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Abstract—The processing demands of current and emerging
applications, such as image/video processing, are increasing
due to the deluge of data, generated by mobile and edge
devices. This raises challenges for a vast range of computing
systems, starting from smart-phones and reaching cloud and
data centers. Heterogeneous computing demonstrates its ability
as an efficient computing model due to its capability to adapt to
various workload requirements. Field programmable gate arrays
(FPGAs) provide power and performance benefits and have
been used in many application domains from embedded systems
to the cloud. In this paper, we used a closely coupled CPU-
FPGA heterogeneous system to accelerate a sliding window based
image processing algorithm, Canny edge detector. We accelerated
Canny using two different implementations: code partitioned
and data partitioned. In the data partitioned implementation,
we proposed a weighted round robin based algorithm that
partitions input images and distributes the load between the
CPU and the FPGA based on latency. The paper also compares
the performance of the proposed accelerators with separate CPU
and FPGA implementations. Using our hybrid CPU-FPGA based
algorithm, we achieved a speedup up to 4.8× over a CPU-only
and up to 2.1× over a FPGA-only implementations. Moreover,
the estimated total energy consumption of our algorithm is more
efficient than a CPU-only implementation. Our results show a
significant reduction in energy delay product (EDP) compared
to the CPU-only implementation, and comparable EDP results
to the FPGA-only implementation.

Index Terms—Hardware acceleration, heterogeneous comput-
ing, edge detection algorithms.

I. INTRODUCTION

Heterogeneous Computing (HC) is gaining attraction in

both academia and industry due to its ability to serve a

vast range of application domains and adapt efficiently with

their requirements. In addition, HC provides significant energy

and performance benefits. Today, data centers handle a wide

range of workloads such as machine learning, image/video

processing, and high-performance financial algorithms [1].

The diverse characteristics of workloads have stimulated

the deployment of heterogeneous architectures to accommo-

date applications’ demands. A heterogeneous architecture is

mashed up of different processing powers, for instance, Central

Processing Unit (CPU), General Purpose Graphical Processing

Unit (GPGPU), Field Programmable Gate Array (FPGA), etc.

FPGAs have advantages over other accelerators in cloud-

based environments because of their power and performance

benefits [2]–[4]. As such, a large fraction of data center nodes

is expected to include FPGA logic by 2021 [4].

Aiming at decreasing time-to-value and abstracting modern

FPGAs complexity, High Level Synthesis (HLS) environments

and tool chains have been developed, for example, Intel’s

FPGA Software Development Kit (SDK) for Open Computing

Language (OpenCL) [5], and Xilinx’s SDAcceel tool [6]. The

demand for deploying FPGAs in the cloud is expected to rise

as emerging application domains are compatible with FPGA

logic, similar to GPGPUs journey in the cloud [7].

Sliding window-based image-processing algorithms are

among the widely used algorithms in image processing appli-

cations such as computer vision and image segmentation [8].

An edge detector, a sliding window-based algorithm, identifies

edges in digital images through a compute and data-intensive

convolution process [9]. The majority of the literature focused

on offloading compute-intensive components to FPGAs, leav-

ing CPU cycles unused. In addition, most of the emerging

high-performance algorithms such as big data and machine

learning algorithms do not fit completely on one FPGA board.

In this work, we use a hybrid CPU-FPGA system and overlap

execution on both the CPU and the FPGA to increase system

performance and reduce energy consumption.

We designed and implemented two algorithms for Canny

edge detector, as a case study, on a heterogeneous CPU-FPGA

architecture using OpenCL. In the first implementation, we

partitioned the computation between the CPU and the FPGA

to increase the overall system throughput, reduce latency and

improve resource utilization. In the second implementation, we

utilized a delay-based Weighted Round Robin (WRR) algo-

rithm to partition and distribute images between the CPU and

the FPGA. Our data-partitioning implementation outperforms

the CPU-only implementation by up to 4.8×, and the FPGA-

only implementation by up to 2.1×. In addition, it results in

55% reduction in energy consumption, on average, compared

to the CPU-only implementation. We utilized Intel’s Hard-

ware Research Acceleration Program (HARP), also known

as Heterogeneous Architecture Research Platform, cluster to

implement the hybrid accelerator.

