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Abstract

Multiscale simulation of woven composites structure remains a challenge due to extremely expensive computational cost
for solving the nonlinear woven Representative Volume Element (RVE). Recently, an effective and efficient Reduced Order
modeling method, namely Self-consistent Clustering Analysis (SCA), is proposed to solve the RVE problem. In this work,
the curse of computational cost in woven RVE problem is countered using the SCA, which maintains a considerable accuracy
compared with the standard Finite Element Method (FEM). The Hill anisotropic yield surface is predicted efficiently using
the woven SCA, which can accelerate the microstructure optimization and design of woven composites. Moreover, a two-scale
FEM xSCA modeling framework is proposed for woven composites structure. Based on this framework, the complex behavior
of the composite structures in macroscale can be predicted using microscale properties. Additionally, macroscale and mesoscale
physical fields are captured simultaneously, which are hard, if not impossible, to observe using experimental methods. This
will expedite the deformation mechanism investigation of composites. A numerical study is carried out for T-shaped hooking
structures under cycle loading to illustrate these advantages.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

Woven composites are widely used in industries such as the aerospace and automotive industries [1,2] because of
their robust mechanical performance. However, performing structural analysis of woven composites is challenging
due to the mesoscale and microscale heterogeneities (see Fig. 1). Unique features can be observed at these different
scales, and simply homogenizing the composite structure and applying a phenomenological constitutive relationship
that only characterizes the average behavior of the material does not account for the localized behavior at the finer
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Fig. 1. Multiscale features of woven composites from microscale to macroscale.

scales. As a result, local nonlinear deformation and damage effects are not considered. In addition, the macroscale
properties cannot be predicted based on the microstructural constituents, and experiments are required to design
new composites, which are costly and time consuming.

Multiscale simulation [3-9] provides a powerful method for analyzing both the material microstructure and
macrostructure. Using this method allows the macroscale performance of woven composites to be predicted based
on the properties of the constituents. Once the microstructure is characterized, macrostructural experiments are not
needed every time the microstructure is changed. This allows the multiscale method to accelerate material design
of woven composites, while reducing the cost and improving the analysis accuracy of woven composite structures.
Moreover, detailed analysis of the physical fields in different scales is also possible, which is difficult to achieve
using experimental methods. Accomplishing effective multiscale simulations for woven composites still involves
some challenges, as outlined in the following.

1.1. Challenge 1: efficient woven Representative Volume Element (RVE) solution

Effective macroscale properties are homogenized properties of composites, which are always adopted for the
material selection and structural design with woven composites. To predict these effective properties, an RVE
[10-14] for the woven composite material must be developed, which will establish the link between the microstruc-
tural features and effective macrostructural properties. In the case of a periodic woven architecture, a unit cell is
used for the RVE. For the microstructure design, the woven RVE solution can be integrated into an optimization
algorithm in which the RVE has to be solved repeatedly to find the optimized solution and satisfy the requirement
of effective properties. Therefore, solving the woven RVE problem efficiently can accelerate the whole process of
optimization. As a result, it will promote the microstructure design of woven composites.

Currently, several approaches have been proposed for solving the RVE problem. The analytical approaches, such
as mixtures rules and theoretical micromechanics methods [15-19], are efficient, but will lose accuracy in the case
of complex microstructure and nonlinear, history-dependent material laws. The Direct Numerical Simulation (DNS)
method, such as FEM, is extremely time consuming [7]. The Fast Fourier Transform (FFT)-based method [20,21] is
more efficient than FEM, but encounters convergence problems for the high phase contrast in nonlinear problems.
The Transformation Field Analysis (TFA) [22,23], the Nonuniform Transformation Field Analysis (NTFA) [24-26]
and Proper Orthogonal Decomposition (POD) [27-30] are other solution methods, but they require extensive a
priori simulations to obtain deformation modes, especially for nonlinear phase behavior.

