,), then

R(F(A) = F(wo - (A = pn)) = F(wp - A).

Note that wy, - Cg is the highest p-restricted p-alcove.
We are now ready to state the Serre weight recipe following [Her09, GHS].

Definition 2.2.11. (cf. [GHS], Definition 9.2.5) Let p be a generic semisimple n-dimensional
representation of Gal(K/K). Then,

W'(B) := {R(F(\)) : F()\) is a Jordan-Holder constituent of V (5|7, )}

where V (57, ) denotes the semisimplification of a reduction modulo @ of V' (p|;,. ). Define W, (p) C
W’ (p) as in [GHS], Definition 7.1.3.

We give another characterization of the obvious weights:
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Proposition 2.2.12. Let p be generic and semisimple. Then for X € X1(L), F(\) € Wony(p) if
and only plr,. =T(w,\+n) for some w e W(G).

Proof. See Proposition 9.3.7 in [GHS]. O
Corollary 2.2.13. Let p be n-generic and semisimple. Then |[Wep, ()] = (n!)7.

Proof. Since p is n-generic, p|r, = 7(s, u + n) for some p which is n-deep in Cy. We define a map
W(g) — Wobv (ﬁ)
o F(u)

where (osm(o)™, 1/ + 1) =% (s,u+n) and v € X*(T) is the unique element up to X°(T') such
that (t,0) - Cg is p-restricted. Explicitly,

(2.6) W =o(u+n)+pv—osn(o) n(v) —n=(t,o) p—os(oc) tn(v).

The inequality |[(v,a")| < [(n,a")| < n from Lemma 2.1.5 coupled with the fact that p is n-deep
in Cy implies that g’ is in the alcove (t,0) - Co. By Proposition 2.2.12, F(1/) is in W,y (p), so that
our map lands in the claimed set.

We now prove surjectivity. Consider any pair (v,0) and let i/ be such that (osm(o)~!, u/ +
n) =(»0) (s, u+n). Assume that p' is p-restricted. Any obvious weight is of this form by Propositions
2.2.4 and 2.2.12. We claim then that (t,0)-Cj is p-restricted and so (v, o) is one of the pairs above.
Since y is p-restricted, for any coroot oV,

0 < [(u +mn,a")| ={o(n+n)+pv—ost(o) " m(v),a’)| < p(n —1).
Since p is n-deep in alcove C, we have n < [{(o(u + 1), a")| < p —n. We conclude that
\(pr — osm(o) tn(v),a")| < n(p —1).

Set M = max,v{|(v,a"}|}. We deduce that (p — 1)M < n(p —1) and so M < n. Since M < n
and (t,0) - p is n-deep in its alcove, we deduce that u’ lies in the alcove (t,0) - Cp. Since p' is
p-restricted so is (t,0) - Ch.

For injectivity, suppose that 9 (s, u+n) =7 (s, u4n) mod (p—m)X°(T). Then restricting
the part in X*(T) to Z, we see that (p — 7)v|z = (p — m)V/'|z mod (p — 7)nX*(Z). Since p — 7
acts injectively on X*(Z), we deduce that v|z = V/|z mod nX*(Z), so after modifying v’ by an
element in X°(T') we can now assume v — v’ € Ap.

As observed at the beginning of the proof, the fact that u is n-deep in C( implies that the part
in X*(T) of ") (s, 14 ) lies in alcove t,o - Co. Thus the above equality implies an equality of
alcoves (t,0) - Cop = (t,70') - Cy. Combining this with the decomposition E =W, x Q shows that

v =" and o = ¢’, thus giving what we want. O

Definition 2.2.14. We say that F(A) € W, (p) is the obvious weight associated to w € W(G) if
w maps to F(\) in the bijection from the proof of Corollary 2.2.13 (note that this depends on the
choice of (s, p) such that p|r, = 7(s,u+n) and p is n-deep in Cp).
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Proposition 2.2.15. Assume 7 is d-generic with d > 1. Then for any lowest alcove presentation
(', 1) of T, p' lies d—1-deep in alcove Cy. Furthermore, if (s, i) is a fized lowest alcove presentation

of T, the collection of lowest alcove presentations are given by
{(s', 1) € W(G) x X*(T) | (s, 1 +m) =) (s, 1+ m), to € Q}.

Proof. The proof is similar to that of Corollary 2.2.13. Fix a presentation (s, u) with p d-deep in
C. For any other presentation (s, i), (s, i +n) =9 (s, u 4+ 1) by Proposition 2.2.4 so

p = (tyo) - u— O'S?T(O')ilﬂ'(lj)
as in (2.6). Since u’ € Cy, for all ",
0 < [{o(p+n)+pv—ost(o) r(v),a") <p-1.

The same argument in Corollary 2.2.13 shows that if M = max,v{|(v,a")|}, then M < 2.

Thus, if u is d-deep in Cy then p' = (t,0) - u — osw(o) tx(v) is d — 1-deep in (t,0) - Co. Since
i is in Cg, we see that t,0 € Q and i/ is d — 1-deep in Cy. We have thus shown that all lowest
alcove presentations occur in the set described in the statement of the Proposition.

Finally, we observe that any pair (s, ) in the set described in the Proposition indeed gives a
lowest alcove presentation. This is because if t,0 € Q, then |(r,a")| < 1. Using that p is at least
d-deep in Cy and d > 1, we conclude that y/ is also in Cj.

O

Proposition 2.2.16. Let )\ be a weight which is d-deep in a p-restricted alcove C with d > n. Then
for any s € W(G) and any lowest alcove presentation (s', ') of (s, \+n), p/ isd—n—+1 deep in
Co. Moreover, T(s,\+n) is at least d —n + 1-generic.

Proof. The same argument as in Corollary 2.2.13 shows that (s, + 1) =) (s,A 4+ n) with

(tyo) - C = Cp. The result now follows because |(v,aV)| < n — 1 for all coroots . O

2.3. Inertial local Langlands. In this section, we establish some simple instances of the inertial
local Langlands following §2.4 of [EGH13]. We let B,, C GL,, be the Borel subgroup consisting of
upper triangular matrices. Fix an isomorphism 7 : @p >~ C. As above let K C @p be the unramified
extension of degree f. Let recg ¢ denote the local Langlands correspondence for GL,,(K') of [HTO01].
Using 4, define a local Langlands correspondence recy over @p such i orecg = recg c oi. We first
recall the existence statement:

Theorem 2.3.1. Let 7 be an inertial type, then there is a finite-dimensional smooth irreducible
@p—repmsentation o(1) of GL,(Ok) such that if w is any irreducible smooth @p—representatz'on
of GLy(K) then m|gr, (o) contains a unique copy of () as a subrepresentation if and only if
reci ()|, =7 and N =0 on reck ().

If 7 is an irreducible smooth @p—Tepresentation of GL,(K) such that

GLy, (k n
HomGLn(OK)(IndBn(k;() ) ‘Zizl X 7T) 7& 0,

then recy (m)|r,, = S Xi© Art;(1|1K.
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Proof. The first part is [CEG"16, Theorem 3.7]. We now prove the second part. One proves as in the

GLn (K) c—1/2 ~
Bn(l(() o R i,
for some x; extending y; as in loc. cit. Then the result follows as in loc. cit. (though N(7) is not

proof of [EGH13, Proposition 2.4.1(ii)] that 7 is a subrepresentation of n—Ind

necessarily zero in our context). U

What we will need is an explicit o(7) in the case when 7 is a tame inertial type. Let K'/K
denote an unramified extension of degree r with residue fields £'/k. A character 6 : k'* — @; is
primitive if all its Gal(k’/k)-conjugates are distinct. Following §4, [Her09], let (6) = (—1)" 'R,
denote the cuspidal representation of GL, (k) parametrized by 6.

Proposition 2.3.2. Let 0 : k'* — @; be a primitive character. Let T = ®[_3(6 o Artr) |1,

where X9 denote the ith Frobenius twist. Then o(r) can be taken to be k(#) interpreted as a
GL,(Ok)-representation via the reduction map GL,(Ox) — GL, (k).

Proof. See [EGH13, Proposition 2.4.1(i)]. O

Definition 2.3.3. Let n = Z§:1 rj be a partition of n. For each j, let 6; be a primitive character
for the extension of degree r; of k. Define PInd(x(61),...,x(6¢)) to be the parabolic induction
to GL, (k) of ®;k(6;) as a representation of the rational points of a parabolic P D B with Levi
subgroup Hj GL,,.

Proposition 2.3.4. Let 7 = @leTj where 7; is a cuspidal inertial type associated to primitive
characters 0; of degree r;j as in Proposition 2.3.2. Assume that the cuspidal types k(6;) are pairwise
distinct. Then o(1) can be taken to be PInd(k(01),...,K(0p)).

Proof. This follows from §6 of [PZ13] where o(7) is constructed as op(A) for maximal P (see also
§3.6 of [CEGT16]). In the case of principal series, see also Proposition 2.4.1(ii) in [EGH13]. O

Corollary 2.3.5. Let 7 = 7(w, p) be a reqular tame inertial type (Definition 2.2.9). Then o(T) can
be taken to be Ry ().

Proof. As in the Definition 2.2.1, we immediately reduce to the case that w = (s,,id,...,id). The
condition of being regular corresponds to the pairwise distinctness condition in Proposition 2.3.4.
Finally, we use Lemma 4.7 of [Her09] to relate the parabolic induction in Proposition 2.3.4 to the
Deligne-Lusztig representation Ry, (u). O

From now on, for any regular tame inertial type, we let o(7) be as in Corollary 2.3.5.
Remark 2.3.6. Note that for a regular tame inertial type 7, by Corollary 2.3.5 and (2.4)
V(T) Zo(r).
3. LOCAL RESULTS

In this section, we prove the main results on reductions of potentially crystalline representations

which will be used for weight elimination in §4.1.
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3.1. Etale p-modules. In this section, we consider étale p-modules associated to affine Weyl
group elements and determine their corresponding semisimple Galois representations. The key
result is Proposition 3.1.2 which relates the Galois representation to the tame types defined in §2.2.

Let Og denote the p-adic completion of &[1], where & := Ok [v] is endowed with a Frobenius
morphism ¢ extending the Frobenius on Ok such that ¢(v) = vP. Let R be a local, complete
Noetherian O-algebra with finite residue field. By base change, the ring Og@ZpR is naturally
endowed with a Frobenius endomorphism ¢ and we write ®- Modét(R) for the category of étale
(o, Og@ZpR)—modules. Its objects are finite type projective modules M over Og@ZpR, endowed
with a Frobenius semilinear endomorphism ¢ : M — M inducing an isomorphism on the pull-
back: id ®, ¢aq 1 * (M) — M.

Since K /K is totally wildly ramified, the subgroup G, of Gi projects surjectively to the

tame quotient of G . Hence the restriction map
Repir(Gr) — Repr(Gr..)

is fully faithful where Rep’ denotes subcategory of tame representation. We use Repk(Gr_.) to
denote the essential image of this map and will often implicitly identify these representations
of Gk_ with their canonical extensions to Gx. Note that this essential image contains exactly
representations of G which are trivial on Gx_ NG+, where K is the maximal tamely ramified
extension of K.

For any complete local Noetherian O-algebra R with finite residue field, by theory of norm fields,

there is anti-equivalence of categories
V* : &-Mod®*(R) — Repp(Gk..)

(cf. Lemma 1.2.7 [Kis09] for version with coefficients). If K is finite unramified extension of K, let
K! = Ko ®k K', and we can similarly consider the category of étale p-modules over K’ denoted
®-Mod%, (R) together with the anti-equivalence Vi, : ®-ModSt, (R) — Repg(G K7)-

For any (M, ¢p) € ®-Mod®*(R), we decompose M = @;MU) over embeddings o : W (k) — O
with the induced maps (bsa : MU - MUY We are now ready to define “semisimple” étale
¢-modules. We fix an embedding WY = X* (T) » W(GLy) < New,, (T)(F((v)) given by p — v*
and identifying W (GL,,) with the subgroup of permutation matrices. Here, for u = (aq,...,a,) we
define v* to be the diagonal matrix with entries v* (we interpret X*(7") as the group of cocharacters
of the dual torus and v* is the associated cocharacter evaluated at v).

Definition 3.1.1. For any w = (w;) € WY and D = (D;) € T(F), define M(w, D) € - Mod* (F)
to be the free module over Og ®z, F of rank n such that the Frobenius (bsa is given by the matrix
Djw; € Naw, (T)(F((v))) (with respect to the standard basis). Set M(w) := M(w,Id).
Proposition 3.1.2. Let M(w, D) be as in Definition 3.1.1 with w = st,, € WY. Then, V*(M(w, D))
lies in Reph(Gk..) and

VHM(w, D)1 =7(s", 17).

In particular, the restriction to inertia doesn’t depend on D.
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Proof. Assume that (s}, u}) ~ (s3, 1u3) via conjugation by (v*,0*). Then for any D, € T(IF), there
exists a Dy € T(FF) such that ¢-conjugation by tr—1(,)0 induces an isomorphism M(sity,, D) =
M(sat,,, D2) by (2.2) . For any w, by an appropriate conjugation, we can assume w; = 1 for
Jj#f—1 Let wp_; = saltuo with po = (a1,...,a,) € Z", and let r denote order of sy. Consider
the base change
M= M(w, D) @y W (k')

where k’/k is finite extension of degree r. Let ¢ denote the Frobenius on M’. A straightforward
computation as in [LLHLMa, Lemma 3.2.3] shows that there exists a basis (e;) for (M’)©) (the
piece corresponding to fixed embedding of, : W (k') — O) such that

QSM/(BZ) =dv
for some scalars d; determined by D. Following Proposition 2.1.7 in [CDM] and using our choice
of embedding of, : W(k") — O, one can determine the V., (M) from the gbf\;,. If K., = Koo Q)
W (K'), then there are unramified characters & such that

m op as(v)n-kl(i)
Vie (M EB@ G -
oo

Hence V*(M(w, D)) is tame and by comparison with (2.3),
V*(M(w, D)1 =7((s0,1,...,1),(ro,0,...,0)).

-1
2 m=0 a m+1 (i)pfm
0 el

O

3.2. Semisimple Kisin modules. In this subsection, we generalize [LLHLM18] from GL3 to GL,,
and study reductions of Kisin modules with descent. For the convenience of the reader, we first state
the main theorem which is used for weight elimination in §4. The theorem will be a consequence
of Theorem 3.2.26 about reductions of Kisin modules with descent data. The proof appears at the

end of the subsection.

Theorem 3.2.1. Let 7 = 7(s,pu + 1) be 1-generic with lowest alcove presentation (s,u) and let
A€ X*(T). Let p be the reduction of a potentially crystalline representation of type (X, 7). Assume
either (1) T is a principal series type and p* is a direct sum of characters or (2) A = n and 7 is
generic. Then there exists (w,v) € W(G) x X*(T) such that

Pl 27 (w,v +n) and 57, w € Adm(N).

Remark 3.2.2. The element s~'¢,_,w in case (2) of Theorem 3.2.1 is later defined to be w*(p,)
in Definition 4.1.6.

We continue to use the notation of §2.2. Let 7 : Ix — GL,(E) be a tame inertial type. We
will assume throughout that 7 is 1-generic and fix a lowest alcove presentation (s, 1) where u € Cy
(e, 7= 7(s,u+n)).

If s = (s0,...,5¢-1) and o = (pj)o<j<f-1 € X*(T), we take s, = 508f-15f—2---s1 € W(GLy,)

and o ) € X*(T) such that o, ) ; = 31_132_1 (,uj +m;) for 1 < j < f—1and a0 =
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I

wo + no. Let r denote the order of s; and f' = rf. As in Definition 2.2.1, 7(s,u + 7)
7((8751,..., 1), (s ) and concretely,

3 . a® plk
(3.1) el with yi = wh 0<k<r—13(, ) k)
where ag(s],)u) = Zflé a(s,,u),jpj € Z™ (compare with (2.3)). By fixing a choice of lowest alcove

presentation, we also fix the order of the characters y; as above.

