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Abstract. Learning low-dimensional representations for medical con-
cepts is of great importance in improving public healthcare applica-
tions such as computer-aided diagnosis systems. Existing methods rely
on Electronic Health Records (EHR) as their only information source
and do not make use of abundant available external medical knowledge,
and therefore they ignore the correlations between medical concepts. To
address this issue, we propose a novel multi-information source Hetero-
geneous Information Network (HIN) to model EHR while incorporat-
ing external medical knowledge including ICD-9-CM and MeSH for an
enriched network schema. Our model is well aware of the structure of
EHR as well as the correlations between medical concepts it refers to,
and learns semantically reflective medical concept embeddings. In ex-
periments, our model outperforms unsupervised baselines in a variety of
medical data mining tasks.

Keywords: Heterogeneous Information Network ·Medical Concept Em-
beddings · Electronic Health Records · Multi-Information Source.

1 Introduction

Analogous to how word embedding [17, 18] empowers natural language process-
ing (NLP) [13], medical concepts embedding is indispensable for machine learn-
ing to show its enormous potential in healthcare [1]. Embeddings of medical con-
cepts enable the studies of correlations between concepts, such as co-occurrence
of diagnosis and symptoms, and they can also be used as features to predict fu-
ture events of interest [3]. One such example is computer-aided diagnosis systems,
which can liberate clinicians from analyzing complex, enormous information [10].

The abundant Electronic Health Records (EHR) datasets nowadays provide
a great information source for medical embedding learning. EHR are often orga-
nized by admissions, and contain detailed documentation of patients’ diagnostic
and treatment information, including demographic characteristics, symptoms,
laboratory test results, diagnoses, and medications. EHR also present unique
challenges. On the one hand, missing values are commonly seen [2]. On the
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other hand, EHR are high-dimensional and have complex structure, which often
involves tens of thousands of medical concepts.

Prior studies apply different methods for medical feature extraction. Hand-
crafted feature engineering approaches [25, 23] are labor-intensive and also re-
quire extensive clinical expertise. The performances of Knowledge Graph Em-
bedding (KGE) based methods [27] are greatly limited by the unbalance and
sparsity of EHR [14]. Homogeneous skip-gram based models [3–5] that consider
co-occurrence of medical concepts, on the other hand, treat all types of medical
concepts equally, and miss the structural information of EHR [10]. Heteroge-
neous Information Networks (HIN) [8, 24] based models such as HeteroMed [10],
though introducing heterogeneity, contain insufficient correlations since they ex-
tract edges only from EHR. EHR has limitations. For example, Congestive heart
failure and Systolic heart failure are sub-types of Heart failure, which in turn
belongs to the Heart Disease hierarchy, but EHR do not contain these relations.
Existing methods rely on EHR as their only information source, and thus are
unaware of the correlations between medical concepts.

To supplement such shortage, we propose a novel multi-information source
HIN to model EHR while incorporating external medical knowledge including
The International Classification of Diseases, 9th Revision, Clinical Modification
(ICD-9-CM) [19] and Medical Subject Headings (MeSH) [20]. We first prepro-
cess data and extract medical concepts from EHR. These concepts, along with
patients, are nodes in our HIN. We then add edges between patients and medical
concepts based on their co-occurrences in EHR. Besides, we explore ICD-9-CM
and MeSH for more edges. Both ICD-9-CM and MeSH contain valuable knowl-
edge, understandings, and insights from medical experts, and reveal correlations
between medical concepts. To be more specific, as Congestive heart failure and
Systolic heart failure in the above example are closely correlated according to
ICD-9-CM, we therefore append an edge between them to capture such cor-
relation. Given the enriched HIN schema, we adopt the commonly-used HIN
embedding technique [6] to learn medical concept embeddings.

Our work marks the following contributions:

– We propose a novel multi-information source HIN that incorporates EHR
with abundant external medical knowledge including ICD-9-CM and MeSH.
Our design simultaneously preserves structural information lies in EHR and
correlations between medical concepts reflected by external medical databases.
This work enables the learning of more semantically reflective embeddings,
and eventually allows more efficient and effective medical concept analysis.

– We quantitatively show that the learned embeddings offer significant per-
formance gains over mainstream unsupervised baselines in various medical
data mining tasks, including diagnosis, procedure, symptom classification,
and clustering.

