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Drinking water biofiltration processes have evolved over time,

moving from unintentional to deliberate, with careful filter media

selection, nutrient and trace metal supplementation, oxidant

amendment, and bioaugmentation of key microorganisms, to

achieve improvements in water quality. Biofiltration is on the

precipice of a revolution that aims to customize the microbial

community for targeted functional outcomes. These outcomes

might be to enhance or introduce target functional activity for

contaminant removal, to avoid hydraulic challenges, or to

shape beneficially the downstream microbial community.

Moving from the foundational molecular techniques that are

commonly applied to biofiltration processes, such as amplicon

sequencing and quantitative, real-time polymerase chain

reaction, the biofiltration revolution will be facilitated by modern

biotechnological tools, including metagenomics,

metatranscriptomics, and metaproteomics. The application of

such tools will provide a rich knowledge base of microbial

community structure/function data under various water quality

and operational conditions, where this information will be

utilized to select biofilter conditions that promote the

enrichment and maintenance of microorganisms with the

desired functions.

Addresses
1 The University of Texas at Austin, Department of Civil, Architectural,

and Environmental Engineering, 301 East Dean Keeton Street, Austin, TX

78712, United States
2 The University of Waterloo, Department of Civil and Environmental

Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1,

Canada
3Northeastern University, Department of Civil and Environmental

Engineering, 400 SN, 360 Huntington Avenue, Boston, MA 02115, United

States
4 These authors contributed equally to this work.

Corresponding author: Kirisits, Mary Jo (kirisits@utexas.edu)

Current Opinion in Biotechnology 2019, 57:197–204

This review comes from a themed issue on Environmental

biotechnology

Edited by Lutgarde Raskin and Per Halkjær Nielsen

For a complete overview see the Issue and the Editorial

Available online 14th June 2019

https://doi.org/10.1016/j.copbio.2019.05.009

0958-1669/ã 2019 Elsevier Ltd. All rights reserved.
www.sciencedirect.com 
Introduction
Biological water treatment processes rely partially or

entirely on biological mechanisms to achieve treatment

objectives. These processes broadly include natural (e.g.,

riverbank and aquifer filtration) and engineered (e.g.,

fluidized bed as well as slow sand and rapid-rate filtration)

processes. In drinking water treatment, ‘biofiltration’

processes in North America typically involve rapid-rate,

granular media filters that are similar in design to con-

ventional, physico-chemical filtration processes [1–3],

whereas slow sand filters see continued use internation-

ally. Biofilters differ from conventional filters through key

operational practices that promote and maintain biologi-

cal activity on the filter media, which enhances the

transformation of organic and inorganic constituents

before treated water is introduced into the distribution

system (American Water Works Association Biological

Drinking Water Treatment Committee, J. Carter, per-

sonal communication). In this Current Opinion, we draw

heavily on the literature from the past three years to

review advancements in the science and practice of

drinking water biofiltration as well as to discuss the

potential role of modern biotechnological tools to further

this advancement.

The state of drinking water biofiltration
In contrast to conventional, physico-chemical filtration,

biofiltration is used to reduce the biodegradable fraction

of dissolved natural organic matter (NOM). NOM

removal is a common driver for biofiltration in North

America [3] with the following potential benefits:

improved biostability in the distribution system, removal

of contaminants of emerging concern [4] and taste and

odor compounds, reduced membrane fouling [2], and, in

systems that include disinfection and/or post-filter disin-

fection, removal of disinfection by-product precursors [5]

and reduced chlorine demand [2]. NOM removal by

biofiltration has been extensively reviewed (e.g., Refs.

[6�,7]). Likewise, biofiltration is an important process for

the transformation of inorganic contaminants, particularly

in groundwater systems. For example, biofiltration has

been studied for the removal of ammonia [8�], arsenic [9],

bromate [71], iron [10], manganese [10], nitrite [11], and

perchlorate [12].