The paper is organized as follows: Section II provides

background information about Intel’s HARP CPU-FPGA het-

erogeneous platform, and Canny. Section III presents the



related work. Next, we describe our two CPU-FPGA imple-

mentations of Canny in section IV. Experimental results and

their discussion are presented in section V. Finally, Section VI

concludes the paper and provides insights for future work.

II. BACKGROUND

This section provides a background information on the

underlying CPU-FPGA platform and Canny. It discusses the

HARP system’s architectural characteristics. In addition, it

discusses the implemented algorithm.

A. Hardware Accelerator Research Program (HARP)

In 2017, Intel announced the second generation of HARP

program (HARP v2), which consists of Intel Broadwell Xeon

CPU (14 cores) that is integrated with Intel Arria 10 GX 1150

FPGA into a Multi-Chip Package (MCP). In this heteroge-

neous platform, the CPU and the FPGA share an address space

in the global memory. The FPGA contains a cache to mitigate

the latency of accessing the shared memory. The cache is

connected only to the QPI interconnect, and it is 64 KB in

size with a cache line of 64 bytes. In a read cycle of the

FPGA, in case of a read miss, the FPGA will read from the

CPU’s last level cache (35 MB in size) [10], [11].

B. Sliding Window Based Edge Detectors: Canny Filter

Edge detection is used in many image processing appli-

cations such as image segmentation and computer vision.

It is considered an efficient preprocessing stage to reduce

the amount of data to be processed by filtering noise and

outliers in digital images. Canny filter is a powerful edge

detection algorithm [12], [13], yet a compute-intensive one.

The algorithm receives a Red-Green-Blue (RGB) image as

an input and produces an enhanced gray-scale edge detected

image through a multi-stage image processing framework.

The algorithm consists of the following steps (as shown in

Figure 1): Image Blurring, Derivatives Magnitude and Orien-

tation, Non-maximal Suppression, and Hysteresis. These are

calculated over sliding windows of the image.

III. RELATED WORK

There has been several efforts to accelerate Canny using

FPGAs [12], [14]–[16]. Most of the existing implementations

offloads the entire computation of Canny to an accelerator,

a GPGPU or a FPGA, leaving the CPU idle waiting for the

final result from the co-processor. Some works partitioned the

algorithm among the CPU and the FPGA [17]. Quinne et

al. [17] proposed a HW/SW co-design framework to accelerate

image processing pipelines. It partitions the image pipeline

components between hardware and software using exact and

heuristic algorithms, where the number of components is

limited to 20. This method boosts performance by offloading

certain components to the FPGA. Gentsos et al. [18] designed

and implemented a parallel architecture to process Canny algo-

rithm in real time. They processed four pixels at a time instead

of one pixel to maximize throughput. Their implementation

demonstrated the ability to improve the total throughput with

a minor increase in resource utilization using Xilinx FPGAs.

He and Yuan [14] optimized the thresholding stage of the
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Fig. 1: Canny Algorithm Flow Chart.

Canny algorithm by automatically setting the threshold value

by the algorithm itself. A pipelined implementation of the new

algorithm was realized on an FPGA board. The new algorithm

improved the quality of the resultant edges compared to the

original algorithm. None of the previous works, to the best of

our knowledge, overlapped the CPU and the accelerator execu-

tion. However, in one of our implementations, we exploit the

different processing units in the system (CPU and FPGA) to

accelerate the algorithm by overlapping the execution between

the CPU and the FPGA. In this way, both the CPU and the

FPGA take a portion of the processing/workload in order to

minimize the overall execution time.

