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Abstract

Large-scale particle physics experiments face challenging demands for high-throughput computing resources both now and
in the future. New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field
Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine
learning algorithms in particle physics for simulation, reconstruction, and analysis are naturally deployed on such platforms.
We demonstrate that the acceleration of machine learning inference as a web service represents 2 heterogeneous computing
solution tor particle physics experiments that potentially requires minimal modification to the current computing model. As
examples, we retrain the Res¥et-50 convolutional neural network to demonstrate state-of-the-art performance for top quark
jet tagging at the LHC and apply a ResXet-50 model with transfer learning for neutrino event classification. Using Project
Brainwave by Microsoft to accelerate the ResNet—50 image classification model, we achieve average inference times of
60 (10) ms with our experimental physics software framework using Brainwave as a cloud (edge or on-premises) service,
representing an improvement by a factor of approximately 30 (175) in model inference latency over traditional CPU infer-
ence in current experimental hardware. A single FPGA service accessed by many CPUs achieves a throughput of 600-700
inferences per second using an image batch of one, comparable to large batch-size GPU throughput and signiticantly better
than small batch-size GPU throughput. Deployed as an edge or cloud service for the particle physics computing model,
coprocessor accelerators can have a higher duty cycle and are potentially much more cost-effective.
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With large datasets and high data acquisition rates, high-
performance and high-throughput computing resources are
an essential element of the experimental particle physics
program. These experiments are constantly increasing in
both sophistication of detector technology and intensity of
particle beams. As such, particle physics datasets are grow-
ing in size just as the algorithms that process the data are
growing in complexity. For example, the high luminosity
phase of the Large Hadron Collider (HL-LHC) will deliver
15 times more data than the current LHC run. The HL-LHC
will collide bunches of protons at a rate of 40 MHz, and
the collision environment will have 5 times as many parti-
cles per collision [1]. The Compact Muon Solenoid (CMS)
experiment will be upgraded for the HL-LHC with up to
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10 times more readout channels. Through a series of online
filters, CMS aims to store HL-LHC collision events at a
rate of 5 kHz. Such a data rate leads to datasets that are
exabytes in scale [2]. Future neutrino experiments such as
Deep Underground Neutrino Expeniment (DUNE) [3] and
cosmology experiments like Square Kilometre Array (SKA)
|4] are expected to produce datasets at the exabyte scale.

In the past, the physics and computing communities
relied largely on the progress of silicon technologies to han-
dle growing computing requirements. However, at present,
improvement in single processor performance is stalling due
to changes in the scaling of power consumption |5]. The cur-
rent particle physics computing paradigms will not suffice
to simulate, process, and analyze the massive datasets that
the next-generation experimental facilities will deliver. New
technologies that provide order-of- magnitude improvements
are needed.

Concurrently, the ubiquity of sophisticated detectors with
complex outputs has led to the quick adoption of machine
learning (ML) algorithms as tools to reconstruct physics
processes. Neutrino experiments currently use state-of-the-
art convolutional neural networks (CNNs) [6, 7], such as
GoogleNet and ResNet-50 [8], to perform the neu-
trino event reconstruction and identification. At the LHC,
ML methods are used in all stages of the ATLAS, CMS,
LHChb, and ALICE experiments, from low-level calibra-
tion of individual reconstructed particles |9] to high-level
optimization of final-state event topologies [10]. ML was
a vital component of the Higgs boson discovery [11, 12]
and is now being explored for the first level of processing:
low latency, sub-microsecond online filtering applications
|13, 14]. Across big science, such as cosmology and large
astrophysical surveys, similar trends exist as the experiments
grow and the data rates increase.

While the computing challenge in particle physics is a
vital concern for current and future experiments, it is not
unigue. With the rise of so-called “big data,” Internet of
Things (10T}, and the increase in the quantity of data across
a wide range of scientific fields, the sophisticated large-scale
processing of big data has become a global challenge. At
the forefront of this trend is the need for new computing
resources to handle both the training and inference of large
ML models.

In this paper. we focus on the inference of deep ML mod-
els as a solution for processing large datasets; inference is
computationally intensive and runs repeatedly on hundreds
of billions of events. A growing trend to improve computing
power has been the development of hardware that is dedi-
cated to accelerating certain kinds of computations. Pairing
a specialized coprocessor with a traditional CPU, referred to
as heterogeneous compuring, greatly improves performance.
These specialized coprocessors, including GPUs, Field Pro-
grammable Gate Arrays (FPGAs), and Application Specific
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Integrated Circuits (AS1Cs), utilize natural parallelization
and provide higher data throughput. ML algorithms, and in
particular deep neural networks, are at the forefront of this
computing revolution due to their high parallelizability and
common computational needs.

To capitalize on this new wave of heterogeneous comput-
ing and specialized hardware, particle physicists have two
primary options:

1. Adapt domain-specific algorithms to run on specialized
acceleralor hardware,

This option takes advantage of specific human expert
knowledge, but can be challenging to implement on
new and ever-changing hardware platforms with dif-
ferent computing paradigms (such as CUDA or Ver-
ilog). New portable development environments (e.g.
OpenCL,Xokkos) can potentially provide cross-hard-
ware solutions.

2. Design ML algorithms to replace domain-specific algo-
rithms.

This option has the advantage of running natively on
specialized hardware using open-source software stacks,
but it can be a challenge to map specific physics prob-
lems onto ML solutions.