Remark 3.2.3. In [LLHLM18], the notion of lowest alcove presentation does not appear. Everything

is written for presentations of the form 7((s,1,...,1),as ) (see, for example, the beginning of
§2.1, §6.1 of [LLHLM18]). In the notation of the loc. cits., oy ) ; = (a1,5, a2, a3;). If
Sor 1= (81_182_1 .. s;il,sl_lsz_l .. sJTEQ, .. .,81_1, 1) e W(G),

=) or

element s, is called the orientation of oy, (Definition 2.6 and equation (2.2) in [LLHLM18]).

then s (s ,)) = 1+, and conjugation by (0, s?,) changes one presentation to the other. The

Remark 3.2.4. Comparing (3.1) with equation at beginning of §2.1 [LLHLM18], the exponents differ
by a minus sign. This is because of a dual with appears in Definition 3.2.5 which makes everything

consistent. See Remark 3.2.7 for more details.

We continue to write K (resp. K') for the unramified extension of Q,, of degree f (resp. f 2ef fr).
If r = 1, we say that 7 is a principal series type. Otherwise, we write 7/ for the base change of 7 to
K'/K (which is just 7 considered as a principal series type for Gg). We record the relevant data
for 7. Define a’(s’ﬂ) € X*(T)Hom(K'F) = x*(T)/" (using the fixed choice of embedding o) by
a/(s,u),j—l—kf = s;k(a(sw,j) for0<ji<f—-1,0<k<r-—1.
If 75/ (w', 1) is the analogous construction of tame types over K’ for (vw',u') € (W(GL,) X
X*(T))Hom(®F) then 7/ = 7/(1, . ) by direct comparison using (3.1). The orientation sl €

(s:1)
W (GL,)?" of oa’(S ;) in the sense of Definition 2.6 in [LLHLM18] is given by
(3:2) Steiihf =St sy for 0< i< f-1,0<k<r—1

(compare with Proposition 6.1 [LLHLM18]).
Note that a'(sm,ﬁkf is in the W(GL,,) orbit of p1; + ;. If (s, ) is a lowest alcove presentation
with g m-deep in alcove Cy, then for all coroots a" of GL,, and 0 < j' < ' —1,

(3.3) m < (e, a’)| <p—mand (Sgr,j')_l(a,(s,ﬂ),fukj/) = pf—1—j + 1f—1—; is dominant
where j = 5/ mod f.

Define I/ = K'(w) = K'((=p)7 1), and let A" := Gal(L//K’) C A := Gal(L//K). Note
that 7 defines a O-valued representation of A’. For any complete local Noetherian (O-algebra with

residue field ' finite over F, let &1/ g := (W (K') ®z, R)[u']. We endow &, r with an action of A

as follows: for any 7in A/| 7(u') = T(w—w:)u’ and 7 acts trivially on the coefficients; if o € Gal(L'/Q,)
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is the lift of Frobenius on W (k') which fixes tw,, then o/ generates Gal(K’/K) acting in natural
way on W (k') and trivially on both «’ and R. Set v = («/)?"'~1, and note that

(&r,r)>"" = (W(k) @z, R)[v].

As usual, ¢ : 61/ p — S/ g acts as o on W (K'), trivially on R, and sends «’ to (u/)?.

For any positive integer h, let Y[O’h]vT(R) be the category of Kisin modules over L’ with tame
descent of type 7 and height in [0, h] as defined in §3 of [CL18] if 7 is principal series types. For
other types, we refer to §6 of [LLHLM18] for further background.

Definition 3.2.5. An element (9, ¢on, {g}) € YIOM7(R) is a Kisin module (9%, ¢on) over G/ p
(Definition 2.3 [LLHLM18]) with height less than h together with a semilinear action of A which
commutes with ¢gn such that for each 0 < 7 < f/ —1

M) mod ' = 7V ®o R

as A-representations. In particular, the semilinear action induces an isomorphism (o )*(901) = M
(see [LLHLMIS, §6.1]) as elements of Y07 (R).

Remark 3.2.6. As explained in [LLHLM18, §6.1], the data of an extension of the action of A’ to an
action of A is equivalent to the choice of an isomorphism (of)*(9%) = 9 satisfying an appropriate

cocycle condition. We will use both point of view interchangeably.

Remark 3.2.7. The appearance of 7" in the definition is due to the fact that we are using the
contravariant functors to Galois representations to be consistent with [LLHLM18] as opposed to
the covariants versions which appear in [CL18, EGH13|. In [LLHLM18], we didn’t use the notation
7V. Instead, we included it in our description of descent data by having a minus sign in the equation
before Definition 2.1 of loc. cit. The notion of Kisin module with tame descent data of type 7 here
is consistent with what appears in loc. cit.

Recall that we have fixed a lowest alcove presentation (s, ) with p € Cy. Definitions 3.2.11 and
3.2.8 as well as the matrix of partial Frobenius AU) below depend on the choice of presentation
(see Remark 3.2.12).

Recall the following definition:

Definition 3.2.8. For any complete local Noetherian O-algebra R, an eigenbasis [ for 9 €
YIOhLT(R) is a (ordered) basis 8U") = (fl(j,),fQ(j,), o ,f,gjl)) of MU for each 0 < j/ < f such that
A’ acts on fi(j/) via the character x; ' from (3.1) and such that (of)*(3) = B (see [LLHLMIS,
Definition 2.8] and [LLHLMa, Definition 3.1.6] for details).

Note that since the order of A’ is prime to p and O is assumed to be sufficiently large eigenbases
exist for any M € YIOM7(R) when R is a complete local Noetherian O-algebra as above.

Given M € Y[O’h}’T(R) together with an eigenbasis (3, the matrix of the partial Frobenius
¢i()§{)s, (n) with respect to [ is defined as in Definition 2.11 of [LLHLM18]. Namely, let (bg{ )S,

Por 4/ +1 Sor g1
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(p*(mt){') — fm;ﬂ l,+1) ” be the Frobenius map on the xy () isotypic pieces of omU’+1)
or,j

or,g!+1(™ “or,j+1¢ 41

and o* (MU respectively. For any 0 < j' < f' —1, set

f-1

1" _ / i
(3.4) a )= D A il
1=0

where —j’ + i is taken modulo f’.
If gU'+D = (fl(] +1), ce fy(L] +1)), then as in Lemma 2.9 in [LLHLM18|,

o G/ G+ A "
{w) e 0 ff/*”}
i=1

is a basis of E)JTQI,H) () Similarly, if 8U") = (fl(jl), . ,f,gjl)), then

“or,j/+1
1@+ G+ n
a S —a
[CHDR s,u),s’ n i’
{(“/) T e )®ffj)}

i=1

is a basis for go*(i))?)gg /,) () We order these bases such that the «/-multiple of fy ) is the
s n or,j/+

ith basis vector. Note that the orientation s/, is chosen such that for all i < k,

or,j/+1

f_ 1(5'+1) 1(5'+1)
(3.5) D I>ag o a ; ) >0

or,j’+1(i) B (S"u)’sor,j’-l»l
so that all the exponents which appear are positive. The inequalities are strict because 7 is regular
(since T is 1-generic).

The matrix of the j'-th partial Frobenius with respect to these bases ordered as above will be

denoted by AU") = Matg ((;55%/ )s, (n)). We stress that the notion of eigenbasis and the definition

r,5/+1
of AU") depends on the chosen presentation of 7, as well as our choice of ordering of the characters

in 7. By our requirement that 3 is o/ invariant, AU") only depends on j’ mod f. We also observe
that the height condition implies v"(AU))=1 € M, (R[v]).
For any O-algebra R, define
e Z(R) := {M € GL,(R[v]) | M mod v is upper triangular};
e 71 (R) :={M € GL,(R[v]) | M mod v is upper triangular unipotent };
e For any m > 1, D, (R) := {M € GL,(R[v]) | M mod v™ is diagonal}.
For any M € Mat,,(R((v'))) and g € GL,(R((u'))), define

(3.6) Ad(g)(M) := gMg™".

We can now record the effect of changing the eigenbasis § on the matrices AY), which is the
generalization of Propositions 2.15 and 2.16 in [LLHLM18]:

Proposition 3.2.9. Let R be a complete local Noetherian O-algebra. Let 9 € Y[O’h}’T(R) together
with two eigenbases fUY) := <f1(j), 2@, e ,f,(ﬂ)> and ') .= <f{(j),f;(j),..., 7,1(])> related by

< CUNC ,f;;j))D(j) _ <f1<j>’f2<j>’ o ’fr(Lj)>
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) and A/(j) d:ef Matﬁ/ (gb(j) )

m,sgwﬂ (n)

with DY) € GL,(R[u]). Let us write AU 2f Matg (¢g§t)s/ (n)
2or,j+1
as above. _ ’
() def , 1 , 7a’(.7) () . .
Set 1) = Ad ((s],, ;)" (u/)"em) (DY) € Z(R),which only depends on j mod f.

Then for all0 < j < f' —1,
AU — I(j+1)A(j)(sf([(j),w)(sf)*l)

where
T@-e L5405 (o1 ) Ly =5 =15

Furthermore, if i is m-deep in alcove Cy, then 1) ¢ Dm+1(R).

Proof. The formula for change of basis only depends on 9 as Kisin module over L’ for the principal
series type 7/. The fact that 7 only depends on j mod f follows from the fact that § is fixed
by of. The rest of the proof is the same as in Proposition 2.15 of [LLHLM18] where we note that
sj which appear in loc. cit. are called s, ; here. We use that (Sgr,j+1)_18’0r7j = 57 by (3.2) and
Remark 3.2.3. Also, we use that for 0 < j < f —1, (Sgr,j)il(a/(s“u),fflfj) = pfo1—j +1np-1—5 (cf.
(3.3)). That IY) € Z(R) follows from Equation 3.5 which follows from the fact that the characters
appearing in 7 are distinct (see Proposition 4.6 in [CL18]). The fact that IU)¥ € D,, 1 (R) is
straightforward (compare with Proposition 2.16 in [LLHLM18]).

O

Remark 3.2.10. In the situation of Proposition 3.2.9, we call the tuple (1)) € Z(R)/" the change of
basis tuple from 3 to 8’. It satisfies 1) = I®) if j = k mod f. Conversely, any tuple in I(R)f, with
this property is the change of basis tuple from [ to another eigenbasis 3’ (this uses our running
assumption that 7 is 1-generic). In other words, given 3, the data of an eigenbasis 5’ is the same
as the data of the tuple (10)).

Recall (from [CL18, Definition 5.5]) the notion of shape:

Definition 3.2.11. If 7 is a principal series type, the shape of a Kisin module 91 € Y[Ovh}’T(F’)
is the element @ = (wo, W1,...,0p_1) € WY = (WY)HomEF) such that for any eigenbasis 8 and
any 0 < j < f — 1, the matrix AY) = Matg (¢;§2 , ) lies in Z(F")w; Z(F"). (Recall the fixed

7Sor,j+1( )
inclusion WV < Ner, (T)(F((v))) before Definition 3.1.1.)

For a non-principal series type 7, we define the shape via base change as in [LLHLM18, Definition
6.10]. By definition, an element 90t € Y%7 (F") consists of an element M € Y07 (F') together
with an isomorphism (o/)*(9) = M’ satisfying the cocycle condition as in [LLHLM18, Definition
6.3]. By the principal series type case, we have the shape of 9, which is an element w' =
(W, WY, ..., W _y) € (WV)Hom(k.F) By the isomorphism (of)*(9) 2 M and our requirement
that eigenbases are compatible with it, the components of w’ corresponding to two embeddings
k' — F are equal if they restrict to the same embedding k& < F. In our numbering, this gives
W = @;Jrf. We then define the shape w of 9 as the element w = (wj, w),... ,&7}71) e WY =

J
(WV)HOm(k,F).
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Remark 3.2.12. Proposition 3.2.9 shows that the shape of a Kisin module is well-defined. The
shape of a Kisin module depends mildly on the choice of lowest alcove presentation of 7 (and the
associated ordered characters x; in (3.1)). For a different choice of presentation, the shape changes
by an outer automorphism of W, coming from the action of fundamental group (cf. [LLHLM18],
Corollary 2.24). Everything we do depends on a choice of a lowest alcove presentation, and we will
always fix it at the outset before talking about objects such as AU) = Mat g ((bgt)s, 1("))’ etc.

Sor,j+
Remark 3.2.13. The shape (Definition 3.2.19) is a kind of relative position between the two tame
representations p®® and 7. The shape is closely related to the geometry of the potentially crystalline
deformation ring of type (n,7) as studied in [LLHLM18].

Recall the functor from §6.1 of [LLHLM18]:
Ty YORT(R) — Repp(Gr..)

Let X € X*(T) effective, i.e., A\j = (a;;) with a;; > 0. We will need finer control of the shape of
the Kisin module in the case when p is semisimple. For any X effective, we have a closed substack
YAT € YIORT constructed in [CL18, Proposition 5.2] (see also [LLHLM1I8, Section 3.1]). Then for
any finite extension F'/F, Y7 (F') is the full subgroupoid of YI%7(F') (for any sufficiently large
h) consisting of Kisin modules whose shapes lies in Adm" (\) by [CL18, Proposition 5.4].

Definition 3.2.14. Let M € YIO/7(F') where F'/F is a finite extension. We say that 90 is

~ ~ oV . . . . o
semisimple of shape w = (w;) € W if there exists an eigenbasis 5 of 91 such that

AD = Matg (6%, e T(F'[v])w;
Sor,j+1

+(n))
for0<j;<f —1.

Remark 3.2.15. Since the set of monomial matrices (i.e. matrices that have at most one non-
zero entry in each row and column) in Z(F")w;Z(F’) is exactly T'(F'[v])w;, the above condition is

equivalent to AU) being a monomial matrix.

Proposition 3.2.16. If M is semisimple of shape w = (w;) € ;va, then there exists an eigenbasis
B such that
AW e T(F)w; for0<j < f—1.

Proof. By definition, there exists an eigenbasis 8 such that AY) = D;@; for D; € T(F'[v]). Let
Dj=D; modw. For 0 <j < f —1,set [UH) = ﬁjD;1 € Z(F") with j considered mod f. Then
(1)) € Z(F")/" defines an f’-tuple as in Remark 3.2.10. By Proposition 3.2.9, there is an eigenbasis
By for 9 such that the matrix of partial Frobenius with respect to 3 is

AY) = [(j+1)A(j)s;([(j)#{?)*l(s}%)*l — ﬁj@js;([(j)ywyl(s;)fl_
Since I¥) = 1 mod v and is an element of T(F'[v]), s;(I(j)#’)_l(s;)_l = 1 mod v? and is an
element of T'(F'[v]). We conclude that Agj ) = Dy jw; where Dy ; = D; mod vP. Repeating this

process, we can inductively construct a sequence of eigenbases f3,, such that the matrix of partial
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Frobenius with respect to 3, has the form D, jw; where D,, ; = ﬁj mod vP". The sequence [y,
converges to an eigenbasis with the desired property. O

Corollary 3.2.17. Let (s, 1) be a lowest alcove presentation for t. If 9 € YORL7(F) is semisimple
of shape w € WV, then T7;(9N) is semisimple and (after extending coefficients)

L)1y 2= V(M@ b)) e = T(w, v+ 1)
where W™t x = w¥ty«.
Proof. The second isomorphism is from Proposition 3.1.2. This first isomorphism follows from a
direct computation of the étale p-module M = (9[1/u'])2=! as in [LLHLMa, Proposition 3.2.1].

We briefly go through the main points.
Let 8 = (ﬂ(j)) be an eigenbasis for M as in Proposition 3.2.16. We start by considering a

basis 8 for M := (_[1/u])A/71 as follows: for 0 < j/ < f' —1, if gU) = (fl(j,),..., T(Lj,)),
21,35 a/(.l) i’ . . . — (5’ .
deﬁne B U = ((u)* o) 1f(]) W) (Sjwnf(] )) which is a basis for M Y. The matrix for
qS ‘M 2 — M G+ with respect to ﬁ’ is given by
1) g G
gr] +1A( )( or,] +1)—1(ul)pa(;m (S{“)
Since pal(gu)) — a(ij ;rl) (p - 1)a’(s,ﬂ)7f,717j,, this is same as

I 1 o Il
or] +1A( )( OI‘_]/+1) v (em) fi=1=gt,

Define 8 by gU) = g'U )sor
respect to ﬁ is given by

e Let i/ =j7+if for 0 < j < f — 1. Then the matrix for (;5%2 with

—1. (s ) e, N _ +ny
A(J)( St 1) L v o O ) —1—j! _A(J)SJUM] ;

using (3.2) and (3.3). Since (of)*(3U")) = '~/ this descends to a basis of M := (M[1/u/])A=" =
M7 =1 such that Frobenius ¢¥. : M — M is given by
M/ f=1 h th b 5\]/2 M(J) M(J+1) b

- * * —~ * *
A(J)S;fvuﬁnj _ Djsz;vuj +nj

for D = (D;) € T(F')/ using Proposition 3.2.16. Thus, M = M (ws*t,+4,, D) (Definition 3.1.1).
U

Before proving the main theorems of the section, we show that in generic situations, the Kisin

module which gives rise to p is necessarily unique (if one exists), i.e., the Kisin variety is trivial.