1.2. Challenge 2: concurrent multiscale simulation for woven structures

The behavior of woven composite structures is predicted using the behavior of the RVEs through the concurrent
multiscale simulation. Additionally, the physical fields in different involved scales can be captured simultaneously,
which will expedite the deformation mechanism investigation of woven composite structures.

Concurrent simulation requires numerous RVE solutions, which is computationally expensive using the FE?
[7,31] framework, as shown in Fig. 2. In this example, only 5000 elements are used at the macroscale level,
1,843,200 elements are used at the woven RVE mesoscale level. For the concurrent multiscale simulation, every
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Fig. 2. Multiscale computational challenge of woven composite structures.

up-scale material point will be linked with a down-scale RVE. In this example, assuming a single integration point
for each element, 9.216 billion elements are required for the entire multiscale computation. This computation is
extremely expensive and would require the use of a High-Performance Computing Cluster (HPCC).

1.3. Solutions for the Challenges 1 and 2

Solving Challenges 1 and 2 requires improving the solution efficiency of the RVE problem. The Self-consistent
Clustering Analysis (SCA) proposed by Liu et al. [32] is an effective and efficient method to solve the RVE problem,
which can be used for complex woven architecture undergoing irreversible processes, such as inelastic deformation.
This makes it particularly attractive for integration into a multiscale simulation. The SCA method involves a two-
stage process, an offline stage and an online stage. In the offline stage, a clustering algorithm is used to reduce the
overall degrees of freedom (DOF) of the RVE, resulting in a reduced order RVE. In the online stage, the reduced
order RVE is utilized for solving the discrete incremental Lippmann—Schwinger integral equation to obtain the stress
and strain fields in the reduced order RVE. This efficient method has been used for simulation for 2-dimensional
(2D), two-phase composites, and 3-dimensional (3D), hard inclusion material considering nonlinear, elastoplastic
damage softening effect [33] and computation for polycrystal material [34]. Additionally, Bessa et al. [35] used
this method for data mining and uncertainty analysis. These simulations have demonstrated good efficiency and
accuracy.

In this paper, the reduced order modeling process of woven composites by SCA is discussed and the results are
compared with FEM. Moreover, the multiscale framework of woven composites is presented for a woven composite.
Based on this framework, the part scale mechanical response, whether linear or nonlinear, can be predicted efficiently
only using the fiber material and matrix material laws.

This paper is organized as follows: in Section 2, the SCA scheme for woven composites is developed and
the concurrent multiscale framework is presented for woven composite structures. In Section 3, the plain weave
composites are presented as an example to construct the woven RVE architecture. The nonlinear plasticity model
is implemented for an epoxy matrix material. Verification of reduced woven RVE is performed by comparing
simulation results obtained from SCA and FEM. In Section 4, the Hill effective anisotropic yield surface is efficiently
predicted based on the properties of the constituents, and T-shaped hooking structure made of woven composites
is analyzed using proposed FEM xSCA multiscale simulation framework numerically. Additionally, the capacity
and advantages of the FEM xSCA multiscale simulation framework are demonstrated in this section. Concluding
remarks are provided in Section 5.
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1. Mesh the macroscale woven composites part using FEM
2. Begin solution increments

3. Compute integration point field variable from nodal values
4. for i = 1, N_IP (Loop over integration points)

a. The macroscale strain increment AE is passed to user-defined subroutine as input data
b. Run online part of SCA to solve woven RVE subjected to AE using offline woven database
c. Compute the mesoscale strain increment Ae in every cluster in woven RVE domain
for j = 1, N_.CLU (Loop over all clusters in this corresponding woven RVE)
Compute mesoscale stress increment Ao using corresponding material model.
end for (Obtain the response at all clusters)
d. Check convergence of the reduced-order discrete incremental Lippmann—Schwinger integral
equation, if not, update Ae using Newton—Raphson method and go to c, if yes, go to e.
e. Compute macroscale stress increment A3 by averaging Ac in woven RVE domain and pass the
macroscale stress back to the FEM solver.

