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Abstract

Context Resilience is a concept central to the field of
ecology, but our understanding of resilience is not
sufficient to predict when and where large changes in
species composition might occur following distur-
bances, particularly under climate change.

Objectives Our objective was to estimate how wind
disturbance shapes landscape-level patterns of engi-
neering resilience, defined as the recovery of total
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biomass and species composition after a windstorm,
under climate change in central Wisconsin.

Methods We used a spatially-explicit, forest simu-
lation model (LANDIS-II) to simulate how wind-
storms and climate change affect forest succession and
used boosted regression tree analysis to isolate the
important drivers of resilience.

Results At mid-century, biomass fully recovered to
current conditions, but neither biomass nor species
composition completely recovered at the end of the
century. As expected, resilience was lower in the
south, but by the end of the century, resilience was low
throughout the landscape. Disturbance and species’
characteristics (e.g., the amount of area disturbed and
the number of species) explained half of the variation
in resilience, while temperature and soil moisture
comprised only 17% collectively.

Conclusions Our results illustrate substantial spatial
patterns of resilience at landscape scales, while doc-
umenting the potential for overall declines in resilience
through time. Species diversity and windstorm size
were far more important than temperature and soil
moisture in driving long term trends in resilience.
Finally, our research highlights the utility of using
machine learning (e.g., boosted regression trees) to
discern the underlying mechanisms of landscape-scale
processes when using complex spatially-interactive
and non-deterministic simulation models.

Keywords Climate change - Windstorms -
Resilience - Forest simulation model - LANDIS-II
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Introduction

Natural disturbances, such as windstorms, wildfire and
insect outbreaks, cause pulses of mortality that can
have lasting effects on forest dynamics and succession
(Carpenter and Turner 2000). Forest management has
historically tried to suppress or prevent natural distur-
bances to provide a consistent supply of ecosystem
services such as pulpwood and water supply (Holling
and Meffe 1996). Now recognizing the futility of this
approach, especially with impending changes in
climate, managers and scientists have turned to
resilience as a guiding theme of natural resource
management (e.g., Scheffer et al. 2001; Folke et al.
2004; Rist and Moen 2013; Bone et al. 2016). By
definition, resilience encompasses both stability and
dynamism, recognizing that the ability of an ecosys-
tem to recover from disturbance is influenced by the
characteristics of the disturbance regime, climate, and
ecosystem structure (Gunderson 2000), as well as
human activities (Preise et al. 2018). Fostering
resilience, especially within a value-explicit frame-
work (Higuera et al. 2019), has the potential to
promote adaptive management, help prioritize man-
agement efforts, and treat disturbances as a manage-
ment opportunity rather than something to be avoided
(Seidl et al. 2016).

Applying the concept of resilience in natural
resources, however, has proven difficult because there
is still not agreement within the ecological community
about how to define resilience (Folke et al. 2004;
Brand and Jax 2007; Grimm and Calabrese 2011;
Newton and Cantarello 2015; Quinlan et al. 2016).
Based on the framework outlined in (Newton and
Cantarello 2015), resilience can be divided into
engineering resilience (i.e. time required for a system
to return to an equilibrium point following a distur-
bance event, e.g., Pimm 1984; Holling and Meffe
1996) or ecological resilience, which is defined as the
amount of disturbance that a system can absorb before
changing to another stable state (e.g., transitioning
from hardwood to conifer-dominated forests, Gunder-
son 2000; Holling and Gunderson 2002; Brand and Jax
2007). In the Upper Midwest, engineering resilience,
hereafter referred to as resilience, is an appropriate
lens, given this is a region where we expect species
reorganization (Scheller and Mladenoff 2005; Scheller
et al. 2011; Swanston et al. 2018) more than shifts in
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ecological states (for exception see Lenihan et al.
2008; Frelich and Reich 2009).

Resilience is often quantified by measuring tree
regeneration several decades after a disturbance,
however, these limited field measurements cannot
account for the nonlinear temporal dynamics in
recovery. Chronosequence approaches are better able
to capture temporal variation in resilience by substi-
tuting time for space, (e.g., Letcher and Chazdon
2009; Bhaskar et al. 2018), but capturing the full range
of disturbance frequency, size, and intensity is chal-
lenging with field sampling. By comparison, spatially
explicit, forest landscape simulation models can
project both the timing and severity of disturbance
events (He 2008) and identify areas where a lack of
resilience may hinder re-establishment of forest com-
munities across large areas and long time scales
(Serra-Diaz et al. 2018). Models have the added
advantage of being able to incorporate how climate
change may affect resilience (Duveneck and Scheller
2016; Lucash et al. 2017), either directly (e.g.,
temperature effects on growth and regeneration) or
indirectly via climate-mediated disturbances.

Resilience is often quantified after wildfire (e.g.,
Stevens-Rumann et al. 2018) or deforestation (e.g.,
Zemp et al. 2017), but it is less often quantified
following other types of disturbances. Windthrow is
the most important natural disturbance in the upper
Midwest (i.e. Minnesota, Wisconsin, Michigan, USA,
Frelich 2002). Wind events range in size from small-
scale patches (< 1 ha) to large, intense events, like
tornados and derechos, which are widespread and fast-
moving windstorms. Severe windstorms (> 70%
overstory mortality) have a return interval ranging
from 500 to 1200 years in the upper Midwest (Canham
and Loucks 1984; White and Host 2008), but return
intervals are closer to 50 years if all wind events are
considered (Frelich 2002). Although wind events are
common throughout the region, resilience after wind-
storms is most often quantified after a specific
mortality event, e.g., a particularly notable and/or
large storm, such as the 1999 blowdown in the
Boundary Waters Canoe Area (Nelson et al. 2009),
without considering landscape context and the non-
linear patterns of recovery.