Proposition 3.2.18. Assume that T is generic.
(1) Let @, M € Y7 (F') for some ]ﬁzz’te extension F'/F. If Tj,(OM) = T, (M), then M = M.
(2) Let M e Y (F') and p := T,;,(OM). Define a groupoid

b = {(O.60) | M € YT (F[)/), 6 /et 5 A,
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Then the functor T, induces a fully faithful functor

Tion * g = Repprq/e2(Gro)p = {(p, %) | p € Repprig/2(Gr..), Yo :p mod e AN ﬁ}.

Proof. We fix a lowest alcove presentation (s, i) of 7 such that p is n-deep in alcove Cy to perform
all calculations.

For part (1), since the G -representations are isomorphic, we have 90[1/u'] = ﬁ/[l/u’ | as
étale p-modules with descent datum. We pick two eigenbases 3, 3’ of I, ﬁ,, and let (D(j)) €
(GL,(F'((u/))))!" be the f’-tuple which expresses the basis 4’ in terms of 3 as in Proposition 3.2.9.
Note that DU) = DU+ since our eigenbases are compatible with the action of o/. The same
computation in the proof of [LLHLM18, Theorem 3.2] with 2 replaced everywhere by n — 1 (cf.
Remark 2.2.8 for the comparison of the genericity in the present paper with that of [LLHLM18])
now shows that DY) € GL,,(F'[u/]) for all j.

Part (2) is similar to part (1). The argument in the proof of [LLHLM18, Proposition 3.4] adapts
to our situation.

O

Definition 3.2.19. Assume that 7 is generic with a chosen lowest alcove presentation (s, ). If
there exists MM € Y77 (F) such that T75,(M) = plg,_, then define w(p,7) € Adm"(n) to be the
shape of 9. This is well-defined by Proposition 3.2.18.

A key input for weight elimination is the following:

Theorem 3.2.20. Assume either (1) T is a regular principal series type or (2) X = n and 7T is
generic. If p has a potentially crystalline lift with type (\,7) where X is effective, there is a Kisin
module M € YA (F) such that T (M) = bl -

Proof. If T is a principal series type, this is direct consequence of [CL18, Proposition 5.4 and
Corollary 5.18] (also see Remark 5.6 in loc. cit. which compares the stratification of the moduli of
Kisin module with Definition 3.2.11). Proposition 5.4 in loc. cit. crucially uses results about local
models from [PZ13].

For case (2), by the first case, there exists a Kisin module 0 € Y™ (F) with Tjdﬂ/(ﬁ/) = ﬁ’GK{X,
where Tc}kd7 5 is the analogous functor over K'. Since p extends to G, we have an isomorphism
L (Jf)*(ﬁ/[l/u’]) = ﬁ/[l/u’] (satisfying an appropriate cocycle condition, cf. [LLHLM18, §6.1]
). Since 7 is generic, by the proof of Proposition 3.2.18, t((of)*(907 )) = M inside M [1/2/]. Thus,
M defines an element of Y7 (F) and hence has shape in Adm" (). O

Remark 3.2.21. Our definition of Adm" (\) (Definition 2.1.1) is in terms of the Bruhat order on the
(extended) affine Weyl group for GL,, using our choice of antidominant base alcove for the standard
apartment. The Bruhat order which appears in [CL18, §5] comes from the closure relation on the
affine flag variety with respect to the standard Iwahori subgroup, the subgroup Z(FF) of matrices
which are upper triangular mod v. The subgroup Z(F) is the stabilizer of the antidominant base
alcove, hence the Bruhat order (and hence the admissible set as well) in loc. cit. is the same as

ours.
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The following Proposition gives us control on Y7 (F'):

Proposition 3.2.22. Assume 7 is generic. Let M € Y[O’"_l]’T(F’), B an eigenbasis of M and
AU — Matg w%sfn,jﬂ(")
bijection between the set of eigenbases 3 such that 3 = 3 mod v and the set tuples of the form
(XjA(j))OSKf/ such that:

o X; € Iy(F") for all j.

o X; =X, ifj=k mod f.

). Then the assignment ' — (Matg (gb%), ( )))O<j<f/ defines a
7sor,j+1 n -

Proof. Throughout this proof, we adopt the same notation as in Proposition 3.2.9: We let (D(j))
be the tuple of matrices expressing 8 in terms of A/, from which we get the matrices IU), 1),
Observe that the condition A/ = 8 mod «’ is equivalent to DY) =1 mod «’ and also equivalent to
IU) € T, (F'). If these equivalent conditions hold then IU):¥ = 1 mod v™*!, since 7 is assumed to
be generic. We also observe that if j = k£ mod f, then the j-th and k-th component of any tuple of
matrices that we work with are equal.

Since M € YOn=17(F") we have v 1(AV)~1 € M, (F'[v]). This gives us a bound on the
denominators of (A0))~1,

First we check that our assignment is actually defined, in the sense that the collection A’U) =
Mat g/ ((;5%)73,

or,j+1

By Proposition 3.2.9 we have
X; = A0 (AL = I(j+1)A(j)(3;f ([(j)vso)(s;)—l)(A(j))—l

(n)) associated to (' is really of the prescribed form.

It is clear that X; = X, if j = k£ mod f. As observed above, I1U)% =1 mod v hence we can
write s} (1U)%) (sj)_l =1+ v"Y; with Y; € M, (F'[v]). Since v"~1(AU)~1 € M, (F'[v]), we get
X, = A’(j)(A(j))*l — ](j+1)(1 + v”+1A(j)y3.(A(j))*1) € I, (F)

as desired.
Next, we show that our assignment is surjective. Thus we are given (X;) with X; € Z;(F'), and
we need to solve the system of equations
X; = I(j+1)A(j)(5;f (I(j)vso)(s’;)—l)(A(j))—l

with 1) ¢ Z:(F"). To do this, we carry out the same limiting procedure as in the proof of
Lemma 2.20 of [LLHLM18], using IU)¢ = 1 mod v"*! and v"~1(AU)~1 € M, (F'[v]) to establish
convergence to a solution.

Finally, we show that our assignment is injective. This means that we have to show that if there
are two collections (1)), (I'"@)) e T, (F')/" corresponding to eigenbases /', 3" such that

JUFD) AG) (s; ([(j),so)(s;f)fl)(A(j))fl - [’(j+1)A(j)(s; ([/(j),w)(s;)fl)(A(j))fl

then 1) = I'U) for all j. By replacing 8 with 8” and AU) with A”(), we reduce to the case when
I'U) = 1. Thus it suffices to show that if

I(j+1)A(j)(5;f (I(j)vso)(sj)—l)(A(j))—l -1
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then 1) =1 for all j.

Indeed, by the observations at the beginning of the proof, AU) (s;k (I(j)’*")(s}f)*l)(A(j))*1 =1
mod v for all j, thus IU) = 1 mod v for all j. Suppose we already have I1U) = 1 mod v° for some
8 > 2 and for all j, then 7U)% =1 mod vP*~"~!, and hence AY) (5;‘ (I(j)"p)(s;)_l)(A(j))_l =1 mod
VP92 for all j, hence also 1) = 1 mod vP9~2" for all j. Since pd — 2n > & (the existence of a
generic 7 implies p > 2n + 1), this shows that [ (7) = 1 mod arbitrary high powers of v for all j.
This shows IU) =1 for all j.

O

We now discuss the notion of gauge basis, which provide certain normal forms for Kisin modules.
For a root o = €; — €; of GLy, recall that the (4, j)-th entry of an n x n matrix A is also called the
a-th entry, and denoted by A,. For any statement %, define ¢, to be 1 if x is true and 0 if « is false.

For any @ = wt, € WY and any ring R, we define the subset Uz(R) C GL,(R((v)) to be the set
of X € GL,(R((v))) satisfying the following conditions:

e The diagonal entries of X are in R*.
e For any root a of GL,,, the a-th entry X, is of the form ", a;v* € R((v)), where a; = 0 unless
daco <0 < —(V,aY) + dy(ay<o- In particular, X, = 0 unless do<o < — (v, ") + dyy(a)<o-

By a standard computation with affine root groups, the natural map
wUg(F") — Iy (F)\Z(F)wZ(F")

is a bijection, for any extension F’ of FF.
The following definition generalizes Definition 2.22 of [LLHLM18|:

Definition 3.2.23. Let M € Y™ (F') with shape (w;). A gauge basis 3 for M is an eigenbasis for
9 such that AU) = Mat g (¢gt) , (n)) belongs to w;Ug. (F') for all 0 < j < f.

Sor,j+1 J

Example 3.2.24. When n = 3, the list of n-admissible elements Adm"(n) is given in Table 1 of
[LLHLM18]. For each w € Adm"(n) up to outer automorphism, Table 4 of loc. cit. lists the set
w;Ug,(F) which are the possible matrices of partial Frobenii for pairs (9, 3) with shape w where

[ is a gauge basis.

For 7 generic, Proposition 3.2.22 shows that gauge bases exist and are unique up to scaling by
the subgroup of T'(F")/ " consisting of tuples whose j-th and k-th entries are the same for j = k
mod f.

Remark 3.2.25. Assume 7 is generic. If M € Y7 (F') is semisimple of shape @ = (w;), Proposition
3.2.16 shows that there is an eigenbasis 5 with the property that AU) = Matg ((;55%)8,
Zor,j+1

to T(F)w; = w;T(F') C w;Ug,(F’). Such an eigenbasis is therefore a gauge basis, and we deduce

(n)) belongs

that the matrices of partial Frobenii with respect to any gauge basis have this form. In particular
they are all monomial matrices. Conversely, if there is a gauge basis for which the matrices of
partial Frobenii is monomial, then 9t € Y7 (F') is semisimple, by Remark 3.2.15.
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Theorem 3.2.26. Let p: Gxg — GL,(F) be a semisimple representation and let T be a 1-generic
type. Assume that either (1) p is a direct sum of characters, or (2) X\ = n and T is generic.
Then if there exists a Kisin module M € YT (F) such that T (9N) = Plax., » then there erists a
finite extension F'/F and a semisimple Kisin module M e YAT(F') with shape in Adm" (\) (cf.
Definition 3.2.14) such that (after extending scalars) Tjd(ﬁ/) = Dlay., - Furthermore, we can take
F' =T in case (2).

Proof. Let Mgq = 9M[1/4/]. Tt is an étale p-module over L' with descent datum to K.

We first treat the case where p is a direct sum of characters. Since V7, is an equivalence of
categories and p is a direct sum of characters, M4y = @, M; where each M, has rank 1, is
stable under ¢a4,, and the descent datum.

Let Y/i‘/gd be the Kisin variety parametrizing lattices in Mgy which lie in Y7, i.e., which
have shape in Adm"(\). When 7 is principal series type, Y/i‘/gd is defined as in Definition 3.1
in [LLHLM18] and is shown there to be a projective scheme over F. In general, we define Y/i‘/;;d
to be the closed subscheme of fixed points on Y/i‘/;;; for the natural action of ¢/. Note that by
assumption Y/(\/izd is non-empty.

The torus T' = G}}, acts on M 4q by scaling individually in each factor of the above decomposition.
As a consequence, we get an algebraic action of T on the projective variety Y/i‘/;;d. Any such action
has a fixed point (possibly after passing to a finite extension F’ of F). Let m c YX‘/{;(F’ ) be a
T-fixed point. Let ¢; : T'— G, denote projection onto the i-th coordinate, and set ﬁ; = (ﬁ/)wi.
Then

(3.7) m =P,
=1

Since the T-action commutes with ¢, and A, each ﬁ; is stable under both, hence ﬁ; is in
fact a rank one Kisin module with descent datum. Any choice of eigenbasis which respects this
decomposition shows that m is semisimple. Because M is in YA (F), it is semisimple with an
admissible shape w € Adm" ().

Now suppose that 7 is generic, but p is not necessarily a direct sum of characters. In this case,
M is the unique element of Y7 (F) such that 7)j;(M) = b, by Proposition 3.2.18. We pick an
unramified extension K /K’ such that plG . is a direct sum of characters. Let 7 be the base change
of 7 to K, and let im m Qw (k) W(kz) be the base change of the Kisin module 9 to K'L'. Since
7 is still generic by Lemma 3.3.1, M is the unique lattice in 9)?[1 /] which belongs to Y7 (F). By
the above argument, the set of such Kisin lattices must have a semisimple element (possibly after
extending F), thus ﬁ is semisimple. Fix a gauge basis B of M, and let B be the induced eigenbasis
of 93? It is easy to check that it is a gauge basis of im By Remark 3.2.25, the matrices of partial
Frobenii of 9t with respect to ﬁ is monomial, hence the same is true for the matrices of partial
Frobenii of 9 with respect to . This shows that 9T € Y7 (F) is semisimple.

O
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Remark 3.2.27. In the proof of Theorem 3.2.26, while A’ acts on (ﬁll)(j) mod u’ through one of
the characters of 7, it need not be the same character for each j. This is why even though ¢g; is
“diagonal,” the individual AY) need not be diagonal, but only monomial.

Proof of Theorem 3.2.1. If p is the reduction of a potentially crystalline representation of type
(A, 7), by a standard argument (cf., for example, [Enn, Lemma 5]), p*° is also the reduction (after
possible extending scalars) of a potentially crystalline representation of type (A, 7). So, without loss
of generality, we assume p is semisimple. After twisting, we may assume \ is effective. Then, by
Theorem 3.2.20 combined with Theorem 3.2.26, after possibly replacing [F by a finite extension, there
exists a semisimple Kisin module M € YA7(F) of shape @ € Adm" (\) such that Pla., =T ().
If we write
WS Eyyr gy = Wty
for (w,v) € W(G) x X*(T). Then, by Corollary 3.2.17,

ﬁSS’IK = 7(11), v+ 77)-

Furthermore, by Lemma 2.1.4,
w* = s ,_,w € Adm(N).

3.3. Genericity conditions.

Lemma 3.3.1. Let K'/K be an unramified extension. If T is an m-generic tame inertial type,
then 7|1, is also m-generic. Similarly, if p : Gx — GL,(F) is an m-generic representation, then

pla,. is m-generic.

Proof. Let r be the degree of K'/K. Let 7x+ denote the analogous construction as in Definition 2.2.1
with K replaced by K’ (using the choice of compatible system of p"'f —1-system of roots of —p from
§1.2 for all 7" and an embedding o, : K’ — E extending oy). Then, for (v, ') € W(G)" x X*(T)",
there is a tame inertial type 7x/(w', 1) : I — GL,(O). For (w,u) € W(G) x X*(T), let
v(w,p) = ((w,w,...,w), (g, p,...,n)) € W(G)" x X*(T)". Then,

(3.8) T(w, )1 = TR ((w, ).

This can be checked by direct computation. Alternatively, one can appeal to Proposition 3.1.2
which says in particular that V*(M(w*t,, D))|r, = T(w, ) for any D € T(F). If k" is the residue
field of k, then restricting to Gx+ corresponds to tensoring with &’ on étale p-modules side. We see

immediately that
M(w*ty , D) @k k' = M((w*te, w*tyn, ... ,w*t,), D) for D' = (D,...,D) € T(F)"

and so T(w, u)|r, = Tr(e(w, ). Applying Teichmiiller lifts yields (3.8).
Let G’ = Resyy kG- Let C', the analogous lowest alcove with k replaced by &’ viewed as a subset
of X*(T)" @ R. Let 7 = 7(s, A + n) with A\ m-deep in Cy. Then clearly ¢(s, \) is a lowest alcove

presentation with ¢(X) m-deep in Cf. The argument for p is the same.
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O

Proposition 3.3.2. Let 7 be a 1-generic tame inertial type. Assume p is semisimple and m-generic
where m > n. Then if p is the reduction of a potentially crystalline representation of type (n,T)

then T is m — n-generic. In particular, if p is 2n-generic, then T is generic.