5. end for (Obtain the response at all integration points)
6. Check convergence of the FEM part, if not, update nodal values and go to 3

Box I. Flowchart for the concurrent multiscale simulation of woven composite structures.

2. Methodology and framework

2.1. SCA method for a woven RVE at the mesoscale level

A woven composite material is constructed by interweaving yarns in two directions and then filling the
weave with an epoxy matrix material. The effective elastic properties of an individual yarn are predicted using
a unidirectional (UD) RVE based on the constituent properties of the fiber and matrix materials (see Fig. 3). Then,
the woven RVE is meshed by high-fidelity voxel elements, and the elastic analysis is conducted to obtain strain
concentration tensor in each element. The degrees of freedom in the woven RVE domain are reduced by clustering
these voxel elements based on the strain concentration and orientation in each element. Using the results of the
woven RVE clustering, a material database is generated using the method in [32], which includes the interaction
tensor, D!/, the strain concentration tensor of each cluster, A/, the volume fraction, ¢!, and the material parameters
of the individual constituents. In the online stage, a Newton—Raphson iteration algorithm is adopted to solve the
discrete incremental Lippmann—Schwinger integral equation set, which can improve the accuracy and convergence,
especially for nonlinear material behavior. The solution is the mesoscale strain and stress fields.

2.2. FEMxSCA concurrent multiscale framework

Two scales, the macroscale and mesoscale, are utilized in the concurrent multiscale framework in the paper
(Fig. 4). The structural scale (macroscale) is discretized by FEM, which can adapt to complex geometries. The
woven RVE scale (mesoscale) is modeled using SCA. A multiscale simulation involving both the macroscale and
mesoscale levels is performed in which the information is exchanged concurrently.

The load is applied to the structural scale model. At each integration point in the macroscale elements, the
strain increment will be passed from the FEM model in the SCA model. This strain increment is applied to the
corresponding woven RVE, and the SCA method is used to solve the woven RVE problem and return the stress
increment to the FEM solver. The algorithm for the multiscale simulation of woven composites is summarized in
Box L

From the Box I flowchart, the SCA online algorithm can be implemented by the user-defined subroutine, which
can be integrated with most commercial FEM software packages. In this way, the FEM x SCA multiscale framework
can be adapted to arbitrary structural geometry and arbitrary woven architecture. Note that the cluster geometry is
not required to be regular, which makes it effective for complex microstructure.
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Fig. 5. The microstructure of plain weave composites (three directions in local material frame of yarn, 1: Tangent of the centerline,
2: Vertical to 1 direction, 3: Vertical to 1-2 plane).

3. Verification of SCA for woven RVE

3.1. Geometry model

In the family of woven composites, plain weave composites are widely used for ease of manufacturing. A plain
weave composite is selected as an example to demonstrate and verify the SCA method at the RVE level. Fig. 5
shows the plain weave RVE microstructure used in the present work. The cross section of the yarns is assumed
to be elliptical, and the centerline of the yarn is modeled as a sine function. Two coordinate systems, X;0,Y;
and X,0,Y>, are created to describe the cross section and yarn centerline features, respectively. The mathematical
description can be shown in Eq. (1). The local coordinate frame 1-2 is used to indicate the local orientation of the
yarn, which is also the local system of the material model in yarn. The 1-direction is the tangent of the centerline,
and the 2-direction is normal to the 1-direction. This local frame varies along the length of the yarn. The woven
RVE used in this paper has 120 voxel elements in both width and length dimensions, and 32 voxel elements in
height dimension.