IV. HYBRID CPU-FPGA ACCELERATION FOR CANNY

ALGORITHM

We designed two different hybrid CPU-FPGA implemen-

tations that simultaneously use both a CPU and a FPGA to

accelerate Canny. In the first implementation, we partitioned

the algorithm to process certain parts on the CPU and other

parts on the FPGA. In the second implementation, both the

CPU and the FPGA execute the entire algorithm on different

portions of the image (image tiles) to maximize performance.

A. Canny Code Partitioning Between the CPU and the FPGA

Code partitioning is an efficient way to increase the per-

formance of algorithms. We partitioned the code of Canny to

overlap the execution between the CPU and the FPGA, where

each processes only part of the algorithm in a cooperative

way to produce the output. Figure 2 shows Canny partitioned

on both the CPU and the FPGA, running on a HARP node.

The CPU is responsible for processing the first step of the

algorithm, gray scale conversion and blurring, for the entire

input image. Once the CPU processes a portion of the image
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Fig. 2: CPU-FPGA Code-Partitioned Processing for Canny

Edge Detection Algorithm.

consisting of several windows, it sends them to the FPGA to

continue processing the rest of the algorithm. The CPU sends

several blurred gray-scale windows of the image to the FPGA.

Then the FPGA starts processing those windows and at the

same time the CPU continues processing Step1 for the rest of

the image. The kernel on the FPGA processes the image in a

pipelined hardware for rest of the steps of Canny, implemented

as one kernel.

We used OpenCL to implement Canny, where each work

item in OpenCL is processed through one pipeline. This

process repeats until the CPU finishes the first step of the

algorithm for the entire image, and the FPGA finishes the

other steps for the entire image and stores the final image into

the shared DRAM. The CPU’s and the FPGA’s calculations

overlap; however, the FPGA is at first idle until the CPU

finishes processing Step 1 for some windows. Although, we

partitioned the code between the two processing units to

achieve higher performance and increase simultaneous pro-

cessing, the CPU and the FPGA stay idle for some portions

of the time. This opens another opportunity to optimize the

hybrid algorithm by increasing the overlap of the execution

between both processing units, as discussed below.

B. Delay-based Weighted Round Robin Distribution of the

Workload Among the CPU and the FPGA

In the second hybrid CPU-FPGA implementation of Canny,

we aimed at maximizing the CPU-FPGA processing overlap

by allowing both to execute the same kernel on different parts

of the image simultaneously. We first split the image into tiles.

The tiles then were distributed to the CPU and the FPGA using

a Weighted Round Robin (WRR) algorithm. Tiling is efficient

in hyper scale data centers, where billions of images need to

be processed in a real-time fashion; it allows pipelined image

processing algorithms to be more efficient and meet timing

constraints.

After tiling the source image, tiles are distributed to avail-

able system processing units (CPU and FPGA) in such a

way that minimizes execution time and maximizes system

throughput. Weights are assigned to both the CPU and the

FPGA using a CPU-to-FPGA ratio of the execution time of a

single tile. The tiles are then distributed to the CPU and the

FPGA proportionally to their execution time of a single tile.

This delay-aware split of tiles between the CPU and the FPGA
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Fig. 3: CPU-FPGA Tile-Based Processing for Canny Edge

Detection Algorithm.

boosts the parallelism of the system through simultaneous

handling of different data sets by the different devices. We

used the equation below to assign weights to the CPU and the

FPGA:

WCPU = tile exec. timeCPU/tile exec. timeFPGA (1)

Since the FPGA is found to be approximately two times

faster than the CPU for Canny, the CPU is assigned double

the weight of that of the FPGA. This method can be used

for many other heterogeneous architectures and algorithms to

balance the load of the different architectures and maximize

performance. Furthermore, fine-grained tiles can be used to

achieve higher processing parallelism and thus performance.

Fig. 3 shows a block diagram of the CPU-FPGA system with

an illustration of Canny’s data-partitioned implementation.