In this paper, we explore how such heterogeneous comput-
ing resources can be deployed within the current computing
maodel for particle physics in a scalable and non-disruptive
way. While accelerating domain-specific algorithms on
specialized hardware is possible, in this paper we study the
second option, where a ML algorithm is adapted to solve
a challenge and accelerated using a specialized hardware
platform. We will present physics results for a publicly avail-
able top quark tagging dataset for the LHC [15] and discuss
how this could be applied for neutrino experiments such
as NOvA [16]. This study focuses on the newly available
Microsott Project Brainwave platform that deploys FPGA
COPTOCEsSSOTs as a service at datacenter scale [17]. Brainwave
provides a first scalable platform to study, though other such
options exist. Results from this study will serve as a perfor-
mance benchmark for any similar systems and will provide
valuable lessons for applying new technologies to particle
physics computing.

The rest of this paper is organized as follows. In sec-
tion "Computing in Particle Physics™, we describe the
requirements of the particle physics computing model that is
used in collider experiments at the LHC and neutrino experi-
ments such as DUNE. We detail the challenges facing this
computing model in the future. In section “Machine Learn-
ing for Physics”, we explore some example use cases to be
deployed on the Microsoft Brainwave platform. We train and
evaluate a dedicated model identifying particles at the LHC
and discuss the potential application for neutrino physics.
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In section “Heterogeneous Computing as a Service”, we
then describe the Microsoft Brainwave platform and how
we integrate it into our experimental computing model to
accelerate ML inference. In section “"Computing Pertor-
mance and Results”, we present latency results from tests
of FPGA coprocessors as a service and compare the results
to benchmark values for CPUs and GPUs. We also provide
first studies on the scalability of such an approach. Finally,
in section “Summary and Outlook™, we conclude by sum-
marizing the study and discussing the next steps required for
further development of this program.

Computing in Particle Physics
Particle Physics Computing Model

The computing mode!] for many large scale physics experi-
ments is hased on processing events. An event here is defined
as a measurement of some physical process of interest; in
the case of the LHC, it is a collision of bunches of protons
every 25 ns. The event consists of complex detector signals
that are filtered, combined, and analyzed: typically, the raw
signal inputs are converted into objects with a more physi-
cal meaning. There is both online processing, in which the
event is selected from a buffer and analyzed in real time,
and offline processing, in which the event has been written
to disk and is more thoroughly analyzed with less stringent
latency requirements. The online processing system, called
the rrigger, reduces the rate of events to a manageable level
to be recorded for oftline processing. The trigger is typi-
cally divided into multiple tiers. The first tier (Level-1, L1)
is performed with custom electronics with very low latency
{1-10 ps) where the latency is a fixed size for every event.
The second step (high level trigger, HLT) is performed on
more standard computing resources and has a variahle per-
event latency of 10-100 ms. Finally, offline analysis of the
saved events passing the HLT can take significantly longer,
though ultimately the offline processing time is limited by
available computing resources.

In this paper, we consider the possible gains from hetero-
geneous computing resources as applied to both the HLT

| L
/ k||‘.h.'.'l.l.1_--1| *| MODLLE B

Event Processing Job

Owtpast 2
MCOULE 3 |

_threads

—-; I MAL IKFER ZD

and offline processing steps. When considering how best
to use new optimized computing resources for physics, we
must understand the implications of the event processing
mode] described above. An example of the current comput-
ing model is shown in Fig. 1. Event data is processed, often
sequentizally, across multiple CPU threads.

It is important to note that the basic processing unit is
a single event and performing the same task for multiple
events (batching) becomes significantly more complex to
manage. Because each event contains potentially millions
of channels of information, it is optimal to load the needed
components of that event into memory and then execute
all desired algorithms for that event. The tasks themselves,
denoted in Fig. 1 as modules, can be very complex, either
with time-consuming physics-based algorithms, or, as is
becoming more popular, machine lezrning algorithms. There
may be dozens or even hundreds of modules executed for
each event. It can be seen that the most time-consuming
and complex tasks will be the latency bottleneck in event
processing.

Upcoming Computing Challenges

In the next decade, the HL-LHC upgrade will increase the
LHC collision rate by an order of magnitude. The CMS
detector will undergo a series of upgrades to be able to cope
with the increased collision rate and the associated increase
in radiation levels, which would damage parts of the current
detector beyond the point of recovery. The detector upgrades
include a new pixel tracker with almost 2 billion readout
channels and a high granularity endcap calorimeter with 6
million channels [18]. Both of these constitute more than
an order-of-magnitude increase in channels compared to
the current systems. Another consequence of the HL-LHC
upgrade will be an increase in the rate of multiple collisions
per proton bunch crossing (pileup). While the current LHC
configuration results in about 30 collisions per bunch cross-
ing, this value will increase to about 200 collisions at the
HL-LHC.

The consequence is that the upgraded CMS detector will
have to record and process more events, each of which con-
tain more channels and more energy deposits from pileup.
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Fig. 2 Estimated CPU resource nesds for CMS in the next decade [2].
THS06 stands for tera (10'%) HEP-SPECD6, a standard measure of the
performance of a CPLU code wsed in high-energy phvsics

The time to analyze these extremely complex events is cur-
rently simulated to be approximately 300 s. The impact on
the CPU resources needed by CMS is depicted in Fig. 2 [2].
The relative increase in computing resources required for
the HL-LHC is more than a factor of 10 greater than current
needs. Similarly, the DUNE experiment, the largest liquid
argon neutrino detector ever designed, will comprise roughly
1 million channels with megahertz sampling and millisecond
integration times [3]. Both of these frontier experiments will
need new solutions for event processing to be able to make
sense of the large datasets that will be delivered in the next
decades.