Historically, ‘classical’ biofiltration has been the most

common type of drinking water biofiltration [3]. It occurs

when conventional filtration processes, ranging from rapid-

rate to slow sand filters, are operated in the absence of
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chlorine in the filter influent. Upstream oxidation with

ozone, ultraviolet light (UV)/hydrogen peroxide, or UV/

ozone generally increases the biodegradability of NOM,

increasing NOM removal by biofiltration. As the treatment

performance and cost benefits of biofiltration have been

increasingly recognized, drinking water biofiltration

research has shifted from the assessment of process per-

formance to the development of design and operational

strategies (i.e., media type and configuration, contact time,

hydraulic loading rate, and backwash and pre-treatment

strategies) for enhanced treatment [1,2]. More recently,

the focus of biofiltration research has shifted again, signal-

ing a recognition that further enhancements in treatment

performance will require customizing the microbial com-

munities to achieve targeted objectives. The purposeful

tailoring of microbial community structure (i.e., relative

abundance of various microorganisms) will require mod-

ifications beyond the pre-treatments to increase NOM

biodegradability that are typically associated with classical

biofilter operation. Supplementation of compounds

already present in filter influents (e.g., limiting nutrients

such as phosphorus) [13�,14], amendment of compounds

absent from filter influents (e.g., oxidants) [15,16], or

bioaugmentation with key microorganisms (i.e., those that

do not naturally develop in biofilters or those that grow very

slowly) [17,18] are strategies that can be considered to

enable and/or increase the transformation of target con-

taminants (Figure 1).
Figure 1
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Effective customization of microbial community structure

requires a detailed understanding and characterization of the

community. Fortuitously, the past decade has delivered

unprecedented advances in this domain. As discussed by

Zhou et al. [19], 16S rRNA gene characterization — though

foundational to modern microbial community analysis — has

limited quantitative utility [20,21]. Metagenomics overcome

this limitation by identifying novel microorganisms and their

functional potential [22,23,24�] by exploiting a fully de novo
approach [25��]. The increase in analytical throughput and

commensurate decreases in cost of DNA sequencing make

metagenomic approaches increasingly accessible [26].

A new era of drinking water biofiltration has emerged and

will be focused necessarily on the mechanistic linkages

between microbial community structure and biofilter

function. An improved understanding of how the struc-

ture, function, and dynamics of microbial communities

contribute to biofiltration processes and how they can be

customized to improve treatment efficacy are critical to

advancing the science and practice of biofiltration.

Customizing drinking water biofiltration
processes
Biofilter control can be exerted at the process (i.e., design

and operation) and influent-stream levels (Figure 2) to

customize a biofiltration process to achieve a targeted

functional outcome.
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Figure 2
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Influent-stream and process controls affect biofiltration processes at

the population, community, and molecular levels.
At the process level, filter media selection can impact the

biofilter at the population and community levels (i.e.,

which organisms are present) and the molecular level (i.e.,

the functional potential and activity of those organisms as

encoded by DNA, RNA, and proteins). Recently, Span-

jers [27] debunked the conventional wisdom that the

roughness of granular activated carbon (GAC) protects

biofilm from shear forces and leads to improved dissolved

organic carbon (DOC) removal relative to smoother

media. Spanjers [27] found that the adsorptive nature

of GAC, not media roughness, is essential to that

improved DOC removal (even over the long-term). Addi-

tionally, filter media can impact microbial community

structure; recent evidence suggests that GAC biofilter

communities tend to be more diverse than those on other

filter media types [28]. In particular, Vignola et al. [29]

found greater phylogenetic diversity in GAC as compared

to sand biofilters. Interestingly, they also demonstrated

that stochastic factors have a much smaller impact on

biofilter community assembly relative to deterministic

factors such as filter media type, process operation (e.g.,

empty bed contact time) or other controllable parameters

such as pH, dissolved oxygen concentration, NOM char-

acter/concentration, and nutrient concentrations, further

highlighting the importance of such parameters.

At the influent-stream level, oxidant amendment and

nutrient supplementation can influence process-level

properties (e.g., filter hydraulics) and population-level

and community-level properties (e.g., microbial
www.sciencedirect.com 
community structure and functional potential/activity).

Tailoring the influent concentrations of chlorine, chlora-

mines, or hydrogen peroxide to shift the biologically active

zone below the main particle capture zone in a filter is one

way to lower headloss accumulation without substantially

impacting the removal of NOM and turbidity as compared

to biofilters with no oxidant addition [16]. However, the

implementationofchlorine orchloramine for thesebenefits

must be weighed against their ability to impact microbial

community structure [30,31] within the biofilter and the

subsequent seeding from the biofilter to the distribution

system [32]. Copper limitation can curtail nitrification [33]

because it is essential for the activity of the ammonia

monooxygenase enzyme [34]; hence, copper supplemen-

tation has been shown to rectify incomplete nitrification in

biofilters [8�]. When biofilters are truly limited by phos-

phorus (as demonstrated by the ratio of phosphatase to

glycosidase enzyme activities), supplementation of phos-

phorus decreases the concentration of extracellular poly-

meric substances (EPS) on the filter media and the rate of

headloss accumulation [13�]. The stringency of phosphorus

limitation also has a substantial impact on microbial com-

munity structure [13�].

