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Abstract

Context Resilience is a concept central to the field of

ecology, but our understanding of resilience is not

sufficient to predict when and where large changes in

species composition might occur following distur-

bances, particularly under climate change.

Objectives Our objective was to estimate how wind

disturbance shapes landscape-level patterns of engi-

neering resilience, defined as the recovery of total

biomass and species composition after a windstorm,

under climate change in central Wisconsin.

Methods We used a spatially-explicit, forest simu-

lation model (LANDIS-II) to simulate how wind-

storms and climate change affect forest succession and

used boosted regression tree analysis to isolate the

important drivers of resilience.

Results At mid-century, biomass fully recovered to

current conditions, but neither biomass nor species

composition completely recovered at the end of the

century. As expected, resilience was lower in the

south, but by the end of the century, resilience was low

throughout the landscape. Disturbance and species’

characteristics (e.g., the amount of area disturbed and

the number of species) explained half of the variation

in resilience, while temperature and soil moisture

comprised only 17% collectively.

Conclusions Our results illustrate substantial spatial

patterns of resilience at landscape scales, while doc-

umenting the potential for overall declines in resilience

through time. Species diversity and windstorm size

were far more important than temperature and soil

moisture in driving long term trends in resilience.

Finally, our research highlights the utility of using

machine learning (e.g., boosted regression trees) to

discern the underlying mechanisms of landscape-scale

processes when using complex spatially-interactive

and non-deterministic simulation models.
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Introduction

Natural disturbances, such as windstorms, wildfire and

insect outbreaks, cause pulses of mortality that can

have lasting effects on forest dynamics and succession

(Carpenter and Turner 2000). Forest management has

historically tried to suppress or prevent natural distur-

bances to provide a consistent supply of ecosystem

services such as pulpwood and water supply (Holling

and Meffe 1996). Now recognizing the futility of this

approach, especially with impending changes in

climate, managers and scientists have turned to

resilience as a guiding theme of natural resource

management (e.g., Scheffer et al. 2001; Folke et al.

2004; Rist and Moen 2013; Bone et al. 2016). By

definition, resilience encompasses both stability and

dynamism, recognizing that the ability of an ecosys-

tem to recover from disturbance is influenced by the

characteristics of the disturbance regime, climate, and

ecosystem structure (Gunderson 2000), as well as

human activities (Preise et al. 2018). Fostering

resilience, especially within a value-explicit frame-

work (Higuera et al. 2019), has the potential to

promote adaptive management, help prioritize man-

agement efforts, and treat disturbances as a manage-

ment opportunity rather than something to be avoided

(Seidl et al. 2016).

Applying the concept of resilience in natural

resources, however, has proven difficult because there

is still not agreement within the ecological community

about how to define resilience (Folke et al. 2004;

Brand and Jax 2007; Grimm and Calabrese 2011;

Newton and Cantarello 2015; Quinlan et al. 2016).

Based on the framework outlined in (Newton and

Cantarello 2015), resilience can be divided into

engineering resilience (i.e. time required for a system

to return to an equilibrium point following a distur-

bance event, e.g., Pimm 1984; Holling and Meffe

1996) or ecological resilience, which is defined as the

amount of disturbance that a system can absorb before

changing to another stable state (e.g., transitioning

from hardwood to conifer-dominated forests, Gunder-

son 2000; Holling and Gunderson 2002; Brand and Jax

2007). In the Upper Midwest, engineering resilience,

hereafter referred to as resilience, is an appropriate

lens, given this is a region where we expect species

reorganization (Scheller andMladenoff 2005; Scheller

et al. 2011; Swanston et al. 2018) more than shifts in

ecological states (for exception see Lenihan et al.

2008; Frelich and Reich 2009).

Resilience is often quantified by measuring tree

regeneration several decades after a disturbance,

however, these limited field measurements cannot

account for the nonlinear temporal dynamics in

recovery. Chronosequence approaches are better able

to capture temporal variation in resilience by substi-

tuting time for space, (e.g., Letcher and Chazdon

2009; Bhaskar et al. 2018), but capturing the full range

of disturbance frequency, size, and intensity is chal-

lenging with field sampling. By comparison, spatially

explicit, forest landscape simulation models can

project both the timing and severity of disturbance

events (He 2008) and identify areas where a lack of

resilience may hinder re-establishment of forest com-

munities across large areas and long time scales

(Serra-Diaz et al. 2018). Models have the added

advantage of being able to incorporate how climate

change may affect resilience (Duveneck and Scheller

2016; Lucash et al. 2017), either directly (e.g.,

temperature effects on growth and regeneration) or

indirectly via climate-mediated disturbances.

Resilience is often quantified after wildfire (e.g.,

Stevens-Rumann et al. 2018) or deforestation (e.g.,

Zemp et al. 2017), but it is less often quantified

following other types of disturbances. Windthrow is

the most important natural disturbance in the upper

Midwest (i.e. Minnesota, Wisconsin, Michigan, USA,

Frelich 2002). Wind events range in size from small-

scale patches (\ 1 ha) to large, intense events, like

tornados and derechos, which are widespread and fast-

moving windstorms. Severe windstorms (C 70%

overstory mortality) have a return interval ranging

from 500 to 1200 years in the upperMidwest (Canham

and Loucks 1984; White and Host 2008), but return

intervals are closer to 50 years if all wind events are

considered (Frelich 2002). Although wind events are

common throughout the region, resilience after wind-

storms is most often quantified after a specific

mortality event, e.g., a particularly notable and/or

large storm, such as the 1999 blowdown in the

Boundary Waters Canoe Area (Nelson et al. 2009),

without considering landscape context and the non-

linear patterns of recovery.