The cross-sectional shape and longitudinal shape are respectively modeled as

X
) + i 1
ey

. 27
y, = Asin(—xp)
lo

where a is long axis, b is short axis of the elliptical cross section respectively, A is amplitude of the sine function
in Eq. (1). The three-dimensional geometric model of the woven RVE is defined by five parameters, which are also
shown in Fig. 5. The values of these parameters are assumed and are only for numerical verification purposes. With
proper experimental characterization, it is possible to generate a realistic woven RVE with these parameters.
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Table 1
Material parameters of matrix [37].
Parameter Value
E (GPa) 3.76
v 0.39
Uplas 0.3
o1, (MPa) 29
0cy (MPa) 67
H, (MPa) 67
H. (MPa) 58
n; 170
ne 150
Table 2
Material parameters of fiber [38].
E; (GPa) E, = E3 (GPa) G13 (GPa) P 023
Fiber 231 12.97 11.28 0.3 0.45
Table 3
Predicted effective elastic material properties of yarn.
E; (GPa) E; = E3 (GPa) G13 (GPa) V12 v23
Yarn 138.8 7.08 4.49 0.25 0.31

3.2. Material properties and constitutive model

A nonlinear epoxy plastic material model [36,37] is used to model the polymer matrix. The yield function is
written as

f(o-v O¢, Uz) = 6-]2 + 2'Il (gc - Ut) - 20001 (2)

where ¢ is Cauchy stress tensor, /; = tr(6) is the first invariant of Cauchy stress tensor, J, = %n: 1 is the second
invariant of deviatoric stress 1 = 0—%1 1, 0r and o, are yield strengths in tension and compression. A non-associative
flow rule is used, with the plastic potential function written as

g(0, 0c, 0y) = 6J2 + 2ali (0. — 0y) — 20.0; 3)
where o = 11_4_2;:;::, Vplas 1s known as plastic Poisson’s ratio. Thus, the flow rule is given by
. .08
&=y 4)
a0

where y represents the time derivative of the plastic multiplier. The evolution of yield strengths in tension and
compression are written as

0y = 07y + Hy (1 — e ")

Oc = 0¢y + He(1 — 7<) )

where o, and o, are the initial yield strengths in tension and compression, H, and H. are hardening parameters in
case of tension and compression respectively. These material parameters are given in Table 1. o and «; are internal
kinematic variables, which are determined by the epoxy experimental data in [37].

A transversely isotropic elastic material model is considered for the fibers. The elastic properties are list in
Table 2. The fiber volume fraction is assumed to be 0.60. The subscripts 1, 2 and 3 indicate the local material
orientation of yarns in the 1-2-3 frame (see Fig. 5). The UD RVE (Fig. 6) used in this paper has 240 voxel
elements in both width and length directions, and 10 voxel elements in height direction.

The effective material properties of the yarn are predicted using a unidirectional (UD) RVE (Fig. 6) model and
the elastic properties (Tables 1 and 2) by applying six orthogonal loads with periodic boundary conditions (PBC).
As a result, the elastic material properties of yarn are presented in Table 3.
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Fig. 8. Clustering process and results of yarns with 64 clusters. For each yarn, clustering is performed first based on local orientation. The
resulting clusters are refined further using strain concentration tensor, Ay,.

3.3. Clustering process for the woven mesoscale RVE

The matrix material is isotropic, which requires that the clustering only be conducted once, based on the A,,
tensor. After this procedure, the material points with the most similar A,, tensor will be grouped into the same
clusters. Fig. 7. shows the clustering results of the matrix for 256 clusters using k-means clustering.

3.4. Results and discussion

The clustering process for the yarn material will be more complex, as illustrated in Fig. 8. Each cluster
corresponds to an orientation-dependent material law, and the local coordinate frame is aligned to the centerline of
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Fig. 9. The prediction results given by FEM and SCA (the SCA-64-128 indicates 64 clusters in matrix and 128 clusters in the yarns).
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Fig. 10. The prediction results given by FEM and SCA.

the yarn (see Fig. 5). The 1-direction is tangent to the yarn centerline and represents the yarn material orientation for
each material point. Clustering is conducted using a two-step process. First, a single yarn is clustered based on the
material orientation using k-means. The points with the closest material orientation will clustered together. Based on
the results in the first step, the material points in the same cluster will be clustered a second time according to strain
concentration tensor, A,,. In this paper, two clusters are used for the second step. After the two-step clustering, the
material points with the closest orientation and the closest strain concentration tensor will be grouped into the same
cluster. This two-step clustering process is repeated for all yarns in the RVE.