Proof. Let (s, ) be a lowest alcove presentation for 7. First, assume that that p is a direct sum of
characters and 7 is a principal series. By Theorem 3.2.1, we have
ﬁ‘lK = F(U}, M/ + 77)

with s_ltul_uw € Adm(n). Define v = y/ — . By Lemma 2.1.5, for any o € R" we have
(3.9) v,y <n—1.
Since p is m-generic, there exists (1/,0) € X*(T) x W(G) such that

ol + 1) + p/ — own(o) (V) —
is m-deep in alcove Cy. Hence, for any a¥ € R,
(3.10) m < (i + )+ p' — qwr(e ™ )r(),a¥)] < p—m.
Since p is in Cl,

[ +n07 a") = ut+n+vo ") <p+n-1.
It follows that
(v — owr (o )r(),a")| <2p+n—m—1

for all a¥ € RY. Let M = max,vcrv{|(v/,a")|}. By choosing a" so that |(+/,a")| = M in the

above inequality, we get (p—1)M < 2p+n—m—1, hence M < 2. Thus we have shown |(¢/, V)| < 1
for all ¥ € RY. Hence for all a¥ € RV

(3.11) (own (o™ )m('),a")| < 1.
Since
o +n) +pv — owr(cHYr(V) = o(u+n) + o) +pv — cwr(c”Hr (),
inequalities (3.9) (with o replaced by o~ 'aV), (3.10),(3.11) and the equality u' = p + v together
imply
m—n<|(o(u+n)+p/,a")| ={p+n0 a") +p ") <p-m+n
for all coroots V. Tt follows that for any coroot ¥, the integer {(u+mn,a") is not congruent modulo

p to any integer between n — m and m — n. But since u € Cy, for any positive coroot o we also

have that 0 < (u +n,a") < p, and thus we in fact have
m—n<(u+na’)<p-—m+n

This shows that 7 is (m — n)-generic.
Finally, if 7 is not the direct sum of characters or 7 is not a principal series, let K'/K be

unramified extension over which both become true. By Lemma 3.3.1, p|g,., is m-generic. We will
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use notation from the proof of Lemma 3.3.1. By (3.8), ¢(s, 1) is a lowest alcove presentation for
7|1,.,- The same argument as above with K replaced by K " shows that ¢(u) is m — n-deep in CY,.
Hence p is m — n-deep in Cl. O

3.4. Potential diagonalizability. Let p be a tame representation. The goal of this section is to
show that for certain sufficiently generic tame types 7, all potentially crystalline lifts of p of type
(n,T) are potentially diagonalizable in the sense of [BLGGT14].

The main theorem is the following:

Theorem 3.4.1. Let 7 = 7(s, p) be a tame type with a lowest alcove presentation (s, u—mn) such that
w—mnis (2n — 1)-deep in Co. Let p: Gxg — GL,(F) be a semisimple representation. Assume that
there exists M € Y™ (F) of shape (tw;(no))js where wj € W(GLy,) and such that T (M) = bl -
Then the framed potentially crystalline deformation ring R%’T is mon-zero and formally smooth.

Remark 3.4.2. The proof of Theorem 3.4.1 uses the techniques introduced in [LLHLM18] for n = 3.
When n = 3, the shapes b, (ny) 8S I the Theorem correspond to the shapes afay and Syay (and
their cyclic permutations) in the Tables at the end of [LLHLM18]. In Table 6 of loc. cit., the reader
can see that the deformation ring for these shapes is formally smooth.

For the rest of the section, we will be in the setting of the theorem. By Theorem 3.2.26 and the
uniqueness of M (cf. Theorem 3.2.18), M is semisimple. We fix a gauge basis 3 of 9. By Remark
3.2.25, for all j, the matrices of the j-th partial Frobenius with respect to 3 has the form

(3.12) AD = Dy
with D; € T(F).

We will need the following result, which gives a normal form for deformations of the pair (9, 3)

Proposition 3.4.3. Let R be complete local Noetherian O-algebra with maximal ideal m, residue
field F and let 7 = 7(s, ) be a type with p — n n-deep in Co. Let M € YO =UT(R) such that
M@ F =2 IM. Then there exists an eigenbasis B lifting 5 such that the matrices of partial Frobenii
(A(j))ogjgf/,l with respect to B satisfy the following degree bounds:
A%) € v’k R[v] and has degree < &>k + (wj(no),e)).
(Note that automatically A%) € 9>k R[v]).

Furthermore, such [ is uniquely determined up to scaling by the group {(t;) € ker(T'(R) —
TEN | t; =ty for j =k mod f}.

Example 3.4.4. Let n = 3, f = 1, and 7 be a generic principal series type. Let 9 be a Kisin
module with shape #(150) = Byay in the notation of [LLHLM18] and choose a gauge basis 3.
Proposition 3.4.3 says that any lift 9t with height in [0,n — 1] has an eigenbasis 3 lifting 3 such

that the matrix A has polynomial entries with degrees

1 <1 <0
<1 2 <0
<1 <2 0
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where the entries below diagonal are divisible by v (compare with Table 5 in loc. cit. where degree
bounds are given for all admissible shapes).

Remark 3.4.5. Our method of proof for Proposition 3.4.3 can be adapted easily (with more bur-
densome notations) to treat semisimple Kisin modules 9 of more general shapes. On the other
hand, the generalization to the situation where 9 is not semisimple requires more work. We only
treat the case covered in Proposition 3.4.3 in this paper as this is all that we need, and leave these

generalizations to future work.

Proof of Proposition 3.4.3. The proof is a straightforward generalization of the arguments in [LLHLM18,
§4]. Asin loc. cit., we introduce a semi-valuation on R given by vg(r) = max{k € N | k > 0,r € mF}
and vg(0) = co. For P =Y. rv' € R[v], define d(P) = min;((n + 3)vg(r;) +i). For a matrix X
with entries in R[v], define d(X) to be the minimum of d(X;;) where X;; are the entries of X, and
for a tuple of matrices (X;); € M, (R[v])/" we define d((X;);) = min; d(X;). Note that in all cases
d takes values in Z>o U {oo}. We have:

e d(a + b) > min{d(a),d(b)} for a, b both in either R[v], M, (R[v]) or M, (R[v])’".

e d(ab) > d(a) + d(b) for a, b both in either R[v] or M, (R[v]).
On any of the spaces R[v], M,(R[v]) or M,(R[v])’, the function ||a|| = 2~%®) defines a norm,
which is furthermore submultiplicative in the first two cases. Thus each of these spaces are endowed
with a metric topology, which is easily checked to be complete.

For each 0 < j < f’ — 1, we define the truncation operator Tt; : M, (R[v]) — M,(R[v]) as

follows: For X € M, (R][v]),

o If i < k then Tt;(X); is the sum of the terms in X, € R[v] of degree > (w;(no),€));
o If i > k then Tr;(X)

In other words Tt;(X) kills off precisely the part of X that satisfies the degree bounds on AU) in
the conclusion. It is clearly an idempotent additive map. We observe that our degree bounds are
chosen precisely so that the image Tt; is the subspace of X such that Xv™"s(M) ¢ M, (R[v]) is

ik is the sum of the terms in X;; € R[v] of degree > (w;(no),e)).

integral and is furthermore upper triangular nilpotent mod v.
Note also since d(vP) =1+ d(P) for P € R[v], we have

(3.13) d(Tei (X))o M0y > (e (X)) —n+1>d(X) —n + 1.

We also define Tt : M, (R[v])!" — M, (R[v])!" by Te((X;);) = (Ft;(X;));

We will show that for any given eigenbasis 3 of 9 lifting /3, there is a unique 3’ lifting 8 such
that 8/ = 8 mod v/, and 3 satisfies the conclusion of the Proposition. This proves the Proposition,
since the set of all possible § mod u' forms a torsor for the group {(t;) € ker(T(R) — T(F))!" |
tj =ty for j = k mod f}.

We now fix an eigenbasis 3 lifting 3. Our strategy will be to interpret the problem of finding /3’
as finding a fixed point for certain mapping on a complete subspace of M, (R[v])/ ". We then show
that this mapping is contracting on this subspace, and the Proposition follows by the Contraction
Mapping Theorem.
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By Remark 3.2.10, prescribing any other eigenbasis 5’ of 91 is the same as prescribing a change
of basis tuple (I¥)); € Z(R)/" such that 1) depends only on j mod f. The condition that 3’
also lifts / is equivalent to IU) = 1 mod m, and the condition that 8’ = 8 mod v/ is equivalent to
IU) € Z;(R). Thus the tuple (X;); = (IY) — 1); satisfies

e X; depends only on j mod f;

e X; =0 mod m;

e X; is upper triangular nilpotent mod v.
This leads us to define the subspace V' C M, (R[v])!" consisting of tuples satisfying all these
conditions. Clearly V is stable under component-wise addition and is easily seen to be a closed
subspace, hence is also complete.

Let (A(j))j be the tuple of matrices of partial Frobenii with respect to 3. Since f3 lifts 3, Z(j
has the form given in (3.12), thus we can decompose

)

AU — Djij(no) + M;

with D; € T(R) and M; € M,(m[v]). We can and will assume that this decomposition has been
chosen so that D; and M; only depend on j mod f.

By Proposition 3.2.9, our problem of finding 5’ now reduces to finding (X;); € V such that for
all j

(3.14) T (14 X;41))AY Ad(s509) (@((1 4+ X;) 7)) =0

by Proposition 3.2.9 (Recall that Ad(g)(M) := gMg~'.) To lighten the notation, we put Y; =
Yi(X;) = Ad(s;v“j’)(@((l + X;)71)), and think of it as a function in X;. We now rewrite the
left-hand side of the above equation as

Ty (1+ Xj40) (D0 )+ M;)) + Ty (1 + X;10) AP (Y — 1))
= Tj(D;0"1 ")) + Ty (X1 Djo" s ) + Ty (1 + Xjpa) M) + Ty (1 + X)) AV (Y — 1)
= Xj1 Do) Tey (14 Xj10) M) + Ty (1 + Xj30) AV — 1)),

where the last equality is due to the fact that X; 1 € M, (R[v]) is upper triangular nilpotent mod
.
Thus equation (3.14) is equivalent to (X;); being a fixed point of the map H : V — M, (R[v])"’
given by
H((X);) = (=(Ftma (14 X) M)+ Fej (14X5) AV D (Vo1 (X))o~ 0(Dy_p) 7
Note that the assumption p — 7 is n-deep in C implies that (Y; —1); € V, so that each expression
that gets truncated is indeed in the domain of definition of the appropriate truncation operator.
Clearly H((X;);) satisfies the first property defining V. Now H((X;);) satisfies the second

property defining V', since truncation operators preserve the property of being 0 mod m, and
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M; = 0 mod m since Z(j) satisfied the correct degree bounds. Finally, the description of the image

of T implies that H((X;);) satisfies the third property defining V. Thus H maps V to V.
The proof of the Proposition is complete once we have the following:

Lemma 3.4.6. We have
d(H(a) — H(b)) > d(a—0b)+1
fora,beV.
Proof. Put a = (Xj); and b = (X; + Aj);. Put 6 = d(a — b) = min; d(4A;).
On the (j + 1)-th component, we have
(H(a)j+1 — H(b)j+1)Djo"s(™)
= Tei(Aja M) + T (14 Xjn + A0 AV (VX + Aj) = 1)) = Try((1+ Xj30) AV (Y5(X5) - 1)
= T80 M) + Tej (81 AV (VX + A5) = 1) + Tej(1+ X0) A9 (VX + A7) = V(X))
For the first term, since M; € M, (m[v]), d(M;) > n+ 3. Thus
d(Tvj(Ajr1M;)) > d(Ajyr) + d(Mj) = 6 +n+ 3.
For the second term, as observed before Y;(X; + Aj) — 1 € M,,(m[v]), and we similarly have
d(Te (A AV V(X + A)) = 1)) 26 +n+3.
For the third term, we observe
d(Te; (1 + XAV V(X + A)) = Y5(X)) = dYi(X + Ay) = Y5(X;))
= d(—Ad(s;v") (o((1+ X5 + A;) e(A))e((1+ X))
> d(Ad(s50")(p(A,)) = d(Ad(0") (0(A;)),
where the second inequality is due to the fact Ad(s;fv";f)(go(X)) € M, (R]v]) for X € Z;(R) (this

uses that yu —n is O-deep in alcove Cy). For the diagonal entries, we have
d((Ad(W")(D(A)))it) = dlp(Aj)i) = p—1+d((A))a) 2 p—1+5>6+n
by the observation that d(¢(P)) = p+ d(p(P/v)) > p+d(P/v) =p—1+d(P) for P € vR[v]. For
the a-th entry where « is a root of GL,, we have
d((Ad(0")(p(A))))a) = d(@(D)a) + (5, @)

By the above observation, the fact that (A;), € vR[v] for o < 0 and the fact that 1 — 7 is n-deep
in alcove C;, we conclude that for all roots o

d((Ad(v"7)(9(A7)a) = 6 +n.

Thus
d(Te; (14 X;11) AD(YV5(X; + Aj) = Y5(X;))) = 6 +n.
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Putting everything together, we obtain
d(H(a)j41 — H(b)j41) > d((H(a)j1 — Hb)j41) D ™) —n+1>6+n—n+1=05+1

as desired.

O

Thus we deduce that the map H : V — V is a contraction mapping. In particular, H has a

unique fixed point in V', which is what we wanted.

O

We call a basis as above a gauge basis (lifting 3) of the deformation 9t of 9. This is consis-
tent with [LLHLM18, Definition 4.15]. Since we have fixed the data (9,3), we will suppress the
dependence on f.

For each 0 < j < f/, the deformation problem that assigns to each Artinian O-algebra A with
residue field F the set of matrices A; € M, (A[v]) lifting A9 and satisfies the degree bounds in
Proposition 3.4.3 is clearly representable by a complete local Noetherian O-algebra R;, which is a

formal power series ring over O. It carries the universal matrix A}m“’.

For any Artinian O-algebra A with residue field T, let D%B(A) be the category of pairs (M4, 54)
deforming (90, 3) where D 4 € Y7 (A) and B4 is a gauge basis of M 4. We would like to give an
“explicit” presentation for Da%’ﬁ as in [LLHLM18, Theorem 4.17]. Define Rz}Xpl to be the quotient

5 (10)
of the formal power series ring R; above by the height < 7 relations:

e det A}miv =z} (v + p)*(*=1/2 where z; € (R;[v])*
o (v + p)**=1D/2 divides each k x k minor of A}mi”. Note that the condition that (v + p)!
divides P € R;[v] can be expressed as

d d . _
Plomp=0,  —-Plep=0 ..., (aﬁlﬂmwza

which are algebraic conditions in the coefficients of P.
Proposition 3.4.7. The functor D%B is representable by the complete local Noetherian O-algebra

T,B = xpl -flat, red
(3.15) o0 = Bosjep(ROTL ypifat et
Proof. By Proposition 3.4.3, there exists a closed immersion DS%’B — Spf ®0§j<ij (note that Y™

is closed in Y10n—17)

SO DS%’B is representable by a quotient R%B of ®0§j< iR;.
By [CL18, Theorem 5.3], Y™ is equisingular to the local model M (n). Since the addition of a

gauge basis is formally smooth, R%B is p-flat and reduced. It suffices then to compare @p—points of

B ~ xpl -
RTﬁB and ®op<j<f (R'fvfzm)” flat, red, ~

Let F'/E be a finite extension with ring of integers Op. Let z : ®o<j<rR; — O with associated
Kisin module 9, and the matrix of partial Frobenii given by A;,. By Theorem 5.13 in [CL18],
M, lies in Y7 (Op) and hence DS%’B(OF) if and only if 9, [1/p] has p-adic Hodge type < 7. In

our notation, M, [1/p| has p-adic Hodge type < 7 if for each j, the filtration on 9)?;(,3];2(5, - [1/p] is
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of type p; with p1; < ng. The filtration is induced by the partial Frobenius with matrix A, , and
so this is equivalent to the condition that the elementary divisors of A; , as a matrix over F'[v + p]
are (v + p)# for each 0 < j < f. Thus M, lies in D;ﬁ_’ﬁ (Op) if and only if the elementary divisors
of Aj, as a matrix over F'[v + p] are bounded by (v + p)™ for each 0 < j < f. But this condition
is exactly the divisibility condition on the minors and the determinant condition on A;, imposed

. . expl
by the relations defining ij (10)" O

Let (90TWniv, Buniv) he the universal pair living over R%g .

