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Abstract: This paper reviews our most recent results on the reliability of vertical GaN-based 

devices, by presenting a few case studies focused on the stability and degradation of high-voltage 

GaN-on-GaN diodes and of GaN-based FETs. With regard to diodes, two relevant stress conditions 

are investigated: the first is operation at high forward current, that can induce a degradation of the 

electrical properties of the devices, mostly consisting in an increase in the operating voltage, well 

correlated to a decrease in the electroluminescence signal emitted by the diodes. This degradation 

process is ascribed to the diffusion of hydrogen from the highly p-type doped regions towards the 

junction, with consequent compensation of the acceptor (Mg) dopant. The second stress regime 

investigated on diodes is avalanche: specifically, it is shown that polarization-doped GaN devices 

may show avalanche capability, and the stability of diodes in avalanche regime is investigated in 

detail. With regard to transistors, the analysis is focused on GaN-on-GaN vertical Fin-FETs. First, 

the stability of the threshold voltage under positive gate stress is analyzed, and the role of 

interface/oxide traps is discussed by experimental characterization. Then, the degradation under 

positive gate or high-drain stress is investigated, to provide information on the dominant 

degradation processes.  

Ac
ce

pt
ed

 A
rti

cl
eDepartment of Information Engineering, University of Padua,

Ac
ce

pt
ed

 A
rti

cl
eDepartment of Information Engineering, University of Padua,

matteo.meneghini@dei.unipd.it

Ac
ce

pt
ed

 A
rti

cl
e

matteo.meneghini@dei.unipd.it

Ac
ce

pt
ed

 A
rti

cl
e

Cornell University, Ithaca, NY, USA

Ac
ce

pt
ed

 A
rti

cl
e

Cornell University, Ithaca, NY, USA

F LLC, Somerset, New Jersey 08873, USA

Ac
ce

pt
ed

 A
rti

cl
e

F LLC, Somerset, New Jersey 08873, USA

Massachusetts Institute of Technology, Cambridge, MA, USA

Ac
ce

pt
ed

 A
rti

cl
e

Massachusetts Institute of Technology, Cambridge, MA, USA

GaN, vertical, degradation, reliability, defects

Ac
ce

pt
ed

 A
rti

cl
e

GaN, vertical, degradation, reliability, defects

This paper 

Ac
ce

pt
ed

 A
rti

cl
e

This paper reviews

Ac
ce

pt
ed

 A
rti

cl
e

reviews

devices, by presenting a few case studies focused on the stability and degradation of high

Ac
ce

pt
ed

 A
rti

cl
e

devices, by presenting a few case studies focused on the stability and degradation of high

GaN diodes and of GaN

Ac
ce

pt
ed

 A
rti

cl
e

GaN diodes and of GaN

Ac
ce

pt
ed

 A
rti

cl
e

are investigated: the first is operation at high forwar

Ac
ce

pt
ed

 A
rti

cl
e

are investigated: the first is operation at high forwar

electrical properties of the devices, mostly consisting in an increase in the operating voltage, well 

Ac
ce

pt
ed

 A
rti

cl
e

electrical properties of the devices, mostly consisting in an increase in the operating voltage, well 

correlated to a decrease in the electroluminescence signal emitted by the diodes. This degradation 

Ac
ce

pt
ed

 A
rti

cl
e

correlated to a decrease in the electroluminescence signal emitted by the diodes. This degradation 

is ascribed to the diffusion of hydrogen from the highly p

Ac
ce

pt
ed

 A
rti

cl
e

is ascribed to the diffusion of hydrogen from the highly p

junction, with consequent compensation of the acceptor (Mg) dopant. The second stress regime 

Ac
ce

pt
ed

 A
rti

cl
e

junction, with consequent compensation of the acceptor (Mg) dopant. The second stress regime 

investigated on diodes is avalanche: specifically, it is shown that pola

Ac
ce

pt
ed

 A
rti

cl
e

investigated on diodes is avalanche: specifically, it is shown that pola

may show avalanche capability, and the stability of diodes in avalanche regime is investigated in 

Ac
ce

pt
ed

 A
rti

cl
e

may show avalanche capability, and the stability of diodes in avalanche regime is investigated in 

detail. With regard to transistors, the analysis is focused on GaN

Ac
ce

pt
ed

 A
rti

cl
e

detail. With regard to transistors, the analysis is focused on GaN

Ac
ce

pt
ed

 A
rti

cl
e

the stability of the threshold 

Ac
ce

pt
ed

 A
rti

cl
e

the stability of the threshold 

interface/oxide traps is discussed by experimental characterization. Then, the degradation under Ac
ce

pt
ed

 A
rti

cl
e

interface/oxide traps is discussed by experimental characterization. Then, the degradation under 

positive gate or highAc
ce

pt
ed

 A
rti

cl
e

positive gate or high-Ac
ce

pt
ed

 A
rti

cl
e

-drain stress is investigated, to provide information on the dominant Ac
ce

pt
ed

 A
rti

cl
e

drain stress is investigated, to provide information on the dominant 

http://dx.doi.org/10.1002/pssa.201900750
https://onlinelibrary.wiley.com/doi/full/10.1002/pssa.201900750
mailto:matteo.meneghini@dei.unipd.it


  

 This article is protected by copyright. All rights reserved 

1. Introduction 

 

Over the last decade, the research in the field of GaN-based power devices has shown impressive 

advancements. Thanks to the heteroepitaxial growth on silicon substrates, GaN-based high-electron 

mobility transistors (HEMTs) can reach a high performance, while having a relatively low cost. 