Uniaxial tension and pure shear responses are calculated using the SCA method. Figs. 9-10 include the stress—
strain curves for the woven composites under these two different load cases. The number of clusters in the matrix
ranges from 64 to 256, while the number of clusters in the yarns is fixed at 128. When the number of clusters in
the yarns changes from 32 to 128, the number of clusters in the matrix is fixed to 256. The results from the FEM
are also provided as comparison to the baseline solution. It can be concluded that the SCA results are in very good
agreement with the FEM results under the pure shear condition in both the linear and nonlinear regions. For the
uniaxial tension condition, the SCA results converged with the FEM results as the number of clusters in the matrix
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Table 4
Offline computational time of SCA.

Computational time (s)

SCA-64-128 813
SCA-128-128 1432
SCA-256-128 3571
Table 5
Computation efficiency comparison of FEM and SCA.
Elements/clusters DOF Computational time (s)
Uniaxial tension Pure shear
FEM 460 800 1.45 million 6785.8 6523.1
SCA-64-128 192 1152 11.5 10.4
SCA-128-128 256 1536 18.2 17.8
SCA-256-128 384 2304 28.8 19.8
Max. speed up 2400 1258 590.1 627.2

Table 6
Offline computational time of SCA.

Computational time (s)

SCA-256-32 1984
SCA-256-64 2416
SCA-256-128 3571
Table 7
Computation efficiency comparison of FEM and SCA.
Elements/clusters DOF Computational time (s)
Uniaxial tension Pure shear
FEM 460 800 1.45 million 6785.8 6523.1
SCA-256-32 288 1728 20.9 14.5
SCA-256-64 320 1920 22.6 17.1
SCA-256-128 384 2304 28.8 19.8
Max. speed up 1600 839 324.7 449.9

increased. Since the nonlinear constitutive model is only used for the matrix material, more clusters are needed
to capture the local material nonlinear effects. Compared with the computational cost of FEM, SCA is capable of
accurately capturing nonlinear behavior of woven composites with significantly fewer degrees of freedom (SCA
results differ by less than 4% compared with FEM using 256 clusters in matrix and 128 clusters in the yarns).
Tables 5 and 7 present the efficiency comparison between the FEM and SCA methods. FEM required about 1.45
million DOFs be solved with a solution time of 6523 s, while SCA only requires 2304 DOF and has a solution
time of 30 s. The offline stage computational time is provided in Tables 4 and 6. As a result, the SCA method
significantly improves computational efficiency in terms of time and memory requirements.

4. Property prediction and concurrent multiscale simulation

4.1. Macroscale anisotropic yield surface prediction

A nonlinear epoxy elastic—plastic material law is considered for the matrix, which results in the overall elastic—
plastic behavior for woven RVE. The yield stress of the elastic—plastic material is an important property for material
selection and design of composite structures. A yield surface is developed to evaluate material yielding under various
loading conditions. The anisotropic Hill yield criterion [39] is considered in this paper for woven composites. The
homogenized material law can be efficiently predicted using SCA based on the epoxy elastic—plastic material law
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for the matrix and the elastic material law for the yarn. The quadratic Hill yield criterion has the following form:
F(oyy — 0..)* + G(0:; — 04x)’ + H(0wy — 0yy)” + 2Lo,, + 2Mo’, +2No] = 1 (6)

where F,G, H,L, M, N are constants characteristic of the yield surface, which are traditionally determined
by burdensome experiments. Additionally, some experiments are difficult to perform, such as the out-of-plane
tension test. In this paper, these parameters are predicted using the SCA method, which significantly reduces
the computational cost and improves the efficiency. If Y,,, Y,,, Y., are the tensile yield stresses in the principal
anisotropic direction, it can be shown that:

L G+H 2F = ! + ! !
Y2 ’ Y o Yi Y

1 HiF G 1 1 1 o
vz T ’ vz Ty2z T yz
Yyy Yzz Yxx Yyy

L _ F+G 2H = ! + ! !
Y2 ’ YooYy, YZ

If Yy, Y., Yy, are the yield stresses in shear with respect to the principal axes of anisotropy, then
1 1 1

By taking advantage of the symmetrical features of the woven RVE, only four orthogonal loading conditions
are applied to the RVE; the responses are calculated using the SCA method. The tangent stiffness is computed
at each point from the stress—strain response, and the yield points are identified by evaluating the change in the
tangent stiffness. As a result, the values of yield stress in six directions are obtained. In addition, the Hill constants
in Eq. (6) are calculated using Egs. (7) and (8) using the values of yield stress. The six-dimensional yield surface
described by Eq. (6) can be difficult to visualize, but by selecting three components at a time (and setting other
three components to be zero), this six-dimensional yield surface is plotted in three-dimensional space (see Fig. 11).

For the nonlinear computation of woven composite structures, this anisotropic Hill yield surface can be used as
a criterion to efficiently identify the onset of the plastic deformation under various loading conditions.

The present workflow (Fig. 11) allows one to construct the yield surface for various microstructural and material
constitutive information with minimal efforts (approximately one minute on a personal computer). A large woven
composite response database can be built to assist design of woven composite against yielding. Given a priori
information on maximum service loads, the database will provide all possible woven microstructure (e.g. yarn
geometry and yarn angle) and material constituents (e.g. matrix properties and yarn properties) that would prevent
yielding to occur. Hence, the workflow can accelerate the woven composite design process by efficiently identifying
the allowable design space of various design parameters.

4.2. Multiscale simulation convergence study

An RVE convergence study is first conducted to quantify the effect of RVE size on the stress—strain response
(Fig. 12). RVE-1 is a unit cell of plain weave woven composite, and RVE-2 is eight times bigger than the RVE-1.
The material properties from Section 3.2 are used. The results for these two different RVE sizes are shown in
Fig. 12. It is noted that the results are in close agreement with each other (2% difference). Thus, the RVE-1 will
provide converged results with greater computational efficiency.

4.3. T-shaped hooking structure analysis

Woven composites are generally made of multiple layers for industrial application. A T-shaped hooking
structure [40] is a common geometry for connecting different composite parts. In this example, multiscale simulation
is used to capture the macroscale and mesoscale fields in different layers during cyclic bending of the T-shaped
hooking structure. The structure and the loading condition are depicted in Fig. 13. Multiple layers are considered
through the thickness. The red highlighted area in Fig. 13(b) represents a critical zone when failure stresses are
reached, as demonstrated through experiments [40], and a finer mesh is used in this area. The total number of
elements is 34,720 for the structural level model.
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Fig. 11. Hill yield surface calculation workflow. The 3D yield surfaces are plotted against three normal stress components and three shear
stress components. For the plot against normal stress components, the cross section where o, = 0 is illustrated. For the plot against shear
stress components, the cross section where oy, = 0 is plotted.

For woven mesoscale RVE, 64 clusters in the matrix and 32 clusters in the yarns are considered for the SCA
calculation, while the eight-node continuum brick element with a reduced integration (ABAQUS element C3D8R)
element is used for the FEM calculation. The macroscale behavior is determined by the microstructural morphologies
and the mesoscale constitutive equation of each cluster. The SCA material database is first generated during the
offline stage, which makes the multiscale simulation more efficient.

This numerical study is implemented with an ABAQUS VUMAT User Subroutine [41] and the discrete
incremental Lippmann—Schwinger equations are solved using Intel Math Kernel Library (MKL) FORTRAN codes.
This numerical example is run on Intel(R) Xeon(R) processor with 48 cores and 128 GB memory.