Machine Learning for Physics

In this section, we highlight examples of machine learning
maodels relevant for physics to test in accelerator hardware.
These are not meant as realistic examples, but rather as a
proot-of-concept to be expanded when more mature physics
models can be accelerated on coprocessors.

EesNet-50 and Other Models

At the moment, only a limited number of neural network
architectures are available for acceleration on the Brainwave
platform. The available models—ResNet-50, VGG-16
[19], and CenseNet-121 [20]—are CNNs optimized for
image classification. These CNNs typically contain several
convolutional layers that extract meaningful features of the
image. This part of the network is the most computation-
ally intensive and is often called the “featurizer.” The final
part of the network is much smaller and typically includes
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a few fully connected layers with the final output corre-
sponding to a set of probabilities for each category. This
part of the network is called the “classifier.” In our study,
we focus on the ResNet-50 model. The FPGA is used to
accelerate the featurizer step of the Re sNet-50 inference,
while the classifier step is performed on the CPU. In total,
ResMNelt-50 contains approximately 25 million param-
eters and requires approximately 4 G-ops (4 x 10%) for a
single inference. While the neural network architectures are
fixed, the weights can be retrained within one of these avail-
able network architectures. We use this workflow to train
a ResNet-50 neural network for a physics-specific task
in sections “Top Tagging at the LHC™ and “NeutrinoAvor
Identification at NOvA™. Even with a restricted architecture,
the amount of ML tasks that can be performed with these
sophisticated image recognition models is substantial. We
will explore two: classification of boosted top quarks and
neutrino flavor classification.

However, we also stress that this is a proof-of-concept
study to demonstrate the improvements for physics com-
puting from heterogeneous computing platforms as a ser-
vice. As the technology matures rapidly, we will also see
an improvement in the software toolsets associated with
this new hardware. We expect the capability to translate any
model to specialized hardware to become available in the
near future. In fact, several tools are working towards this
capability [21-23].

Top Tagging at the LHC

At the LHC, guarks and gluons originating from the pro-
ton collisions produce collimated sprays of particles in
the detector called jets. Studying the substructure of these
jets is an important tool for identifying their origin. There
are broad physics applications from studying Higgs boson
properties, to searching for new physics beyond the standard
model such as supersymmetry and dark matter, and meas-
uring the properties of guantum chromodynamics (QCI).
Because this task involves highly-correlated and high-
dimensionality inputs, it is an active area of R&D for ML
algorithms in particle physics. Various representations of
the data have been considered, including fixed 2D images,
variable length sets, and graphs.

In this case study, we consider the task of classifying col-
limated decays of top quarks in a jet from more common jets
originating from lighter quarks or gluons. There are many
ML approaches to this challenge in the literature [24] and a
public dataset, developed from one of these studies, has been
created for comparison |13, 25]. The PyminaB [26, 27] gen-
erator is used to produce fully hadronic tt events for signal
(known as“top quark jets”) and QCD dijet events for back-
ground (known as “"QCD jets") produced in 14 TeV proton-
proton collisions. No multiple parton interactions or pileup
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Fig.3 A comparison of QCD {left) and top (right} jet images averaged over 5,(0K) jets

interactions are included and their inclusion would require
improving our neural network model. Devrnes[28] with the
ATLAS detector configuration is used to simulate detector
effects. The DeLrues E-flow candidates are clustered using
Fastler [29, 30] into anti-k [31] jets with size parameter
= 0.8, Jets with transverse momentum ( p..) between 550
and 650 GeV and n| < 2 are selected where » is the pseu-
dorapidity. Top quark jets are required to satisfy generator-
level matching criteria: the jet must be matched to a parton-
level top quark and all of its decay products within AR = (1§,
where AR = 1/(An)? + (4¢)? and ¢ is the azimuthal angle.
Up to 20K} jet constituent four-momenta are stored.

The Brainwave platform allows the use of custom weights
for specific applications computed by training predefined
CNNs. In this training, we treat the jets as 2D grayscale
images in the n-¢b plane and send them as input to the
ResNet-50 algorithm. Jet images are created by summing
jet constitutent ;. in a 2D grid of 224 x 224 iny and ¢ units
from 1.2 to 1.2 centered on the jet axis [32]. In order to
apply the standard ResNet-50 architecture, the images
are normalized such that each image has a range between ()
and 225 and duplicated 3 times, once for each RGB chan-
nel. We illustrate the images for QCD and top quark jets
in Fig. 3 where the images are averaged over 5,000 jets.
Top quark jets have a 3-prong nature which manifests as
a broader radiation pattern when averaged over many jets.