Forests undergo substantial reorganization after a
wind event, a time when changes in successional
trajectories and growth rates are mediated by temporal
trends in site conditions (Everham and Brokaw 1996).
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Shade intolerant and disturbance-adapted species
often have a competitive advantage because of
increases in light availability following canopy
removal (Curtis 1959). However, the establishment
of these species may be limited by seed production,
dispersal and/or edaphic conditions (Bazzaz 1979),
especially after large wind events or in areas that are
already fragmented due to large clear-cuts or large
areas of agricultural production. As trees establish
following disturbance, biomass accumulates and
competition for light intensifies. Even though these
overall trends after disturbance appear straightfor-
ward, the spatial pattern and timing of forest recovery
are often difficult to predict over time. Interactions
among edaphic (e.g., soil moisture, nitrogen avail-
ability), climatic (e.g., temperature), life history
strategies (e.g., shade tolerance, seed production and
dispersal), disturbance history (e.g., frequency, sever-
ity and size), legacy effects, and competition among
tree species create many possible successional trajec-
tories (Frelich 2002), especially when overlain with
temporal trends in temperature and precipitation.
Forests in northern Minnesota, for example, are
currently well-buffered against shifts in species com-
position, but resilience may decline as temperatures
rise under climate change (Duveneck and Scheller
2016), especially in areas with low soil moisture
(Lucash et al. 2017). The severity and extent of
disturbances may hinder recovery after windstorms by
increasing distance to seed source, as has been shown
with severe wildfires (e.g., Donato et al. 2016; Tepley
et al. 2017). Currently our understanding of the factors
conferring resilience is not sufficient to project when
and where large changes in species composition might
occur following disturbances and where biomass
recovery might be altered by climate change.
Quantifying the spatial pattern of resilience, by its
very definition, assumes that the goal is to return a
landscape to an equilibrium state following a distur-
bance event. However, forests are dynamic across
time and space. The upper Midwest has a long history
of logging and attempted agricultural production,
which resulted in the current patchwork of public,
private and tribal lands, with unproductive agricultural
areas often reverting to the state and federal govern-
ments and more productive land remaining in private
ownership (Dickmann and Leefers 2016). Because of
fire suppression policies coupled with extensive pine
planting efforts of Civilian Conservation Corps, and

the current focus on timber production, this region is
now a spatially-heterogeneous landscape of young
(median age = 53 years) mixed hardwoods and boreal
conifers across multiple ownerships with different
goals and objectives. The northern and central portions
of the landscape are mostly forested under federal or
tribal ownership, while the southern portion is highly
fragmented with a mix of forested and agricultural
lands, mostly under private ownership. This landscape
context sets the stage and is not necessarily an
“equilibrium point”, but rather a reference point of
current conditions by which we can quantify where
forests may remain resilient under a changing climate.

We focused on forest resilience in central Wiscon-
sin, since there are concerns about how rising
temperatures will affect forest sustainability and
economics, recreation and water quality in this region
(Janowiak et al. 2014). Recent IPCC ARS projections
suggest that average annual temperatures in WI will
increase by 5 °C while precipitation will increase by
5%, averaged across 44 global circulation models and
RCPs over the next hundred years (http://cida.usgs.
gov/gdp/). Temperatures are projected to increase
more in the winter than the rest of the season and the
growing season is projected to lengthen (Janowiak
et al. 2014). Rising temperatures and longer growing
seasons may increase evapotranspiration and result in
lower soil water availability or the projected increases
in precipitation may compensate and soil moisture
may increase or be unaffected (Seneviratne et al.
2010). Changes in soil moisture may drive changes in
species composition in this landscape, given that this
region is dominated by drought-sensitive hardwoods.
Also, boreal species, including paper birch, trembling
aspen, and black spruce, are projected to decline in this
region under climate change since they are near their
southern temperature and moisture-driven range
(Iverson et al. 1999; Scheller and Mladenoff 2005;
Frelich and Reich 2010). These boreal species are
critical for maintaining wildlife habitat and timber
harvesting, and have strong cultural meaning to
indigenous communities in the region (Dockry et al.
2016).

Our overarching objective was to estimate how
disturbance shapes landscape-level patterns of resi-
lience under climate change. Few studies have quan-
tified the spatial pattern of resilience (see Lucash et al.
2017 for an exception) despite its importance (Cum-
ming 2011; Allen et al. 2016). We focused on metrics
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reflecting engineering resilience, quantifying how
close the biomass and species composition of a site
recovered to a pre-disturbance conditions following
wind disturbance (Duveneck and Scheller 2016). To
do so, we used a spatially-explicit, forest simulation
model (LANDIS-II) that simulates how windstorms
and climate change affect forest growth, mortality,
regeneration, and above- and belowground cycling of
water, carbon, and nitrogen. We hypothesized that (1)
resilience will decline over time (i.e. lower resilience
at 2100 than 2050), especially under climate change,
based on previous studies in Minnesota and Michigan
(Duveneck and Scheller 2016; Lucash et al. 2017), (2)
resilience will vary spatially, with lower resilience in
the southern, more highly-fragmented area of the
landscape due to higher distance to seed source, and
(3) landscape-level characteristics (i.e. area of wind-
storm, distance-to-seed source) will be important
predictors of resilience by mid-century, but climatic
and edaphic factors (i.e. air temperature, soil moisture)
will become increasingly important and drive resi-
lience under climate change by the end of the century.

Methods
Site description

Our study landscape contains ~ 2 million hectares of
land in central Wisconsin, about forty-five miles
northwest of Green Bay, Wisconsin (Fig. 1). This
landscape is an ideal location to explore the ecological
impacts of climate change for three reasons. First, the
“tension zone” falls within our landscape (Kucharik
et al. 2010), characterized by steep climatic gradients
and ecotonal boundaries, wherein small changes in
temperature and precipitation are expected to drive
sizeable shifts in species composition (Curtis 1959).
Second, Wisconsin has already experienced warming
of 0.3-1.2 °C and a 10-15% increase in precipitation
over the past century (Janowiak et al. 2014), and an
additional 5 °C rise in temperature and 5% increase in
precipitation are predicted over the next 100 years
(http://cida.usgs.gov/gdp/). Finally, the study area
includes the Menominee Reservation, home to a tribal
nation widely recognized for their sustainable forest
management (Dockry et al. 2016).