– We qualitatively demonstrate by visualization the internal correlations be-
tween medical concepts of the same type, as well as across different types.

Our code is publicly available at https://github.com/RingBDStack/MISMV/.
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2 Related Work

Medical Representation Learning. Pioneer works in medical representation
learning that utilize handcrafted features [25, 23] can be traced back to the 2000s.
Missing values are commonly seen in EHR, and such incompleteness is one of the
leading issues [2]. Besides, feature design is laborious and requires medication
expertise [10]. To deal with these, unsupervised approaches [3–5] that enlight-
ened by word2vec [17, 18] concatenate medical concepts in admission records
to form sequences, and then use the result as corpus. These studies improve
and automate medical representation learning. However, they mainly explore
co-occurrences and lack consideration of the complex structure of EHR [10]. By
contrast, HIN based models [10] preserve the structure of EHR by modeling
EHR into a HIN, and then apply heterogeneous skip-gram. Nevertheless, they
are unaware of correlations between medical concepts that are absent from EHR.

Network Embedding. EHR are structured records that refer to a large set
of medical concepts, and can be intuitively represented as networks. Network
embedding methods [22, 26, 7] can thus be applied. These methods capture the
semantic information in the raw networks, and offer natural handling of missing
values [10]. Compared to homogeneous ones [22, 26], HIN embedding techniques
[6, 9] can jointly model structural and semantic information. This strength comes
from the preservation of diverse node types and edge types. Random walks are
guided by meaningful metapaths that differentiate nodes’ neighbors by types so
that a heterogeneous skip-gram model [6] can then be employed. HIN is there-
fore adopted by many recent studies [10], including our own. Enriched nodes and
edges are essential. Efforts have been devoted to enriching the nodes. [10] prop-
erly explored raw text, numerical and categorical data in EHR and fully utilizes
information in terms of node extraction. Its edges, however, come only from the
EHR. In non-medical domains, it has been shown in [11, 21] that external infor-
mation sources can reveal correlations between nodes and are worth integrated
as edges to enrich the network. In this paper, as we incorporate external medical
knowledge including ICD-9-CM and MeSH into network modeling, we extract
edges from them for a more informative and semantically rich network.

3 The Proposed Framework

In this section, we propose the Multi-Information Source Medical Vectors (MISMV)
model. We construct a multi-information source HIN, and learn medical concept
embeddings from it. Figure 1 shows the MISMV framework.

3.1 Construction of Multi-Information Source HIN

As illustrated in Figure 1(a), we combine EHR and external knowledge databases,
and model them into a HIN. A HIN is defined as a graph G = (V,E) where V
and E stand for collections of nodes (patients and medical concepts) and edges
(relations) that are of various types [8]. We also construct a HIN schema, which
can be viewed as a meta template of G.
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Fig. 1. The Multi-Information Source Medical Vectors (MISMV) framework. S, D, O,
E, L, M, T, G, A and P are concept types, and they refer to symptom, diagnosis,
procedure, prescription, laboratory test, microbiology test, ethnicity, gender, age and
patient, respectively. Lowercase letters with subscripts are concepts, for example, d1
stands for a specific diagnosis such as Systolic heart failure.

We model EHR into an initial HIN. EHR are patient-centered, i.e. each record
is related to a patient, and refers to a medical concept accompanied by a value
[10]. For example, a record in EHR may be abstracted as Hematocrit 42.4% or
yeast grew when tested, where the former refers to the medical concept Hema-
tocrit with a value of 42.4%, while the latter refers to medical concept yeast
culture with a value of culture-positive. We extract medical concepts from EHR.
First, for concepts of categorical values, we either directly grab their values or
reduce them into smaller categories based on their similar or identical semantics.
Genders are mapped into two nodes. Ages are split into groups using threshold
15, 30 and 64 as suggested in [15]. Ethnicities are reduced into five categories,
with rarely seen ones combined as other. Prescriptions are reduced based on
constituents, for example, Aspirin and Aspirin (Buffered) are mapped into one.
Procedures and diagnoses are mapped into corresponding ICD-9-CM codes. Mi-
crobiology tests with culture-positive results are mapped into the names of or-
ganisms, for example, yeast grew when tested in the above example is mapped
into yeast. Secondly, fields of continuous values, too, are reduced into categories.
Laboratory tests are reduced to their codes combined with flags that indicate
whether or not the results are within normal ranges, as Hematocrit 42.4% in the
above example is mapped into Hematocrit normal. Finally, for raw-text fields,
we extract nodes by phrase mining: we conduct phrase matching between notes
and vocabularies in MeSH descriptor, and use matched terms as symptoms. We
use patients and extracted medical concepts as nodes, and “refer to” relations
between them as edges to build the initial HIN, as shown in the upper-left part
of Figure 1(a). We also abstract the types of nodes and edges into an initial HIN
schema, as shown in the bottom-left part of Figure 1(a).