Bioaugmentation of key microorganisms can be effected

at the influent-stream level or directly within the process

by incorporation of existing biofiltration media, with

subsequent population-level, community-level, and

molecular-level impacts. Albers et al. [17] found that

bioaugmenting a fresh filter with a nitrifying consortium

from an existing biofilter enriched on quartz sand sub-

stantially decreased the lag time before nitrification com-

menced in the new filter. However, the bioaugmented

microorganisms were eventually outcompeted by native

nitrifiers, similar to the long-term loss of bioaugmented

microorganisms observed in other drinking water studies

[71]. However, immobilizing bioaugmented microorgan-

isms into fixed carriers can prolong the efficacy of the

bioaugmentation strategy in a short-term manner [18].

Biotechnological methods to advance the
science and practice of biofiltration
As summarized in Figure 3, molecular methods can be

utilized for biofilter (i) monitoring and (ii) improvement.

Selective monitoring of biofilters with molecular methods

will facilitate the development of a rich knowledge base

that provides links between microbial community struc-

ture/function and treatment performance, such as pollut-

ant removal. Utilizing this knowledge base, improved

biofiltration treatment performance could be obtained

via targeted ‘interventions’ (e.g., pH adjustment or nutri-

ent supplementation) to manipulate the microbial com-

munity structure and function.

Each molecular method’s utility depends on its turnaround

time and the type of information it provides. For instance,

biomass monitoring using adenosine triphosphate (ATP)
Current Opinion in Biotechnology 2019, 57:197–204
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Figure 3
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(a) Microbial community characterization combined with process performance can be used to design process interventions to manage the

microbial communities of biofilters. (b) An overview of methods used for biofilter monitoring and improvement, their output type, and utility. The

qualitative speeds (i.e., sample-to-data turnaround times) associated with each method indicated in the figure assume in-house sample

processing, no queue time, and optimized, ready-to-use data analyses workflows. (c) Overview of the workflow and key outputs from each

method identified in panel (b).
assays is widespread due to its fast turnaround time and

availability of easy-to-use commercial kits [36]. Relatedly,

flow cytometry for total and intact cell counts (i.e., those

with intact cytoplasmic membranes) can be performed

continuously and in near real-time [35]. While widely

applied to bulk water, recent protocol developments indi-

cate that cell counting for biofilter media is feasible [37,38].

Further, combining fluorescence and scatter data from flow

cytometry analyses provides a powerful microbial commu-

nity fingerprint, referred to as ‘phenotypic diversity’ by

Props et al. [39��]. The phenotype-resolving capacity of this

approach is limited, but changes in phenotypic diversity

correlate with changes in microbial community structure as

estimated by DNA sequencing [40]. Both ATP and flow

cytometry are well suited for biofilter monitoring, but they

are of limited utility for biofilter improvement because

they do not provide information about microbial commu-

nity structure and function or their link to biofilter

performance.

Dissecting microbial community structure and function

requires interrogation of DNA, RNA, or proteins. Quan-

titative, real-time polymerase chain reaction (qPCR)
Current Opinion in Biotechnology 2019, 57:197–204 
analysis has been used to quantify genes encoding

enzymes that catalyze functions of interest in biofilter

microbial communities [9,41]. While quantitative, the

requirement for prior knowledge of the target gene

sequences to enable robust primer design is an important

challenge. In contrast, highly multiplexed amplicon

sequencing that targets hypervariable regions of the small

subunit (SSU) rRNA gene [42] can be used for compre-

hensive microbial community analyses to assess opera-

tional impacts on biofilter microbial communities [28].