Forests undergo substantial reorganization after a

wind event, a time when changes in successional

trajectories and growth rates are mediated by temporal

trends in site conditions (Everham and Brokaw 1996).
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Shade intolerant and disturbance-adapted species

often have a competitive advantage because of

increases in light availability following canopy

removal (Curtis 1959). However, the establishment

of these species may be limited by seed production,

dispersal and/or edaphic conditions (Bazzaz 1979),

especially after large wind events or in areas that are

already fragmented due to large clear-cuts or large

areas of agricultural production. As trees establish

following disturbance, biomass accumulates and

competition for light intensifies. Even though these

overall trends after disturbance appear straightfor-

ward, the spatial pattern and timing of forest recovery

are often difficult to predict over time. Interactions

among edaphic (e.g., soil moisture, nitrogen avail-

ability), climatic (e.g., temperature), life history

strategies (e.g., shade tolerance, seed production and

dispersal), disturbance history (e.g., frequency, sever-

ity and size), legacy effects, and competition among

tree species create many possible successional trajec-

tories (Frelich 2002), especially when overlain with

temporal trends in temperature and precipitation.

Forests in northern Minnesota, for example, are

currently well-buffered against shifts in species com-

position, but resilience may decline as temperatures

rise under climate change (Duveneck and Scheller

2016), especially in areas with low soil moisture

(Lucash et al. 2017). The severity and extent of

disturbances may hinder recovery after windstorms by

increasing distance to seed source, as has been shown

with severe wildfires (e.g., Donato et al. 2016; Tepley

et al. 2017). Currently our understanding of the factors

conferring resilience is not sufficient to project when

and where large changes in species composition might

occur following disturbances and where biomass

recovery might be altered by climate change.

Quantifying the spatial pattern of resilience, by its

very definition, assumes that the goal is to return a

landscape to an equilibrium state following a distur-

bance event. However, forests are dynamic across

time and space. The upper Midwest has a long history

of logging and attempted agricultural production,

which resulted in the current patchwork of public,

private and tribal lands, with unproductive agricultural

areas often reverting to the state and federal govern-

ments and more productive land remaining in private

ownership (Dickmann and Leefers 2016). Because of

fire suppression policies coupled with extensive pine

planting efforts of Civilian Conservation Corps, and

the current focus on timber production, this region is

now a spatially-heterogeneous landscape of young

(median age = 53 years) mixed hardwoods and boreal

conifers across multiple ownerships with different

goals and objectives. The northern and central portions

of the landscape are mostly forested under federal or

tribal ownership, while the southern portion is highly

fragmented with a mix of forested and agricultural

lands, mostly under private ownership. This landscape

context sets the stage and is not necessarily an

‘‘equilibrium point’’, but rather a reference point of

current conditions by which we can quantify where

forests may remain resilient under a changing climate.

We focused on forest resilience in central Wiscon-

sin, since there are concerns about how rising

temperatures will affect forest sustainability and

economics, recreation and water quality in this region

(Janowiak et al. 2014). Recent IPCC AR5 projections

suggest that average annual temperatures in WI will

increase by 5 �C while precipitation will increase by

5%, averaged across 44 global circulation models and

RCPs over the next hundred years (http://cida.usgs.

gov/gdp/). Temperatures are projected to increase

more in the winter than the rest of the season and the

growing season is projected to lengthen (Janowiak

et al. 2014). Rising temperatures and longer growing

seasons may increase evapotranspiration and result in

lower soil water availability or the projected increases

in precipitation may compensate and soil moisture

may increase or be unaffected (Seneviratne et al.

2010). Changes in soil moisture may drive changes in

species composition in this landscape, given that this

region is dominated by drought-sensitive hardwoods.

Also, boreal species, including paper birch, trembling

aspen, and black spruce, are projected to decline in this

region under climate change since they are near their

southern temperature and moisture-driven range

(Iverson et al. 1999; Scheller and Mladenoff 2005;

Frelich and Reich 2010). These boreal species are

critical for maintaining wildlife habitat and timber

harvesting, and have strong cultural meaning to

indigenous communities in the region (Dockry et al.

2016).

Our overarching objective was to estimate how

disturbance shapes landscape-level patterns of resi-

lience under climate change. Few studies have quan-

tified the spatial pattern of resilience (see Lucash et al.

2017 for an exception) despite its importance (Cum-

ming 2011; Allen et al. 2016). We focused on metrics
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reflecting engineering resilience, quantifying how

close the biomass and species composition of a site

recovered to a pre-disturbance conditions following

wind disturbance (Duveneck and Scheller 2016). To

do so, we used a spatially-explicit, forest simulation

model (LANDIS-II) that simulates how windstorms

and climate change affect forest growth, mortality,

regeneration, and above- and belowground cycling of

water, carbon, and nitrogen. We hypothesized that (1)

resilience will decline over time (i.e. lower resilience

at 2100 than 2050), especially under climate change,

based on previous studies in Minnesota and Michigan

(Duveneck and Scheller 2016; Lucash et al. 2017), (2)

resilience will vary spatially, with lower resilience in

the southern, more highly-fragmented area of the

landscape due to higher distance to seed source, and

(3) landscape-level characteristics (i.e. area of wind-

storm, distance-to-seed source) will be important

predictors of resilience by mid-century, but climatic

and edaphic factors (i.e. air temperature, soil moisture)

will become increasingly important and drive resi-

lience under climate change by the end of the century.

Methods

Site description

Our study landscape contains * 2 million hectares of

land in central Wisconsin, about forty-five miles

northwest of Green Bay, Wisconsin (Fig. 1). This

landscape is an ideal location to explore the ecological

impacts of climate change for three reasons. First, the

‘‘tension zone’’ falls within our landscape (Kucharik

et al. 2010), characterized by steep climatic gradients

and ecotonal boundaries, wherein small changes in

temperature and precipitation are expected to drive

sizeable shifts in species composition (Curtis 1959).

Second, Wisconsin has already experienced warming

of 0.3–1.2 �C and a 10–15% increase in precipitation

over the past century (Janowiak et al. 2014), and an

additional 5 �C rise in temperature and 5% increase in

precipitation are predicted over the next 100 years

(http://cida.usgs.gov/gdp/). Finally, the study area

includes the Menominee Reservation, home to a tribal

nation widely recognized for their sustainable forest

management (Dockry et al. 2016).