For our specific task, after the primary ResNet-50 fea-
turizer we add our own custom classifier, which comprises
one fully connected layer of width 1024 with ReLU [33]
activation and another fully connected layer of width 2 with
softmax activation. The training dataset contains about 1.2
million events while the validation and test datasets each
have approximately 400,000 events. The training is per-
formed by minimizing the categorical cross-entropy loss
tunction using the Adam algorithm [34] with an initial learn-
ing rate of 10~ and a minibatch size of 64 over 10 epochs

on an NVIDIA Tesla V100 GPU. The best model is chosen
based on the smallest average loss evaluated on the valida-
tion dataset. The training for this particular ResNet-50
mode] is unique because there is a particular quantized
version of ResNet-50 that needs to be “fine-tuned,” or
trained with a smaller learning rate. The quantized model is
initialized using the weights from the trained floating point
model and trained with an initial learning rate of 10" and
a minibatch size of 32 for 10 additional epochs. Finally, as
the quantized model evaluated with the Brainwave FPGA
service differs numerically from the quantized model evalu-
ated on the local GPU, an additional fine-tuning is applied
to the classifier after evaluating the ResNet-50 features
on Brainwave. This fine-tuning of the classifier layers is per-
formed over 1(%) epochs using the validation data with the
Adam algorithm, an initial learning 10~, and a batch size of
128. On a single V100 GPU, the initial floating point train-
ing time is approximately 1.5 h per epoch while the “fine-
tuned” training is approximately 4 h per epoch. The classifier
layer training is significantly faster, only minutes per epoch.

Adter training, we evaluate the performance of our trained
ResNet-50 top tagger. The receiver operator characteristic
(ROC) curve is a graph of the false positive rate (background
QCD jet efficiency) as a function of the true positive rate
(top guark jet efficiency.) It is customary to report three met-
rics for the performance of the network on the top tagging
dataset: model accuracy, area under the ROC curve (AUC),
and background rejection power at a fixed signal efficiency
of 30%, 1 /e z(e; = 30%). Fig. 4 shows the ROC curve com-
parison for the transter learning version of ResNet-50 as
well as the fully retrained featurizer with custom weights.
In Table 1, the accuracy, AUC, and 1 /e (e = 30%) values
are listed for each model considered. The performance of the
retrained ResNet-50 compared to other models developed
for this dataset is state-of-the-art; the best performance is
1 fegleq = 30%) = 100K
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Table 1 The performance of the evaluated models on the top gging
dataset

Muoudel Accuracy ALC 1eg ey = 30R)
Floating point (LS00 09797 670E
Cuant. DHAL3 (.9754 4146
Cuant., £t (1.92496 (.9825 o707
Brainwave 04257 (o821 R
Braimwave, f.L (1.49345 (L9830 Q6

One other consideration in this study is the size of the
model. The typical particle physics models used for top
tagging are often several orders of magnitude smaller than
ResNet-50C in terms of the numbers of parameters and
operations. Howewer, it should be noted that the best-per-
forming models to date (ResNeXt50 and a directed graph
CNN) |24, 32] are within a factor of a few in size with
respect to the ResNet-50 model. We emphasize here that
this study is a proof-of-concept for the physics performance
and that there are many other very challenging, computation-
ally intensive algorithms where machine learning is being
explored. We anticipate that for these looming challenges,
the size of the models will continue to grow to meet the
demands of new experiments.

Neutrino Flavor ldentification at NOvA

Neutrino event classification can also benefit from accelerat-
ing the inference of large ML models. In this section, due to
a lack of publicly available neutrino datasets, we do not fully
guantify the performance of a particular model. Instead, we
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present & workflow to demonstrate that this work is applicable
beyond the LHC.

We illustrate the type of classification task needed for
neutrino experiments by using simulated neutrino events and
cosmic data from the NOvA experiment. NOvA pioneered
the application of convolutional neural networks (CNN) in
particle physics in 2016 by becoming the first experiment to
use a CNN in a published result [7. 35]. In our study, we use
transfer learning with ResNet-50 to distinguish between the
different detector signatures associated with various newtrino
interaction types and associated backgrounds. We extract fea-
tures from neutrino interaction events using the ResNet-50
featurizer {pre-trained using the ImageNet dataset |36]) and
retrain the final fully connected classifier layers to perform
neutrino event classification. Specifically, 500,000 simulated
neutrino events with cosmic data overlays were used for train-
ing, with the following five categories: charged current elec-
tron neutring, charged current muon neutrino, charged current
tau newtrino, neutral current newtring interactions, and cosmic
ray tracks. These events are highly amenable to classification
by CNN architectures such as ResNet-50.

We then applied the transfer learning ResNet-50 model
to a separate test set of 150,000 events. As a visual example,
we show three simulated neutrino interaction type events
in Fig. 5 that are selected with probability, larger than 0.9.
On the left (middle, right) is an example event originating
from an electron {muon, tau) neutrino charged current inter-
action. While the optimal use of ML to improve neutrino
event reconstruction and classification is an active area of
research, the most successful approach thus far employs
CNN architectures, which work well with the homogeneous
nature of the neutrino detectors. While the transfer learn-
ing approach does not yield state-of-the-art performance for
neutrino event classification, we expect that a full retraining
of ResNet-50 would be more successful, which is the
subject of future work.

Current neutrino experiments, including NOvA and oth-
ers, are potentially exciting applications of coprocessors
as a service. A large fraction of their event reconstruction
time is already consumed by inference of large CNNs [37].
Theretore, they stand to gain significantly from accelerating
network inference. The approach outlined in section “Het-
erogeneous Computing as a Service” could provide a non-
disruptive solution to accelerate neutrino computing pertor-
mance in the present as well as in the future.