Proposition 3.4.8. (1) Over R;_f, the universal matrices of partial Frobenii of SM™VY with

respect to Y have the form
AU)univ D}miv(v + p)wj(no)U(J'),univ

Jor 0 < j < f, where
« DIV e T(_R%ﬁ) lifts D;.
° w;lU(J)’unlij 18 lower triangular unipotent, and for any root o = €;—ey, of GL,,, its a-

th entry is a polynomial with topologically nilpotent coefficients of the form @0 (@)<0 fo(f ) (v)
~ where deg f(g{])(v) < —{(a¥ o) =1i—k.
(2) R%B is the formal power series ring over O generated by the coefficients Xéj)’l of f(g{j)

(where 0 < j < f, a < 0 a negative root of GL,, 0 < 1 < —(a",ng)) and the variables
cz(g) = (D;miv)ii —[(Dj)is] (where 1 <i<mn, 0<j< f and[] denotes the Teichmuller lift).

Example 3.4.9. In the situation of Example 3.4.4, that is in for n = 3, f = 1, 7 a generic principal
series type and 9 has shape t(1,2,00 = Byay, the Proposition asserts that the universal deformation

of (9, B) living over R%g has matrix of Frobenius of the form

(v+p)ciy (v+Dp)era 0
0 (v +p)2cs, 0
vC31 v(es2 + (v +p)csy) 33

where the starred coefficients are units and the non-starred coefficients are topologically nilpotent.
This is exactly what is given in Table 5 of [LLHLM18|. The ring R%ﬁ is a power series ring over

€12, C31, €32, C39, €11 — [C11], Cog — [Chal, €33 — [C33]-

Proof. (1) We work with fixed j, and set B = w;lA(j)’uni"wj. The fact that AUV obeys the
degree bounds in Proposition 3.4.3 implies:
e B € R%ﬁ [v] and has degree < n — i.
e For any root o = ¢; — ¢, of GL,,, v Wi @<0B. s in R%B [v] and has degree < n — k.
We claim that these conditions together with the height < relations force B to be lower tri-
angular, Bj; to be u;(v+p)" ¢ with u; € (RZ’)*, and By, to be divisible by pwsteimer)<o (v+

. m
p)"~". This finishes the proof, since we can then uniquely factorize

B = D]’(’U +p)"0U



WEIGHT ELIMINATION IN SERRE-TYPE CONJECTURES 36

with D; € T(R%B ) and U lower triangular unipotent (whose entries obey degree bounds
deduced from the bounds for B), and conjugating by w; yields the desired factorization
of AWV Note that the non-diagonal entries of U are necessarily topologically nilpotent
since B is diagonal modulo the maximal ideal.

We now prove the claim by downward induction on the index of the rows and columns.
We start by showing the claim for entries in the nth column and n-th row of B. The degree
bounds imply B;, = 0 for ¢ < n, while By, € R;_’f . Furthermore B, is a unit since it
lifts a unit in the residue field. The claim is empty for all other entries of the n-th row of
B. Suppose we claim holds for all entries in the last & — 1 rows and columns. Then the
induction hypothesis and the condition that each k x k minor of AU (and hence also
each k x k minor of of B) is divisible by (v + p)**=1)/2 implies:

e Looking at the minor formed by the last k& columns, the last (k — 1) rows and the i-th

row of B fori <n —k+ 1, we get
k—2
(w+p)* D2 | By H Un_1(v + ),
=0

thus (v+p)F—1 | Bi(n—k41)- Fori=n—k+1, since By, _g11)(n—k+1) has degree < k—1,
we must have B, _ri1)(n—k+1) = Un—k+1)(V + p)k1
lifts a unit in the residue field. On the other hand, for ¢ < n — k + 1, the degree

bounds imply that B, _j1) is of the form v® times a polynomial of degree < k — 1,

, and u(,_g41) 1S a unit since it

for § € {0,1}. However if p is regular in a ring R, the condition that vP is divisible
by (v + p)! for P € R[v] is equivalent to P divisible by (v + p)’ (this can be seen by
using the interpretation of this condition in terms of vanishing up to (I — 1)-th order
derivatives of P evaluated at v = —p). Since p is regular in R%B , we conclude that
Bitn—k+1) = 0.
e Looking at the minor formed by the last k rows, the last £k — 1 columns, and the i-th

column of B for i <n —k+ 1, we get

k—2

(v +p)FE=D/2 | Bn—k+1)i H Un—1(v+ p),

=0
thus (v+p)F 1| Bn—k+1)i- We get the claim about divisibility by 000 Cnm g1 —20)<0 (v+
p)F~lof B(n—k41)i by the same reasoning as above.

(2) We observe that for a polynomial P € R[v] with given degree, the condition that P is
divisible by (v + p)! is equivalent to solving the first | coefficients of P in terms of the
remaining ones.

Thus, for j, there is a quotient Ej of the ring R; over which the universal matrix with
degree bounds A}mi" has the form in the first part of the Proposition (as this is equivalent
to asking that each entry is either 0 or is divisible by certain powers of v + p and v), and

R; is exactly the power series ring in the variables described in the second part of the
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Proposition. Furthermore, as the specialization of the universal matrix A;-mi" to ﬁj clearly

expl

- w;(n

is a factorization R; —» RzeUX%O) — Rj. Part (1) then shows that there is a factorization
J

satisfies the determinant and the height conditions defining R o) We conclude that there

expl
w;(mo) K
reduced and p-flat, and R;T’f is the maximal reduced and p-flat quotient of ®0§j< R

®0§j<fR — ®0§j<ij —» R%B. But since ®0§j<ij is a power series ring, hence

expl
w;(mo)’
the last quotient map is an isomorphism.

We now recall the monodromy condition on the universal Kisin module 9" over R%B, as in
, 9. 1s06]. e refer to loc. cit. for undefined symbols. On vV ® _ there
LLHLM18, §5.1], [Kis06]. We ref l it f defined symbols. On 9" O;%_ﬁ, h

m
is a canonical derivation over the differential operator —A\u’ ﬁ, the monodromy operator, which

is meromorphic along A (in fact it has poles of order < n — 2 due to the finite height conditions
we imposed). The monodromy condition is the condition that this operator has no poles. On the
closed points of Spec R%ﬁ [%], this condition precisely cuts out the (Zariski closed) locus where the
induced Kisin module comes from a potentially crystalline representation (which is necessarily of
inertial type 7 and Hodge-Tate weight < 7).
We recall some more deformation problems attached to the current situation, similar to [LLHLM18,

Definition 5.10] (when 7 is principal series) and [LLHLMI18, §6.2] (for general 7). All data below
are understood to be compatible with the given data 5, M, 3, etc.

(1) R%’T is the framed potentially crystalline deformation ring of type (n,7) as in [Kis08]. By
n(n—1)

[Kis08, Theorem 3.3.4], if this ring is not zero it has Krull dimension dim Rg’T = Tf +
n? + 1. We denote the deformation problem it represents D%’D.

(2) Let R%Dp denote the complete local Noetherian O-algebra which represents the deformation
problen,l

D7 (A) = { (M, par8a) | Ma € Y27 (A), pa € DE(A). 64 T M) = ()l } -

Thanks to Proposition 3.2.18 (and our running hypothesis that 7 is generic), this deforma-
tion problem is representable, and in fact is representable by Rg’T as explained in [LLHLM18,
Section 5.2].

(3) Let R;T’f %D denote the complete local Noetherian O-algebra which represents the deformation
problem

D%;D(A) = {(mAaPA75A75A) | (Ma,pa,64) € D%%(A),ﬁ/x a gauge basis for 9)2,4} :

(4) Let R%E’D denote the complete local Noetherian O-algebra which represents the deformation

problem of triples (M4, Sa,e4) where (M4, B4) € D;ﬁ_’B(A) and ey is a basis of T;,(M4)
lifting the basis on p|gy_ so that (T7,(9Ma),ey4) is a framed deformation of plg, .
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(5) Let R%B’v denote the O-flat and reduced quotient of R%B such that Spec R%B’v[l /p] is the
locus where the monodromy condition holds on Spec R%ﬁ [1/p]. We define R%B Y from
R%ﬁ Hin a similar way.

We recall [LLHLM18, Diagram (5.9)], which summarizes the relationship between the above
deformation problems. The square is Cartesian and f.s. stands for formally smooth.

(3.16) SprTﬁ’B’D’v e, Spr;T’TB’V

SpERE I SpiRLS L SptRzS

l £

7,7 ~ 7,00
Sprﬁ — Sprﬁ,p

The maps which are formally smooth correspond to forgetting either a framing on the Galois
representation or a gauge basis on the Kisin modules (the fact that adding gauge basis is a formally
smooth operation is due to Proposition 3.4.3). The fact that the horizontal arrow below the dotted
arrow is a closed immersion is due to our assumption that 7 is (at least) generic, which implies
ad(p) is cyclotomic free (e.g. by looking at the inertial weights, which are easily read off by applying
Corollary 3.2.17), and hence the argument of [LLHLM18, Proposition 5.11] applies. This shows
that if the dotted arrow exists, it must be a closed immersion. We show below that the dotted
arrow exists, and is furthermore an isomorphism. The fact that it is an isomorphism rather than
just a closed immersion is because in the present situation, the elementary divisors of the matrices
of partial Frobenii of 9 with respect to 3 are exactly (v-+p)™, and thus no lift 90t of M can satisfy
a height < A relation for A < n.

Proposition 3.4.10. The natural map R%ﬁ — R%B%D factors through the quotient R%ﬁ’v. The

mduced map & is an isomorphism.

Proof. The proof is completely analogous to the proof [LLHLM18, Theorem 5.12]. As both target
rings are reduced and p-flat, we only need to check the factorization exists on closed points of the
generic fibers. However, this is just the statement that a Kisin module coming from a potentially
crystalline Galois representation satisfies the monodromy condition.

To see that the map & is an isomorphism, we note that the only closed points in Spec R;T’f ,D,V[%]

that do not come from Spec R%’f %D[%] are those for which the j-th component of the underlying
Kisin module has elementary divisors strictly dominated by (v 4 p)™, for some 0 < j < f (this
corresponds to the condition that the Hodge-Tate weight of the j-th embedding of the corresponding
Galois representation is < 7). However, this possibility is ruled out by the form of the universal

Kisin module given in Proposition 3.4.8 U
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Corollary 3.4.11. For p, T as in Theorem 3.4.1, there exists a closed point x € Spec R%’T[%] such
that the corresponding Galois representation p, becomes a direct sum of characters after restriction
to a finite index subgroup. In particular Rg’T £ 0.

Proof. Recall that we have fixed a gauge basis 5 of 9 such that for all j, the matrices of the j-th
partial Frobenius with respect to 5 has the form

(3.17) A9 = D)

with ﬁj € T'(F). Using Proposition 3.4.8, we can produce an O point of R%B such that the matrices

of partial Frobenii are monomial matrices of the form
A6 — Dj(v _|_p)wj(770)_

by choosing a diagonal matrices D; € T'(O) lifting Ej. A Kisin module of this form becomes
isomorphic to a direct sum of rank 1 Kisin modules after passing to a finite unramified extension
K of K'. Since the monodromy condition can be checked after base change, and always holds for
rank 1 Kisin modules (by an easy computation), we deduce that the above Kisin module satisfies
the monodromy condition. Lifting this point along the formally smooth maps in the diagram 3.16
yields a closed point x € Spec R%’T[%]. As the underlying Kisin module of x decomposes into direct
sum of rank 1 Kisin modules over K, p, becomes a direct sum of characters over K.
Alternatively, we can also directly produce p, as a direct sum of inductions of (potentially
crystalline) characters for unramified extensions of K and then check that it comes from a Kisin

module with the above form, hence has type (n, 7). O

Proposition 3.4.12. Tﬁ’ﬁ’v/w s a quotient of a power series ring over F in n(";rl)f variables.

Proof. We work over R = R%’ﬁ with universal Kisin module 9t = 9" and universal gauge basis
. This determines the matrices AY) as before. It will suffice to analyze the monodromy condition
on M viewed as a Kisin module over K’ with descent data corresponding to the base changed type
7/ (which is a principal series type), and we will do so by closely following the computations in
[LLHLM18, §5.1] (especially [LLHLM18, Theorem 5.6]). As in loc. cit., we have the matrices C')
which are determined by the AU) and our chosen presentation of 7, and a ring (’)gg. We note that
the variable u in loc. cit. corresponds to our variable v/, the variable v there is the same as our
v = (u)¢, and E(u) there is (/)¢ 4+ p = v + p. Exactly as in [LLHLM18, Lemma 5.2] we have a

formula for the j-th component Nég) of the monodromy operator:
00 i—1 0
NG =N+ 3 ( sok<c<j—k-1>>> @ (N7 ) ( 11 so’“(C(j"“‘”’*)>
i=1 \k=0 k=i—1
where C'U)* .= (v —i—p)(C(j))*l,
(4 _ d j—1 j—1)\—1
N =l (D) U )

and the convergence happens inside A\~ Matn((ggg)‘
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As in [LLHLM18, Theorem 5.6] we can write

pn—l)\n—ZN() (p)\)n L, d (C(j 1) C(] 1 +ZX

du
where
it1yyn—1 (i1
G) ._ ¥ (\) ko (j—k—1) if s d cli=i=1) ) 2 ~(j—k—1),
X =y kHO@(C )| o' (w50 Hso (v+p C ) -
If z € Z", we use the shorthand Diag(z) to denote diagonal matrix with entries z1, z9, ..., z,. Also

for M, N € M, (R[v]),[M,N]:= MN — NM. By “removing the descent data” as in loc. cit. (see
(3.6) for notation), we obtain

OI',]

)—1(u/)7 ISH))()\n 2N(j)) S0()\)n—1P j 1) +ZSDZ+1 n 1Z )

where (cf. [LLHLM18, Lemma 5.4])

Py(AGD) & <_e’vdi

AT — Ding((5) ) AT ) (04 ) (A07)
U b

and
Z9) —1,, n—all? 1 ()
= Ad (( Sor _]) (u ) ( ’H)) <(pi+1()\)n—1Xi :

Now exactly as in the last part of the proof of [LLHLM18, Theorem 5.6], using that 7" is (2n — 1)-

] n— i—1 y n—
generic, we get Zi(]) € %Mn(}%ﬂvﬂ) for i > 1 and ij) e M, M, (R[v]). This fact together

with a simple computation with derivatives shows that M) := W Yoy cp”l()\)"*lZi(j ) sat
isfies (d%)tM(j)M:,p € p?~ ===t )1 (R) and ( )t _1M(])| — € p?T == A=t=10 L (R) for
0<t<n-—3.

As in the proof of [LLHLM18, Proposition 5.3], the monodromy condition is equivalent to
)\”*QN&{) vanishing to order n — 2 at v/ = (—p)?l’. Thus the upshot of the above discussion is
that the monodromy condition is equivalent to —Py(AY~=1D) 4+ MU) vanishing to order n — 2 at

v = —pin Mn(Ogg). Note that this condition is preserved under multiplication by any power of v
and can be expressed as the vanishing of all derivatives (d%)t atv=—-pfor0<t<n-—-3.

We now recall Proposition 3.4.8 which gives the decomposition
AU — D;(v +p)wj(n0)U(j)

and R = R%E is the formal power series ring over O in the variables X((Xj ) (where 0 < j < f,

a < 0 is a negative root of GL,, and 0 <[ < —(np,a")) and the variables cgg) (where 1 < i < n,
(J))

0 <j < f), which (up to a translation in the case of ¢;;’) give the coefficients of the entries of U ()

and D; respectively.
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Substituting the above expression, we get

PA(AUD) = (v -+ p)" (o (04§ ) o4 )50
v

. » d . ) B : . o
— (v +p)" " A(D; 1 (v + )" ) (000D 4 [ Diag((st, ;) @y h)), UI] J@UD) 7).