This landscape is located at the nexus between

northern hardwoods and boreal forest, with forests

occupying approximately 42% of the area

(220,000 ha). The most common forest type is

maple/beech/birch, which comprises about 50% of

the forested landscape, and includes species such as

sugar maple (Acer saccharum L.), red maple, (Acer

rubrum L.), American beech (Fagus grandifolia), and

paper birch (Betula papyrifera Marshall). The north-

ern part of the landscape is dominated by aspen

(Populus tremuloides and P. grandidentata Michx.),

paper birch, black spruce (Picea glauca (Moench)

Voss), white spruce (Picea mariana (Mill.) Britton,

Sterns & Poggenburg), and balsam fir (Abies balsamea

L. (Mill.)). Oak (Quercus spp.) and hickory (Carya

spp.) forests dominate in the southern portion. The

western portion of the landscape is primarily aspen/

birch, while the eastern is a mix of elm (Ulmus spp.),

ash (Fraxinus spp.) and black cottonwood (Populus

deltoides W.Bartram ex Humphry Marshall). White

(Pinus strobus L.), red (Pinus resinosa Ait.), and jack

(Pinus banksiana Lam.) pines are scattered throughout

the landscape. Soil parent materials are glacially-

derived and range from sandy outwash of Valders age

in the southeastern portion of the county to silt-capped

Cary drumlins in the west and northwest (Milfred et al.

1967). The study region has a humid, continental

climate with warm summers and cold, snowy winters

(Kottek et al. 2006). Average monthly temperature

ranges from - 10 �C in January to 20 �C in July, and

mean annual precipitation is 79 cm, based on our

analysis of gridded weather observations (Abatzoglou

2013).

Simulation modeling

In our study, we used LANDIS-II v6.2 (Scheller et al.

2007), a spatially explicit, mechanistic simulation

model that simulates the effects of climate on species

dynamics and disturbance regimes. In LANDIS-II, the

landscape is comprised of interconnecting grid cells.

Each raster cell is assigned to a climate region (within

which climate is assumed to be homogenous) and

within each cell, trees are represented as species-age

cohorts, not individuals (Mladenoff 2004). There may

be multiple species and age cohorts within each cell,

cFig. 1 Study landscape in north-central Minnesota as delin-

eated by the Menominee Nation and surrounding watersheds,

encompassing an area of 2.2 million hectares
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though the exact location is not determined (i.e.

LANDIS-II is non-spatial within a cell); species-age

cohorts are dynamic over time. Successional dynamics

are projected by simulating cohort growth, competi-

tion, establishment and mortality, as dictated by life

history attributes (Roberts 1996).

We created an initial map of species composition

and species’ age at a resolution of 1 ha, by imputing

USDA Forest Inventory and Analysis data onto maps

of forest types and stand age (Online Appendix 1). We

included 36 tree species in our map, choosing the

species with the largest biomass in the FIA database.

Several less-common species, such as butternut (Ju-

gans cinerea L.) and serviceberries (Amelanchier

spp.) were included based on their cultural importance

(Dockry et al. 2016).

Forest succession and C dynamics

We used the Net Ecosystem Carbon and Nitrogen

Succession extension (v6.0) of LANDIS-II (hereafter

referred to as ‘NECN’) to simulate forest succession

(Scheller et al. 2011; Lucash et al. 2017). This

extension simulates aboveground (leaves and wood)

and belowground (fine roots and coarse roots) growth

of each cohort on each site on a monthly basis

(Scheller et al. 2011). It calculates growth using

algorithms that integrate cohort age, species-specific

life history attributes (e.g., longevity, shade tolerance),

competition (i.e. the biomass of other cohorts relative

to the amount of maximum potential biomass), climate

(e.g., air temperature, precipitation), and soils (e.g.,

drainage, soil water, and N availability). The NECN

extension simulates tree mortality caused by senes-

cence (continuous loss of leaves and branches) and age

(which accounts for the higher levels of mortality as a

cohort approaches its life expectancy). It also simu-

lates water availability within each cell using a simple

water bucket model. Finally, it simulates regeneration

via seeds or resprouting using species’ life history

attributes (e.g., age to sexual maturity, effective and

maximum seed dispersal distances), water availabil-

ity, and competition (Scheller et al. 2007). A double

exponential algorithm with effective distance and

maximum distance is used to determine the probability

that the parent cohort’s seeds will reach another cell on

the landscape, assuming that the cohort has reached

sexual maturity (He and Mladenoff 1999). If the grid

cell exceeds the effective dispersal distance, then the

probability of the effective seeding distance effec-

tively becomes one.

The NECN extension simulates C and N cycling in

the vegetation (leaf, wood, fine roots, and coarse roots

by species and age), detritus (foliar, woody, fine root,

and coarse root detritus), and soils (fast, slow, and

passive soil pools) (Scheller et al. 2011, 2012).

Decomposition rates are a function of litter quantity,

quality (e.g., leaf C/N ratios and lignin content), and

soil conditions (e.g., soil moisture, temperature, and

soil texture), as specified by the algorithms from the

CENTURY soil model v 4.5 (Parton et al. 1983, 1994).

The N released via decomposition or added to the soil

via N deposition can either be taken up by the

vegetation or leached out of the system (Lucash et al.

2014).

Previous versions of NECN used large, homoge-

neous soil regions; these are not included in NECN

version 5, allowing soil characteristics to vary at the

site-scale (1 ha). In simulating both aboveground

(e.g., growth, mortality, regeneration) and below-

ground processes (e.g., decomposition and N miner-

alization) using a spatially-interactive framework,

LANDIS-II can simulate landscape-level changes in

species composition and resilience as a property of

climate, succession, and disturbance. Details of NECN

parameterization, calibration, and validation are out-

lined in Online Appendix 2.