Heterogeneous Computing as a Service

FPGA Coprocessors as a Service

In this study, we explore how to integrate heterogeneous
computing solutions into the particle physics computing
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paradigm. The jet physics model developed in the previ-
ous section is used as a specific motivating example. In
our work, we benchmark the recently released Microsoft
Brainwave platform which performs acceleration with
Intel Altera FPGAs [17]. FPGASs as a computing solution
offers a combination of low power usage, parallelization,
and programmable hardware. Another important aspect
of FPGA inference for the particle physics community,
compared to GPU acceleration, is that batching is not
required for high performance; FPGA performance is not
diminished for serial processing. The Brainwave system, in
particular, has demonstrated the use of FPGAs in a cloud
system to accelerate ML inference at large scale [17].
In Fig. 6, we show a schematic of the Brainwave system

(b)

from Ret. [17], which illustrates its cloud-scale configur-
able FPGA setup for acceleration. The Brainwave system
includes interconnectivity of the FPGA acceleration ele-
ments and a direct connection to the network, which runs
in parallel to the CPU-based software plane. The perfor-
mance of other available acceleration hardware systems
will be explored in future work.

Deploying ML algorithms in particle physics have two
particularly interesting benefits to the computing model:

~ By considering ML algorithms, we can greatly benefit
from developments outside of the field of particle phys-
ics. Industry and academic investment in ML is growing
rapidly, and there is a vast amount of research on special-
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Fig. 7 An illustration of FPGA-accelerated ML cloud resouwrces inte-
grated into the experimental physics computing model as a service

ized hardware for ML that could be utilized within the
community.

~ Often, ML algorithms are quite parallelizable, making
them amenable to acceleration on specialized hardware.
For some physics-based algorithms, this 1s not possible,
while for others it could require substantial investment
to rewrite for new, often changing computing hardware.

We, therefore, focus on ML acceleration in our study. To
capitalize on the ML-focused hardware developments, we
rely on the continued research and development of ML
applications for particle physics tasks. This is an active area
of research with growing interest, as indicated by recent
work across many neutrine and collider experiments |38,
39] and initiatives such as the HEP.TrkX project [40] and
the Tracking ML Kaggle Challenge [41]. Additionally, ML
has the potential to provide event simulation [42], another
computationally intensive part of the chain.

One challenge is to integrate FPGA coprocessors into
the computing mode] without disrupting the current multi-
threaded paradigm, where several modules process an event
in parallel. A natural method for integrating heterogene-
ous resources is via a network service. This client-server
maodel is flexible enough to be used locally by a single user
or within a computing farm where a single thread com-
municates with the server. In the particular case investi-
gated here, we use the gRFC package [43], an open-source
Remote Procedure Call (RPC) system developed initially by
Google, interfaces with the Brainwave system. gREPC uses
protocol buffers (protobu ) [44] for data serialization and
transmission. This setup defines a communication method
between the FPGA coprocessor resources and an experi-
ment's primary computing CPU-based datacenters. This is
illustrated in Fig. 7 where a module running on 2 CPU farm
performs fast inference of a particular ML algorithm via
gRPC. First, we test the performance of a single task which
makes a request to a single cloud service which performs a
remote’ access to the Brainwave platform. However, scaling
up the number of requests is natural for the Brainwave sys-
tem, which is capable of load balancing of service requests.

One may also consider a case where the FPGA coproces-
s0r resources are located at the same datacenter, on-premises,
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Fig. 8 An illustration of FPGA-accelerated ML edge resources inte-
grated into the experimental physics computing model as a service

as the CPUs, as a so-called edge resource.” This is illustrated
in Fig. 8. In this scenario, the same gRFC interface pro-
tocols are used to communicate with the FPGA hardware,
and the software access for fast inference is unchanged. To
benchmark this scenario, we run our application on a virtual
machine (VM) in the cloud datacenter. Results comparing
both these scenarios with other hardware from the litera-
ture are presented in section “Computing Performance and
Results".

Particle Physics Computing Model with Services

For our demonstration study, we use the CMS experiment
software framework, CHMS5W [45]. This software uses Intel
Thread Building Blocks [46] for task-based multithreading.
A typical module, such as those depicted in Fig. 1, has a
produce function that obtains data from an event, operates
on it, and then outputs derived data. This pattern assumes
that all of the operations occur on the same machine.

Our goal is to utilize the Brainwave hardware as a ser-
vice to perform inference of a large ML model such as
ResNet-50. Within CMS55W, a hook to the gRPC sys-
tem is established using a special feature called Exter-
nalWork. Optimal use of both CPU and heterogeneous
computing resources requires that requests be transmitted
asynchronously, freeing up a CPU thread to do other work
rather than forcing it to wait until a request is complete.
The ExternalWork pattern accomplishes this by split-
ting the simpler pattern described above into two steps. The
first step, the acgquire function, obtains data from an event,
launches an asynchronous call to a heterogeneous resource,
and then returns. Once the call is complete, a callback func-
tion is executed to place the corresponding produce function

' We refer synonymously 1o a clowd service being accessed remately.

© We refer svnonvmously to o edge service being accessed on-prem-
LSES, OF GH-[FEN.
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Fig.9 A diagram of the ExternalWork feature in CMESW, show-
ing the communication between the software and external processors
such as FPGAS

for the module back into the task gueue. This is depicted in
Fig. 9.

In this case, the event data provided to the service
is a TensorFlew tensor with the appropriate size
(224 x 224 = 3) for inference with ResNet-50. A list of
the classification results is returned back to the module,
which employs ExternalWork. For simplicity, we refer
to the full chain of inference as a service within our experi-
mental software stack as “Services for Optimized Network
Inference on Coprocessors™ or SONIC [47].