This landscape is located at the nexus between
northern hardwoods and boreal forest, with forests
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Fig. 1 Study landscape in north-central Minnesota as delin-p
eated by the Menominee Nation and surrounding watersheds,
encompassing an area of 2.2 million hectares

occupying approximately 42% of the area
(220,000 ha). The most common forest type is
maple/beech/birch, which comprises about 50% of
the forested landscape, and includes species such as
sugar maple (Acer saccharum L.), red maple, (Acer
rubrum L.), American beech (Fagus grandifolia), and
paper birch (Betula papyrifera Marshall). The north-
ern part of the landscape is dominated by aspen
(Populus tremuloides and P. grandidentata Michx.),
paper birch, black spruce (Picea glauca (Moench)
Voss), white spruce (Picea mariana (Mill.) Britton,
Sterns & Poggenburg), and balsam fir (Abies balsamea
L. (Mill.)). Oak (Quercus spp.) and hickory (Carya
spp.) forests dominate in the southern portion. The
western portion of the landscape is primarily aspen/
birch, while the eastern is a mix of elm (Ulmus spp.),
ash (Fraxinus spp.) and black cottonwood (Populus
deltoides W.Bartram ex Humphry Marshall). White
(Pinus strobus L.), red (Pinus resinosa Ait.), and jack
(Pinus banksiana Lam.) pines are scattered throughout
the landscape. Soil parent materials are glacially-
derived and range from sandy outwash of Valders age
in the southeastern portion of the county to silt-capped
Cary drumlins in the west and northwest (Milfred et al.
1967). The study region has a humid, continental
climate with warm summers and cold, snowy winters
(Kottek et al. 2006). Average monthly temperature
ranges from — 10 °C in January to 20 °C in July, and
mean annual precipitation is 79 cm, based on our
analysis of gridded weather observations (Abatzoglou
2013).

Simulation modeling

In our study, we used LANDIS-II v6.2 (Scheller et al.
2007), a spatially explicit, mechanistic simulation
model that simulates the effects of climate on species
dynamics and disturbance regimes. In LANDIS-II, the
landscape is comprised of interconnecting grid cells.
Each raster cell is assigned to a climate region (within
which climate is assumed to be homogenous) and
within each cell, trees are represented as species-age
cohorts, not individuals (Mladenoff 2004). There may
be multiple species and age cohorts within each cell,
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though the exact location is not determined (i.e.
LANDIS-II is non-spatial within a cell); species-age
cohorts are dynamic over time. Successional dynamics
are projected by simulating cohort growth, competi-
tion, establishment and mortality, as dictated by life
history attributes (Roberts 1996).

We created an initial map of species composition
and species’ age at a resolution of 1 ha, by imputing
USDA Forest Inventory and Analysis data onto maps
of forest types and stand age (Online Appendix 1). We
included 36 tree species in our map, choosing the
species with the largest biomass in the FIA database.
Several less-common species, such as butternut (Ju-
gans cinerea L.) and serviceberries (Amelanchier
spp.) were included based on their cultural importance
(Dockry et al. 2016).

Forest succession and C dynamics

We used the Net Ecosystem Carbon and Nitrogen
Succession extension (v6.0) of LANDIS-II (hereafter
referred to as ‘NECN’) to simulate forest succession
(Scheller et al. 2011; Lucash et al. 2017). This
extension simulates aboveground (leaves and wood)
and belowground (fine roots and coarse roots) growth
of each cohort on each site on a monthly basis
(Scheller et al. 2011). It calculates growth using
algorithms that integrate cohort age, species-specific
life history attributes (e.g., longevity, shade tolerance),
competition (i.e. the biomass of other cohorts relative
to the amount of maximum potential biomass), climate
(e.g., air temperature, precipitation), and soils (e.g.,
drainage, soil water, and N availability). The NECN
extension simulates tree mortality caused by senes-
cence (continuous loss of leaves and branches) and age
(which accounts for the higher levels of mortality as a
cohort approaches its life expectancy). It also simu-
lates water availability within each cell using a simple
water bucket model. Finally, it simulates regeneration
via seeds or resprouting using species’ life history
attributes (e.g., age to sexual maturity, effective and
maximum seed dispersal distances), water availabil-
ity, and competition (Scheller et al. 2007). A double
exponential algorithm with effective distance and
maximum distance is used to determine the probability
that the parent cohort’s seeds will reach another cell on
the landscape, assuming that the cohort has reached
sexual maturity (He and Mladenoff 1999). If the grid
cell exceeds the effective dispersal distance, then the
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probability of the effective seeding distance effec-
tively becomes one.

The NECN extension simulates C and N cycling in
the vegetation (leaf, wood, fine roots, and coarse roots
by species and age), detritus (foliar, woody, fine root,
and coarse root detritus), and soils (fast, slow, and
passive soil pools) (Scheller et al. 2011, 2012).
Decomposition rates are a function of litter quantity,
quality (e.g., leaf C/N ratios and lignin content), and
soil conditions (e.g., soil moisture, temperature, and
soil texture), as specified by the algorithms from the
CENTURY soil model v 4.5 (Parton et al. 1983, 1994).
The N released via decomposition or added to the soil
via N deposition can either be taken up by the
vegetation or leached out of the system (Lucash et al.
2014).

Previous versions of NECN used large, homoge-
neous soil regions; these are not included in NECN
version 5, allowing soil characteristics to vary at the
site-scale (1 ha). In simulating both aboveground
(e.g., growth, mortality, regeneration) and below-
ground processes (e.g., decomposition and N miner-
alization) using a spatially-interactive framework,
LANDIS-II can simulate landscape-level changes in
species composition and resilience as a property of
climate, succession, and disturbance. Details of NECN
parameterization, calibration, and validation are out-
lined in Online Appendix 2.