To understand the second term, recall that also from Proposition 3.4.8, for each negative root

a = g; — ¢, of GL,,, the a-th entry of wj__llU(jfl)wj_l is given by

—(no,")~1
U5Wj(a)<0f(gj—1)(v) _ U(Swj_l(a)<0 Z X((Xj_l)’l’vl.
=0
Thus, the a-th entry of Ad((Dj_1w;—1)"")(Py(AY=Y)) is of the form
_ oV d - j , i
—(w )" (e (s ) Hag)),wiaaV)) (@@= fIy )
y —(mo,a)—1 ‘ ' s
= —(0+p)" WD (N (4 Gy, (a)<0) + ((56r) @) wi g0 XTI <o )
=0

where the ellipsis in the first expression is an R-linear combination of terms of the form

5 y 5 ]
/ w; ap)<0 -1 | | w; @;)<0 -1

i£0
and
ooy
i
where «; are negative roots of GL, with @ = ), o; and the sum has at least two terms. In

wj-1()<% and whose coefficients only

particular, the remaining terms are polynomials divisible by o’
involve Xg/_l)
Thus, the monodromy condition on the a-th entry of v~ **s-1()<0 Ad(wjil1 (Dj_1) ") (=P (AU=D)+

M) has the form

for roots o’ strictly larger than a.

—(no,a¥)—1
d - v ) | :
(%)t((v +p) L4(no, >( Z (e'(l + 5w171(a)<0) + <(Sgr,j) 1(a,(g;)), wj—la\/>)X(g{'] 1)’lvl)) e
=0
:O((Xéj;fl),l)0>a,>a7l) + O(pZn—l—(n_Q)_t_l)

for 0 <t <n — 3, and where the right-hand side only involves variables indexed by strictly larger

2n—1-(n=2)~t=1 4nqd hence is divisible by p.

roots and a term in R that is divisible by p d
Thus, the above system of equation holds in the quotient R%B v /w of R, where it implies (noting

¢ =-1inF)

d t 7(”070‘\/)71 I() .
(F) [ 2t buserco () @ w10 DG |
=0

= O((X(()(];_l)7l)0>a’>oz,l)
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for 0 <t < (n—3)—(n—1+(ng,a")) = —(no,a¥)—2. Since 7 is generic and p > n, all the coefficients
-l —5w;_11 (@)<0T (st ) (a,(g;)), wj_1a") as well as the constants introduced by taking derivatives

are non-zero in I, and hence this system of equations solves Xc(f “Dlfor 1 < —(no,a") — 1 in terms

of variables indexed by strictly larger roots. It follows that RT’B’v

m
(4) ; : : X
] for 0 < j < f, 1 <i <mn, and negative roots

/o is topologically generated by

the top degree coefficients of fé] ) and the cgi ) _ [e
a of GL,,. Hence it is topologically generated by n(n —1)f/2+nf =n(n+ 1)f/2 elements. O

Proof of Theorem 3.4.1. We already know Rg’T % 0 by Corollary 3.4.11. We look at diagram
3.16. By Proposition 3.4.3, Spr%B%D — Sprg’T is a torsor for (@m)"f, hence d & dim R%ﬁ/_’)lj —

dim R}" +nf = nn—1)f/2+n?+nf+1=n(n+1)f/24+n?+1. On the other hand, Spr;T’?’D’V —

Sprl’B’V is formally smooth of relative dimension n?, hence Proposition 3.4.12 shows that there

m _
is a surjection Ofzq,...,xq-1] — R%g’lj’v. From Proposition 3.4.10, we obtain a surjection

Olz1,...,xq4-1] — R%B%D. Since the quotient ring has dimension d = dim O[x1,...,z4_1], the
kernel of this surjection must be trivial, hence the surjection is an isomorphism. It follows that
R%T is formally smooth over O. U

Corollary 3.4.13. With p, T as in Theorem 3.4.1, any potentially crystalline lift of p of type (n,T)

1s potentially diagonalizable.

Proof. This follows from Theorem 3.4.1 and Corollary 3.4.11. O
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4. MAIN RESULTS

In this section, we deduce our main results using §3. In §4.2, we deduce weight elimination in an
axiomatic context and in the context of definite unitary groups. In §4.3, we use weight elimination
and the change of weight techniques of [BLGGT14] to deduce modularity of obvious weights.
In §4.4, we use the above results to classify congruences between RACSDC GL,-automorphic
representations of trivial weight and generic tame type 7 in residually tame cases and solve the
lifting problem for residually tame Galois representations to potentially crystalline representations
of type (n,7). We introduce combinatorial results on Serre weights and affine Weyl groups as
needed. The key theme in these combinatorial results is the close relationship between certain
reduced factorizations of admissible elements and Jantzen’s description of the Jordan—Holder factors
of types.

Recall the (nonstandard) definition of the dot action in Definition 2.1.6. We write W} C ;Wv+
for the subsets of W, C E, respectively, which map C to a dominant alcove under this dot action.

Let Q C K/ be the stabilizer of Cy. Then we have the decomposition ﬂN/ =W, x Q. We extend
the Coxeter length function ¢ on W, to E/ by setting ¢(wd) = ¢(w) if w € W, and § € Q. Recall
that one can calculate lengths from minimal galleries (cf. [HC02, §2]). We will use galleries in a
fixed direction (cf. [HC02, Definition 5.2]), which are necessarily minimal by [HC02, Lemma 5.3].

Recall the upper arrow (1) ordering on p-alcoves (cf. [Jan03, §11.6.5]), and extended to W by
writing wy T wy if wy - Cy T ws - Co and W,w; = W,ws for wy and wy € ﬁ/ (and elements of
different right W ,-cosets are incomparable). We also use 1 to denote ordering on X*(7') defined
in [Jan03, §I1.6.4]. Recall from §2.1 the Bruhat ordering < on W, defined by the dominant base
alcove. As with the upper arrow ordering, we extend this to a partial ordering on ;Wv by setting
w10 < wyd if wy and wy € W, wy < we, and § € Q (and elements of different right W ,-cosets are
incomparable).

Let wy, = wot_,, € ;Wv Note that wy, - C is the highest p-restricted alcove and wy, - A = R(\)
from Definition 2.2.11.

4.1. Combinatorics of weights and types. In this section, we deduce the key combinatorial
results, especially Corollary 4.1.12. We will use the following theorem of Wang (see [Wan87,
Theorem 4.3]) without comment.

~ ~ =+ ~ ~ . cp o~ ~
Theorem 4.1.1. If w; and wo € W , then wi < wsy if and only if wy T ws.
We also use the following proposition without comment.

Proposition 4.1.2. If w; and wy € E, then wy T we if and only if wpwe T wpwy if and only if
T T T

Proof. From the definition of the up ordering, it is clear that wg reverses and translation preserves

the ordering. The proposition now follows from the definition of wj,. O
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Proposition 4.1.3. Suppose that u is 2n-deep in Coy and X is a p-restricted weight. Then F(\) €

JH(Rs(w + 1)) if and only if there exists w = wt, € E+ such that
(4.1) w-(u—smv)twp-A and w-CoTwy - Co.

Proof. We use [GHS, Proposition 10.1.8]. (Note that by the depth assumption, the proof of [GHS,
Proposition 10.1.2] based on [Jan81, Satz 4.3] applies.) The Proposition cited shows that F(\) €

JH(Rs(p +n)) if and only if there is v such that
(4.2) oty - (u— smv) T wp - A for all 0 € W(G).

~ 5+ c e .
It suffices to show that the existence of v satisfying (4.2) and w € W satisfying (4.1) are equivalent.

We begin with the “backwards” implication, for which the following remark is useful.

Remark 4.1.4. If w = wt, satisfies w - Cy 1T wy, - Cp then v lies in the convex hull of the Weyl orbit
of n, and hence max,v{|(v,a")|} <n —1.

Suppose that w = wt,, satisfies (4.1). With the depth assumption on u, the above remark implies
that p — smv is in Cp so that wt, - (u — s7v) is the unique dominant element of the W (G)-(dot)
orbit of y — smv + pr. This implies that v satisfies (4.2).

For the “forwards” implication, suppose that v satisfies (4.2) and take w to be the unique element
wt, € ﬂN/Jr with w € W(G). Then @ - (u — smv) T wp, - A by assumption and it suffices to show that
w - Co T wy - Co. We claim that v satisfying (4.2) must automatically satisfy [(v,a¥)] <n —1 for
all ¥ € RY. Admitting this claim for the moment, we again have that @ - (u — s7v) is in alcove
w - C, so that w - (u — smv) T wp, - A implies that w - Cy 1T wy, - Ch.

Going back to our claim, (4.2) implies that p + pv — smv + n is in the convex hull of the Weyl

orbit of wy, - A + n. The same argument as in the proof of Lemma 2.1.5 shows that
maxg {[{+ po — smv 47,0} < maxay {[{@ - A+ 7,0Y)]} < p(n - 1).

The same argument as in the proof of Corollary 2.2.13, using u is 2n-deep in Cy, shows that if
M = max,v{|(r,a")|} then (p — 1)M < p(n —1)+p—2n = (p — 2)n, and thus M < n —1 as
desired. O

We will often fix

(P1) a generic semisimple Galois representation p: Gxg — GL,(F);

(P2) a pair (sp, p1p) such that p|r, = 7(sz, pip + 1) with p; in Co; and

(P3) A lowest alcove presentation (s, — n) of a tame inertial type 7 = 7(s,u) : Ix — GL,(O)
such that pz — € Ap. Such a presentation is called compatible with (sz, 1i5).

Note under (P1) and (P2), u;, is always (3n — 1)-deep in Cy by Proposition 2.2.15.

Lemma 4.1.5. Suppose that 7(s,pu) = 7(s', 1) is 1-generic, and pu—n and p' —n are both in Cy,

and pp— p/ € Ap. Then we have (s,u) = (s', ).
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Proof. By Proposition 2.2.15, since (s, ' — n) and (s, — 1) are two lowest alcove presentation
of 7(s, ), we have (s, ) =9 (', ') with t,o € Q. Since u — i € Ap, we also must have that
(p — m)v|z = 0, or equivalently that v|z = 0. Combining these facts, we have that t,o is the
identity. O

Definition 4.1.6. Fix (P1)-(P3) as above. Then, we define w = s~ !sz, v = s (uz + 1 — p), and
def

w*(p, ) = tyw.

Remark 4.1.7. Definition 4.1.6 a priori depends on the choice of (s, 15) and the compatible pre-
sentation (s, —n) of the type 7. By Lemma 4.1.5, if 7 is 1-generic, there is at most one compatible
presentation, so that Definition 4.1.6 depends only on the choice of (sp, 15). Furthermore if a com-
patible presentation (s, u—mn) exists for one choice of (sp, 1), then a compatible presentation exists
for all other choices, and changing the choice of (sz, 1) conjugates w*(p, ) by an element of €.

Proposition 4.1.8. Let 7 be a generic type with lowest alcove presentation (s, —n). Assume
there exists M € Y7 (F) as in Definition 3.2.19 such that T} (M) = plg,_. where b is moreover
semisimple. Then there is a pair (sp, pi5) as in (P2) such that (P8) holds and w(p,7)* = w*(p, 7).

Proof. By Theorem 3.2.26 combined with Corollary 3.2.17, we have
ﬁ‘lK = F(U}, v+ 77)

where @(p, T)s*tx—p = w*t,-. Thus, W(p,7)* = s~ H,_,pqw. Since w(p,7)* € Adm(n), v — u €
Ap. Moreover v — p1+n is in the convex hull of W7 by Remark 4.1.4, so that v is 1-deep in Cy since
p — 1 is n-deep in Cg. Then, letting u,; = v and s; = w, (P2) and (P3) are satisfied. Comparing,
we see that w(p, 7)* agrees with Definition 4.1.6. O

Lemma 4.1.9. Suppose that w; and ws € KN/+. Then £(Wy 'wowy) = LWy ') + (wo) + £(W1).

Proof. The length ¢(w) is the length of a minimal gallery between w, Lwowy - Cy and C, which is
the length of a minimal gallery between wgwy - Cy and ws - Cy. Such a gallery can be taken to start
with a gallery from wqw; - Cy to wq - Cy, then to Cg, then to ws - Cy, all in the dominant direction.
This decomposition of a minimal gallery in the dominant direction gives the desired equality. [

Lemma 4.1.10. Fiz (P1)-(P2) as above. Suppose that A € X1(T') is 3n-deep in its alcove and
such that for all s € W(G), 7(s,wp, - X+ 1) is a tame inertial type which admits a compatible
presentation as in (P3) and w*(p, (s, Wy - X +n)) € Adm(n). Then F(\) € W’ (p).

Proof. Let s € W(G) and 7 = 7(s,wp - A+ 1n). If wp,-A € d-Cy for ¢ = ot,, then 7 has a
lowest alcove presentation (o~ tsm(c),5 1wy, - A+ o tsm(ov)) with 1wy, - A+ o~ tsm(ov) 2n-deep

~

in Cy by the first part of Proposition 2.2.4. By assumption, 7 = 7(s’,\") has a lowest alcove

presentation (s', X' —7) as in (P3). Combining these with the second part of Proposition 2.2.4, we

——1 _ —~ 4
1377(11)2) and \ = w;lwh - A+ §'mry + 1 for some Wy = wat,, € W . If we let

have that s’ = wy
A9 be 1172_1117h -\, then A9 + ¢'7uy is in O since A, and thus, A©) is 3n-deep in its alcove and

max,v{|(v2,a")|} <n —1 by Remark 4.1.4.
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Let w = w*(p, 7). Then by assumption, we have that i, — A0 —qpy —p e Ap. Note that this
condition and the condition that wy - A € wy - Cy uniquely determines ws, hence wy does not change
when s changes. Thus as s runs over W(G), s’ runs over all of W(G).

By definition, we have

~ —1 —1 /—1
W=8""t, 3O _gmSp =5 To—smnSp=Tl-mns t5sp € Adm(n),

where 6 = u; — O,
Let 0 € W(G) (unrelated to the use of ¢ in the first paragraph) be the unique element such that
— . — —
ot 15 € W . Note that the m-action on W preserves W . We now take s = 550_1w07r(w2), so that
P

_ _ __ , —+ o~ o+
W = m(t_y,wy l)woats;é = m(w, l)woatsﬁ—lé. Since ats;é € W |, we have that wor(wy)w € W .

Thus, wom (W)W = t_r(wowars)WoT (W)W is in EJF since —m(wowar) is a dominant weight. Note
that there is a gallery in the dominant direction from wom(ws)(Co) to wom(we)w(Cy) passing
through Cp, and hence a gallery in the (wom(wz))~!-direction from Cy to w(Cp). By [HH17,
Corollary 4.4], @ < t(yr(ws))-1n- (The reference [HH17] uses the Bruhat order defined with respect
to the anti-dominant base alcove. However, by applying wg-conjugation which interchanges the two
Bruhat orders, the cited corollary holds for the Bruhat order defined with respect to the dominant
base alcove.)

Note that

t(woﬂ'(U)Q))_ln = (onF(’wQ))_ltn(woﬂ'(’wQ)) = (’&)J}Zlﬂ(’&)é))_1{17}:1’100(’&7}:171'(’&72)) = W(@Q)_lwo(&;glﬂ'(@g)).
Since £(w) = £(m (W)~ Y) + £(wp) + £(0t —15) by Lemma 4.1.9, we conclude that ot 1, < @, ‘7 (W)
P P

—~—+
by standard facts about Coxeter groups. Since both sides of this inequality are elements of W

we conclude that ot 151 W, '7(ws). In other words, we have
P

Wﬁl(”)tw—l(sglg) : (Nﬁ - 5) T A
By Proposition 4.1.3, F(w; '\) € JH(R., (115 + 1)) or equivalently, F()) € W’ (). O

Remark 4.1.11. Regarding the hypotheses in Lemma 4.1.10, if X is n-deep in a p-restricted alcove,
then by Proposition 2.2.16, 7 = 7(s, wp - A+ n) is 1-generic. By Proposition 2.2.15, all lowest alcove
presentations (s’, ' —n) of 7 are of the form

(s', 1) =) (@ - A+ )

with (t,owp,) - A € Coy. The condition that there is one compatible lowest alcove presentation as in
(P3) above is equivalent to (wp - A+ 71 — up)|z € (p — m)X*(Z). This condition is the condition
that the central character of F(\) agrees with the central character of any element, or equivalently
all elements, of W”(p).

Corollary 4.1.12. Suppose that p : Gxg — GL,(F) is a bn-generic Galois representation. If A is
in X1(T) and (2n—1)-deep in its alcove and F(\) is not in W*(p%), then there exists an n-generic
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tame inertial type T such that F(\) € JH(a(7)) and p does not have a potentially crystalline lift of
type (1, 7).