Computing Performance and Results
Brainwave Performance

We benchmark the performance of the SONIC package
within CMSS5W, measuring the total end-to-end latency of
an inference request using Brainwave. In a simple test. we
create an image from a jet (as described in section “Machine
Learning for Physics™) from a simulated CMS dataset.
We take reconstructed particle candidates and combine
them as pixels in a 2D grayscale image tensor input to the
ResNet-50 model (as in section “Top Tagging at the
LHC™).

We perform two latency tests: remiote and on-premises or
on-prem. The remote test communicates with the Braimwave
system as a cloud service, as illustrated in Fig. 7. For this
test, we execute our experimental software, CMSSW, on the
local Fermilab CPU cluster (Inte]l Xeon 2.6 GHz) in 1llinois,
US, and communicate via gREC with the service located at
the Azure East 2 Datacenter in Virginia, US. The on-prem
tests are executed at the same datacenter as the Brainwave
FPGA coprocessors. We run a VM in the Azure East 2 Data-
center, deploying CMS5W inside a Docker container, and
communicate with the FPGA coprocessors located in the
same facility.

We measure the total round-trip latency of the inference
request as seen by CMSS5W, starting from the transmission
of the image and ending with the receipt of the classifica-
tion results. The latencies are shown in Fig. 10 for a linear
latency scale (top) and a logarithmic latency scale (bottom).
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Fig. 10 Toal round trip inference latencies for Resdec-50 on the
Braimwave system both remore and or-prems. The top plot s linear in
time and the bottom plot is logarithmic in time

The on-prem performance is shown in orange, with a mean
inference time of 10 ms, and the remote performance is
shown in blue, with a mean inference time of 60 ms. From
internal Brainwave timing tests, the featurizer inference step
performed on the FPGA takes 1.8 ms and the classifier infer-
ence step performed on the CPU is similar. The remaining
time in the 10 ms is primarily used for network transmission.
The remote performance can be as fast as 30 ms with a
median value of 50 ms, and there are long tails out to hun-
dreds of ms at the per-mille level. The measured latency is
strongly dependent on network conditions which can cause
the structures seen in Fig. 10. Due to the speed of light,
there is a hard physical limit in the transmission time of the
signal to the Azure East 2 Datacenter and back to Fermilab,
which we estimate to be around 10 ms. The physical distance
between the experimental computing cluster and the remote
datacenter will limit any cloud-based inference speeds.
After comparing the remore versus on-prem latency, we
performed a scaling test to estimate how many coprocessor
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Fig. 11 Top: Mean round trip inference latencies for BesMet-50
on the Braimwvave system for different numbers of simultaneous pro-
cesses, The error bars represent the standard deviation. Bottom: The
full distributions displayed in “violin™ style. The vertical bars indicate
the extrema. The horizontal axis scale is arbitrary

services would be needed to support large-scale deploy-
ment in a production environment. A given number of
simultaneous processes were run using the batch system
at Fermilab and the round-trip latency was measured. All
jobs connected to a single Brainwave service. This test
corresponds to a "worst-case” estimation of the scaling
of a single service because each process only executed
the Brainwave test module that performs inference on jet
images. In an actual production process, the test module
would run alongside many other modules (see Fig. 1),
greatly reducing the probability of simultaneous requests
to the cloud service. The results of the test are shown in
Fig. 11. The mean, standard deviation, and long tail for the
round trip latency all tend to increase with more simulta-
neous jobs, but only moderately. 1t should also be noted
that some calls timed out during the largest-scale test with
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ResWNet-50 on the Braimwvave system for different numbers of
simultaneous processes. The wvertical bars indicate the extrema. The
horizontal axis scale is arbitrary

500 simultaneous processes, leading to a failure rate of
1.8%, while the other tests had zero or negligible failures.

We also measure the throughput based on the total time
for each simultaneous process to complete serial process-
ing of 5000 jet images. These results are shown in Fig. 12.
Though the round trip latency for a single request has a large
variance, the total time to process the full series of images is
remarkably consistent. This demonstrates the efficient load
balancing performed by the Brainwave server.

With the total time measured for all simultaneous pro-
cesses to complete, we can compute the total throughput
of the Brainwave service. Recall from above that while the
cloud service inference round trip latency is 60 ms, on aver-
age, the latency for the featurizer inference on the FPGA
itself is approximately 1.8 ms. When we run multiple simul-
taneous CPU processes that all send requests to one service,
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we fully populate the pipeline of data streaming into the
service. This keeps the FPGA occupied, increasing its duty
cycle and the total inference throughput of the service. This
is illustrated in Fig. 12, where we show the throughput of
the service in inferences per second as a function of the
number of simultaneous CPLU processes accessing the ser-
vice. As the number of simultaneous processes increases,
the number of inferences per second increases, because of
the increased pressure on the pipeline of the FPGA service.
The mean latency, shown in Fig. 11, does not degrade much
as the number of simultaneous jobs increases from 1 to 50,
while the throughput increases by a factor of nearly 40 (600
inferences per second). The throughput of the service pla-
teaus at around 650 inferences per second; it is limited by
the inference time on the FPGA that is, at best, 1.8 ms. From
these studies, we find that it is more efficient and also more
cost-effective to have multiple simultaneous CPU processes
connect to a single FPGA service.

The ratio of simultaneous processes to FPGA services is
dependent on the other tasks in the process; typical physics
processes run many modules. The tests we have performed
are the most pessimistic scenario because each process only
executes the Brainwave test module. Therefore, in more
realistic workloads where many tasks are run per process
and a majority of those tasks run on the CPU, we expect
that one FPGA service will be able to serve one model for
many more than 50 simultaneous CPU processes. Detailed
studies of these more realistic workloads will be performed
in the future.