V. EXPERIMENTS, RESULTS AND DISCUSSION

In the experiments, we used one HARP v2 node to ac-

celerate Canny and different image sizes as inputs to Canny

algorithm (from 0.5 megapixel to 8 megapixels). Table I shows

system specifications for a HARP node. Our implementation of

Canny uses a sliding window of 3*3 in size. We implemented

two different hybrid CPU-FPGA algorithms, a code partitioned

implementation and a data partitioned implementation using

OpenCL. The OpenCL kernel is an ND-Range one, and the

size of each WorkGroup is 128 work items. In the data

partitioned implementation, we partitioned the input images

into tiles to be processed by the CPU and the FPGA simulta-

neously. Each tile represents a portion of the image; the tiles

were padded with neighboring pixels from the source image

for correct functionality.

TABLE I: System Specifications

CPU configurations

Host CPU Model Intel Broadwell Xeon

CPU Frequency 2.1 GHz

LLC 35 MB

FPGA Fabric Arria 10 GX 1150

DRAM 95 GB

FPGA configurations

Adaptive logic modules 427,200

Logic elements 1,150,000

Registers 1,708,800

Memory 65.5 kib

DSP 1,518



A. Code Partitioning

As mentioned in Section IV-A, we partitioned Canny al-

gorithm between the CPU and the FPGA. This approach

reduces the total execution time of the algorithm compared

to a CPU-only implementation. The energy consumption of

this implementation is also more efficient than a CPU-only

implementation. This is because the compute-intensive portion

of the code is offloaded on a power-efficient processing unit,

the FPGA. Code partitioning accelerated the algorithm about

two fold as shown in Figure 5 compared to a CPU-only

implementation. On the other hand, code partitioning accel-

erates the algorithm up to 1.5× for images smaller than four

megapixels. However, for larger images, four megapixels and

bigger, the FPGA-only implementation slightly outperforms

the code-partitioned implementation. The reason behind this

is the communication overhead when passing the partially

processed image from the CPU to the FPGA to be completely

processed and then the final output image is written back to

the shared memory.

B. Data Partitioning

In the code-partitioned approach, although the CPU and

the FPGA run parts of the algorithm at the same time, they

can be idle for certain times. The CPU will be idle after

it finishes processing Step 1 of the algorithm for the entire

image. Additionally, the FPGA will be waiting for the CPU

to finish Step1 for several windows to start processing the

other steps for several windows simultaneously, due to the

parallel nature of the FPGA. As such, an implementation

that totally overlaps CPU and FPGA processing is desired

to further increase performance. In the second approach, we

partitioned the input images into tiles as discussed previously

in section IV-B. Tiles are mapped to the CPU or the FPGA

dynamically using the WRR algorithm. Each tile is assigned to

either the CPU or the FPGA, then processed and the output of

the edge-detected image is written back to the shared memory.

Figure 4 depicts the effect of different tile sizes on the total

execution time. As shown in the figure, a tile size of 250 kilo-

pixels produces the minimum execution time for all the tested

images. Smaller tile sizes increase the total execution time

for all image sizes. This is due to the overhead of the padding

pixels that wrap the image tiles after tiling. For instance, tiling

a four megapixel image, using a tile size of 50 kilo-pixels

results in a five fold padding pixels compared to a tile size of

250 kilo-pixels. These additional pixels mean extra reading,

processing, and writing time. On the other hand, increasing

the tile size has also a negative impact on the total execution

time. This is because of the performance difference between

the CPU and the FPGA, so coarse-grained tiles would result in

a reduced overlap of both the CPU and the FPGA processing

times, and thus reduced performance. As such, we chose a tile

size of 250 kilo-pixels for our experiments. The overhead of

the padding pixels is calculated as follows:

padding = 2 ∗ (No. of tiles) ∗ (tile width+ 2)
+2 ∗ (No. of tiles) ∗ (tile height+ 2)

(2)