Currently, industrial efforts are mainly focused towards GaN lateral FETs, since they can be easily 

fabricated by using a CMOS compatible process. In addition, the use of an AlGaN/GaN 

heterostructure – in presence of large polarization fields – allows to maximize channel conductivity 

and electron density. GaN lateral devices are now commercially available, and target voltages up to 

900 V [1], thus competing with Si- and SiC-based components for consumer and industrial 

electronics, and for the automotive field. The high breakdown field (11 times higher than silicon) 

and the wide energy gap (3.4 eV) allow high voltage and high temperature operation, thus ensuring 

a high reliability to this technology. 

Despite the great potential of GaN lateral devices, they have some limitations, that may slow their 

applicability in the >1 kV range. First, the breakdown voltage of a lateral transistor scales with the 

gate-drain spacing, i.e. with device area. Reaching high breakdown voltages is technically feasible, 

but results in an increase in device area and cost. Increasing device size can also impact on parasitic 

resistance. A second factor that needs to be considered is that lateral devices are very sensitive to 

surface effects. The 2-dimensional electron gas (2DEG) is very close to the surface, and trapping 

processes at the AlGaN/passivation interface may significantly impact on the dynamic performance 

of the devices [2]. In addition, in most cases the electric field in lateral devices is not uniform, across 

the gate drain spacing, and has peaks at the edge of the gate and of each field plate. Field can be 

minimized through the use of field plates; however, the addition of field plates may impact on 

device capacitance, and an accurate design must be carried out in order to ensure simultaneously 

low-field and high device performance [3][4]. Finally, lateral GaN HEMTs are typically based on an 

AlGaN/GaN heterostructure, which is intrinsically normally-on. To reach normally-off operation, a 

p-type gate can be used [5], and threshold voltages above 1 V can be obtained [6]. If higher threshold 

voltages are required (e.g. 3-5 V, see [7] and references therein), different approaches can be 

considered, such as the use of a MIS/MOS structure or the adoption of a cascoded configuration. 

Several Si- and SiC power transistors are based on a vertical configuration: the flow of current is 

controlled by a gate placed on the top of the transistor, and electrons flow through a thick drift-

region, over which most the potential drops in off-state. The vertical approach allows to increase 

the breakdown strength of the transistors, without impacting on device area, provided that 
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sufficiently thick drift regions are fabricated. Also, vertical devices are almost insensitive to surface 

trapping effects, since current flow takes place in the bulk semiconductor. As was the case for Si 

and SiC, also GaN is now ready for the transition to vertical configuration. GaN vertical diodes and 

transistors have already been demonstrated, grown on free-standing GaN substrates with dislocation 

densities up to 106 cm-2 

[7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43]

[44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60] . In several cases, the breakdown voltage of these 

devices is higher than 1 kV, thus clearing the way to the application in the power semiconductor 

field. Recent reports also demonstrated the possibility of growing GaN vertical devices on foreign 

substrates (see for instance [60][61][62][63][64][41][52][65][66]
 ). Both the quasi-vertical and the fully-vertical 

approaches have been implemented, in order to ensure an effective extraction of current from the 

drain. The research on vertical GaN-on-Si is mainly driven by the need of reducing the cost of GaN 

vertical devices: a recent paper [63] evaluated the cost of wafer and epitaxy for different vertical 

GaN technologies, and indicated that vertical GaN-on-Si devices can allow a 10 to 100 times cost 

reduction. Another advantage of vertical GaN-on-Si is that it is compatible with 8-inch production 

lines, thus being suitable for effective industrial production. Obviously, the development of vertical 

GaN-on-Si technology is slowed by the higher dislocation density and by the difficulty of growing 

thick drift regions on a silicon substrate: these aspects are currently under investigation, and quasi-

vertical vertical and fully-vertical GaN power diodes on foreign substrate (Si) with breakdown 

voltages near 1 kV have already been demonstrated [35][67]. 