We then enrich the initial HIN by exploring selected external knowledge
databases for correlations between medical concepts, and integrate these cor-
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relations as new edges. Procedures and diagnoses in our HIN are encoded by
ICD-9-CM, and symptoms by MeSH. Both descriptors are ordered and of tree
structures, which enable us to detect correlations revealed by codes. For each
diagnosis, its ICD-9-CM code is comprised of three characters to the left of a
decimal point, and one or two digits to its right, where the first three characters
indicate which subclass this diagnosis belongs to. For example, 410.0 Acute my-
ocardial infarction of anterolateral wall and 410.2 Acute myocardial infarction
of inferolateral wall are both in category 410 Acute myocardial infarction, which
is a subclass of 390-459 Disease of the circulatory system. As identical in the
first three characters implies similarity, therefore, an edge can be added between
them. In this way, we examine all pairs of diagnosis nodes in our HIN and ap-
pend new edges. Procedure and symptom nodes are examined likewise, except
correlations between procedure nodes are based on the identity of the first two
digits of ICD-9-CM codes, while symptom nodes are decided by all digits up to
the last decimal point in their MeSH codes. The appended edges are highlighted
in red in the enriched HIN shown in Figure 1(a). We also append “similar to” as
a new edge type onto the HIN schema. Figure 2 shows the enriched HIN schema,
where the self-loops of symptom, diagnosis, and procedure are made possible by
external knowledge extension.

Fig. 2. Heterogeneous network schema

We derive semantically meaningful metapaths from the HIN schema. A meta-
path is a path on network schema that defines relations between node types [8],
and it carries semantics. For example, patient → diagnosis ← patient implies
that two patients are similar because they have the same disease diagnosis. Ta-
ble 1 lists all metapaths along with their semantics, where the metapaths of
length 4 are enabled by exploring external knowledge, and they integrate cor-
relations between nodes of the same type. We use these metapaths to guide
heterogeneous random-walks [6], as discussed in detail in Section 3.2.

3.2 HIN Embedding

Figure 1(b) shows how we learn embeddings from the enriched HIN. We adopt
a heterogeneous network embedding technique as proposed in [6]. Note that [6]
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Table 1. Metapaths extracted from network schema.

Semantics Metapaths

two patients are related because
they refer to a common medical
concept

patient-age-patient, patient-gender-patient
patient-ethnicity-patient, patient-symptom-patient,
patient-lab test-patient, patient-micro test-patient,
patient-procedure-patient, patient-diagnosis-patient,
patient-prescription-patient

two patients are related because
they refer to two similar medical
concepts

patient-diagnosis-diagnosis-patient,
patient-procedure-procedure-patient,
patient-symptom-symptom-patient

uses a single metapath, in contrast, we incorporate rich semantics using multiple
metapaths as listed in Table 1. In practice, since all our metapaths begin and end
with patient, we concatenate them together repeatedly for the random-walks to
keep going. Metapaths can have equal or different weights in the concatenation.
Figure 1(a) shows an example where we assign both P-D-D-P and P-S-P a
weight of 1, and get P-D-D-P-S-P.