Climate data

For the sake of computational efficiency, LANDIS-II
uses areas of homogenous climate, typically referred
to as “ecoregions” or “climate regions” (Scheller
et al. 2007), rather than assimilating standard gridded
climate data. Determining an appropriate number,
shape and size of climate regions can be somewhat
subjective and often depends on the research objec-
tives, data availability, and topographic variation. To
provide an objective basis for the aggregation of
weather data into climate regions, we performed two
separate analyses. First, we performed a geostatistical
analysis of the historical (1979-2010) weather data
over the modeling domain to identify the optimal scale
required to capture the main spatial variability in the
landscape’s climate. Using variograms to estimate the
spatial correlation structure and spatial dependence of
gridMET temperature and precipitation observations
(Hengl 2006), we found an optimal spatial resolution
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of 25 km, i.e. each region should cover an area of
approximately 625 km?. Next, we performed a spatial
cluster analysis on the historical weather data to
determine an optimal spatial configuration for the
climate regions of this size. The resulting map of
climate regions, within each of which the climate is
considered to be homogenous, contains 38 climate
regions, such that the average area of the clusters was
the target 625 km? (Online Appendix 3).

For climatic conditions representative of the recent
historical period, we calculated daily temperature and
precipitation from the University of Idaho gridMET
4-km daily gridded observational analysis (Abat-
zoglou 2013) for each climate region. Weather data
for the “historical” climate scenario were randomly
selected, one calendar year at a time, from this dataset
for the full length of the 100-year LANDIS-II run.

To simulate future climate change, we used
projections from the Multivariate Adapted Con-
structed Analogs product (MACA) (Abatzoglou and
Brown 2012), a suite of 40 high resolution (4-km)
daily gridded climate projections to year 2099 that
have been generated by statistically downscaling
global climate model projections from Phase 5 of the
Coupled Model Intercomparison Project (CMIP5,
Taylor et al. 2012). For this study we selected five
future climate scenarios to roughly span the range of
projected growing season average temperature and
precipitation over the study region. The selected
models and emissions scenarios—CCSM4 RCP4.5
(less warming + drier), bcc-csml-1 RCP4.5 (less
warming + wetter), HadGEM2-ES365 RCP8.5 (more
warming + drier), CSIRO-Mk3-6-0 RCP8.5 (more
warming + wetter), and MIROC-ESM RCP4.5 (near
ensemble mean)—were chosen using methods devel-
oped by (Vano et al. 2015) and are shown in Online
Appendix 4.

Description and parameterization of wind
extensions

The Base Wind Extension v2.1.2 (Scheller and
Domingo 2003) was used to simulate small-moderate
(4-1000 ha) patches of microburst wind disturbance
with patches averaging 70 ha in size. In this extension,
wind disturbance is age-dependent, with the highest
mortality in the oldest cohorts. The Linear Wind
Extension v1.0 (Gustafson 2016) was used to simulate
large wind events (i.e. derechos and tornados). Each

wind event is simulated by randomly choosing an
orientation from a directionality distribution and
placing a line segment on the landscape; cells are
damaged parallel to the line. The width of the
disturbance is based on the type of event (i.e. derecho
or tornado). Wind damage decreases linearly with
distance from the line segment with stochasticity
introduced by an intensity variation parameter that
controls the relative variability within a wind event.
Both wind extensions were run and calibrated simul-
taneously under historic climate to match the mean
annual area disturbed by high severity wind events
(3000 ha, Zhang et al. 1999; Frelich 2002; White and
Host 2008) using the procedures outlined in Online
Appendix 2. Our annual high severity disturbance rate
was 0.15%/year, which was similar to the literature
mean (0.12) and fell within the range of reported
values (0.05 to 0.18, Zhang et al. 1999; Frelich 2002;
White and Host 2008). In our simulations, the mean
wind event size was 154 ha, the maximum historical
wind event was 52,633 ha (similar to the observed
value of 43,915 in the Chequamegon-Nicolet, Linda
Parker pers comm), and the mean wind rotation period
was 207 years. The wind regime did not vary by
climate scenario, wind projections under future cli-
mate regimes were not publicly available at the time
the study was initiated.

Measurement of engineering resilience

To calculate engineering resilience, we quantified the
degree to which total biomass and species composition
returned to the pre-disturbance state after a severe
windstorm using the methods developed by Duveneck
and Scheller (2016) and later revised by Lucash et al.
(2017). For each simulation, we quantified resilience
for only those cells that experienced at least a 70%
reduction in live aboveground biomass during a wind
event (Lucash et al. 2017); the sample size for each
simulation averaged 2267 ha. In those cells, we
calculated resilience in ~ 2050 and ~ 2100 to get
an estimate of how mid-century and end-of-century
landscape change might differ. Since a small number
of cells were disturbed in any given simulation year
and we wanted to capture the stochasticity of wind
events and reproduction, we calculated resilience at
2041-2050 (i.e. 2050 or mid-century) and 2091-2100
(2100 or late century). Specifically, we measured
wind-disturbed cells 1 year before the windstorm (in
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year 2000-2009 and 2040-2049), immediately fol-
lowing the wind event (years 2001-2010 and
2041-2050), and ~ 50 years after the event (years
2051-2060, 2091-2100), omitting cells that were
disturbed multiple times by wind (Fig. 2). We did
consider including cells that experienced repeated
windstorms, but these events were extremely rare
given the short duration of our recovery period
(50 years) and the age dependence of wind mortality
(i.e. older cohorts are most vulnerable to wind
mortality).

In these wind-disturbed cells, we quantified the
degree to which total biomass and species composition
recovered to the initial conditions in the cell. We
calculated the Bray—Curtis index of dissimilarity
(Eq. 1) as an index of changes in species composition
over time,

BCj = (1 —ﬂ> (1)

T, + Ty

where BCjx = Bray—Curtis index of dissimilarity
between time j and k (calculated using the vegan-
community ecology package in R (Oksanen et al.
2013) (Team 2014), Cjx = sum of minimum biomass
between time j and time k for only those species in
common at the two time periods, T; = total biomass at
time j, Ty = total biomass at time k.

We relativized the changes in total biomass (Eq. 2)
so they had the same range as the Bray—Curtis index (0
to 1, with 1 being the most dissimilar).