With regard to GaN vertical diodes, both Schottky-barrier diodes and pn diodes have been 

investigated and fabricated. In both cases, improvements in breakdown voltage were obtained 

through the optimization of the growth conditions (see for instance [10]), a careful design of the drift 

region [41], or the use of guard rings [39]. With regard to vertical transistors, several approaches have 

been proposed: (i) the Current Aperture Vertical Electron Transistor (CAVET) uses a combination 

of 2DEG channel and vertical drift region. Current blocking layers are used to create a barrier for 

electrons, that can only flow through a current aperture at the center of the device [43]. Another 

approach is the vertical trench MOSFET (see [39][60] for recent examples), where a MOS structure is 

used in combination with a trench in order to control the flow of current through the device. A third 

approach is the vertical power FINFET [68]: here current flow is controlled through the use of 

nanometer size fins, typically composed only of n-type material. Finally, vertical 3D GaN nanowire 

MOSFETs and PolarMOS have also been proposed [68][69][70]. 
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All the structures described above are of high interest for the development of GaN-based vertical 

devices. Each of them has intrinsic advantages and potential drawbacks, that represent interesting 

research challenges, rather than fundamental limits. Previous reports preliminarily investigated the 

stability of vertical GaN-based components (see for instance Ref. [71]), suggesting that these devices 

can have a good ruggedness, and a good potential for high voltage applications. 

Over the last few years, we have analyzed several GaN vertical devices, both diodes and transistors 
[69][49][50][70][72][73][74][75][76], identifying and describing the most relevant degradation mechanisms and 

related processes. The aim of this article is to present a summary of our most recent results in this 

field, by describing a number of case studies carried out in our laboratories on GaN-based vertical 

devices. 

More specifically, the first case study that we present here deals with the stability of pn diodes 

under high current stress, and is relevant for the development of reliable diodes. In fact, GaN-based 

vertical diodes are expected to be operated at high current and current density (>kA/cm2). Under 

such stressful conditions, the stability of the resistivity and turn-on voltage must be carefully 

evaluated. To this aim, we carried out a set of stress experiments at high current density on pn 

diodes, and investigated the electrical degradation of the devices during stress time. The results 

collected within this study suggest that during operation at high current densities, a diffusion 

process leads to an increase in the operating voltage and to a decrease in the electroluminescence 

signal emitted by the devices. The results are interpreted by considering the diffusion of hydrogen 

from the top p-doped layer towards the junction. 

The second case study described below deals with the operation of GaN pn diodes in avalanche 

regime. We analyzed polarization-induced pn diodes, that are the basic units of PolarMOS. First, 

we show that polarization-doped pn diodes have avalanche capability; second, we investigate the 

stability of the avalanche voltage with stress time, and discuss the origin of the “breakdown-

walkout” and its relation with traps within the drift region. 

The third case study deals with GaN-based vertical FinFETs. On these devices, we investigated the 

threshold voltage instabilities induced by operation at positive gate stress, demonstrating the 

existence of two different trapping processes: the de-trapping of electrons from the gate insulator, 

that takes place at low stress voltages (<2 V), and results in a negative threshold voltage shift, and 

the injection of electrons from the channel into the gate insulator, that occurs at higher stress bias 

(up to 5-6 V) and results in a positive threshold shift. 
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Finally, we analyzed the robustness of GaN-based vertical FETs under high electric field, 

suggesting that the quality of the gate oxide and the minimization of the field are necessary steps 

for the optimization of the reliability of the devices. 

 

 

2. Degradation of GaN-on-GaN vertical diodes submitted to high current stress 

 

The degradation of impurity-doped vertical GaN pn diodes stressed at high current density was 

investigated by means of electro-optical measurements [72]. 

The structure of the analyzed devices consists of a Si-doped n-GaN layer (10 µm) with a doping 

ND~2×1016 cm-3, a Mg-doped p-GaN layer (0.4 µm) with a doping higher than 1019 cm-3, and a Mg-

doped p+ GaN layer (0.02 µm) with a doping higher than 1020 cm-3 grown by metal-organic 

chemical vapour deposition (MOCVD) on a GaN substrate [77][78][79]. The devices have a diameter 

of 110 µm and were optimized for high voltage operation through the use of a field plate [78]. 

To study the physical mechanism responsible for the degradation of the impurity-doped pn diodes 

under forward bias condition, a high current density of 0.7 kA cm-2 was applied for 36000 seconds 

and the electrical and optical parameters were monitored during the stress. 

Figure 1 shows the behaviour of the I-V and L-I characteristics at different stress times. We found 

that the stress at high current density resulted in an increase in turn-on voltage (and on-resistance) 

(Figure 1 (a)) and in a decrease in the electroluminescence (EL) signal (Figure 1 (b)). In particular, 

the changes in the I-V curves for increasing stress time were characterized by three main 

phenomena, as can be noticed in Figure 1 (a); the first phenomenon was the increase in the turn-on 

voltage and it was visible after 300 seconds of stress, the second one was the increase in the 

generation-recombination current in the low forward region and it was visible after 6300 seconds, 

and the third one was the increase in the leakage current in the reverse bias region and it was visible 

after 31500 seconds.  