Similar to homogeneous techniques [26, 22] inspired by word2vec [17], our
embedding approach is based on local structure prediction, and aim to maximize
the probability of seeing the local neighborhood of each node in the network.
In addition, we further differentiate the types of neighbors by metapath-guided,
heterogeneous random walks. Specifically, after a node is sampled, instead of
randomly choosing the next node from its neighbors, we only choose from those
of the type designated by the metapath. Figure 1(b) shows a concrete example
of random walks guided by metapath P-D-D-P-S-P. Suppose we start from p1,
then we can only walk to d1, as the metapath requires the type of the next node
to be D. After then, we move on by randomly choosing one from d2, d3, and d4,
as they are neighbors of d1, and also are of type D as required by the metapath.
We continue in this manner, and eventually get a metapath instance such as
p1 − d1 − d4 − p3 − s2 − p2, which incorporates the semantics of the metapath.
Given an embedding function f : C 7→ Rm, where C denotes the set all medical
concepts, the objective of the heterogeneous skip-gram can be formalized as:

argmax
f

∑
c∈C

∑
t∈T

∑
nt∈Nt(c)

logP (nt|f(c)), (1)

where f(c) is the embedding of medical concept c, T stands for the set of
all node types, and Nt(c) stands for c’s neighbors of type t. P (nt|f(c)) can be
defined as a softmax function:

P (nt|f(c)) =
exp(f(c) · f(nt))∑
v∈C exp(f(c) · f(v))

(2)

For efficient computation, we apply negative sampling [18], and (2) becomes:

P (nt|f(c)) = log σ(f(c) · f(nt)) +

M∑
m=1

Evm∼P (v)[log σ(−f(c) · f(vm))], (3)

where σ(x) = 1
1+exp(−x) , and P (v) is the pre-defined distribution from which

we sample M negative nodes. In each training step, we update the embeddings
of c, nt and M sampled negative nodes by Stochastic Gradient Descent (SGD).
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4 Experiments

In this section, we evaluate the medical concept embeddings learned from our
multi-information source HIN. We first describe datasets and preprocessing strate-
gies, then introduce evaluation tasks, results and analyses.

4.1 Dataset

We use patients and medical concepts contained in Medical Information Mart
for Intensive Care III (MIMIC III) [12] as nodes. We use relations between pa-
tients and medical concepts in MIMIC III, as well as relations between medical
concepts in ICD-9-CM and MeSH as edges. MIMIC III is a large, public EHR
dataset that contains de-identified records of more than forty thousand patients.
It includes patient-centered clinical records such as demographics, vital sign mea-
surements, caregiver notes, laboratory test results, along with high-level dictio-
naries of codes and terminologies. Table 2 summarizes our usage of tables and
fields in MIMIC III. ICD-9-CM is the official coding system of assigning codes
to diagnoses and procedures used by hospitals in the United States [19], where it
organizes over 14, 000 diagnoses and 3, 900 procedures into 19 and 18 clinically
meaningful classes, respectively. MeSH classifies a comprehensive range of medi-
cal concepts into 16 top-level categories, and serves to facilitates article searching
[20]. We utilize three top-level categories in the MeSH descriptor hierarchy, i.e.
anatomy concepts, organisms, and diseases. The resulting HIN contains 64,740
nodes, including 50,865 patients, 2,007 symptoms, 990 laboratory tests, 309 mi-
crobiology tests, 1,952 prescriptions, 2,003 procedures and 6,604 diagnoses. The
resulting HIN contains 7,655,615 edges. 7,575,015 are from the initial HIN, in-
cluding 947,633 between patients and symptoms, 4,281,748 between patients
and lab-tests, 46,477 between patients and micro-tests, 1,322,586 between pa-
tients and prescriptions, 219,829 between patients and procedures, and 604,147
between patients and diagnoses. In addition, there are 80,600 edges extracted
from ICD-9-CM and MeSH, including 46,960 between diagnoses, 31,618 between
procedures and 2,022 between symptoms.

Table 2. MIMIC III usage in our study.

Tables Fields Descriptions
patients,
admissions

hadm id, gender,
admittime, dob, ethnicity

demographic information of patients

labevents itemid, flag laboratory test results along with flags (nor-
mal/abnormal)

noteevents text, category
(discharge summary)

raw text descriptions containing patients’ symp-
toms

procedures icd icd9 code procedures performed on patients, recorded in
ICD-9-CM codes

microbiologyevents org itemid (not NULL) microbiology tests with culture-positive results
prescriptions drug medications given to patients
diagnoses icd icd9 code diagnoses recorded in ICD-9-CM codes
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4.2 Experimental Setup

We evaluate our model and compare it to unsupervised baselines through clas-
sification, clustering, and visualization. All these are classic tasks that are com-
monly performed in representation learning studies [3, 7, 26]. All models are
trained with window size set to 5, the number of negative samples to 20 and
out dimension to 128. The models are as follows:

– Med2Vec [3]. A word2vec based multilayer neural network for medical
concepts and admissions embedding.