B3,

Bjk =
)] B;

(2)

This allowed us to use the Euclidean distance
(Eq. 3) between the initial and final time periods as a

1.00
post-windstorm, 2051

0.75 1 \

50y after windstorm, 2100 .
0.50 '

Q\—{
0.25
000l E— pre-windstorm, 2050

0.00 -0.25 -0.50 -0.75 -1.00

Relative Change in Biomass

Fig. 2 Immediately after the wind event, there is a large
reduction in biomass and a large change in species composition
(labelled “post-windstorm™). In the years following the
windstorm, biomass and species composition move closer to
pre-wind conditions. In the final year, the minimum Euclidean
distance from the final point (year 2050 or 2100) to the origin
(2000 or 2050) is calculate, represented as a double arrow line
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(Rji). Resilience is quantified by subtracting each distance from
the maximum Euclidean distance (\/ 2) to create an index where
1.414 is the most resilient (both total biomass and species
composition returned to the initial conditions) and zero is the
least resilient (indicates that there was no regeneration after
50 years)
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measure of resilience for each disturbed raster cell
(Fig. 2).

Rjk = (B}k) + (Bcfk) (3)

where Rjk = index of resilience between year j and k,
Bjk = relative total biomass between years j and k and
BCjk = Bray—Curtis index of dissimilarity between
times j and k. We subtracted all our distances (Rjk)
from the maximum Euclidean distance to create an
index where 1.414 is the most resilient (both total
biomass and species composition returned to the initial
conditions) and zero is the least resilient (indicates that
there was no regeneration after 50 years). This
methodology allowed us to produce maps of average
resilience (using ten replicates to capture the stochas-
ticity in wind events and plant dispersal and vegetative
reproduction) for two time frames (2050 and 2010)
and five climate change scenarios.

Boosted regression tree model

A boosted regression tree model (BRT) was used to
determine the relative importance of different drivers
of resilience spatially across the landscape using the
‘ebm’ package in R (Greenwell et al. 2018). We
selected twenty metrics which represented climatic,
biotic, and edaphic factors, as well as metrics of the
disturbance. The metrics of the disturbance (i.e. area
and perimeter) were calculated at the patch scale using
the ‘landscapemetrics’ R package (Hesselbarth et al.
2018). Shannon’s diversity index was calculated using
the ‘vegan’ package (Oksanen et al. 2013). Boosted
regression grows a large number of simple regression
trees, with each successive tree built to reduce the
residual variance in the predictor. Resilience and its
associated covariates were first split into a training
(80%) and testing (20%) dataset and the optimal
number of boosting iterations was calculated for each
climate scenario using the gbm.perf function in R gbm
(Greenwell et al. 2018). In our final boosted regression
function, the number of regression trees, interaction
depth, and cv.folds differed among the scenarios.
Since we had a large number of drivers (20), we
decided to group variables into six categories—(1)
species (N and ANPP), (2) disturbance characteristics
(area and perimeter), (3) distance-to-seed sources of
all species, (4) temperature (mean, spring, summer and
winter), (5) % sand and (6) soil moisture- to gain a

more complete picture of how climate change may
alter the drivers of resilience.

Results

Hypothesis 1 Resilience will decline over time

Surprisingly, wind-disturbed sites did not fully
recover from severe windstorms even under historical
climate scenarios (Fig. 3a) At mid-century (2050),
median resilience (1.0) was 28% lower than the
maximum resilience of 1.414 (Fig. 4). This was due to
relatively large shifts in species’ biomass distribution;
the Bray—Curtis index indicated a recovery of only 10%
relative to potential (Fig. 4). Bigtooth aspen, quaking
aspen cottonwood, and black cherry had higher relative
biomass than initial conditions, while sugar maple, red
pine, pin oak, hemlock, and red maple were lower
(Appendix 5). These large shifts in species composition
occurred in the severely disturbed cells, but when
species composition was examined over the entire
landscape at the end of the century, there were only
subtle changes in species composition. Black cherry,
white cedar, and basswood increased only slightly
compared to initial biomass (Online Appendix 6).

Keeping the duration of the simulation constant at
50 years, we found that our results supported our
hypothesis that resilience was higher at mid-century
(2050) than at the end of the century (2100) (Fig. 3).
Median resilience at 2050 (1.0) was 28% lower than
the maximum resilience (1.414) because of shifts in
species composition, but changes in both total above-
ground biomass and species composition caused an
additional 32% decline in resilience at 2100 (me-
dian = 0.76, Fig. 4). At mid-century, aboveground
biomass fully recovered, but by the end of the century,
biomass only recovered to 80% of initial biomass
(Fig. 4). Biomass recovery was possible after only
50 years, because the mean age of the trees at the start
of the simulation was 53 years.

Resilience was similar among all the climate
scenarios at mid-century, but by 2100, climate
scenarios were significantly different from one another
(Fig. 3b, Kruskallis p value = 0.004, all Dunn tests p
values < 0.05), likely because of the large sample size
(167,567 disturbed cells across all scenarios). Resi-
lience was especially low for the hot-dry scenario
(HADGEM?2), with a median of only 0.63, 55% less
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Fig. 3 Resilience was measured in: a ~ 2050 (2041-2050),
50 years after a severe wind event in 2000-2009 and b ~ 2100
(2091-2100), 50 years after a severe wind event in 2041-2050
under historical climate (no climate change) and five climate
change scenarios: historical 30 years period, bcc-csml-1

than maximum resilience of 1.414. The climate
scenario which represented median changes in climate
(MIROC-ESM) also had low resilience (mean =
0.62), similar to the hot-dry climate scenario. Under
climate change, bigtooth aspen and black cherry
increased, and overall the landscape became more
homogenous (Online Appendix 5). At the end of the
century, Shannon’s diversity index was 1.5 under
historical climate and only 1.1 under climate change
(averaged across all scenarios) with the average
number of species per hectare declining from 8.6 to
5.8; Shannon’s diversity index was 1.2 under historical
climate and 1.1 under climate change with the average
number of species declining only from 7.7 to 6.3.
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RCP4.5 (less warming + wetter), CCSM4 (less warm-
ing + drier), CSIRO-Mk3-6-0 RCP8.5 (more warming + wet-
ter), HadGEM2-ES365 RCPS8.5 (more warming + drier), and
MIROC-ESM RCP4.5 (near ensemble mean)

Hypothesis 2 Resilience will vary spatially, with
lower resilience in the southern portion of the
landscape.