On the other hand, by analysing the EL vs current characteristics in Figure 1 (b), a gradual 

degradation in the optical performance of the device was visible up to 13500 seconds, and then, for 

longer stress times, a further degradation process took place. This latter could be related to the 

generation of non-radiative defects within the depletion region, as suggested by the fact that the 

slope of the log-log L-I curves increased from nearly 1 towards 1.7 for stress times longer than 

13500 seconds [78][80].  
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It is worth noting that the decrease in the optical power was linearly correlated with the increase in 

on-resistance for increasing stress times, as can be seen in Figure 2 (a), suggesting a common origin 

of the degradation of the electrical and optical performance. This common origin could be related to 

the presence of hydrogen in the device.  

Hydrogen is introduced within the p-GaN layers during the growth and typically it has 

concentration similar to Mg [81]. The H-atoms tend to create Mg-H bonds, which may be broken by 

temperature and current flow, leaving H interstitial in the lattice that can diffuse from the highly-

doped p-GaN layer towards the pn junction, following the concentration gradient. The H-atoms can 

therefore passivate Mg-atoms near the junction, resulting in a lower hole injection due to the 

acceptor compensation; a lower hole concentration can explain both the decrease in the EL signal 

and the increase in turn-on voltage. 

The hypothesis that the physical mechanism responsible for the degradation of impurity-doped pn 

diodes was caused by a diffusion mechanism, possibly involving H-atoms, is supported by the 

dependence of the variation of both the optical power and the on-resistance on the square root of 

time (Figure 2 b). In fact, the square-root dependence on stress time of the electrical and optical 

parameters obeyed the Fick’s second law in one dimension (Equation 1): 

                  
 

     
                                                                                                                 (1) 

where Ndiff is the number of impurities that can be found at position x at time t, N0 is the 

concentration of the impurities at the junction (that is assumed to be constant), erfc is the error 

function, x is the distance from the junction, D is the diffusion coefficient, and t is the stress time 
[82][83]. 

For longer stress times, the degradation mechanism causes a further increase in the slope of the log-

log L-I curves. This increase could be explained by the generation of SRH-recombination centers 
[84]. 
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Figure 1. I-V (a) and L-I (b) curves measured before stress and after each step of the stress of an 

impurity doped pn diode at Jstress=0.7 kA cm-2. Experimental data from [72]. 

 

 
Figure 2. Relation between the increase in the series resistance and the decrease in the optical power 

during the stress (a). Relation between the variation of the optical power (green curve) and of the 

series resistance (black curve) and the square root of stress time (b). Experimental data from [72]. 

 

3. Demonstration of avalanche capability in polarization-doped vertical GaN pn diodes: study 

of walkout due to residual carbon concentration 
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Next, we investigated the avalanche capability and the stability of polarization-doped vertical GaN 

pn diodes in avalanche mode [49][50]. The devices are grown by MOCVD and have a GaN substrate, 

a Si-doped n- GaN layer (200 nm) with doping ND~1018 cm-3, a Si-doped n GaN layer (7 µm) with 

doping ND~2×1016 cm-3, a n-type linearly graded AlGaN layer with the Al composition graded up 

from 0% to 5.6%. (1 µm), a p-type linearly graded AlGaN layer with the opposite Al composition 

gradient (from 5.6% to 0%) (0.4 µm), and a Mg-doped p GaN layer (20 nm) with a doping higher 

than 1020 cm-3[85]. A pn junction obtained by grading the Al composition results a) in an 

enhancement of p-type conductivity compared to the impurity-doped case, b) in a doping level that 

does not strongly depend on temperature or frequency, c) in the absence of carrier freeze-out, in 

contrast to what the impurity-doped carriers do when the temperature decreases, and d) in a higher 

breakdown field, thanks to the larger bandgap of AlGaN [70]. The breakdown voltage of the 

analyzed diodes is significantly improved through the use of a field plate [77][78][79]. 

Two generations of these polarization-doped pn diodes were characterized and compared: the Gen1 

diodes have a high carbon level throughout the device structure, on the order of 2-3x1016 cm-3; and 

the Gen2 diodes have a carbon level below the detection limit of secondary ion mass spectrometry 

(SIMS) <1x1016 cm-3.  It was found that both generations are avalanche capable, and the Gen1 

diodes exhibit recoverable breakdown walkout while the Gen2 diodes do not.  The summarized 

study on the Gen1 diodes is presented below while the study on the Gen2 diodes will be reported 

elsewhere. The avalanche capability of the Gen1 diodes was tested by means of I-V 

characterizations at different temperatures (inset Figure 3). As can be noticed the diodes have a low 

leakage current up to high breakdown voltage (-1370 V at 30°C), where a sudden increase in the 

current occurs. By analyzing the reverse voltage for a current density of -10 mA cm-2, a positive 

temperature coefficient with a slope of 0.5 V °C-1 was found, indicating an avalanche process.  