– Word2vec [17]. We concatenate medical concepts referred to by each pa-
tient, and use the concatenations to train word2vec model. We experimented
on two sets of word2vec embeddings: W2vRaw is trained with the entire cor-
pus, while W2vFiltered ignores medical concepts with frequencies < 10.

– HeteroMed [10]. A HIN based model for medical concept embeddings.
– MISMV (ours). We train our model in three variations. MISMV-D con-

tains correlations between diagnoses, MISMV-DS further integrates correla-
tions between symptoms, while MISMV-DSP contains correlations between
diagnoses, symptoms, and procedures. We use equal weights for all metap-
aths as we found little difference in task results with different weights.

4.3 Medical Concept Classification

This section evaluates embeddings by multi-class classifications. We use ICD-9-
CM [19] and MeSH [20] categories as the ground truths. There are 18 distinct
classes for procedures, 46 for symptoms, and 19 for diagnoses. We observe the
labels of certain proportions of all nodes, varying from 5−90%, and the task is to
predict the labels of the rest nodes. We input embeddings to a LogisticRegression
classifier, and report Macro-F1 and Micro-F1 scores.

Table 3. Multi-class procedure classification results.

Metric Method 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

Med2vec 0.016 0.017 0.018 0.019 0.019 0.020 0.020 0.019 0.020 0.022
HeteroMed 0.179 0.252 0.313 0.330 0.347 0.388 0.452 0.467 0.488 0.600
W2vRaw 0.200 0.203 0.259 0.275 0.273 0.295 0.311 0.324 0.305 0.311
W2vFiltered 0.204 0.220 0.267 0.334 0.352 0.410 0.444 0.426 0.374 0.417
MISMV-D 0.269 0.335 0.352 0.449 0.452 0.479 0.487 0.495 0.488 0.520
MISMV-DS 0.276 0.308 0.376 0.433 0.474 0.529 0.535 0.564 0.583 0.562
MISMV-DSP 0.672 0.817 0.903 0.945 0.976 0.969 0.977 0.970 0.980 0.976

Micro-F1

Med2vec 0.170 0.186 0.184 0.187 0.193 0.188 0.183 0.176 0.190 0.199
HeteroMed 0.390 0.471 0.518 0.532 0.555 0.558 0.560 0.570 0.588 0.601
W2vRaw 0.486 0.488 0.518 0.530 0.518 0.527 0.544 0.551 0.546 0.537
W2vFiltered 0.557 0.593 0.618 0.649 0.651 0.660 0.672 0.687 0.639 0.602
MISMV-D 0.496 0.545 0.555 0.591 0.597 0.613 0.620 0.621 0.619 0.632
MISMV-DS 0.491 0.516 0.550 0.568 0.609 0.624 0.627 0.629 0.638 0.662
MISMV-DSP 0.794 0.922 0.969 0.984 0.990 0.988 0.990 0.993 0.995 0.990

Result analysis Tables 3, 4 and 5 show results for procedure, symptom,
and diagnosis classification, respectively. Our models consistently outperform
all baselines by large margins in all three categories. Take symptom classifica-
tion for example, compared to the highest baseline (HeteroMed), MISMV-DSP
shows 175%-313% improvements in Macro-F1 and 20%-98% gains in Micro-F1
regardless of the variation of training size. A comparison between variations
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Table 4. Multi-class symptom classification results.