Where padding is the number of the additional padding pixels.
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Figure 5 shows the performance achieved using our tile-

based hybrid implementation over the CPU and the FPGA

implementations for different image sizes. For example, using

a two-megapixel image, the speedup gained by the hybrid

data-partitioned implementation is 4.8× over a CPU-only and

2.1× over a FPGA-only implementations. For a one-megapixel

image, the hybrid implementation results in 2.2× speedup

over the CPU and no noticeable speedup over the FPGA-only

implementation. This is because as we tend to process small

images, the CPU becomes a bottleneck and its execution time

can become dominant over the FPGA’s execution time. The

FPGA consumes its data while the CPU is still processing

its part. The CPU bottleneck can be solved by assigning the

FPGA a higher weight leaving the CPU with only a small

portion of the frame.

We also estimated the energy consumption of Canny algo-

rithm on the different architectures. The CPU’s energy con-

sumption was estimated based on Intel’s power documentation

for Xeon processors, and the FPGA’s energy consumption

was estimated using Power-Play, which is a power estimator

for Intel Arria 10 devices. The hybrid data-partitioned CPU-

FPGA implementation reduces energy consumption up to

approximately 73% and on average 55% for the different

image sizes compared to the CPU only implementation. This

reduces the total energy consumption of such heterogeneous

CPU-FPGA servers and also reduces cooling requirements.

We also calculated the Energy Delay Product (EDP ) for

the different implementations, as in high-performance and

cloud computing the execution time is of significance although

lower energy consumption is desired. Figure 6 shows the EDP

for the CPU-only, FPGA-only and the hybrid CPU-FPGA

implementations. The figure shows that the EDP of the hybrid

implementation of the algorithm is close from that of the

FPGA-only implementation and much lower than the CPU-

only implementation. It also shows that for image sizes below

4 mega pixels, the EDP values for the FPGA-only and the

hybrid implementations are similar.

In order to reduce the hybrid implementation’s execution

time, further optimizations for the hardware accelerator were

implemented. By default, each OpenCL kernel is implemented

in hardware as a single compute unit. Adding multiple com-

pute units can increase performance, where each compute unit

has its separate memory interfaces. All compute units are

capable of processing multiple workgroups simultaneously.

We varied the number of compute units from one to ten.

A reduction in execution time is observed until it reaches a
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certain limit (3 compute units). This is due to a contention

among the compute units while accessing the FPGA’s cache.

Moreover, increasing the number of compute units increases

kernel resource utilization of the FPGA, in addition to increas-

ing power consumption. Hence, the number of compute units

is subject to power and area constraints of the design.

Another optimization technique that we studied is bundling

work items within the same workgroup into Single Instruc-

tion Multiple Data (SIMD) lanes. A workgroup with mul-

tiple SIMD lanes results in a slightly lower execution time

compared to a work-group without SIMD. This is because

using multiple SIMD lanes increases the amount of parallel

computations within the same work group. Moreover, SIMD

behavior allows the hardware compiler to coalesce memory

accesses. Although both multiple compute units and multiple

SIMD lanes increase a kernel’s performance, using multiple

SIMD lanes does not consume additional FPGA resources

compared to increasing the number of compute units.

VI. CONCLUSION AND FUTURE WORK

In this paper, we designed and implemented two different

approaches for accelerating a sliding window-based image

processing algorithm, Canny, using OpenCL. In the first ap-

proach, the code was partitioned among the CPU and the

FPGA, and resulted in up to 2.3× speedup compared to a

CPU-only implementation. In the second approach, both the

CPU and the FPGA executed the entire algorithm for different

portions of the image. Our implementation outperforms both

CPU-only and FPGA-only implementations by up to 4.8×
and 2.1× respectively. It also results in 55.3% reduction

in energy consumption, on average, compared to the CPU-

only implementation. In addition, its energy-delay product is

comparable to the FPGA-only implementation. Our results

showed that collaborative execution between the CPU and the

FPGA in heterogeneous computing environments significantly

impact the execution time.
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