Climate data

For the sake of computational efficiency, LANDIS-II

uses areas of homogenous climate, typically referred

to as ‘‘ecoregions’’ or ‘‘climate regions’’ (Scheller

et al. 2007), rather than assimilating standard gridded

climate data. Determining an appropriate number,

shape and size of climate regions can be somewhat

subjective and often depends on the research objec-

tives, data availability, and topographic variation. To

provide an objective basis for the aggregation of

weather data into climate regions, we performed two

separate analyses. First, we performed a geostatistical

analysis of the historical (1979–2010) weather data

over the modeling domain to identify the optimal scale

required to capture the main spatial variability in the

landscape’s climate. Using variograms to estimate the

spatial correlation structure and spatial dependence of

gridMET temperature and precipitation observations

(Hengl 2006), we found an optimal spatial resolution
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of 25 km, i.e. each region should cover an area of

approximately 625 km2. Next, we performed a spatial

cluster analysis on the historical weather data to

determine an optimal spatial configuration for the

climate regions of this size. The resulting map of

climate regions, within each of which the climate is

considered to be homogenous, contains 38 climate

regions, such that the average area of the clusters was

the target 625 km2 (Online Appendix 3).

For climatic conditions representative of the recent

historical period, we calculated daily temperature and

precipitation from the University of Idaho gridMET

4-km daily gridded observational analysis (Abat-

zoglou 2013) for each climate region. Weather data

for the ‘‘historical’’ climate scenario were randomly

selected, one calendar year at a time, from this dataset

for the full length of the 100-year LANDIS-II run.

To simulate future climate change, we used

projections from the Multivariate Adapted Con-

structed Analogs product (MACA) (Abatzoglou and

Brown 2012), a suite of 40 high resolution (4-km)

daily gridded climate projections to year 2099 that

have been generated by statistically downscaling

global climate model projections from Phase 5 of the

Coupled Model Intercomparison Project (CMIP5,

Taylor et al. 2012). For this study we selected five

future climate scenarios to roughly span the range of

projected growing season average temperature and

precipitation over the study region. The selected

models and emissions scenarios—CCSM4 RCP4.5

(less warming ? drier), bcc-csm1-1 RCP4.5 (less

warming ? wetter), HadGEM2-ES365 RCP8.5 (more

warming ? drier), CSIRO-Mk3-6-0 RCP8.5 (more

warming ? wetter), and MIROC-ESM RCP4.5 (near

ensemble mean)—were chosen using methods devel-

oped by (Vano et al. 2015) and are shown in Online

Appendix 4.

Description and parameterization of wind

extensions

The Base Wind Extension v2.1.2 (Scheller and

Domingo 2003) was used to simulate small-moderate

(4–1000 ha) patches of microburst wind disturbance

with patches averaging 70 ha in size. In this extension,

wind disturbance is age-dependent, with the highest

mortality in the oldest cohorts. The Linear Wind

Extension v1.0 (Gustafson 2016) was used to simulate

large wind events (i.e. derechos and tornados). Each

wind event is simulated by randomly choosing an

orientation from a directionality distribution and

placing a line segment on the landscape; cells are

damaged parallel to the line. The width of the

disturbance is based on the type of event (i.e. derecho

or tornado). Wind damage decreases linearly with

distance from the line segment with stochasticity

introduced by an intensity variation parameter that

controls the relative variability within a wind event.

Both wind extensions were run and calibrated simul-

taneously under historic climate to match the mean

annual area disturbed by high severity wind events

(3000 ha, Zhang et al. 1999; Frelich 2002; White and

Host 2008) using the procedures outlined in Online

Appendix 2. Our annual high severity disturbance rate

was 0.15%/year, which was similar to the literature

mean (0.12) and fell within the range of reported

values (0.05 to 0.18, Zhang et al. 1999; Frelich 2002;

White and Host 2008). In our simulations, the mean

wind event size was 154 ha, the maximum historical

wind event was 52,633 ha (similar to the observed

value of 43,915 in the Chequamegon-Nicolet, Linda

Parker pers comm), and the mean wind rotation period

was 207 years. The wind regime did not vary by

climate scenario, wind projections under future cli-

mate regimes were not publicly available at the time

the study was initiated.

Measurement of engineering resilience

To calculate engineering resilience, we quantified the

degree to which total biomass and species composition

returned to the pre-disturbance state after a severe

windstorm using the methods developed by Duveneck

and Scheller (2016) and later revised by Lucash et al.

(2017). For each simulation, we quantified resilience

for only those cells that experienced at least a 70%

reduction in live aboveground biomass during a wind

event (Lucash et al. 2017); the sample size for each

simulation averaged 2267 ha. In those cells, we

calculated resilience in * 2050 and * 2100 to get

an estimate of how mid-century and end-of-century

landscape change might differ. Since a small number

of cells were disturbed in any given simulation year

and we wanted to capture the stochasticity of wind

events and reproduction, we calculated resilience at

2041–2050 (i.e. 2050 or mid-century) and 2091–2100

(2100 or late century). Specifically, we measured

wind-disturbed cells 1 year before the windstorm (in
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year 2000–2009 and 2040–2049), immediately fol-

lowing the wind event (years 2001–2010 and

2041–2050), and * 50 years after the event (years

2051–2060, 2091–2100), omitting cells that were

disturbed multiple times by wind (Fig. 2). We did

consider including cells that experienced repeated

windstorms, but these events were extremely rare

given the short duration of our recovery period

(50 years) and the age dependence of wind mortality

(i.e. older cohorts are most vulnerable to wind

mortality).

In these wind-disturbed cells, we quantified the

degree to which total biomass and species composition

recovered to the initial conditions in the cell. We

calculated the Bray–Curtis index of dissimilarity

(Eq. 1) as an index of changes in species composition

over time,

BCjk ¼ 1� 2Cjk

Tj þ Tk

� �
ð1Þ

where BCjk = Bray–Curtis index of dissimilarity

between time j and k (calculated using the vegan-

community ecology package in R (Oksanen et al.

2013) (Team 2014), Cjk = sum of minimum biomass

between time j and time k for only those species in

common at the two time periods, Tj = total biomass at

time j, Tk = total biomass at time k.