Proof. Suppose that A is not 3n-deep. By Proposition 2.2.16 and its proof, the tame type 7 def
7(1,wp, - A + n) is n-generic, but not 4n-generic (by comparing (1, wy, - A +n) with a lowest alcove
presentation). By Corollary 2.3.5 and [Herll, Lemma 2.5], F(\) € JH(G(7(1,wy - A\ +1n))). Then p
is not the reduction of a potentially crystalline representation of type (1, 7) by Proposition 3.3.2.
Now suppose that A is 3n-deep in its alcove. Suppose that p is the reduction a potentially
crystalline representation of type (n,7) for all 7 such that F(A) € JH(a(7)). We claim that 7 can
be taken to be 7(s,wp - A+ 1) for any s € W. Suppose that w = wt, and that wy, - A € w-Cy. Let
pbe wlwy - A +wlst(wr). Then 7(w tsm(w),pu+n) = 7(s,wp, - A+ n) by Proposition 2.2.4,
and p is 2n + 1-deep in Cy by Remark 4.1.4. Then &(7(s,wp, - A +1)) = Ew_lm(w)(,u + 1) contains
F()) as a Jordan-Hélder factor by Proposition 4.1.3 (w0 - (u — w™tsm(wv)) = wy, - A). Thus for all
s € W(G), p is the reduction of a potentially crystalline representation of type (n, 7(s,wp - A+ n)).
By Theorem 3.2.1 and Proposition 4.1.8, for each s € W(G), there is a pair (sg, up) for p*
as in (P2) such that w*(p*,7(s,wy, - A + 1)) € Adm(n) (which implies (P3) holds). By Remark
4.1.7, these conditions hold for any choice of (sz, 1) satisfying (P2), since Adm(n) is stable under
Q-conjugation. Thus we can use the same pair (s, 15) for all choices of s. Then by Lemma 4.1.10,
we see that F(\) € W’ (5%). O

Remark 4.1.13. In the proof of Corollary 4.1.12, we used Proposition 4.1.3 to show that F(\) €
JH(@(7(s,wp, - A+ n)). This weight is the reflection of an obvious weight or a diagonal prediction
in [Her, Definition 12.8], so the above membership is likely true with weaker genericity hypotheses
on the Deligne-Lusztig representation. Corollary 4.1.12 also probably holds with weaker genericity
hypotheses.

4.2. Weight elimination. In this section, we deduce our main weight elimination result (Corollary
4.2.7). We begin with an axiomatic setup for our method, and then proceed to the case of modular

forms for definite unitary groups.

4.2.1. Aziomatic setup. We begin with an axiomatic setup for modular Serre weights. This is
related to the axiomatic setup of [EGH13, §4.2]. Let p : Gx — GL,(FF) be a Galois representation.
(We no longer assume (P1)-(P3).) We write F[GL,(k)]-mod for the category of finite F[GL, (k)]-
modules and Vect z for the category of F-modules (i.e. vector spaces).

Definition 4.2.1. We say that a functor S : F|GLy(k)]-mod — Vect r is an arithmetic cohomology
functor for p if
e S#£0;
e whenever S(V') # 0 for a Serre weight V and V' € JH(a (7)) for a regular tame inertial type
7, p has a potentially crystalline lift of type (n,7); and
e whenever S(V) # 0 for a Serre weight V and V € JH(R; (1)), p has a potentially semistable
lift of type (n,7(1,u)).



WEIGHT ELIMINATION IN SERRE-TYPE CONJECTURES 48

We now fix an arithmetic cohomology functor S for p.

Definition 4.2.2. We say that p is modular of weight V if S(V) # 0. Let W (p) be the set of
isomorphism classes of Serre weights for which p is modular. Let Wi (p) be the subset of W (p)
consisting of isomorphism classes of Serre weights represented by F'(\) where A is 2n — 1-deep in

its alcove.
Theorem 4.2.3. If 5 is 5n-generic, then Wi (p) C W’ (5%

)-
Proof. If X is (2n — 1)-deep in its alcove and F(\) ¢ W’ (5*), then by Corollary 4.1.12 there is a
regular (n-generic even) tame inertial type 7 such that F'(\) € JH(a(7)) and p does not have a
potentially crystalline lift of type (1, 7). We conclude that F(\) ¢ W (p). O

[Enn, Theorem 8] shows that for sufficiently generic p, W (p) does not contain weights near the
boundary of alcoves. Combining this with Theorem 4.2.3, we obtain an upper bound for W (p)
rather than Wejim (p).

Corollary 4.2.4. If 5 is (6n — 2)-generic, then W (p) C W*(5%).

Proof. Suppose that A € X(T) is 0-deep but not (2n — 1)-deep in its alcove. Let A(®) be the unique
weight in Cp linked to A\. Then A(©) is also not (2n — 1)-deep in its alcove so that MO 4y is not
2n-generic in the sense of [Enn, Definition 2]. We conclude that A is not (4n — 2)-generic in the
sense of [Enn, Definition 1]. Note that even if A is not O-deep in its alcove, this last conclusion still
holds. Now p is (6n— 2)-generic in the sense of [Enn, Definition 2] by Remark 2.2.8. Then the proof
of [Enn, Theorem 8| shows that » does not have a potentially semistable lift of type (n,7(1,\)),
while F(\) € JH(R;()\)) by [Herll, Lemma 2.5]. We conclude that F(\) ¢ W (p). O

4.2.2. Algebraic modular forms for unitary groups. We closely follow the setup of [EGH13, §7.1]
(see also [HLM, §4.1]). Let F/Q be a CM field and F its maximal totally real subfield. Assume
that F'™ # Q, and that all places of '™ dividing p split in F' and are unramified. We write ¢ for
the generator of Gal(F/F'). For u { oo (resp. v { 00) a place of F (resp. F*) we denote by k,
(resp. ky) the residue field of F,, (resp. F.").

We let G+ be a reductive group, which is an outer form of GL;, which splits over F'. We assume
that G(F,}) = U,(R) for all v|co. By the argument of [CHTO08], §3.3, G admits a model G over
Op+ such that G x O F+ is reductive for all places v of F'™ that split in F. For any such place v of
F* and ulv of F we get an isomorphism ¢, : G(F,}) — GL,(F,) which restricts moreover to an
isomorphism ¢, : G(Opt) — GL,(OF,). Let X be a finite set of places in F*. If U> < G(A;O;Z)
is a compact open subgroup, the space S(U™) of infinite level algebraic automorphic forms on G
is defined to be the set of continuous functions f : G(F™)\G(AY,)/U* — F, where F is given the
discrete topology.

We recall that the level U < G(A%;) is said to be sufficiently small if for all t € G(AY,), the
finite group t~'G(F*)t N U is of order prime to p. We say that U is sufficiently small if

U=0"T]9(0p+)

vEY
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is sufficiently small. For a finite place v of F'* we say that U is unramified at v if v splits in ' and
one has a decomposition U = G(Op+)U" for some compact open subgroup U? < G(ATY).

Let Py denote the set consisting of finite places u of F' such that v &t u|p+ is split in F, v { p,
and U is unramified at v. If P C Py is a subset of finite complement that is closed under complex
conjugation and disjoint from ¥, we write T? = O[Téi) cu € P,ie€{0,1,...,n}] for the abstract
Hecke algebra on P, where the Hecke operator Téi) acts on the space S(U¥) as the usual double

coset operator

o, 1d;

—1
Ly )

where w,, denotes a uniformizer of F,,. If 7 : Gr — GL,(F) is a continuous, absolutely irreducible
Galois representation, we further write my for the maximal ideal of T? with residue field F defined

by the formula

det (1 — 7V (Frob,) X) = 3 (~1)/Np, g, (u) O(TH) mod my) X7 Vu € P.
=0
Definition 4.2.5. We say that 7 is modular of (prime-to-Y) level U* if S(U*)y. # 0. We say T is

modular if 7 is modular of some level U>.

Assume that 7 is modular of level U> and that ¥ contains all places dividing p and all places
divisible by places in F' where 7 is ramified. Fix places u|v|p of F and F*. Then we define the
functor S : F[GLy,(k,)]-mod — Vect z by S(V) & Homgr,, 0, )(VY, S(U¥)my), where (-)¥ denotes

the contragradient representation and GL, (OF,) acts on V by inflation and on S(U*)y_ via ;1.

Proposition 4.2.6. If U* is sufficiently small, then S is an arithmetic cohomology functor for

T|GF“ .

Proof. This essentially follows from the proof of Proposition 7.4.4 of [EGH13]. Note that modularity
of 7 of level U™ implies that the functor S is nonzero. Suppose S(V) # 0 and V € JH(&(7)). Let
v € ¥ be a place not dividing p (if one exists). Since S(V) is a smooth representation of G(F),
there exists a compact open subgroup K,/ of G(O F*,) with nonzero invariants. Inductively choosing
K, and replacing S(U>)y.. with v
S(UE H Kv’)mw
v ES Wip

we assume without loss of generality that ¥ is exactly the places of F* dividing p, and write
U* = UP. For each place v'|p of FT, choose a place ¢'|v’ of F such that o'|p+ = v and that ¥ = w.
For an O[GL,, (O )]-representation Vi, let Viy be the corresponding O[G(Op+ ,)]-representation
via (7. There exist irreducible F[GL,,(Op)]-representations Vi for every ¢'|p such that V5 =V
0F+’p)(®v/‘va\f,S(Up)m?) # 0. Choose an O[G(Op+ ;)]-representation W = @/, Wy
such that W5 is an O-lattice in o(7), W5 is an O-lattice in an algebraic representation over F

and Homg(

for v/ # v (say, a suitable Weyl module), and Vi € JH(W3 ) for all v'|p (where the bar denotes
mod w reduction). For U? sufficiently small, S(U? )y, is an injective F[G(Op+ ,,)]-module, hence
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. ==V
HomF[[g(oFﬁp)]](—,S(Up)mF)js exact. Thus Homg(oFJr’p)(W ,S(UP)m.) # 0. Then the proof of
[EGH13, Proposition 7.4.4 Al] holds without modification and one then constructs 7 as in the
proof of loc. cit. Then 7)|g, provides the required lift by [EGH13, Theorem 7.2.1], Theorem

2.3.1, and Proposition 2.3.4. O

Assume that 7 is modular. Then 7 is modular of some sufficiently small level U*. Let W (F) be

the set of isomorphism classes of irreducible G(Op+ ,)-representations V' over F such that
Homg(0F+’p) (V\/, S(Uz)m?) 7& 0.

For each place v|p of F'* choose a place ¥|v of F. Let W2 () be W ((F|g,. )*) and W;SS(F) be the

set of isomorphism classes of G(O P )-representations over I corresponding to Wg’ss(F) via tz. Note

that the definition of Wg,ss () does not depend on the choice of place v. Let W.(7) be ®W57SS (7).
vlp

Corollary 4.2.7. Suppose that (F|g, ) is (6n — 2)-generic for all places v|p of F*. We have
W (F) C Wi(7).

Proof. Suppose that Homg(@F+’p)(®v|pF()\v)V,S(Up)mF) # 0. For each place v|p of F*, let S
be Homgy,, (0,)((—)", S(UP)n.). By Proposition 4.2.6, Sy is an arithmetic cohomology functor for
T|Gp._, from which we define W (7|q,. ) as in Definition 4.2.2. If F(A5) corresponds to F(,) via
1, then S5(F(Ap)) is nonzero, and so F(A\z) € W(F|a,. ). By Corollary 4.2.4, F(\;) € WS?S(F’GFE)'
Thus ®,,F(As) € WL(T). O

4.3. Modularity of “obvious” Serre weights. In this section, we deduce the modularity of
obvious Serre weights for sufficiently generic semisimple local Galois representations under mild
hypotheses. We show that for each obvious weight there is a type containing it as a Jordan—Holder
factor so that no other Jordan-Hélder factor is modular (Corollary 4.2.7 and Proposition 4.3.6).
Fortunately, these are precisely the types to which we can apply Corollary 3.4.13 and the results of
[BLGGT14] to deduce the modularity of obvious Serre weights. That these types isolate weights
can be seen as a consequence of Theorem 3.4.1 and the Breuil-Mézard philosophy (see Remark
4.3.7). We first summarize the results we need from [BLGGT14] and refer the reader to ibid. for

any undefined notation and terminology.

Theorem 4.3.1. Let p > 2 and F be a CM field with mazimal totally real subfield F* such that
(p & F. Assume that F/F7 is split at all places dividing p. Suppose that T : Gr — GL,(F,) is an

wrreducible representation with the following additional properties.

(1) 7 is potentially diagonalizably automorphic, i.e. there is a RACSDC automorphic represen-
tation 11 of GL,,(AF) such that
o 7=7,,(II); and
e For each place ulp of F', rp ,(I1)|G,., is potentially diagonalizable.
(2) The image of (G p(c,)) is adequate.
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Let X be a finite set of places of F™ containing all places dividing p and all the places of F+
divisible by places at which T ramifies. For each place v € ¥, choose a place v|v of F and a lift py :
Gp, — GLn(Zp). Suppose that for v|p, py is potentially crystalline and potentially diagonalizable
with distinct Hodge—Tate weights for every embedding Fy — @p.

Then there is a RACSDC automorphic representation ™ such that

[asa

Tp,b(ﬂ-);

e 1, is unramified at all places u of F' that do not divide a place in ¥; and

o7

L V"W(w)\(;F~ ~ pg for all places v € X.

Proof. This is [BLGG, Theorem 3.1.3] except for two differences:
(1) for places v|p of F*, p5 allowed to be potentially crystalline rather than crystalline and
(2) ¥ may contain places which do not split in F.

However, the proof of [BLGG, Theorem 3.1.3] still applies with two corresponding modifications:

(1) m, is not necessarily unramified if u is a place of F' dividing p and
(2) we replace the use of [BLGG, Theorem A.4.1] with [BG, Theorem 5.2.1].

Define
W(p,7) = W'(p) N JH(a(r))
(see Definition 2.2.11 and §2.3). We can characterize W7 (p,7) in terms of the element w*(p, )
from Definition 4.1.6.

Proposition 4.3.2. Fiz §4.1(P1)-(P3) with n — n 2n-deep in Cy, and let w = w*(p,7) = t,w.
Then for A a dominant p-restricted character, F(X) is in W' (p,7) if and only if there exist Wy, w1,
and Wy € ﬂN/+ with wy, - Cy p-restricted, and w' € W(G) such that

o 7N W) = wy 'w'wy ;

o Wy 1wy 1w, Wy and

o \=w) - (u— swrg —n) where Wa = wat,,.

Proof. Recall from Definition 2.2.11 that F(\) € W (p) if and only if F(w; ') € JH(Rgy(p+sv))
since wy, - A = R(A) (recall that p + sv = pz + 1 so that v = n (mod Ap) and sw = s5). By
Proposition 4.1.3, F(\) € JH(G(7)) (resp. F(w, '+ \) € JH(Ryy(p+ sv))) if and only if there exists
awy € KN/JF (resp. w; € ﬂN/Jr) such that wy- (u—smvo—n) T wp- A (resp. wy-(u+sv—swrvy—n) T A)
where wy = wat,, (resp. wy = wit,,) is such that wy - Coy T wy, - Co (and wy - Co T wp, - Cp). In
summary, F(\) € W’(p,7) if and only if there exist w;, and wy € KN/+ with w; - Cog T wy, - Cg for
i = 1,2 such that

Wy - (p+ sv — swrvy —n) T AT W, Mg - (@ — s — ).

By our assumption, p; = p+ sv —n and p —n are both 2n-deep in Cg, so Remark 4.1.4 implies
both pu+ sv — swrvy —n and p — swre —n are in Cg. Thus the above condition is equivalent to the

. ~ o~ ~ + . ~ .
existence of wy, wi, and wy € W with w)y - Cy p-restricted such that
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o @y - (ju+ sv— swyy — 1) is linked to @, 'Ws - (1 — smvo — n);

o Wy 1wy 1w, W; and

e A=w) - (u— smry —n).
We claim that @y - (u + sv — swrvy —n) and @, "o - (u — swv — 1) are linked if and only if
Wy~ (W), € W(G).