As expected, resilience was not uniform across the
landscape By mid-century, resilience was lower in the
southern portion of the landscape (Fig. 5) with differ-
ences in climate, growth rates, and disturbed area. For
example, under the “warm-wet” scenario (bcc), the
southern portion of the landscape had 30% more area
disturbed by wind. Also, the south was 1.7 °C higher,
growth rates were 70% lower and distance-to-seed-
source across all ten species was 30% higher than the
rest of the landscape. Variance between replicates was
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Fig. 4 Deconstructing the resilience measure into its compo-
nents: a change in total biomass and b Bray—Curtis index of
dissimilarity under historical climate (no climate change) and
five climate change scenarios: bcc-csml-1 RCP4.5 (less
warming + wetter), CCSM4 (less warming + drier), CSIRO-

also highest in the southeastern region of the landscape
(Online Appendix 7). This corresponded with higher
variance in area disturbed (+ 20%), windstorm
perimeter (4 33%), soil moisture (+ 33%) and

15! (C) Bray-Curtis 2050
1.0 1 ; (]
[]
0.5 ‘
I Y s Y
0_0_ L ] | 1 L 1 T 1 C 1
(D) 2100

Historical (30y record)

bce (Less warming + Wetter) 1
CCSM4 (Less warming + Drier) 1
MIROC (Median) 1

CSIRO (More warming + Wetter) -
HadGEM2 (More warming + Drier) 1

Mk3-6-0 RCP8.5 (more warming + wetter), HildGEM2-ES365
RCP8.5 (more warming + drier), and MIROC-ESM RCP4.5
(near ensemble mean). These metrics have been normalized to
go from zero to one, where one indicates complete recovery to
pre-wind conditions

distance-to-seed-source (+ 27%), but lower variance
in temperature (— 22%) and growth rates (— 10%) in
the southern region. Variance between replicates was
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Fig. 5 Median resilience for each of the 38 climate regions
under historical climate (no climate change) and five climate
change scenarios at 2050 and 2100. Climate change scenarios
included bee-csm1-1 RCP4.5 (less warming + wetter), CCSM4

lower at the end of the century than mid-century,
especially in the southeast.

By the end of the century, low values of resilience
were evident throughout a greater portion of the
landscape (Fig. 5) This occurred even under historical
climate, but was exacerbated under climate change.
Instead of only 5% of the landscape designated as low
resilience (resilience < 0.4) at 2050, 9% of the
landscape was categorized as low resilience under
climate change. The hot-dry scenario (HAD) had the
largest percentage of area classified as low resilience
(20%) with hot-spots of resilience in the southern and
northern portions of the landscape (Fig. 5).

Hypothesis 3 Landscape-level factors (i.e. disturbed
area and distance to seed source) will be important
predictors of resilience by mid-century, but climatic
and edaphic factors will become increasingly impor-
tant by the end of the century, especially under climate
change.

In comparing the relative importance of different
factors in explaining resilience using BRT, we found
that our hypothesis was not well supported. Species’
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(less warming + drier), CSIRO-Mk3-6-0 RCP8.5 (more warm-
ing + wetter), HadGEM2-ES365 RCP8.5 (more warm-
ing + drier), and MIROC-ESM RCP4.5 (near ensemble mean)

characteristics (number of species and growth rates)
were the most important factor in driving resilience at
mid-century (Fig. 6, Online Appendix 8). Species’
characteristics explained over half (60%) of the
variation in resilience under historical climate and
about 30% under climate change.

Partial dependencies from the fitted model indicate
that, when other variables were held constant,
resilience was most likely to be higher (not lower)
when there were fewer species (Online Appendix 9).
As expected, the amount of disturbed area was
important at mid-century, explaining between 10
(historical) to 25% (climate change) of the variation
in resilience (Fig. 6). Resilience tended to be highest
in medium-sized wind patches but declined in larger
patch sizes (Online Appendix 9).

Contrary to our hypothesis, distance-to-seed-source
became more (not less) important over time. Distance-
to-seed-source explained 17% of the variation mid-
century and increased to 37% by the end of the century
(35% under historical, 38% under climate change,
Fig. 6). Also, distance-to-seed-source of hardwoods
was a more important factor in driving resilience
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Fig. 6 The relative importance of different drivers of resilience
under historical climate (no climate change) and the average of
five climate change scenarios at 2050 and 2100 as determined by
boosted regression tree analysis. Drivers from Online Appendix
8 were classified into six bins: species characteristics (number of
species and ANPP), disturbance characteristics (area and
perimeter), distance to seed source of all species, temperature
(mean, spring, summer, winter), percent sand, and soil moisture

(26%) compared to conifers (11%, Online Appendix
8). Basswood, white cedar, paper birch, and red oak
were particularly important at the end of the century in
explaining the variation in the distance-to-seed-
source.

Several drivers became more important under
climate change by the end of the century. As expected,
temperature became more important under climate
change; it explained only 7% of the variation in
resilience under historical climate, but it explained
14% of the variation in resilience under climate
change (Fig. 6). Resilience tended to be higher at
higher temperatures, especially at the end of the
century, though not always (Appendix 9). Soil mois-
ture played a small and consistent role in explaining
variation in resilience (3—4%, Fig. 6), with resilience
associated with higher soil moisture (Online Appendix
9). Since temperature and soil moisture played much
less of a role than expected in resilience, we looked at
the climatic constraints on establishment only (as
opposed to both growth and establishment combined).
The limitations to tree establishment by temperature

and soil moisture were higher (12% and 8% respec-
tively) across all climate change scenarios than under
historical climate, as assessed by the probability of
establishment limitation factors (0—1) in LANDIS-II.