It was therefore necessary to understand if the breakdown voltage was stable, since the stability of 

pn diodes under avalanche regime is important for high reverse voltage operation. In order to 

investigate the behavior of the devices when a strong reverse bias was applied, a constant current 

stress in avalanche mode (Jstress=-10 mA cm-2) was carried out. Figure 3 shows that the avalanche 

voltage increases with increasing stress time. This time-dependent shift of the reverse voltage to 

higher (negative) values is referred to as breakdown walkout [86][87][88], and it was found to be fully 

recoverable in the analyzed devices after some rest time. Then, we analyzed the transients of the 

breakdown voltage during the recovery phase carried out after the constant current stress in 

avalanche mode at different temperatures; the Arrhenius plot reported in Figure 4 (black symbols) 

was obtained. A deep level possibly related to carbon on nitrogen sites CN was found, as suggested 
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by comparing By comparing with previous reports the slope of the extracted Arrhenius plot and the 

region of the plot in which the deep level is located, a deep level possibly related to carbon on 

nitrogen sites CN was found [89][90][91][92]. To confirm the presence of CN, C-DLTS (Capacitance-

Deep Level Optical Transient Spectroscopy) measurements were carried out at different 

temperatures. These measurements consist in two phases; in the first phase the defects in the space 

charge region are filled by applying a filling voltage, and in the second one the de-trapping process 

from the deep levels are studied by analyzing the capacitance variation at a certain measure voltage 
[93]. By repeating the measurements at different voltages, it is possible to investigate different active 

volumes of the device, and by repeating the measurements at different temperatures it is possible to 

extract an Arrhenius plot. The results of the temperature-dependent measurements are reported in 

Figure 4 (red symbols); a deep level possibly ascribed to CN was found again.  

The experimental data therefore suggest that the breakdown walkout process could be related to the 

presence of residual carbon in the polarization-doped pn diodes. A model able to explain these 

experimental results was proposed, by considering that, when a strong reverse bias is applied, CN 

behaves as a deep acceptor and is ionized. This leads to an increase in the Coulomb and phonon 

scattering in the lattice (due to the higher number of ionized impurities), and consequently to a 

decrease in the mean free path of carriers. To trigger impact ionization, the electrons need to gain 

enough energy to create an additional electron-hole pair, and the density of electron that have 

sufficient energy depends on the mean free path, as can be seen in Equation 1:  

          
 

 
                                                                                                                              (1) 

where n* is the density of electrons that have the energy required to start the avalanche process, n is 

the total electron density, d is the distance necessary to gain sufficient energy for the impact 

ionization, and λ is the mean free path. Therefore, a decrease in the mean free path corresponds to a 

decrease in the density of electrons that have sufficient energy to create additional electron-hole 

pairs. Therefore, once more and more CN is ionized, it will be necessary a higher negative voltage 
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Figure 3. Time-dependence of breakdown walkout. The breakdown voltage increases during the 

stress time in avalanche mode. Inset: I-V curves at different temperatures of the diode under reverse 

bias condition. Experimental data from [49][50]. 
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Figure 4. Comparison between defects identified in the literature and the Arrhenius plot obtained by 

analyzing the breakdown walkout process (black symbols) and the C-DLTS measurements (red 

symbols). Experimental data from [49][50]. 
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4. Analysis of the trapping mechanisms and degradation on GaN-on-GaN Vertical Field 

Effect Transistors 

 

Among vertical GaN devices, the Vertical Fin Field Effect Transistors (VFETs) has recently 

demonstrated to be an excellent candidate for next generation power converters [23][94]. The VFET 

epitaxial layers are grown on a 2-inch GaN substrate. The epitaxial layers consist of 8-μm-thick n-

GaN channel and n--GaN drift layer doped 2×1016 cm-3 and 0.3-μm-thick n+-GaN. In order to obtain 

MOS gate stacks on sidewalls a combined dry-wet etching technique is used and a 15 nm Al2O3 

layer was deposited by ALD using H2O and TMA at 250 °C as gate dielectric. Gate metal 

(molybdenum) was sputtered immediately after ALD. In VFETs the current flows vertically 

through sub-micrometer channels formed by carrier accumulation at the Oxide/GaN interface; the 

cross section of one channel-device is reported in Figure 5 (a). The channel electron density 

simulations at different gate voltage are reported in Figure 5 (b) [73]. Below the threshold voltage 

(VGS = 0 V < 1 V) the device is in the off-state and the channel is depleted. For gate voltages higher 

than the threshold, the channel is fully formed, and the electron density peaks at the Al2O3/GaN 

interface, and in the center of the GaN layer it becomes equal to the dopant concentration. The 

VFET structure consists in the repetition of gate – GaN channel – gate modules in which multiple 

channels operate in parallel in order to obtain sufficient current. 
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Figure 5. Simulation of electron density in a VFET for different gate voltages.  
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resistance and threshold voltage. The results are reported in Figure 6. When VFETs are subjected to 

pulsed positive gate bias, the on-resistance slightly decreases due to a change in the interface 

scattering (not reported here): Ron is determined both by carrier concentration and carrier mobility; 

when the device is submitted to positive VG, the trapped charge may change the total interface 

scattering, thus increasing the mobility near the interface [95]. In addition, the devices show a 

negative threshold voltage shift for low positive gate bias (0 V < VGS ≤ 2 V), while for high 

trapping bias (VGS≥ 3 V) a positive shift of the threshold voltage is observed. At low gate bias the 

negative threshold voltage shift is ascribed to the de-trapping of electrons from the Al2O3 insulator 

(see mechanism 1 Figure 7 (a)); on the other hand, high gate voltages induce the injection of 

electrons from the accumulation region (channel) towards the dielectric, leading to a positive shift 

of the threshold voltage (see mechanism 2 Figure 7 (a,b)).  