We relativized the changes in total biomass (Eq. 2)

so they had the same range as the Bray–Curtis index (0

to 1, with 1 being the most dissimilar).

Bjk ¼
Bk�Bj

Bj

ð2Þ

This allowed us to use the Euclidean distance

(Eq. 3) between the initial and final time periods as a

Fig. 2 Immediately after the wind event, there is a large

reduction in biomass and a large change in species composition

(labelled ‘‘post-windstorm’’). In the years following the

windstorm, biomass and species composition move closer to

pre-wind conditions. In the final year, the minimum Euclidean

distance from the final point (year 2050 or 2100) to the origin

(2000 or 2050) is calculate, represented as a double arrow line

(Rjk). Resilience is quantified by subtracting each distance from

the maximum Euclidean distance (H2) to create an index where

1.414 is the most resilient (both total biomass and species

composition returned to the initial conditions) and zero is the

least resilient (indicates that there was no regeneration after

50 years)
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measure of resilience for each disturbed raster cell

(Fig. 2).

Rjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
jk

� �
þ BC2

jk

� �r
ð3Þ

where Rjk = index of resilience between year j and k,

Bjk = relative total biomass between years j and k and

BCjk = Bray–Curtis index of dissimilarity between

times j and k. We subtracted all our distances (Rjk)

from the maximum Euclidean distance to create an

index where 1.414 is the most resilient (both total

biomass and species composition returned to the initial

conditions) and zero is the least resilient (indicates that

there was no regeneration after 50 years). This

methodology allowed us to produce maps of average

resilience (using ten replicates to capture the stochas-

ticity in wind events and plant dispersal and vegetative

reproduction) for two time frames (2050 and 2010)

and five climate change scenarios.

Boosted regression tree model

A boosted regression tree model (BRT) was used to

determine the relative importance of different drivers

of resilience spatially across the landscape using the

‘gbm’ package in R (Greenwell et al. 2018). We

selected twenty metrics which represented climatic,

biotic, and edaphic factors, as well as metrics of the

disturbance. The metrics of the disturbance (i.e. area

and perimeter) were calculated at the patch scale using

the ‘landscapemetrics’ R package (Hesselbarth et al.

2018). Shannon’s diversity index was calculated using

the ‘vegan’ package (Oksanen et al. 2013). Boosted

regression grows a large number of simple regression

trees, with each successive tree built to reduce the

residual variance in the predictor. Resilience and its

associated covariates were first split into a training

(80%) and testing (20%) dataset and the optimal

number of boosting iterations was calculated for each

climate scenario using the gbm.perf function in R gbm

(Greenwell et al. 2018). In our final boosted regression

function, the number of regression trees, interaction

depth, and cv.folds differed among the scenarios.

Since we had a large number of drivers (20), we

decided to group variables into six categories—(1)

species (N and ANPP), (2) disturbance characteristics

(area and perimeter), (3) distance-to-seed sources of

all species, (4) temperature (mean, spring, summer and

winter), (5) % sand and (6) soil moisture- to gain a

more complete picture of how climate change may

alter the drivers of resilience.

Results

Hypothesis 1 Resilience will decline over time

Surprisingly, wind-disturbed sites did not fully

recover from severe windstorms even under historical

climate scenarios (Fig. 3a) At mid-century (2050),

median resilience (1.0) was 28% lower than the

maximum resilience of 1.414 (Fig. 4). This was due to

relatively large shifts in species’ biomass distribution;

the Bray–Curtis index indicated a recovery of only 10%

relative to potential (Fig. 4). Bigtooth aspen, quaking

aspen cottonwood, and black cherry had higher relative

biomass than initial conditions, while sugar maple, red

pine, pin oak, hemlock, and red maple were lower

(Appendix 5). These large shifts in species composition

occurred in the severely disturbed cells, but when

species composition was examined over the entire

landscape at the end of the century, there were only

subtle changes in species composition. Black cherry,

white cedar, and basswood increased only slightly

compared to initial biomass (Online Appendix 6).

Keeping the duration of the simulation constant at

50 years, we found that our results supported our

hypothesis that resilience was higher at mid-century

(2050) than at the end of the century (2100) (Fig. 3).

Median resilience at 2050 (1.0) was 28% lower than

the maximum resilience (1.414) because of shifts in

species composition, but changes in both total above-

ground biomass and species composition caused an

additional 32% decline in resilience at 2100 (me-

dian = 0.76, Fig. 4). At mid-century, aboveground

biomass fully recovered, but by the end of the century,

biomass only recovered to 80% of initial biomass

(Fig. 4). Biomass recovery was possible after only

50 years, because the mean age of the trees at the start

of the simulation was 53 years.

Resilience was similar among all the climate

scenarios at mid-century, but by 2100, climate

scenarios were significantly different from one another

(Fig. 3b, Kruskallis p value = 0.004, all Dunn tests p

values\ 0.05), likely because of the large sample size

(167,567 disturbed cells across all scenarios). Resi-

lience was especially low for the hot-dry scenario

(HADGEM2), with a median of only 0.63, 55% less
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than maximum resilience of 1.414. The climate

scenario which represented median changes in climate

(MIROC-ESM) also had low resilience (mean =

0.62), similar to the hot-dry climate scenario. Under

climate change, bigtooth aspen and black cherry

increased, and overall the landscape became more

homogenous (Online Appendix 5). At the end of the

century, Shannon’s diversity index was 1.5 under

historical climate and only 1.1 under climate change

(averaged across all scenarios) with the average

number of species per hectare declining from 8.6 to

5.8; Shannon’s diversity index was 1.2 under historical

climate and 1.1 under climate change with the average

number of species declining only from 7.7 to 6.3.

Hypothesis 2 Resilience will vary spatially, with

lower resilience in the southern portion of the

landscape.