Metric Method 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

Med2vec 0.008 0.017 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009
HeteroMed 0.004 0.068 0.081 0.108 0.108 0.093 0.117 0.130 0.131 0.138
W2vRaw 0.024 0.028 0.038 0.036 0.036 0.047 0.061 0.057 0.081 0.052
W2vFiltered 0.026 0.037 0.039 0.059 0.064 0.085 0.080 0.077 0.062 0.058
MISMV-D 0.029 0.050 0.070 0.083 0.081 0.086 0.096 0.111 0.108 0.131
MISMV-DS 0.104 0.159 0.211 0.259 0.317 0.378 0.412 0.436 0.435 0.419
MISMV-DSP 0.121 0.186 0.265 0.347 0.349 0.383 0.412 0.393 0.433 0.425

Micro-F1

Med2vec 0.247 0.246 0.250 0.248 0.249 0.240 0.238 0.234 0.224 0.259
HeteroMed 0.229 0.223 0.224 0.242 0.247 0.233 0.243 0.268 0.269 0.305
W2vRaw 0.225 0.214 0.225 0.219 0.215 0.233 0.254 0.249 0.276 0.284
W2vFiltered 0.243 0.270 0.268 0.277 0.273 0.297 0.296 0.306 0.288 0.273
MISMV-D 0.232 0.232 0.228 0.223 0.228 0.230 0.235 0.245 0.227 0.250
MISMV-DS 0.302 0.330 0.357 0.389 0.417 0.432 0.452 0.454 0.464 0.447
MISMV-DSP 0.276 0.318 0.373 0.414 0.423 0.452 0.480 0.478 0.487 0.492

Table 5. Multi-class diagnosis classification results.

Metric Method 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

Med2vec 0.018 0.018 0.018 0.019 0.019 0.020 0.020 0.021 0.022 0.022
HeteroMed 0.219 0.254 0.309 0.330 0.348 0.348 0.385 0.394 0.408 0.376
W2vRaw 0.244 0.308 0.347 0.367 0.371 0.384 0.389 0.396 0.390 0.377
W2vFiltered 0.362 0.427 0.450 0.480 0.514 0.500 0.503 0.491 0.508 0.551
MISMV-D 0.572 0.653 0.721 0.745 0.766 0.769 0.819 0.822 0.822 0.819
MISMV-DS 0.558 0.678 0.734 0.755 0.772 0.821 0.829 0.839 0.844 0.836
MISMV-DSP 0.523 0.644 0.726 0.747 0.755 0.819 0.840 0.841 0.854 0.856

Micro-F1

Med2vec 0.201 0.204 0.205 0.202 0.200 0.203 0.198 0.206 0.208 0.216
HeteroMed 0.329 0.351 0.396 0.417 0.436 0.440 0.455 0.462 0.475 0.453
W2vRaw 0.385 0.424 0.460 0.472 0.474 0.486 0.497 0.502 0.502 0.477
W2vFiltered 0.482 0.518 0.548 0.573 0.594 0.586 0.591 0.576 0.593 0.604
MISMV-D 0.634 0.703 0.768 0.789 0.808 0.809 0.815 0.822 0.821 0.817
MISMV-DS 0.623 0.725 0.772 0.797 0.808 0.813 0.821 0.831 0.836 0.837
MISMV-DSP 0.599 0.698 0.766 0.791 0.799 0.821 0.838 0.843 0.849 0.846

of our models also shows that adding correlations between medical concepts
can help improving classification results, as MISMV-DSP, integrates correlations
between procedures, shows a >50% higher Macro-F1 and Micro-F1 compared
to MISMV-DS and MISMV-D in procedure classification. HeteroMed outper-
forms W2vRaw in procedure and symptom classifications when the training set
becomes large enough (>=20%), which shows metapath-guided random walks
essentially preserve more information about nodes’ correlations. In diagnosis
classification, however, HeteroMed does not perform as well. This is because di-
agnoses in MIMIC III are sparse, as 3,330 out of 6,604 diagnoses are referred
by <=5 patients. For diagnosis nodes that are referred by very few patients,
MIMIC III alone does not provide enough structural information to fully reveal
their relations with other diagnoses in the network. Our models overcome this
problem through enriching the structural information, as MISMV-D shows a
>100% higher Macro-F1 and a >70% higher Micro-F1 compared to HeteroMed
in diagnosis classification despite variation in training size. Moreover, MISMV-
DSP shows an additional ∼5% improvement in both metrics when training size
>=50%. This is because MISMV-DSP indirectly introduces more paths between
diagnoses into the network by integrating symptoms and procedures correla-
tions. The same thing is true for symptom classification: compared to MISMV-
DS, MISMV-DSP on average gives a ∼10% higher Macro-F1 and a ∼3% higher
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Micro-F1, because MISMV-DSP indirectly introduces more paths between symp-
toms by appending links between procedures. As expected, by getting rid of in-
frequent concepts, W2vFiltered shows better results compared to W2vRaw in
all three categories. Med2vec embeddings are tuned for prediction purpose [3],
and turned out are not suitable for classification tasks.