CPU/GPU Comparisons

Next, we compare the performance of the Brainwave
platform to CPU and GPU performance for the same
ResNet-50 model. Such comparisons can be greatly
affected by many details of the entire computing stack and
vary widely even within the literature. Nonetheless, to get
a sense of the relative performance, we perform two types
of tests. First, we do our own standalone python benchmark
tests with the azure-ML implementation of ResNet-50
as well as the TensorFlow implementation of the
ResNet-50 model. Here, we verify our results against
the literature. While many more detailed studies exist, these
benchmarks validate our numbers against other similar tests.
Second, we import the ResXNet-50 model file provided by
Brainwave into CMS5%W and perform inference on the local
CPU with the version of TernscrFlow currently in the
CMSSH release.”

* It takes significant effort to adapt TenaorFlow to be compatible
with the multithreading pettern used in CMS5W, and hence the latest

verston of Tensorflow is usually not available to be used in the
cxperiment’s software.
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Fig. 13 Standalone CPU inference time per image (top) and images
per second (hottom) as a function of batch size for the TensoxFlow

o

official ResMeat-50 model compared with the Azure BesNat-50
maodel. The dashed line indicates a time of 10 ms, consistent with the
oft-premt inference time of the Brainwave system

The standalone python benchmark results for CPUs
are presented in Fig. 13. The CPU used in these tests is
an Intel i7 3.6 GHz. For the CPU, we compare the num-
ber of cores used for either the Brainwave implementa-
tion of ResNet-50 or the conventional TensorFlow
ResNet-50. The performance is shown versus the image
batch size; particle physics applications can vary in their
batch sizes typically from 1 to 100. As expected, the per-
formance is stable versus batch size. For both models, we
observe roughly the same inference time, ranging from
roughly 180 ms to 5({) ms. Additionally, we observe that
the model inference time is close to optimal when using 4
cores, with small improvements beyond.

Figure 14 shows the inference times on GPUs. It is
important to note that the GPU used in these tests, an
NVidia GTX 1080 Ti, is connected directly to the CPU,
rather than using RPC over a network for communication.
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Therefore, these results cannot be compared directly to
either the remote or on-prem Brainwave performance;
however, they provide a useful characterization of limit-
ing performance. The purple GPU points utilize the Brain-
wave implementation of ResNet-50 where, as with the

Brainwave implementation on CPU, a protobuf file is
imported. This is what we would expect within CM55W
for custom models in the future and represents the closest
direct comparison of a GPU with the Brainwave FPGA
implementation. The other GPU lines consist of the offi-
cial ResNet-50 as provided within TenscrFlow. The
official ResNet-50 can have better inference times by
factors of a few. An optimized version of ResNet-50
is also available. It gives a 0-20% reduction in inference
with respect to the official ResNet-50. All of the GPU
benchmarks also follow the expected trend for large image
batch sizes, with an improvement in the aggregate perfor-
mance. The per-image latency for a batch of one image is
found to be anywhere from 5 to 10 times worse than the
ultimate performance on a GPU.

Within CMSSW, we find that importing the protebuf
model of ResNet-50 can take approximately 5 min-
utes. Once the model is imported, subsequent inferences
take, on average, 1.75 s per inference. This benchmark
point can most closely be compared with the standalone
single-thread CPU performance that is shown in Fig. 13,
approximately 500 ms. The main ditferences between the
standalone performance and the CMESW tests are two-fold:
the Tensor¥leow version (1.06 vs. 1.10) and the proces-
sor speed (2.0 GHz vs. 3.6 GHz). It is not uncommon for
hardware across the global computing grid of the CMS
experiment to vary in performance significantly, which is
another consideration when deploying both on-prem and
remole Services.

To summarize, for total inference time for a batch of
one image, we present Brainwave, CPU, and GPU perfor-
mance in Table 2. The most straightforward comparison
with the current CMSS5W performance of 1.75 s is the 10
(60) ms on-prem {remote) that it would take to perform
inference with Brainwave. This represents a factor of 175
(30) speedup for Brainwave on-prem (remole) over cur-
rent CHS5W CPU performance. We can extrapolate from
Table 2 that, for more modern versions of TensorFlow
and CPUs, the CHMS5W CPU inference time could improve
to approximately 500 ms.

Table 2 A summary

comiatioe: of ok bl Type Hardware {Inference time)  Max throughput  Setup

timc for Braimwave, CPU, and CPU Xeon 2.6 GHz. 1 core 1755 0.6 imafs CMSSW, TF v1.06