As expected, resilience was not uniform across the

landscape By mid-century, resilience was lower in the

southern portion of the landscape (Fig. 5) with differ-

ences in climate, growth rates, and disturbed area. For

example, under the ‘‘warm-wet’’ scenario (bcc), the

southern portion of the landscape had 30% more area

disturbed by wind. Also, the south was 1.7 �C higher,

growth rates were 70% lower and distance-to-seed-

source across all ten species was 30% higher than the

rest of the landscape. Variance between replicates was

Fig. 3 Resilience was measured in: a * 2050 (2041–2050),

50 years after a severe wind event in 2000–2009 and b * 2100

(2091–2100), 50 years after a severe wind event in 2041–2050

under historical climate (no climate change) and five climate

change scenarios: historical 30 years period, bcc-csm1-1

RCP4.5 (less warming ? wetter), CCSM4 (less warm-

ing ? drier), CSIRO-Mk3-6-0 RCP8.5 (more warming ? wet-

ter), HadGEM2-ES365 RCP8.5 (more warming ? drier), and

MIROC-ESM RCP4.5 (near ensemble mean)
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also highest in the southeastern region of the landscape

(Online Appendix 7). This corresponded with higher

variance in area disturbed (? 20%), windstorm

perimeter (? 33%), soil moisture (? 33%) and

distance-to-seed-source (? 27%), but lower variance

in temperature (- 22%) and growth rates (- 10%) in

the southern region. Variance between replicates was

Fig. 4 Deconstructing the resilience measure into its compo-

nents: a change in total biomass and b Bray–Curtis index of

dissimilarity under historical climate (no climate change) and

five climate change scenarios: bcc-csm1-1 RCP4.5 (less

warming ? wetter), CCSM4 (less warming ? drier), CSIRO-

Mk3-6-0 RCP8.5 (more warming ? wetter), HadGEM2-ES365

RCP8.5 (more warming ? drier), and MIROC-ESM RCP4.5

(near ensemble mean). These metrics have been normalized to

go from zero to one, where one indicates complete recovery to

pre-wind conditions
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lower at the end of the century than mid-century,

especially in the southeast.

By the end of the century, low values of resilience

were evident throughout a greater portion of the

landscape (Fig. 5) This occurred even under historical

climate, but was exacerbated under climate change.

Instead of only 5% of the landscape designated as low

resilience (resilience B 0.4) at 2050, 9% of the

landscape was categorized as low resilience under

climate change. The hot-dry scenario (HAD) had the

largest percentage of area classified as low resilience

(20%) with hot-spots of resilience in the southern and

northern portions of the landscape (Fig. 5).

Hypothesis 3 Landscape-level factors (i.e. disturbed

area and distance to seed source) will be important

predictors of resilience by mid-century, but climatic

and edaphic factors will become increasingly impor-

tant by the end of the century, especially under climate

change.

In comparing the relative importance of different

factors in explaining resilience using BRT, we found

that our hypothesis was not well supported. Species’

characteristics (number of species and growth rates)

were the most important factor in driving resilience at

mid-century (Fig. 6, Online Appendix 8). Species’

characteristics explained over half (60%) of the

variation in resilience under historical climate and

about 30% under climate change.

Partial dependencies from the fitted model indicate

that, when other variables were held constant,

resilience was most likely to be higher (not lower)

when there were fewer species (Online Appendix 9).

As expected, the amount of disturbed area was

important at mid-century, explaining between 10

(historical) to 25% (climate change) of the variation

in resilience (Fig. 6). Resilience tended to be highest

in medium-sized wind patches but declined in larger

patch sizes (Online Appendix 9).

Contrary to our hypothesis, distance-to-seed-source

became more (not less) important over time. Distance-

to-seed-source explained 17% of the variation mid-

century and increased to 37% by the end of the century

(35% under historical, 38% under climate change,

Fig. 6). Also, distance-to-seed-source of hardwoods

was a more important factor in driving resilience

Fig. 5 Median resilience for each of the 38 climate regions

under historical climate (no climate change) and five climate

change scenarios at 2050 and 2100. Climate change scenarios

included bcc-csm1-1 RCP4.5 (less warming ? wetter), CCSM4

(less warming ? drier), CSIRO-Mk3-6-0 RCP8.5 (more warm-

ing ? wetter), HadGEM2-ES365 RCP8.5 (more warm-

ing ? drier), and MIROC-ESM RCP4.5 (near ensemble mean)
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(26%) compared to conifers (11%, Online Appendix

8). Basswood, white cedar, paper birch, and red oak

were particularly important at the end of the century in

explaining the variation in the distance-to-seed-

source.

Several drivers became more important under

climate change by the end of the century. As expected,

temperature became more important under climate

change; it explained only 7% of the variation in

resilience under historical climate, but it explained

14% of the variation in resilience under climate

change (Fig. 6). Resilience tended to be higher at

higher temperatures, especially at the end of the

century, though not always (Appendix 9). Soil mois-

ture played a small and consistent role in explaining

variation in resilience (3–4%, Fig. 6), with resilience

associated with higher soil moisture (Online Appendix

9). Since temperature and soil moisture played much

less of a role than expected in resilience, we looked at

the climatic constraints on establishment only (as

opposed to both growth and establishment combined).

The limitations to tree establishment by temperature

and soil moisture were higher (12% and 8% respec-

tively) across all climate change scenarios than under

historical climate, as assessed by the probability of

establishment limitation factors (0–1) in LANDIS-II.

The most important factor in driving resilience

differed among climate scenarios. At mid-century, the

number of species was the most important factor for

the ‘‘wet’’ climate scenarios (bcc and CSIRO), but the

area of the windstorm was the most important factor in

the remaining climate scenarios (CCSM4, HAD,

MIROC), explaining between 29 and 55% of the

variation in resilience (Online Appendix). At the end

of the century, windstorm characteristics explained

most of the variation in the ‘‘wet’’ scenarios (19–22%

for bcc and CSIRO) and ‘‘median’’ scenario (29% in

MIROC). Growth rates (ANPP) were the dominant

driver under historical (26%) and the ‘‘hot-dry’’

(HAD) scenario (14%), respectively. Under the

‘‘warm-dry’’ scenario (CCSM4), the distance-to-

seed-source of paper birch was the most important

driver, explaining 17% of the variation in resilience,

though resilience was higher when distance-to-seed-

source was higher.