The stability of VFETs was investigated with by IDVD and fast IDVG measurements performed 

during a constant voltage stress test of 100 s at different VGstress, followed by 100 s of recovery with 

gate, source and drain terminals at 0 V. With positive gate bias, the on-resistance decreases in time 

and the threshold voltage shows a fully recoverable negative shift for low gate voltages, and a 

positive shift (non-recoverable in thousands of seconds) for higher gate voltages (>3 V). The gate 

leakage at low and high gate bias for 100 s has been monitored in order to confirm the hypotheses: 

the gate leakage becomes relevant only at high gate voltages. The positive threshold voltage shift is 

correlated with the gate leakage (injection of electrons from the channel towards the insulator) and 

the mechanism has a slow recovery time.  

Constant voltage stress tests were carried out at different temperatures (25 °C, 50 °C, 75 °C) in 

order to study the effect of the temperature on the trapping-detrapping kinetics. At low stress 

voltages (VGS ≤ 2 V), temperature does not significantly affect the trapping kinetics, confirming that 

the negative threshold shift is ascribed to an electrostatic process (emission of electrons from 

insulator to metal). On the other hand, at high gate bias (VGS ≥ 3 V), the total gate current increases 
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with temperature. In conclusion, both the gate voltage (stronger band bending), and the high 

temperature (increase in the average energy of electrons in the channel) favor the injection of 

carriers towards the insulator (see Figure 7 (b)). 

  

 

 
Figure 6. Variation of the threshold voltage as obtained from pulsed IDVG performed for different 

trapping conditions at VGS, Q = 0 V, 1 V, 2 V, 3 V, 4 V, 5 V, VDS,Q = 0 V. The threshold voltage has 

an initial negative shift for low gate voltage (VGS< 2 V), then a positive shift for higher gate 

voltages. 
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to a negative shift of the threshold voltage; mechanism 2: electrons in the channel are injected 

towards the insulator; b) At high gate bias, mechanism 2 is dominant. Two factors contribute to the 

second mechanism: the high gate bias, i.e. the strong band bending, and the high temperature (high 

electron energy). 

 

An extensive analysis of the mechanism 2 (see Figure 7) occurring at high positive gate voltage is 

reported in [76]. This mechanism is observable for longer stress times, and it is predominant for 

higher voltages (see Figure 8). Moreover, mechanism 2 is found to be recoverable only when the 

device is exposed to UV-light (see Figure 9). A possible explanation is that electrons trapped in a 

specific level in the oxide acquire the energy necessary to be de-trapped and reach the n-type 

GaN[76][96], through hopping. Another possibility is that under UV-light the recovery is assisted by 

the holes accumulated at the Al2O3/GaN interface. The UV-exposure induces a negative shift of the 

threshold voltage by increasing the conductive electrons either by electron detrapping from oxide, 

or by generation of carriers, in good agreement to previous reports on different MOS 

structures[97][98]. The instability of the threshold voltage in Vertical Fin FETs is correlated with the 

presence of interface-states. In order to quantify the interface states, the changes in the gate-source 

capacitance as a function of voltage in trapping and de-trapping conditions have been evaluated.   

Gate-source capacitance curves have been performed as a function of the gate voltage, after biasing 

the device in depletion under UV-light (at -3 V) and accumulation (at 5 V). The C-V curve (Figure 

10) performed after UV-exposure in OFF-state (red line) shows a negative shift of the threshold 

voltage and a change in the slope at the turn-on in respect of the C-V performed after accumulation 

(black line). The rigid shift in C-V is ascribed to charges (oxide traps) that are not influenced by the 

electron quasi-Fermi level, the change in slope is ascribed to interface states, and can be used to 

calculate the amount of interface states that changed occupancy with VG [99]. With this method a 

peak interface state density of 4∙1013 cm-3eV-1 at VGS = 2 V has been calculated. 
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Figure 8. Threshold voltage transients during a constant bias experiment at different gate voltages 

and VDS = 0 V. For short stress times the negative shift is dominant, then the second mechanism, 

i.e. trapping of electrons in the oxide, occurs (earlier for higher gate bias) leading to a positive shift 

of the threshold voltage.  

