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Drinking water biofiltration processes have evolved over time,
moving from unintentional to deliberate, with careful filter media
selection, nutrient and trace metal supplementation, oxidant
amendment, and bioaugmentation of key microorganisms, to
achieve improvements in water quality. Biofiltration is on the
precipice of a revolution that aims to customize the microbial
community for targeted functional outcomes. These outcomes
might be to enhance or introduce target functional activity for
contaminant removal, to avoid hydraulic challenges, or to
shape beneficially the downstream microbial community.
Moving from the foundational molecular techniques that are
commonly applied to biofiltration processes, such as amplicon
sequencing and quantitative, real-time polymerase chain
reaction, the biofiltration revolution will be facilitated by modern
biotechnological tools, including metagenomics,
metatranscriptomics, and metaproteomics. The application of
such tools will provide a rich knowledge base of microbial
community structure/function data under various water quality
and operational conditions, where this information will be
utilized to select biofilter conditions that promote the
enrichment and maintenance of microorganisms with the
desired functions.
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Introduction

Biological water treatment processes rely partially or
entirely on biological mechanisms to achieve treatment
objectives. These processes broadly include natural (e.g.,
riverbank and aquifer filtration) and engineered (e.g.,
fluidized bed as well as slow sand and rapid-rate filtration)
processes. In drinking water treatment, ‘biofiltration’
processes in North America typically involve rapid-rate,
granular media filters that are similar in design to con-
ventional, physico-chemical filtration processes [1-3],
whereas slow sand filters see continued use internation-
ally. Biofilters differ from conventional filters through key
operational practices that promote and maintain biologi-
cal activity on the filter media, which enhances the
transformation of organic and inorganic constituents
before treated water is introduced into the distribution
system (American Water Works Association Biological
Drinking Water Treatment Committee, J. Carter, per-
sonal communication). In this Current Opinion, we draw
heavily on the literature from the past three years to
review advancements in the science and practice of
drinking water biofiltration as well as to discuss the
potential role of modern biotechnological tools to further
this advancement.

The state of drinking water biofiltration

In contrast to conventional, physico-chemical filtration,
biofiltration is used to reduce the biodegradable fraction
of dissolved natural organic matter (NOM). NOM
removal is a common driver for biofiltration in North
America [3] with the following potential benefits:
improved biostability in the distribution system, removal
of contaminants of emerging concern [4] and taste and
odor compounds, reduced membrane fouling [2], and, in
systems that include disinfection and/or post-filter disin-
fection, removal of disinfection by-product precursors [5]
and reduced chlorine demand [2]. NOM removal by
biofiltration has been extensively reviewed (e.g., Refs.
[6°,7]). Likewise, biofiltration is an important process for
the transformation of inorganic contaminants, particularly
in groundwater systems. For example, biofiltration has
been studied for the removal of ammonia [8°], arsenic [9],
bromate [71], iron [10], manganese [10], nitrite [11], and
perchlorate [12].

Historically, ‘classical’ biofiltration has been the most
common type of drinking water biofiltration [3]. It occurs
when conventional filtration processes, ranging from rapid-
rate to slow sand filters, are operated in the absence of
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chlorine in the filter influent. Upstream oxidation with
ozone, ultraviolet light (UV)/hydrogen peroxide, or UV/
ozone generally increases the biodegradability of NOM,
increasing NOM removal by biofiltration. As the treatment
performance and cost benefits of biofiltration have been
increasingly recognized, drinking water biofiltration
research has shifted from the assessment of process per-
formance to the development of design and operational
strategies (i.e., media type and configuration, contact time,
hydraulic loading rate, and backwash and pre-treatment
strategies) for enhanced treatment [1,2]. More recently,
the focus of biofiltration research has shifted again, signal-
ing a recognition that further enhancements in treatment
performance will require customizing the microbial com-
munities to achieve targeted objectives. The purposeful
tailoring of microbial community structure (i.e., relative
abundance of various microorganisms) will require mod-
ifications beyond the pre-treatments to increase NOM
biodegradability that are typically associated with classical
biofilter operation. Supplementation of compounds
already present in filter influents (e.g., limiting nutrients
such as phosphorus) [13°,14], amendment of compounds
absent from filter influents (e.g., oxidants) [15,16], or
bioaugmentation with key microorganisms (i.e., those that
do notnaturally develop in biofilters or those that grow very
slowly) [17,18] are strategies that can be considered to
enable and/or increase the transformation of target con-
taminants (Figure 1).