4.4 Medical Concept Clustering

For medical concept clustering, we leverage the k-means algorithm and report
normalized mutual information (NMI), purity score, and adjusted rand index
(ARI) [16]. We also visualize the embeddings for a direct overview.

Table 6. Medical concept clustering results.

Node type Metric Med2vec HeteroMed W2vRaw W2vFiltered MISMV-D MISMV-DS MISMV-DSP

Procedure
NMI 0.050 0.228 0.251 0.394 0.405 0.405 0.652
Purity 0.202 0.408 0.431 0.598 0.576 0.560 0.697
ARI 0.000 0.087 0.055 0.187 0.206 0.227 0.345

Symptom
NMI 0.098 0.221 0.154 0.149 0.188 0.291 0.300
Purity 0.265 0.294 0.248 0.305 0.279 0.338 0.357
ARI 0.004 0.014 0.000 0.001 0.010 0.030 0.037

Diagnosis
NMI 0.031 0.205 0.221 0.307 0.380 0.409 0.426
Purity 0.211 0.332 0.337 0.405 0.451 0.474 0.471
ARI 0.003 0.106 0.091 0.149 0.170 0.175 0.254

Fig. 3. Visualization of medical concept embeddings. (a) and (b) are 2D PCA pro-
jections of non-diagnosis medical concept embeddings learned by MISMV-DSP and
W2vFiltered, respectively. (c) and (d) project the embeddings of all diagnoses in
class V01-V91 Mental disorders and 290-319 Supplementary classification learned by
MISMV-DSP and W2vFiltered, respectively.

Result analysis Table 6 shows the results for procedure, symptom, and diagno-
sis clustering. Our models act significantly better than baselines. MISMV-DSP
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shows >35%, >16% and >70% gains in NMI, purity, and ARI, respectively,
compared to the best among baselines in all categories. This testifies that incor-
porating external knowledge can significantly improve clustering performances.
A comparison between variations of our models further confirms the validity
of our strategy. By integrating direct external knowledge of procedures corre-
lations, MISMV-DSP performs >20% better in all three metrics compared to
MISMV-DS and MISMV-D in procedure clustering. Indirect knowledge is also
helpful. MISMV-DSP performs better than MISMV-DS in symptom clustering,
because it appends edges between procedures, which indirectly creates more
paths between symptom nodes. W2vFiltered outperforms other baselines be-
cause sparsity was removed. Med2vec embeddings, tailored for prediction tasks
[3], did not perform as well in clustering tasks.

Figure 3 shows 2D PCA projections of medical concept embeddings learned
by our MISMV-DSP model and W2vFiltered, which is the most competitive
baseline in the clustering tasks. In Figure 3(a), medical concepts of different types
fall into clearly separated clusters. This suggests a good capture of the structural
information in EHR by MISMV-DS. In Figure 3(b), however, all concepts are
in one large cluster, as W2vFiltered embeddings do not contain the structural
information. Figure 3(c) and (d) zoom in on diagnoses embeddings. Figure 3(c)
shows that diagnoses from two different classes are clearly separated by MISMV-
DSP. This proves that correlations between diagnoses are well preserved by our
model. Compared to Figure 3(c), the separation in Figure 3(d) is not as clear,
since W2vFiltered learns the correlations between medical concepts only from
the co-occurrences of them in the EHR.

5 Conclusion

We propose a multi-information source HIN that cooperates EHR and external
knowledge including ICD-9-CM and MeSH. By integrating various information
sources to enrich heterogeneous network schema, our model is well aware of both
the structure of EHR and the semantics of as well as the correlations between
medical concepts it refers to. The embeddings learned by us are informative
and semantically reflective. In experiments, our model significantly outperforms
baselines in diagnosis, procedure, symptom classification, and clustering.
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