Amplicon sequencing data are usually processed to the

level of operational taxonomic units (OTUs) [43] or

amplicon sequence variants (ASV) [44] as biologically

relevant units of measurement. OTU/ASV sequences

are assigned taxonomy (typically to the order, family,

or genus level) by utilizing public databases [45–47],

and their raw, subsampled, or normalized read counts

are employed to characterize microbial community mem-

bership (i.e., who is present) and structure [48,49]. While

relatively inexpensive, amplicon sequencing is (i) not

quantitative [20,21], (ii) has limited phylogenetic resolu-

tion [50], and (iii) cannot be used to infer OTU/ASV

function [51]. In contrast, shotgun DNA sequencing (i.e.,
www.sciencedirect.com
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metagenomics) [25��,52] can provide insights into micro-

bial community membership, structure, and functional

potential. Metagenomic read profilers provide a database-

dependent catalog of community taxonomy [53–55] and

functional potential but are unsuitable for linking struc-

ture with functional potential [56�]. Doing this requires a

de novo approach involving metagenomic assembly and

binning to obtain metagenome-assembled genomes

(MAGs) [52,57]. This results in clustering of phylogenetic

markers and functional genes into individual population

MAGs [23,24�]. Further, metagenomic analyses can pro-

vide absolute abundances of detected populations and

MAGs through the use of internal standards spiked into

the extracted DNA before library preparation and

sequencing [58]. Though phylogenetic placement of

novel MAGs is possible, identifying novel functions is

non-trivial [59], and, thus, MAG functional annotation is

entirely database dependent. While metagenomics does

not provide proof of microbial activity and contribution to

biofilter performance, this limitation can be overcome

partially by complementing metagenomics with RNA-

based analyses, such as by mapping metatranscriptomic

reads to MAGs to determine if the targeted functions are

being expressed (and by which microorganisms).

Microbial community structure and function can be linked

with biofilter performance by coupling stable isotope prob-

ing with sequencing approaches to identify microorganisms

that assimilate labelledcontaminants [60–62]. However, this

is not useful for pollutants removed via dissimilatory or co-

metabolic mechanisms. Likely, the most powerful approach

for this purpose is metaproteomics [63]. Mass spectrometry-

identified peptide signatures coupled with custom proteome

databases (e.g., proteome predicted from metagenome) can

be used to identify and count proteins, which can shed light

on microbial presence, activity, and function [64,65��]. Fur-

ther, multiplexing and quantitative metaproteomics also are

feasible by combining isobaric labelling with estimation of

total extracted protein concentration, respectively [64].

Compared to the other methods detailed above, protein

presence/absence and abundance variation in response to

biofilter operation, pollutant concentrations, and/or water

quality conditions would be the most useful data for inform-

ing process strategies to improve biofilter performance

because these measurements demonstrate if the biofilter

community is actively expressing proteins capable of cata-

lyzing the target biotransformation. However, it must be

noted that the ability to annotate proteomic data is depen-

dent on the depth and breadth of protein databases, where

proteins involved in unknown or poorly characterized bio-

transformation pathways are unlikely to be annotated.

The DNA-based, RNA-based, and protein-based meth-

ods outlined above are best suited for selective monitor-

ing and biofilter improvement. They are unsuitable for

routine monitoring on a daily or weekly basis due to

complex sample and data processing requirements.
www.sciencedirect.com 
Nonetheless, recent developments in nanopore plat-

form-based DNA [66] and RNA [67] sequencing and

protein profiling [68] might usher in a new era of high-

resolution, real-time, structure-function monitoring for

biofilter microbial communities.

Conclusions and future perspectives
Drinking water biofiltration is on the precipice of a

revolution that aims to tailor the microbial community

to the desired functional outcome of the process. Building

on the successes of 16S rRNA gene sequencing to deter-

mine ‘who’ populates biofilters and of qPCR to quantify

functional genes of interest, the drinking water commu-

nity is poised to execute this revolution utilizing a pleth-

ora of modern biotechnological tools. These tools will

inform process strategies to shape biofilter communities

at the community, population, and molecular levels.

To glimpse the possibilities availed by biofilter customiza-

tion, one needs to look no further than the explosion of

studies to manipulate the human gut microbiome for a

beneficial functional outcome. For instance, the MyNew-

Gut project aims to reduce the risk of human disease by

utilizing dietary interventions that directly affect the gut

microbiome [69]. Just as the human gut microbiome is

thought to impact the quality of human health on many

levels, so too are biofiltration processes a key way to influ-

ence human health. Using the same cutting-edge biotech-

nological tools that are employed in human microbiome

research, wecan develop customized biofiltration processes

to produce safe water; furthermore, in a conducive regula-

tory environment, we might also utilize biofiltration to

deliver beneficial microorganisms to consumers [32,70].
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