Effective customization of microbial community structure
requires a detailed understanding and characterization of the
community. Fortuitously, the past decade has delivered
unprecedented advances in this domain. As discussed by
Zhou et al. [19], 16S rRNA gene characterization — though
foundational to modern microbial community analysis — has
limited quantitative utility [20,21]. Metagenomics overcome
this limitation by identifying novel microorganisms and their
functional potential [22,23,24°] by exploiting a fully & novo
approach [25°°]. The increase in analytical throughput and
commensurate decreases in cost of DNA sequencing make
metagenomic approaches increasingly accessible [26].

A new era of drinking water biofiltration has emerged and
will be focused necessarily on the mechanistic linkages
between microbial community structure and biofilter
function. An improved understanding of how the struc-
ture, function, and dynamics of microbial communities
contribute to biofiltration processes and how they can be
customized to improve treatment efficacy are critical to
advancing the science and practice of biofiltration.

Customizing drinking water biofiltration
processes

Biofilter control can be exerted at the process (i.e., design
and operation) and influent-stream levels (Figure 2) to
customize a biofiltration process to achieve a targeted
functional outcome.

Figure 1
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v v
Amendment Bioaugmentation
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Generalized biofiltration process configurations, including classical, supplementation, amendment, and bioaugmentation. Classical biofiltration is
often associated with pre-treatments to improve the biodegradability of the NOM. Shapes without a black outline represent water quality
components that are naturally present (endogenous) to the filter influent; in biofilter supplementation, an endogenous component can be added to
reach a higher concentration in the filter influent than is present naturally. Shapes with a black outline represent water quality components that are
not naturally present in the filter influent (exogenous); addition of an exogenous physical or chemical component is termed amendment, and
addition of an endogenous or exogenous biological component is termed bioaugmentation.
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Influent-stream and process controls affect biofiltration processes at
the population, community, and molecular levels.

At the process level, filter media selection can impact the
biofilter at the population and community levels (i.e.,
which organisms are present) and the molecular level (i.e.,
the functional potential and activity of those organisms as
encoded by DNA, RNA, and proteins). Recently, Span-
jers [27] debunked the conventional wisdom that the
roughness of granular activated carbon (GAC) protects
biofilm from shear forces and leads to improved dissolved
organic carbon (DOC) removal relative to smoother
media. Spanjers [27] found that the adsorptive nature
of GAC, not media roughness, is essential to that
improved DOC removal (even over the long-term). Addi-
tionally, filter media can impact microbial community
structure; recent evidence suggests that GAC biofilter
communities tend to be more diverse than those on other
filter media types [28]. In particular, Vignola ez a/. [29]
found greater phylogenetic diversity in GAC as compared
to sand biofilters. Interestingly, they also demonstrated
that stochastic factors have a much smaller impact on
biofilter community assembly relative to deterministic
factors such as filter media type, process operation (e.g.,
empty bed contact time) or other controllable parameters
such as pH, dissolved oxygen concentration, NOM char-
acter/concentration, and nutrient concentrations, further
highlighting the importance of such parameters.

At the influent-stream level, oxidant amendment and
nutrient supplementation can influence process-level
properties (e.g., filter hydraulics) and population-level
and community-level properties (e.g., microbial

community structure and functional potential/activity).
Tailoring the influent concentrations of chlorine, chlora-
mines, or hydrogen peroxide to shift the biologically active
zone below the main particle capture zone in a filter is one
way to lower headloss accumulation without substantially
impacting the removal of NOM and turbidity as compared
to biofilters with no oxidant addition [16]. However, the
implementation of chlorine or chloramine for these benefits
must be weighed against their ability to impact microbial
community structure [30,31] within the biofilter and the
subsequent seeding from the biofilter to the distribution
system [32]. Copper limitation can curtail nitrification [33]
because it is essential for the activity of the ammonia
monooxygenase enzyme [34]; hence, copper supplemen-
tation has been shown to rectify incomplete nitrification in
biofilters [8°]. When biofilters are truly limited by phos-
phorus (as demonstrated by the ratio of phosphatase to
glycosidase enzyme activities), supplementation of phos-
phorus decreases the concentration of extracellular poly-
meric substances (EPS) on the filter media and the rate of
headloss accumulation [13°]. The stringency of phosphorus
limitation also has a substantial impact on microbial com-
munity structure [13°].