 

 
Figure 9. Threshold voltage transients performed during a recovery phase under LED light at 

different wavelengths, after stress at VGS=4 V: a strong recovery is observed only when the device 

is illuminated with UV light at 365 nm (corresponding to energy gap of GaN).  
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Figure 10. Gate-Source Capacitance plots measured on a VFET with a channel width of 125 nm by 

sweeping the gate voltage from -3 V to 5 V after illuminating the device with UV-light and from 5 

V to -3 V after biasing the device at 5 V in dark condition for 1000 s. 

 

 

 

 

4.3 Degradation of vertical GaN-on-GaN fin transistors under positive gate or high-drain 
stress. 
 

To evaluate the robustness of GaN-on-GaN fin transistors, we carried out step stress experiments; 

the devices were submitted to a forward gate voltage for 120 s with drain and source biased to 0 V, 

then the gate voltage was sequentially increased by 0.25 V/step, and the device transfer 

characteristics were monitored at each step. With this technique it is possible to investigate the 

mechanisms that lead the device to failure. The results of the step stress are reported in Figure 11: 

the gate current monitored during the stress increases at each step of stress, and for VGS = 7.25 V an 

abrupt increase of more than 4 decades is observed due to the dielectric breakdown. From the plot 

of the IDVG in semi-logarithmic scale (Figure 12), a positive shift of the threshold voltage is 

observed for low stress voltages (in good agreement with the previous work [73]). Moreover, the 
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positive gate bias induces a significant increase of subthreshold slope at IDS = 10-3 A/cm2. This can 

be explained by considering another mechanism (mechanism 3 Figure 12): at very high gate stress 

voltages (up to 7.75 V), the electrons injected from the channel to the insulator may promote the 

generation of traps. Electron traps are depleted during stress, thus giving higher current at turn-on 

and an increase in subthreshold slope.  

 

Figure. 11 Step stress performed with VDstress = 0 V and by increasing the VGstress by 0.25 V each 
120 s of stress. The breakdown of the dielectric occurs at 7.25 V 
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Figure. 12. Stressing at increasing gate voltages induces an increase in the subthreshold slope due to 

trap generation in the oxide (left): traps are depleted during stress, thus giving higher current near 

turn-on (right). 

 

We also investigated the prolonged stress under positive gate bias on VFETs with different gate 

width[74]. In order to analyze the degradation mechanism responsible of the catastrophic failure 

when the VFETs are submitted to positive gate bias, step stress tests have been performed. It is 

demonstrated that the trend of gate current during stress depends on the gate voltage (Figure 13). 

For low gate voltages (up to VGstress=0.5 V), the gate current slightly decreases during stress. In this 

range of voltages, the mechanism 1 (de-trapping of electrons) and 2 (injection of electron from the 

accumulation channel to the oxide) occur simultaneously and the fact that one of the two dominates 

(increasing or decreasing of the gate current) is device-dependent. 

For higher gate voltages, mechanism 2 (see Figure 13) occurs, leading to a decrease of the gate 

current during each stage of the stress experiment: the newly trapped electrons have a repulsive 

action, preventing further electrons from being trapped in the oxide, thus inducing a 

decrease/stabilization in gate leakage. At VGstress > 5.5 V, the creation of percolation/shunt paths 

leads to the consequent breakdown of the dielectric. 

-1 0 1 2 3 4
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

D
ra

in
 C

ur
re

nt
 (A

/c
m

2 )

Gate Voltage (V)

Drain Voltage = 1V

Stress

VGst= 0 V

VGstress=7.75 V

VGst=3.75V

GaN channel

15nm Al2O3

Gate metal

Mechanism 2

Mechanism 3

Higher VG

Traps

Ac
ce

pt
ed

 A
rti

cl
e

Stressing at increasing

Ac
ce

pt
ed

 A
rti

cl
e

Stressing at increasing

trap generation in the ox

Ac
ce

pt
ed

 A
rti

cl
e

trap generation in the oxide (left): traps are depleted during stress, thus giving higher current near 

Ac
ce

pt
ed

 A
rti

cl
e

ide (left): traps are depleted during stress, thus giving higher current near 

on (right).

Ac
ce

pt
ed

 A
rti

cl
e

on (right).

We also investigated t

Ac
ce

pt
ed

 A
rti

cl
e

We also investigated the prolonged stress under positive 

Ac
ce

pt
ed

 A
rti

cl
e

he prolonged stress under positive 

In order to analyze the 

Ac
ce

pt
ed

 A
rti

cl
e

In order to analyze the 

when the VFETs are submitted to positive gate bias, step stress tests have been performed. It is 

Ac
ce

pt
ed

 A
rti

cl
e

when the VFETs are submitted to positive gate bias, step stress tests have been performed. It is 

demonstrated that t

Ac
ce

pt
ed

 A
rti

cl
e

demonstrated that the 

Ac
ce

pt
ed

 A
rti

cl
e

he trend of 

Ac
ce

pt
ed

 A
rti

cl
e

trend of 

For low gate voltage

Ac
ce

pt
ed

 A
rti

cl
e

For low gate voltages

Ac
ce

pt
ed

 A
rti

cl
e

s (up to 

Ac
ce

pt
ed

 A
rti

cl
e

(up to 

range of voltages

Ac
ce

pt
ed

 A
rti

cl
e

range of voltages,

Ac
ce

pt
ed

 A
rti

cl
e

, the mechanism 1 (de

Ac
ce

pt
ed

 A
rti

cl
e

the mechanism 1 (de

accumulation channel to the oxide) occur simultaneously and the fact that one of the two dominates 