QFL pasarmance CPU i73.6GHz, 1 core 500 ms 2 imps python, TF w1.10
CPU i7 3.6 GHz. 8 core 200 ms 5 imgfs python, TF w1.10
GPU {batch = 13 NVidia GTX G0 1i¥) ms 10 img's python, TF wi.13d
GPU {batch = 32) NVidia GTX 1080 % ms 111 imgfs python, TF wl1.14
GPU {batch = 13 NVidia GTX G0 T ms 143 imga/s TF intcmal, 77 w1.10
GPU (batch = 32) NVidia GTX 1080 1.5ms 667 imgfs TF intermal, 77 w1 .10
Brainwave Altera Artix 10 ms 6l img's CMESW, on-prem
Brainwave Altera Artix 6l ms 6l imals CMESW, remaie
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GPU comparisons can be more nuanced,’ depending on
the model implementation and batch sizes. However, for a
batch of one image, we can say that the Brainwave inference
latencies, both on-prem and remote including network laten-
cies, are of a similar order to local, physically connected
GPU inference times. The GPU and Brainwave have similar
maximum throughput, about 660 images per second, though
the former only achieves this with large batch size and the
latter achieves this when accessed with many CPUs simul-
taneously. It should be emphasized that Brainwave achieves
this performance using single-image requests and including
network infrastructure for deployment as a service, while the
GPU requires a large batch size for the same performance
and is directly connected to the CPU via PCle (Peripheral
Component Interconnect express). As will be described in
section “Summary and Outlook”, future studies are needed
to better understand the scalability and cost of different het-
erogenecus computing architectures. The performance of
other coprocessors as services, including GPUs, is another
item for future study.

Summary and Outlook

The current computing model for particle physics will
not suffice to keep up with the expected future increases
in dataset size, detector complexity, and event multiplicity.
Single-threaded CPU performance has stagnated in recent
years; therefore, it is no longer viable to rely on improve-
ments in the clock speed of general-purpose computing.
Industry trends towards heterogeneous computing-—mixed
hardware computing platforms with CPUs communicating
with GPUs, FPGAs, and ASICs as coprocessors—provide a
potential solution that can perform calculations more than an
order of magnitude faster than CPUs. The new coprocessor
hardware is geared towards machine learning algorithms,
which are parallelizable, high-performing even with reduced
precision, and energy efficient. Therefore, to best utilize the
new computing hardware, it is important to adopt machine
learning algorithms in particle physics computing. Fortu-
nately, machine learning is very common in particle physics,
from simulation to reconstruction and analysis, and its usage
continues to grow.

In this paper, we explore the potential of FPGAs to accel-
erate machine learning inference for particle physics com-
puting. We focus on the acceleration of the ResNet-50
convolutional neural network model and adapt it to physics
applications. As an example, we interpret jets, collimated

* For that matter, CPU comparisons can also be nuznced when con-
sidering devices with many cores and large RAM. However, they do
not fit in with the CME5W computing model.

sprays of particles produced in LHC collisions, as 2D images
that are classified by ResNet-50. We keep the same archi-
tecture but train new weights to distinguish top quark jets
from light quark and gluon jets. Using a publicly availahle
dataset, we compare our model against other state-of-the-
art models in the literature and find similarly excellent per-
formance. We also discuss the potentizl for Brainwave to
be used in other particle physics applications. For example,
neutrino event reconstruction deploys large convolution neu-
ral networks in their experiments and large network infer-
ences are & bottleneck in their current computing worktlow.
Coprocessor-accelerated machine learning inference could
be deployed for such neutrino experiments today.

We accelerate ResNet-50 using the newly available
Microsoft Brainwave plattorm that deploys FPGA coproces-
sors as a service. We find that using machine learning accel-
eration as a service is a simple yet very high-performing
approach that can be integrated into modern particle phys-
ics experimental software with little disruption. Using open
source RPC protocols, we can communicate with Brain-
wave from our datacenters with our experimental software
to accelerate machine learning inference. We refer to this
worktlow as SONI1C (Services for Optimized Network Infer-
ence on Coprocessors).

Even including the network transit time from the Fer-
milab datacenter in lllinois to the Microsoft datacenter in
Virginia, the inference latency is still 30 times faster than our
current, default CPU performance. We test Brainwave both
as a cloud service and an edge (on-premises) service with
ResNet-50 inferences averaging 60 and 10 ms, respec-
tively. For the edge scenario including network service infra-
structure, this is comparable to the performance of a GPU
connected directly to the CPU for a batch of one image,
which is important for the particle physics event processing
model. We also study the scalability of the SONIC workflow
by having many batch CPU jobs make requests to a sin-
gle FPGA service. We find, even in very extreme scenarios
where the job's only task is to access the Brainwave service,
50-100 simultaneous CPU jobs can be executed with little
drop in latency while greatly improving the throughput of
the FPGA to the point where a GPU can only be competi-
tive with large batch sizes. This result suggests a setup with
many CPUs connecting to one service will be more than suf-
ficient for our computing needs and be more cost-effective.

This proof-of-concept work has potentially revolution-
ary implications for many large scale scientific experi-
ments. Further academic studies and industry develop-
ments will help to bring this technology to maturity; we
highlight a few in particular.

- Continue efforts to design machine learning algorithms

to replace particle physics algorithms. New commer-
cial coprocessors are being designed with machine
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learning applications in mind, and particle physics
should capitalize on this.

~  Develop tools for generically translating models and
explore a broad offering of potential hardware. While
we have explored a specific ResNet-50 network
architecture, machine learning algorithms for differ-
ent types of physics applications will require very dif-
ferent network architectures. We will need to explore
all the available tools to automate network translation
for specialized hardware. Various available hardware
options coming onto the market should be explored and
benchmarked.

- Continue o build infrastructure and study scalabilitv/
cosi. We have developed a minimal experimental soft-
ware framework for communicating with Brainwave.
This will have to grow in sophistication for authenti-
cation, communication, flexibility, and scalability to
operate within the worldwide grid computing para-
digm.

Future heterogeneous computing architectures are a pow-
erful and exciting solution to particle physics computing
challenges. This study is the first demonstration of how to
integrate them into our physics algorithms and our comput-
ing model to enable new discoveries in fundamental physics.
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