The computational results are presented in Fig. 14. Four elements in different layers around the corner are selected
to present the mesoscale fields. For the bending loading condition, a stress gradient exists through the thickness,
and the stress fields are different in different RVEs. Since the yarns have a much higher modulus, they undertake
much more loading than matrix. The homogenized stress—strain curve at maximum stress location is plotted in
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Fig. 12. Convergence study for different RVE sizes.
Table 8
Computational time comparison.
Concurrent multiscale framework Computational time
FE? 5.2 x 10°days (Estimated)
FEM x SCA 2.4 days
Speed up 2.16 x 10°X

Fig. 14, which shows the residual plastic strain after loading and unloading. The stress state at peak point is plotted
on the 2D yield surface, which shows that the stress has already exceeded the initial yield surface. Additionally,
the computational times are presented in Table 8, which demonstrates the significant improvements in efficiency of
FEMxSCA framework.

The above numerical study presents the advantages of using the proposed multiscale simulation framework.
The stress and strain fields can be captured in both macroscale and mesoscale, including the nonlinear effects,
which are difficult to observe using experimental technology. As a result, this framework establishes the connection
between the microstructure and macroscale response of the composites structure. When the woven microstructure
is modified, but the yarn and matrix material remain unchanged, no additional experiments are needed to calibrate
the constitutive equations; only the SCA offline database needs to be updated. In this way, it reduces the cost and
improves the efficiency to find the optimal microstructure for the specific structures. Given the efficiency of the
SCA online, the larger dimensional composites structures can be analyzed using this framework.

5. Conclusion

In this paper, a woven composite multiscale modeling framework based on Self-consistent Clustering Analysis
(SCA) is established. A two-stage reduced order modeling process for woven composite materials using an RVE is
developed. In the initial offline data compression stage, a clustering technique is utilized to reduce the overall degrees
of freedom in the RVE domain as material points with similar mechanical responses are grouped into clusters. An
interaction tensor linking different clusters is then computed, and a woven RVE microstructure database is generated.
In the second online stage, Newton—Raphson iteration is used to solve for equilibrium using the reduced-order
discrete incremental Lippmann—Schwinger integral equation. This method exhibits rapid convergence for both linear
and nonlinear material laws.

The woven multiscale modeling approach provides two attractive features: (1) given the woven microstructure,
the online stage can utilize different materials laws for matrix and yarn phases to compute woven microstructure
responses. For example, for temperature dependent material properties, the woven behavior at different operation
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Fig. 13. Geometry and mesh of the T-shaped hooking structure: (a) geometry and boundary conditions, (b) mesh model and reduced order
model.

temperature can be computed efficiently. (2) Given the same constituents properties, one only needs to update the
offline database to incorporate different weave structures, such as plain weave, twill weave, or satin weave.
The woven multiscale modeling framework has various potential applications, where two important applications

are illustrated in the present work:

1. Rapid yield surface generation for woven design against yielding. The yield surface generation workflow can
be used to investigate whether the woven composite would experience plastic deformation under possible
loading conditions. Note that it can be easily extended to failure surface prediction when the yield analysis

is replaced with the failure analysis.
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Fig. 14. Simulation results of the T-shaped hooking structure.

2. FEM xSCA concurrent modeling framework of woven laminates which captures macroscale (FEM mesh)
and mesoscale mechanical behavior simultaneously during the analysis. The mesoscale field evolution can
be tracked as the load increases and the bridge between microstructural and macrostructural response is built.
Based on the FEM xSCA framework, the damage and failure model can be incorporated into the mesoscale
to provide more detailed analysis, such as conducting composites structure level failure analysis. Compared
to the FE? framework, the efficiency of concurrent multiscale simulation is significantly improved using
FEM xSCA framework. In addition, this framework can be extended to larger scale structure level analysis
with complex loading conditions. Finally, this work provides an efficient methodology and framework to
solve the woven composites multiscale problems.
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