Bioaugmentation of key microorganisms can be effected
at the influent-stream level or directly within the process
by incorporation of existing biofiltration media, with
subsequent population-level, community-level, and
molecular-level impacts. Albers er @/. [17] found that
bioaugmenting a fresh filter with a nitrifying consortium
from an existing biofilter enriched on quartz sand sub-
stantially decreased the lag time before nitrification com-
menced in the new filter. However, the bioaugmented
microorganisms were eventually outcompeted by native
nitrifiers, similar to the long-term loss of bioaugmented
microorganisms observed in other drinking water studies
[71]. However, immobilizing bioaugmented microorgan-
isms into fixed carriers can prolong the efficacy of the
bioaugmentation strategy in a short-term manner [18].

Biotechnological methods to advance the
science and practice of biofiltration

As summarized in Figure 3, molecular methods can be
utilized for biofilter (i) monitoring and (ii) improvement.
Selective monitoring of biofilters with molecular methods
will facilitate the development of a rich knowledge base
that provides links between microbial community struc-
ture/function and treatment performance, such as pollut-
ant removal. Utilizing this knowledge base, improved
biofiltration treatment performance could be obtained
via targeted ‘interventions’ (e.g., pH adjustment or nutri-
ent supplementation) to manipulate the microbial com-
munity structure and function.

Each molecular method’s utility depends on its turnaround
time and the type of information it provides. For instance,
biomass monitoring using adenosine triphosphate (A'TP)
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Figure 3
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(a) Microbial community characterization combined with process performance can be used to design process interventions to manage the
microbial communities of biofilters. (b) An overview of methods used for biofilter monitoring and improvement, their output type, and utility. The
qualitative speeds (i.e., sample-to-data turnaround times) associated with each method indicated in the figure assume in-house sample
processing, no queue time, and optimized, ready-to-use data analyses workflows. (c) Overview of the workflow and key outputs from each

method identified in panel (b).

assays is widespread due to its fast turnaround time and
availability of easy-to-use commercial kits [36]. Relatedly,
flow cytometry for total and intact cell counts (i.e., those
with intact cytoplasmic membranes) can be performed
continuously and in near real-time [35]. While widely
applied to bulk water, recent protocol developments indi-
cate that cell counting for biofilter media is feasible [37,38].
Further, combining fluorescence and scatter data from flow
cytometry analyses provides a powerful microbial commu-
nity fingerprint, referred to as ‘phenotypic diversity’ by
Propseral. [39°°]. The phenotype-resolving capacity of this
approach is limited, but changes in phenotypic diversity
correlate with changes in microbial community structure as
estimated by DNA sequencing [40]. Both ATP and flow
cytometry are well suited for biofilter monitoring, but they
are of limited utility for biofilter improvement because
they do not provide information about microbial commu-
nity structure and function or their link to biofilter
performance.

Dissecting microbial community structure and function
requires interrogation of DNA, RNA, or proteins. Quan-
titative, real-time polymerase chain reaction (qPCR)