Ac
ce

pt
ed

 A
rti

cl
e

accumulation channel to the oxide) occur simultaneously and the fact that one of the two dominates 

(increasing or decreasing of the gate current) is deviceAc
ce

pt
ed

 A
rti

cl
e

(increasing or decreasing of the gate current) is device

For higher gate voltageA
cc

ep
te

d 
Ar

tic
le

For higher gate voltages, A
cc

ep
te

d 
Ar

tic
le

s, A
cc

ep
te

d 
Ar

tic
le

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

0

Ac
ce

pt
ed

 A
rti

cl
e

0 1

Ac
ce

pt
ed

 A
rti

cl
e

1

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Gate Voltage (V)

Ac
ce

pt
ed

 A
rti

cl
e

Gate Voltage (V)

Drain Voltage = 1V

Ac
ce

pt
ed

 A
rti

cl
e

Drain Voltage = 1V

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e=3.75V

Ac
ce

pt
ed

 A
rti

cl
e=3.75V=3.75V

Ac
ce

pt
ed

 A
rti

cl
e=3.75V

Ac
ce

pt
ed

 A
rti

cl
e

Ac
ce

pt
ed

 A
rti

cl
e



  

 This article is protected by copyright. All rights reserved 

9 devices with 70 nm of channel width and 8 devices with 280 nm were stressed at constant voltage 

(VGS = 5 V) until failure. The degradation trend of the gate current shows an abrupt increase of the 

gate current due to a time-dependent defect generation/percolation through the oxide. The 

corresponding Weibull plots are reported in Figure 14: the failure rate decreases with time (β < 1) 

and this is in good agreement with the hypothesis of dielectric breakdown. 2D simulations (see 

Figure 15) indicate that the failure point is located at the corner of the insulator, where the electric 

field is maximum. 

 

 

Figure. 13. Trend of the gate current for each step of the gate stress on one of the analyzed VFETs. 

(A)  At VGstress = 0.5 V, the gate current slight decreases during 120 s of stress due to slight trapping 

of electrons inside the insulator. (B) For 0.75 V < VGstress < 2.5 V a fast initial decrease followed by 

a slow increase of the gate current is observed (C) For 2.75 V < VGstress < 4.5 V the gate current 

starts to decrease at long stress times. (D) For VGstress > 5.5 V percolation/shunt paths have been 

created leading to the breakdown of the dielectric. 
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Figure. 14. Comparison of the Weibull plots at 99% of confidence level for VFETs with 70 nm 

channel (black curve) and 280 nm channel (red curve). 

 

 
Figure. 15 Simulation of the electric field when the device is at 5 V. The peak of the electric field is 

located at the corner of the dielectric independently of the channel width. Devices with shorter 

channel width have higher peak of the electric field. Values of the field may be overestimated due 

to the fact that square corners were used in the simulations. 
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The degradation of VFETs under high drain voltage has been also investigated [75]. The device was 

submitted to a step stress test in which the drain voltage has been increased by 20 V every 120 s, 

with VGS=0 V. At the end of each step a DC characterization was performed.  The results are shown 

in Figure 16: a small positive VTH shift and negligible variations in on-resistance are induced by 

high drain bias. The VFET shows a good stability up to 280 V (the device under test is optimized 

for 200 V operation).  

 

Figure. 16 Gate and drain currents measured during the step stress at high drain voltage. (inset) 

IDVG performed at each step of the drain step stress. 

 
Ruzzarin et al.[74] reported the analysis of the degradation process that occurs when the VFETs are 

submitted to high drain voltage in off-state (VGS=0 V). The gate current has been monitored during 

a constant voltage stress experiments at 300 V: a catastrophic failure was reached after 2 hours of 

stress, and consists in a rapid increase in the gate leakage current. By means of 2D simulations of 

the electric field within the device submitted to high drain voltage, the peak of the electric field was 

found again to be located at the edge of the gate.  

 
 
5. Conclusions 
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In conclusions, we have summarized recent case studies in the field of GaN vertical power devices. 

The results indicate the existence of a set of degradation processes, that do not constitute 

fundamental limits, and can be solved through a careful optimization of device structure. The study 

of GaN vertical devices is still at the early phase: a significant progress in this field will be possible 

through extensive research, and will open the way to this revolutionary technology.  
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This paper reviews recent results on the reliability of vertical GaN-based devices, by presenting a number of case studies focused on 

the stability and degradation of high-voltage GaN-on-GaN diodes and of GaN-based vertical FETs. These results are of high interest 

for the optimization of high-reliability vertical GaN devices. 
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