The most important factor in driving resilience
differed among climate scenarios. At mid-century, the
number of species was the most important factor for
the “wet” climate scenarios (bcc and CSIRO), but the
area of the windstorm was the most important factor in
the remaining climate scenarios (CCSM4, HAD,
MIROC), explaining between 29 and 55% of the
variation in resilience (Online Appendix). At the end
of the century, windstorm characteristics explained
most of the variation in the “wet” scenarios (19-22%
for bee and CSIRO) and “median” scenario (29% in
MIROC). Growth rates (ANPP) were the dominant
driver under historical (26%) and the ‘“hot-dry”
(HAD) scenario (14%), respectively. Under the
“warm-dry” scenario (CCSM4), the distance-to-
seed-source of paper birch was the most important
driver, explaining 17% of the variation in resilience,
though resilience was higher when distance-to-seed-
source was higher.

In all the climate scenarios, there was a single factor
(either disturbance area or the number of tree species
prior to disturbance) that explained about half of the
variation at mid-century, but two (ANPP plus distur-
bance area or perimeter) factors explained variation at
the end of the century. For example, under the “hot-
dry” climate scenario (HAD), the most important
factor (area) explained 30% of the variation at mid-
century, but at the end of the century, the most
important factor (ANPP) explained only 14% (Online
Appendix).

Discussion

Our results suggest that the resilience of central
Wisconsin’s forests will decline by the end of the
century, especially under the hotter and drier scenarios
of climate change. However, our initial supposition of
the landscape-level characteristics (i.e. distance-to-
seed source and soil moisture) driving resilience was
too simplistic and discounted the importance of
species and disturbance (e.g., number of species,
disturbed area and perimeter) interactions in shaping
resilience. Our research also highlights the utility of
using machine learning (e.g., boosted regression trees
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or Random Forest) to discern the underlying mecha-
nisms of landscape-scale processes when using com-
plex spatially-interactive and non-deterministic
simulation models like LANDIS-II.

Declines in resilience over time

Our simulations projected that resilience will decline
over the next 50-100 years even under a “no climate
change” scenario (historical climate, Fig. 3). At the
start of the simulation, these forests were generally
young (mean tree age = 53 years) and had relatively
low biomass (6200 g/m2) and therefore we should not
be surprised to see successional momentum drive
landscape change and cause shifts in species compo-
sition. These forests are in transition from the
relatively simple communities that emerged from
extensive logging and fire that characterized the late
19th and early 20th centuries (Rhemtulla et al. 2009b)
to more complex, higher-diversity, and multi-age
forests more typical of older forests in the region
(Rhemtulla et al. 2009a).

By quantifying resilience, which by its very defi-
nition necessitates looking at only disturbed sites,
species composition appeared substantially different
at the end of the century under all our climate
scenarios. For example, severe disturbance promoted
the growth of disturbance-adapted species, like aspen
and black cherry, especially under climate change, and
it appears as if large shifts in species composition are
projected under climate change. However, when the
entire landscape is examined (both disturbed and
undisturbed cells), species composition was relatively
unchanged among the climate scenarios, remaining
dominated by maples and oaks. Studies which focus
on resilience, especially of severely disturbed sites,
may overestimate landscape-scale change under cli-
mate change.

The differences in resilience between climate
scenarios were not predictable based solely on the
climate trends, even at the end of the century. Some
climate scenarios had lower resilience than historical
conditions (e.g., “less warming and wetter) and others
showed no effect (e.g., “more warming and wetter”).
This conflicts with other studies showing a strong
correlation between rising temperatures and declining
resilience. In a previous study, resilience declined
monotonically as the average temperature of the
scenario increased in central Minnesota (Lucash
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et al. 2017). Another study found that a low emissions
scenario had no impact on resilience, but a high
emissions scenario (i.e. greater increase in tempera-
ture) reduced resilience in Minnesota and Michigan
(Duveneck and Scheller 2016). In our study, warming
tended to reduce resilience under “dry” scenarios as
expected. However, under the “wet” scenarios, some
warming (“less warming”, bcc) lowered resilience
compared to historical climate, but “more warming”
increased resilience (CSIRO) due to higher biomass
recovery rates. At first glance, this might seem like
model error, since we wouldn’t expect biomass
recovery to decrease under “less warming”, when it
increases under “more warming”. However, in this
case, species trajectories likely played an indirect role
in explaining biomass recovery after severe distur-
bance. For example, the “less warming” scenario
favored the growth of aspen, which achieves lower
maximum biomass (15,000 g/m?) than many of the
other dominant species (e.g., white pine and red maple
can attain biomass of 33,000 g/mz). This serves as a
reminder that changes in climate interact with succes-
sional trajectories in LANDIS-II and produce emer-
gent behavior not easily predicted based on simple
relationships between temperature and biomass.
Given that management promotes resilience in this
region through harvesting and replanting, we expected
our simulations—that did not include responsive
management strategies- to generate lower resilience
than previous studies which included management.
Forest management practices play an important role in
maintaining species composition in this region. This
landscape is heavily managed, with coppice-cutting to
maintain aspen and clear-cutting followed by replant-
ing to maintain pines (i.e. red, white, and jack pine)
and spruce-fir on federal lands (USDA 2004). Without
management shaping forest recovery, engineering
resilience declines as species trajectories become less
predictable and driven more by climate and soils than
human activity. Instead, our estimate of resilience was
higher than a previous study in Minnesota using the
same methodology. Resilience averaged only 0.8
under historical climate and business-as-usual man-
agement (Lucash et al. 2017), while ours was 1.0, with
both studies using a maximum resilience of 1.414. The
Wisconsin landscape is 50 years younger on average
and is dominated more by hardwoods, which are
expected to be more resilient under climate change
than the boreal species of central MN (Handler et al.
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2014). However, our landscape was less resilient than
northern MN and MI (Duveneck and Scheller 2016),
though they computed resilience at the landscape-
level (~ 1.3 for the entire landscape under historical
climate and management) and not uniquely for each
raster cell (as in our study).