In all the climate scenarios, there was a single factor

(either disturbance area or the number of tree species

prior to disturbance) that explained about half of the

variation at mid-century, but two (ANPP plus distur-

bance area or perimeter) factors explained variation at

the end of the century. For example, under the ‘‘hot-

dry’’ climate scenario (HAD), the most important

factor (area) explained 30% of the variation at mid-

century, but at the end of the century, the most

important factor (ANPP) explained only 14% (Online

Appendix).

Discussion

Our results suggest that the resilience of central

Wisconsin’s forests will decline by the end of the

century, especially under the hotter and drier scenarios

of climate change. However, our initial supposition of

the landscape-level characteristics (i.e. distance-to-

seed source and soil moisture) driving resilience was

too simplistic and discounted the importance of

species and disturbance (e.g., number of species,

disturbed area and perimeter) interactions in shaping

resilience. Our research also highlights the utility of

using machine learning (e.g., boosted regression trees

Fig. 6 The relative importance of different drivers of resilience

under historical climate (no climate change) and the average of

five climate change scenarios at 2050 and 2100 as determined by

boosted regression tree analysis. Drivers from Online Appendix

8 were classified into six bins: species characteristics (number of

species and ANPP), disturbance characteristics (area and

perimeter), distance to seed source of all species, temperature

(mean, spring, summer, winter), percent sand, and soil moisture
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or Random Forest) to discern the underlying mecha-

nisms of landscape-scale processes when using com-

plex spatially-interactive and non-deterministic

simulation models like LANDIS-II.

Declines in resilience over time

Our simulations projected that resilience will decline

over the next 50-100 years even under a ‘‘no climate

change’’ scenario (historical climate, Fig. 3). At the

start of the simulation, these forests were generally

young (mean tree age = 53 years) and had relatively

low biomass (6200 g/m2) and therefore we should not

be surprised to see successional momentum drive

landscape change and cause shifts in species compo-

sition. These forests are in transition from the

relatively simple communities that emerged from

extensive logging and fire that characterized the late

19th and early 20th centuries (Rhemtulla et al. 2009b)

to more complex, higher-diversity, and multi-age

forests more typical of older forests in the region

(Rhemtulla et al. 2009a).

By quantifying resilience, which by its very defi-

nition necessitates looking at only disturbed sites,

species composition appeared substantially different

at the end of the century under all our climate

scenarios. For example, severe disturbance promoted

the growth of disturbance-adapted species, like aspen

and black cherry, especially under climate change, and

it appears as if large shifts in species composition are

projected under climate change. However, when the

entire landscape is examined (both disturbed and

undisturbed cells), species composition was relatively

unchanged among the climate scenarios, remaining

dominated by maples and oaks. Studies which focus

on resilience, especially of severely disturbed sites,

may overestimate landscape-scale change under cli-

mate change.

The differences in resilience between climate

scenarios were not predictable based solely on the

climate trends, even at the end of the century. Some

climate scenarios had lower resilience than historical

conditions (e.g., ‘‘less warming and wetter) and others

showed no effect (e.g., ‘‘more warming and wetter’’).

This conflicts with other studies showing a strong

correlation between rising temperatures and declining

resilience. In a previous study, resilience declined

monotonically as the average temperature of the

scenario increased in central Minnesota (Lucash

et al. 2017). Another study found that a low emissions

scenario had no impact on resilience, but a high

emissions scenario (i.e. greater increase in tempera-

ture) reduced resilience in Minnesota and Michigan

(Duveneck and Scheller 2016). In our study, warming

tended to reduce resilience under ‘‘dry’’ scenarios as

expected. However, under the ‘‘wet’’ scenarios, some

warming (‘‘less warming’’, bcc) lowered resilience

compared to historical climate, but ‘‘more warming’’

increased resilience (CSIRO) due to higher biomass

recovery rates. At first glance, this might seem like

model error, since we wouldn’t expect biomass

recovery to decrease under ‘‘less warming’’, when it

increases under ‘‘more warming’’. However, in this

case, species trajectories likely played an indirect role

in explaining biomass recovery after severe distur-

bance. For example, the ‘‘less warming’’ scenario

favored the growth of aspen, which achieves lower

maximum biomass (15,000 g/m2) than many of the

other dominant species (e.g., white pine and red maple

can attain biomass of 33,000 g/m2). This serves as a

reminder that changes in climate interact with succes-

sional trajectories in LANDIS-II and produce emer-

gent behavior not easily predicted based on simple

relationships between temperature and biomass.

Given that management promotes resilience in this

region through harvesting and replanting, we expected

our simulations—that did not include responsive

management strategies- to generate lower resilience

than previous studies which included management.

Forest management practices play an important role in

maintaining species composition in this region. This

landscape is heavily managed, with coppice-cutting to

maintain aspen and clear-cutting followed by replant-

ing to maintain pines (i.e. red, white, and jack pine)

and spruce-fir on federal lands (USDA 2004). Without

management shaping forest recovery, engineering

resilience declines as species trajectories become less

predictable and driven more by climate and soils than

human activity. Instead, our estimate of resilience was

higher than a previous study in Minnesota using the

same methodology. Resilience averaged only 0.8

under historical climate and business-as-usual man-

agement (Lucash et al. 2017), while ours was 1.0, with

both studies using a maximum resilience of 1.414. The

Wisconsin landscape is 50 years younger on average

and is dominated more by hardwoods, which are

expected to be more resilient under climate change

than the boreal species of central MN (Handler et al.
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2014). However, our landscape was less resilient than

northern MN and MI (Duveneck and Scheller 2016),

though they computed resilience at the landscape-

level (* 1.3 for the entire landscape under historical

climate and management) and not uniquely for each

raster cell (as in our study).

Spatial patterns of resilience

The southern end of the landscape had low resilience

and was most vulnerable to species shifts. Many

factors could have contributed to its low resilience,

including warmer temperatures, lower growth rates,

larger wind patches and greater fragmentation due to

the patchwork of forested and agricultural lands.