analysis has been used to quantify genes encoding
enzymes that catalyze functions of interest in biofilter
microbial communities [9,41]. While quantitative, the
requirement for prior knowledge of the target gene
sequences to enable robust primer design is an important
challenge. In contrast, highly multiplexed amplicon
sequencing that targets hypervariable regions of the small
subunit (SSU) rRNA gene [42] can be used for compre-
hensive microbial community analyses to assess opera-
tional impacts on biofilter microbial communities [28].
Amplicon sequencing data are usually processed to the
level of operational taxonomic units (OTUs) [43] or
amplicon sequence variants (ASV) [44] as biologically
relevant units of measurement. O TU/ASV sequences
are assigned taxonomy (typically to the order, family,
or genus level) by utilizing public databases [45-47],
and their raw, subsampled, or normalized read counts
are employed to characterize microbial community mem-
bership (i.e., who is present) and structure [48,49]. While
relatively inexpensive, amplicon sequencing is (i) not
quantitative [20,21], (i1) has limited phylogenetic resolu-
tion [50], and (iii) cannot be used to infer OTU/ASV
function [51]. In contrast, shotgun DNA sequencing (i.c.,
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metagenomics) [25°%,52] can provide insights into micro-
bial community membership, structure, and functional
potential. Metagenomic read profilers provide a database-
dependent catalog of community taxonomy [53-55] and
functional potential but are unsuitable for /inking struc-
ture with functional potential [56°]. Doing this requires a
de novo approach involving metagenomic assembly and
binning to obtain metagenome-assembled genomes
(MAGs) [52,57]. This results in clustering of phylogenetic
markers and functional genes into individual population
MAGs [23,24°]. Further, metagenomic analyses can pro-
vide absolute abundances of detected populations and
MAGs through the use of internal standards spiked into
the extracted DNA before library preparation and
sequencing [58]. Though phylogenetic placement of
novel MAGs is possible, identifying novel functions is
non-trivial [59], and, thus, MAG functional annotation is
entirely database dependent. While metagenomics does
not provide proof of microbial activity and contribution to
biofilter performance, this limitation can be overcome
partially by complementing metagenomics with RNA-
based analyses, such as by mapping metatranscriptomic
reads to MAGs to determine if the targeted functions are
being expressed (and by which microorganisms).

Microbial community structure and function can be linked
with biofilter performance by coupling stable isotope prob-
ing with sequencing approaches to identify microorganisms
thatassimilate labelled contaminants [60—62]. However, this
is not useful for pollutants removed via dissimilatory or co-
metabolic mechanisms. Likely, the most powerful approach
for this purpose is metaproteomics [63]. Mass spectrometry-
identified peptide signatures coupled with custom proteome
databases (e.g., proteome predicted from metagenome) can
be used to identify and count proteins, which can shed light
on microbial presence, activity, and function [64,65°°]. Fur-
ther, multiplexing and quantitative metaproteomics also are
feasible by combining isobaric labelling with estimation of
total extracted protein concentration, respectively [64].
Compared to the other methods detailed above, protein
presence/absence and abundance variation in response to
biofilter operation, pollutant concentrations, and/or water
quality conditions would be the most useful data for inform-
ing process strategies to improve biofilter performance
because these measurements demonstrate if the biofilter
community is actively expressing proteins capable of cata-
lyzing the target biotransformation. However, it must be
noted that the ability to annotate proteomic data is depen-
dent on the depth and breadth of protein databases, where
proteins involved in unknown or poorly characterized bio-
transformation pathways are unlikely to be annotated.

The DNA-based, RNA-based, and protein-based meth-
ods outlined above are best suited for selective monitor-
ing and biofilter improvement. They are unsuitable for
routine monitoring on a daily or weekly basis due to
complex sample and data processing requirements.

Nonetheless, recent developments in nanopore plat-
form-based DNA [66] and RNA [67] sequencing and
protein profiling [68] might usher in a new era of high-
resolution, real-time, structure-function monitoring for
biofilter microbial communities.

Conclusions and future perspectives

Drinking water biofiltration is on the precipice of a
revolution that aims to tailor the microbial community
to the desired functional outcome of the process. Building
on the successes of 16S rRNA gene sequencing to deter-
mine ‘who’ populates biofilters and of qPCR to quantify
functional genes of interest, the drinking water commu-
nity is poised to execute this revolution utilizing a pleth-
ora of modern biotechnological tools. These tools will
inform process strategies to shape biofilter communities
at the community, population, and molecular levels.

T'o glimpse the possibilities availed by biofilter customiza-
tion, one needs to look no further than the explosion of
studies to manipulate the human gut microbiome for a
beneficial functional outcome. For instance, the MyNew-
Gut project aims to reduce the risk of human disease by
utilizing dietary interventions that directly affect the gut
microbiome [69]. Just as the human gut microbiome is
thought to impact the quality of human health on many
levels, so too are biofiltration processes a key way to influ-
ence human health. Using the same cutting-edge biotech-
nological tools that are employed in human microbiome
research, we can develop customized biofiltration processes
to produce safe water; furthermore, in a conducive regula-
tory environment, we might also utilize biofiltration to
deliver beneficial microorganisms to consumers [32,70].
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