Spatial patterns of resilience

The southern end of the landscape had low resilience
and was most vulnerable to species shifts. Many
factors could have contributed to its low resilience,
including warmer temperatures, lower growth rates,
larger wind patches and greater fragmentation due to
the patchwork of forested and agricultural lands.
Fragmentation is often an obstacle to species’ regen-
eration, preventing establishment in suitable climate
habitat and constraining migration in response to
climatic shifts (Collingham and Huntley 2000; Ber-
trand et al. 2011; Meier et al. 2012). Low values of
resilience spread northward by 2100. This suggests
that low resilience might be detected first in the
southern portion of the landscape, but that the entire
landscape is subject to declines in resilience over the
next century due to large shifts in species composition.

We observed a negative correlation between
resilience and variance spatially, but not temporally
within the climate regions. At mid-century, we
observed spatial correspondence between low resi-
lience (Fig. 5) and high variance (Online Appendix 7),
suggesting that as resilience declines, variability may
increase in concert. However, this was not the case
with time, since resilience tended to decrease through-
out the landscape by the end of the century without a
concomitant change in variance. If variation varies
spatially and increases with climate change, as in this
study, it may become increasingly difficult to project
changes in successional trajectories. More quantitative
field studies on rates of seed and vegetative production
across a range of climate, soil and disturbance
conditions will help inform models which rely on
species life history strategies to simulate successional
trajectories.

Drivers of resilience
We found little support for our hypothesis that

landscape factors (i.e. distance-to-seed source and
area of windstorm) would be the most important

predictor of resilience initially, but would decline in
importance over time as climate became more impor-
tant. Instead the relationships were far more compli-
cated. The number of tree species was the most
important factor at mid-century (Fig. 6). However,
higher diversity led to lower resilience, likely because
our metric relied on recovery of species composition,
which is achieved more easily when there are fewer
species. It is important to recognize that the choice of
metric biases the interpretation of resilience. For
example, a system may be considered resilient if the
number of species is chosen as the metric, as compared
to species biomass distribution (in this study) or the
percentage of late successional species (Seidl et al.
2016).

As expected, the size and pattern of wind events
(i.e., area and perimeter) was a critical factor in
explaining resilience. The annual frequency of torna-
dos has increased in the upper Midwest over the past
40 years (Gensini and Brooks 2018) and if this trend
continues as some projections suggest (Diffenbaugh
et al. 2013; Gensini et al. 2014; Tippett et al. 2015),
then windstorms may become an even more important
driver of long-term changes in these forests. Our study
would have been strengthened by downscaled projec-
tions of wind disturbance under climate change, but
they are not yet publicly available.

Distance-to-seed-source was more important in
explaining resilience at the end of the century than
mid-century. Long distances from seed sources are
commonly associated with larger or more severe
disturbances, which can limit post-disturbance recruit-
ment and extend the time it takes for the forest to
recover (e.g., Donato et al. 2009; Harvey et al. 2016;
Tepley et al. 2017), but in our study, the wind rotation
period of high severity events was kept constant.
Instead, our landscape became less resilient by the end
of the century due to successional momentum, rather
than an increase in the size or severity of windstorms.
As disturbance-adapted species became established
after the wind event, the distance to the closest tree of
the same species increased, limiting post-wind
recruitment.

Climate played a much smaller role in driving
resilience at the end of the century than expected based
on field studies illustrating the importance of warming
and low soil moisture (or low climate water deficit) on
post-disturbance tree regeneration (Donato et al. 2016,
Kueppers et al. 2017, Davis et al. 2019). Although the
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model captured the limitations to seedling growth due
to temperature and soil moisture at the cell-scale,
disturbance and species’ characteristics were far more
important at the landscape scale in driving long-term
changes than climate. Climatic signals often appear
strong at smaller spatial scales, but may be harder to
discern at the landscape scale, given the potential for
interactions among successional dynamics, N supply,
water availability, and disturbances and their associ-
ated uncertainties (Reyer et al. 2015). Other factors,
not explored here, such as deer browsing, insect pests,
wildfire, or CO, fertilization, are likely to further
influence resilience and the direction and magnitude of
species recovery to windthrow.

Using machine learning to improve simulation
modeling

Machine learning is commonly used to improve
parameterization of simulation models (e.g., PECAN,
LeBauer et al. 2013) and used in sensitivity analysis to
isolate the most important parameters in the model.
Machine learning techniques (e.g., boosted regression
trees or Random Forest) could also be used, as in this
study, to analyze output from simulation models by
extracting patterns from data and helping to identify
underlying mechanisms from complex spatial models
like LANDIS-II. This approach can help determine
which processes dominate in the model output, isolate
model errors, and potentially improve the credibility
of the model (Reichstein et al. 2019). Complex models
like LANDIS-II contain spatio-temporal, nonlinear
dynamics and the underlying mechanisms are difficult
to discern using simple regression or correlative
techniques, which remain the norm for analyzing
simulation model output (Duveneck and Scheller
2016; Duveneck and Thompson 2017; Lucash et al.
2017, for exception see Perry et al. 2015).

In our study, careful consideration was given to the
model inputs and outputs included in our boosted
regression tree, recognizing that previous time steps
contain “memory effects” and neighboring grid cells
influence the output. For example, we used an average
temperature of the 50-year period, along with the
average spring, summer and winter temperatures,
recognizing that these will differ among the climate
change scenarios. The challenges to isolating mech-
anisms may not be completely solved by machine
learning, however. For example, the importance of
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distance-to-seed-source may encapsulate the temper-
ature and soil moisture limitation to establishment and
obscure the role of these variables in driving
resilience. While recognizing they are not a panacea,
we suggest that adoption of machine learning tech-
niques in concert with simulation modeling output are
a vast improvement over simple correlative metrics
and will help determine which factors are driving
temporal and spatial patterns, help eliminating model
errors and ultimately make models better and make the
mechanisms more transparent.

Conclusions

Our work highlights the important role of disturbance
and dispersal in shaping the temporal and spatial
pattern of forest succession and resilience under
climate change. We also recommend the more wide-
spread use of machine learning, especially boosted
regression tree and Random Forest, to discern the
relative importance of underlying mechanisms in
complex simulation models.
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