We first show that w; - (1 + sv — swnry — n) and @;1@2 - (1w — smvy — n) are linked if and only
if v+ vy = wrvy. If v+ 7y = wryy, then one sees directly that @flﬁ,:l@g is in W, from
which we see that w - (i + sv — swrvy — 1) and @, W - (u — sTvy — 1) are linked. Now suppose
that wy - (u + sv — swnvy — n) and @;1152 - (0 — smre — n) are linked. Then the restriction of the
difference of wy - (u + sv — swwry —n) and 1’17,:11172 - (u — smry — ) to the center Z of G must be
trivial. Equivalently, the restriction of (p — 7)(v — 11 + 1»2) and therefore v — vy + 15 to Z must
be trivial. Noting that ¥ =7 mod Ap, this implies that &7_1@,:1@2 is in W,. We conclude that
W+ sv — swryp —n and p — swvy — 1 are linked. Since p + sv — swrrvy —n and p — sTp — 1 are
both in Cj, and must therefore be equal. This equality implies the equality v + 7y = wnyy.

Finally, v 4+ mve = wmyy if and only if

Won Nyt = waty,m L (tw)t_ywit = wor N (trvyty—wm w)wy € W(G).

Remark 4.3.3. Note that F'(\) is an obvious weight (Definition 2.2.14) if and only if w) = w;.
Lemma 4.3.4. Let w € Ef and let w € W(G), w' € KN/+ be the unique elements such that
w=ww'. Then wt < w.

Proof. The length ¢(ww™) is the length of a minimal gallery from Cy to ww™ - C, which is the
length of a minimal gallery from w™! - Cpy to wt - Cy. A minimal gallery can be taken through C
in the dominant direction. Hence £(ww™) = ¢(w) + £(w™), and therefore wt < w. O

~ ~ ~ —~+ ~ ~
Proposition 4.3.5. If wo T wy and wy € W, then wo < wy.

Proof. Let w € W be the unique element such that ww; € ﬂN/+. Then wy 1T ww; by IT 6.5(5) of
[Jan03]. Then we < ww; by Theorem 4.1.1. Since ww; < w; by Lemma 4.3.4, wy < w;. O

Proposition 4.3.6. Letp, 7, and w be as in Proposition 4.3.2 and suppose that w =t 11,. Then
W' (p,7) = {F(\)}, where F(\) € Wopn, (p) is the obvious weight corresponding to s (see Definition
2.2.14).

~ ~ ~ ~ ~ —~+
Proof. Suppose that m—'(w) = ts—1(p) = w;lw’wl where w’ € W(G), wy; and wy € W , and
wy T wy T @,;1@2 for some wy with w)y - Cy p-restricted. We have

Uts=10y)) < 03 1)+ 0(w") +L(@1) < L((DpwA) ") +E(wo) +£(@x) = L((Whwx) " wowa) = £t 1),

where wy € W(G) is the projection of wy. The first inequality is obvious, while the first equality

follows from Lemma 4.1.9. For the second inequality, since w’ < wyp, it suffices to show that
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wo < wpwy and wy < wy. Since wy T 1’5}:1{172, we have that we T wpwy. Since wy and wy € Ei
we have that wy < wpw) and wy < wy by Proposition 4.3.5.

Since £(tg-1(y)) = E(tw;l(n)), we have w’ = wg and Wy = wpw, = wpw;. This implies that s = w).
Now suppose that F(\) € W*(p, 7). We now use notation from Proposition 4.3.2, particularly from
(P2) and Definition 4.1.6. Then by Proposition 4.3.2, A\ = w) - (up — spmvy) where we write
wy = wyty,, and p|r, = 7(sp, up +n). This is exactly the obvious weight corresponding to s = wy
(Definition 2.2.14). O

Remark 4.3.7. One could show using Theorem 3.4.1, Corollary 4.2.7, and Kisin’s approach to the
Breuil-Mézard conjecture that with the hypotheses of Proposition 4.3.6, #W” (5, 7) < 1. This leads

to an alternate proof of Proposition 4.3.6, which we eschew in favor of our more direct approach.

In the setting of Proposition 4.3.6, if w*(p,7) =t for some w € W(G), we say that 7 is the

7TUJ_1
obvious type for the obvious weight of p corresponding t?) w (note that this notion depends on the
choice of (sp, 115)). Such a type 7 always exists, and is uniquely determined by the corresponding
obvious weight.

We use the setup and notation of §4.2.2. For each place v|p of F'™ choose a place v|v of F. Let

7 : Grp — GL,(F) be a modular Galois representation such that for each place v|p of FT, Tlg,.

is semisimple. Let Wop, 5(7) det Woby (Tlay ). Let Wopy »(T) be the set of isomorphism classes of

Q(OF; )-representations over F corresponding to Wy, (7). Note that the definition of Wopy o (7)
does not depend on the choice of place v. Let Wopy (T) be @ Wy (7).
vlp

Theorem 4.3.8. Suppose that ¢, ¢ F and that T : Gp — GL,(F) is a modular Galois repre-
sentation such that 7(Gp(c,)) is adequate. Assume that for all v | p, F]GFE 18 semisimple and
(6n — 2)-generic. Then the following are equivalent:

(1) Wobv(F) N W(F) 7& (D;

(2) T is potentially diagonalizably automorphic (see Theorem 4.3.1(1)); and

(3) Wony(T) C W(T).

Proof. Clearly, (3) implies (1). We next show that (1) implies (2). For each place v|p of F'™, choose
a place v|v of F. Suppose that ®,,F'(A\y) € Wby (7) N W (7). Then

Homg(OFjL’p)(@v\pF()‘v)v’ S(Up)mF) 7£ 0

for some sufficiently small compact open subgroup U? < G(A;ﬂ’rp ) (we can replace ¥ with the
set of places dividing p as in the proof of Proposition 4.2.6). Say F'(\,) corresponds to F(\z) €
Woby (Flgy. ) via ¢z, and that F(\y) € Woby(Flg, ) (resp. 75) is the obvious weight (resp. the
obvious tyvpe) for 7|, corresponding to w, (afterv choosing a lowest alcove presentation of 7|z, ).
One checks directly fr(v)m the definition of obvious type that 7y is 2n-generic, and hence any lowést
alcove presentation of 7; satisfies the hypothesis of Theorem 3.4.1, by Proposition 2.2.15. Let o(7)

be the G(Op+)-representation corresponding to o(75) via 5. Note that S(UP)m. is an injective
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F[G(Op+ p)]-module as U? is sufficiently small, thus Homggo,. (= S(UP)m,) is exact. Since

Homg(oF+7p)(®v|pF()\U)v, S(UP)m.) # 0,
we have that
Homg(OFjL’p)(@U\pE(Tv)v’ S(Up)my) # 0,

where @(7,) is the reduction of some O-lattice for each v|p. A nonzero element of

Homg(0F+7p)(®v|pE(Tv)v’ S(Up)mr) 7£ 0

gives an automorphic lift ), ,(II) of 7 whose restriction at v is potentially crystalline of type (1, 7)
by [EGH13, Theorem 7.2.1], Theorem 2.3.1, and Proposition 2.3.4. Thus r;, ,(II)|q,, is potentially
diagonalizable for each place u|p of F' by Corollary 3.4.13.

Finally, we show that (2) implies (3). Assuming (2), we see that 7 satisfies the enumerated
hypotheses of Theorem 4.3.1. Suppose now that ®,,F'(A\y) € Wopy (F) is arbitrary and let F/(A\z),
75, 0(75), and o(7,) be as in the last paragraph. For each place v|p of F'™, let py be a poten-
tially diagonalizable potentially crystalline lift of 7|g,. of type (n,75) (say the lift from Corollary
3.4.11). By Theorem 4.3.1, there is an automorphic lvift rp.(m) of T whose restriction at v is po-
tentially crystalline of type (n,73), which is unramified outside the places where 7 is ramified.
Thus Homgo,, +’p)(®v‘p6(7’v)v,5 (U¥)m.) # 0 for any ¥ containing all places dividing p and all
places divisible by places in F' where 7 is ramified and any sufficiently small U>. By Corol-
lary 4.2.7 and Proposition 4.3.6, we conclude that Homg(OF+’p)(®v|pF()\U)V7 S(U)m.) # 0. Thus
QupF'(Ay) € W(T). O

Remark 4.3.9. In [BLGG], it is shown that if 7 is modular of a Fontaine-Laffaille weight, @, F'(\y) €
Woby (F), and p splits completely in F', then

Homg(OF.,_’p)(@U\pW()‘v)v? S(Uz)m?) # 0,

which is strictly weaker than Theorem 4.3.8.

In §6 of [GG12], it is shown that if 7 is assumed to be modular and ordinary at p, then 7 is
modular of all ordinary obvious weights (this is all obvious weights if p splits completely but is
strictly smaller otherwise). In loc. cit., T is no longer assumed to be semisimple above p.

4.4. Type changing congruences and a local lifting problem. In this section, we give a
classification (Theorem 4.4.3) of congruences between RACSDC GL,-automorphic representations
of trivial weight and generic tame type whose associated Galois representations are residually
tamely ramified at p. We also solve the corresponding local Galois lifting problem. Throughout
this section, we are in the setting of §4.1(P1)-(P3), that is, we fix

(1) a generic semisimple Galois representation p : Gx — GL,(F);

(2) a pair (sp, p1p) such that p|r, = 7(sp, pip + 1) with p; in Co; and

(3) A lowest alcove presentation (s, — 1) of a tame inertial type 7 = 7(s, u) : Ix — GL,(O)

such that pz — € Ap.
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Proposition 4.4.1. Let p and T be as above with u—n 2n-deep in Co. The set W (p, T) is nonempty
if and only if the set Wopy(p) N JH(T(T)) is nonempty.

Proof. The “if” part of the claim is clear. Suppose that W?(ﬁ,T) is nonempty. Let w = w*(p, 7).

~ ~ ~ —~+ ~ ~1 ~
Lw' @y where w' € W, @y and @We € W, and @ 1 w, Ly, Let

By Proposition 4.3.2, 771 (w) = w,
w be a weight (unique up to weights whose restrictions to the derived group are trivial) such that
t_,wi - (Cop) is p-restricted. Note that w is dominant since the set of dominant alcoves is exactly
the set of dominant translates of the restricted ones. Then 7~ H(w) = (t_y,w2) 1w (t_,w1). Let
t_wos = wtws where w € W and w3 € W+. It suffices to show that ¢_,w; 1 @;1@3, since
then by Proposition 4.3.2, taking wy) = t_,w; we see that W?(ﬁ, 7) contains the obvious weight
corresponding to the permutation part of {_,w; via the bijection in the proof of Corollary 2.2.13
(see also Remark 4.3.3).

Using that wy 1 @,;1@2, it suffices to show that {17}71&72 T {E}:ltwowiﬁg, or equivalently that
twow®Ws T Wa. NOW tyuwWs = twgw—ww'wWWs by definition. Note that wow — ww'w is a sum of
negative roots since w is dominant. Then t,y—wwowwws T wws T wy by II 6.5(3) and (5) of
[Jan03]. O

Proposition 4.4.2. Let p and T be as in Proposition 4.4.1. Then w*(p,7) € Adm(n) if and only
if W*(p,T) is nonempty.

Proof. Suppose that W7 (5, 7) is nonempty and let @ = w*(p, 7). By Proposition 4.3.2, 7~} (w) =
{Dglw’@l where w' € W, w; and wy € E/+, and wy T {17}71{172 By an argument analogous to the
proof of Proposition 4.4.1 applied to 7~ '@~ ') = w; 'w'~'wy (that is we replace w, w', @, and
W with w1, w1, Wy, and w1, respectively), we can assume without loss of generality that ws is
p-restricted. It suffices to show that 7! (w) < b Vo Note that
bty = Wa  Whty @y, W = Wy wo(Wy, ' @),

and that £(@y 'wo(w;, "wa)) = (W, ') + L(wo) + K(wh L@y) by Lemma 4.1.9. Then since w' < wy
and w; < {5];1{52 by Proposition 4.3.5 (since wy T w, wg), we have that 771 (w) < tw2 won"
Conversely, suppose that w € Adm(n). Then there exists wo € W such that 7~ (w) < b Yuon'

~ e ~ . . ~ . .
Let we € W be such that wy has projection wy € W and ws - (Cy) is p-restricted. (Such

elements differ by weights whose restrictions to the derived group are trivial.) Since tw—lwon =

Wy Mwo (W), o) and £(wy 'wo(w;, Mig)) = L(wWy ') + £(wp) + (W}, 'w2) as in the last paragraph,
7 H(w) = (wh) " tw'w) where wh < W, W) < W, ‘W and w’ < wy. In particular, w' € W(G). If
~ ~ =+ . ~ ~
w) and wé € W(G) and w; and wj € W are the unlque elements such that w), = wéw; and
w1 = wlwl , then wj < @y < Wy and v < W) < W, Ly by Lemma 4.3.4. Thus w2 T wo and
wy 1w, Y, Letting w” = (wh) " w'w}, we get that 7~ (@) = (@)~ 'w"@;. Since w, 1 wy, g
and @; T wsy, or equivalently 1’5}:1{172 T 1’5}:1{5; , we have that @1 T w, w; . By the proof of
Proposition 4.4.1 applied to 7~ (w) = (w5 ) 'w”w] (that is we replace w', w1, and ws with w”,

{E;r, and {E;r , respectively), modifying the factorization if necessary, we can assume without loss
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of generality that {Df - Co is p-restricted. By Proposition 4.3.2 taking w) to be @f, we see that
W’ (p,7) is nonempty. O

Theorem 4.4.3. Let p: Gg — GL,(F) be a (6n—2)-generic semisimple Galois representation and
let T be 2n-generic tame inertial type. Let F' be a CM field such that ¢, ¢ F and letT : Gp — GL,,(F)
be a Galois representation as in §4.2.2 satisfying the following hypotheses.

e 7 is potentially diagonalizably automorphic, i.e. there is a RACSDC automorphic represen-
tation 11 of GL,,(AF) such that
-7 27,,(II); and
— For each place ulp of F, rp (I)|q,, is potentially diagonalizable.
e The image of T(Gp(,)) is adequate.
e T is generic and semisimple at all places dividing p and F|GF5 = p for a place v|p of F.
Then the following are equivalent:

(1) There is a RACSDC representation I1 of GL,,(Ar) such that 7 = 7, ,(II) and the restriction
of rp,(II) at v is potentially crystalline of type (n,7);

(2) P has a potentially crystalline lift of type (n,7);

(3) @ (5,7) € Adm(n);

(4) W¥(p,7) #0; and

(5) Won () 0 JH((7)) # 0.

Remark 4.4.4. The assumption that 7 is 2n-generic can be relaxed to n-generic. Suppose that 7
is n-generic, but not 2n-generic. Then (4) can be checked to be false since JH(a (7)) will contain
only weights which are not 3n-deep in their alcoves by [Her09, Theorem 5.2] (note that by the
linkage principle, the depth of the Jordan—-Holder factors appearing in loc. cit. coincides with that
of p — wey, , and maxqv [(€), ,,a")| < n—1for all 7 € W by Remark 4.1.4). This implies that
(5) is false as well. If (3) holds, then a direct computation shows that 7 is 4n-generic, using that
max,v [(w(0),a")| <n—1 for any w € Adm(n). So (3) is false. Then (2) is false by Theorem 3.2.1,
which immediately implies that (1) is false.

Remark 4.4.5. For p as in the theorem, there always exists a representation 7 as in the theorem.
Indeed, since p is Fontaine-Laffaille, [EG14, Conjecture A.3] holds for 5 (alternatively, one can use
Corollary 3.4.13). Let 7 : Gp — GL,(F) be a suitable globalization of p as constructed by [EG14,
Corollary A.7]. By loc. cit. and [EG14, Lemma A.5], T satisfies the required hypotheses. Thus, by
removing sentences containing 7, the above theorem can be interpreted as giving existence criteria

for potentially crystalline lifts of type (n,7) for generic semisimple p and tame generic types 7.

Proof. (1) immediately implies (2). (2) implies (3) by Theorem 3.2.1 and Proposition 4.1.8. The
equivalence of (3), (4), and (5) follows from Propositions 4.4.1 and 4.4.2. It remains to show that
(5) implies (1).

Assume that Wep, (p) N JH(T(7)) # 0. By Theorem 4.3.8, Wy (T) € W (T) in the notation of
§4.2.2. Following the notation of the proof of Theorem 4.3.8, let ©,/,F'(Ay) € Wepy(7) be such
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that F'(\y) € Wony(p) N JH(a(7)). Then, as in the proof of Theorem 4.3.8, we obtain the required
automorphic representation II. ]
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