Fragmentation is often an obstacle to species’ regen-

eration, preventing establishment in suitable climate

habitat and constraining migration in response to

climatic shifts (Collingham and Huntley 2000; Ber-

trand et al. 2011; Meier et al. 2012). Low values of

resilience spread northward by 2100. This suggests

that low resilience might be detected first in the

southern portion of the landscape, but that the entire

landscape is subject to declines in resilience over the

next century due to large shifts in species composition.

We observed a negative correlation between

resilience and variance spatially, but not temporally

within the climate regions. At mid-century, we

observed spatial correspondence between low resi-

lience (Fig. 5) and high variance (Online Appendix 7),

suggesting that as resilience declines, variability may

increase in concert. However, this was not the case

with time, since resilience tended to decrease through-

out the landscape by the end of the century without a

concomitant change in variance. If variation varies

spatially and increases with climate change, as in this

study, it may become increasingly difficult to project

changes in successional trajectories. More quantitative

field studies on rates of seed and vegetative production

across a range of climate, soil and disturbance

conditions will help inform models which rely on

species life history strategies to simulate successional

trajectories.

Drivers of resilience

We found little support for our hypothesis that

landscape factors (i.e. distance-to-seed source and

area of windstorm) would be the most important

predictor of resilience initially, but would decline in

importance over time as climate became more impor-

tant. Instead the relationships were far more compli-

cated. The number of tree species was the most

important factor at mid-century (Fig. 6). However,

higher diversity led to lower resilience, likely because

our metric relied on recovery of species composition,

which is achieved more easily when there are fewer

species. It is important to recognize that the choice of

metric biases the interpretation of resilience. For

example, a system may be considered resilient if the

number of species is chosen as the metric, as compared

to species biomass distribution (in this study) or the

percentage of late successional species (Seidl et al.

2016).

As expected, the size and pattern of wind events

(i.e., area and perimeter) was a critical factor in

explaining resilience. The annual frequency of torna-

dos has increased in the upper Midwest over the past

40 years (Gensini and Brooks 2018) and if this trend

continues as some projections suggest (Diffenbaugh

et al. 2013; Gensini et al. 2014; Tippett et al. 2015),

then windstorms may become an even more important

driver of long-term changes in these forests. Our study

would have been strengthened by downscaled projec-

tions of wind disturbance under climate change, but

they are not yet publicly available.

Distance-to-seed-source was more important in

explaining resilience at the end of the century than

mid-century. Long distances from seed sources are

commonly associated with larger or more severe

disturbances, which can limit post-disturbance recruit-

ment and extend the time it takes for the forest to

recover (e.g., Donato et al. 2009; Harvey et al. 2016;

Tepley et al. 2017), but in our study, the wind rotation

period of high severity events was kept constant.

Instead, our landscape became less resilient by the end

of the century due to successional momentum, rather

than an increase in the size or severity of windstorms.

As disturbance-adapted species became established

after the wind event, the distance to the closest tree of

the same species increased, limiting post-wind

recruitment.

Climate played a much smaller role in driving

resilience at the end of the century than expected based

on field studies illustrating the importance of warming

and low soil moisture (or low climate water deficit) on

post-disturbance tree regeneration (Donato et al. 2016,

Kueppers et al. 2017, Davis et al. 2019). Although the
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model captured the limitations to seedling growth due

to temperature and soil moisture at the cell-scale,

disturbance and species’ characteristics were far more

important at the landscape scale in driving long-term

changes than climate. Climatic signals often appear

strong at smaller spatial scales, but may be harder to

discern at the landscape scale, given the potential for

interactions among successional dynamics, N supply,

water availability, and disturbances and their associ-

ated uncertainties (Reyer et al. 2015). Other factors,

not explored here, such as deer browsing, insect pests,

wildfire, or CO2 fertilization, are likely to further

influence resilience and the direction and magnitude of

species recovery to windthrow.

Using machine learning to improve simulation

modeling

Machine learning is commonly used to improve

parameterization of simulation models (e.g., PECAN,

LeBauer et al. 2013) and used in sensitivity analysis to

isolate the most important parameters in the model.

Machine learning techniques (e.g., boosted regression

trees or Random Forest) could also be used, as in this

study, to analyze output from simulation models by

extracting patterns from data and helping to identify

underlying mechanisms from complex spatial models

like LANDIS-II. This approach can help determine

which processes dominate in the model output, isolate

model errors, and potentially improve the credibility

of the model (Reichstein et al. 2019). Complex models

like LANDIS-II contain spatio-temporal, nonlinear

dynamics and the underlying mechanisms are difficult

to discern using simple regression or correlative

techniques, which remain the norm for analyzing

simulation model output (Duveneck and Scheller

2016; Duveneck and Thompson 2017; Lucash et al.

2017, for exception see Perry et al. 2015).

In our study, careful consideration was given to the

model inputs and outputs included in our boosted

regression tree, recognizing that previous time steps

contain ‘‘memory effects’’ and neighboring grid cells

influence the output. For example, we used an average

temperature of the 50-year period, along with the

average spring, summer and winter temperatures,

recognizing that these will differ among the climate

change scenarios. The challenges to isolating mech-

anisms may not be completely solved by machine

learning, however. For example, the importance of

distance-to-seed-source may encapsulate the temper-

ature and soil moisture limitation to establishment and

obscure the role of these variables in driving

resilience. While recognizing they are not a panacea,

we suggest that adoption of machine learning tech-

niques in concert with simulation modeling output are

a vast improvement over simple correlative metrics

and will help determine which factors are driving

temporal and spatial patterns, help eliminating model

errors and ultimately make models better and make the

mechanisms more transparent.

Conclusions

Our work highlights the important role of disturbance

and dispersal in shaping the temporal and spatial

pattern of forest succession and resilience under

climate change. We also recommend the more wide-

spread use of machine learning, especially boosted

regression tree and Random Forest, to discern the

relative importance of underlying mechanisms in

complex simulation models.
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