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Abstract. We study a linear fluid–structure interaction problem between an incompressible, viscous 3D fluid flow, a 2D
linearly elastic Koiter shell, and an elastic 1D net of curved rods. This problem is motivated by studying fluid–structure
interaction between blood flow through coronary arteries treated with metallic mesh-like devices called stents. The flow is
assumed to be laminar, modeled by the time-dependent Stokes equations, and the structure displacement is assumed to be
small, modeled by a system of linear Koiter shell equations allowing displacement in all three spatial directions. The fluid
and the mesh-supported structure are coupled via the kinematic and dynamic coupling conditions describing continuity of
velocity and balance of contact forces. The coupling conditions are evaluated along a linearized fluid–structure interface,
which coincides with the fixed fluid domain boundary. No smallness on the structure velocity is assumed. We prove the
existence of a weak solution to this linear fluid–composite structure interaction problem. This is the first result in the
area of fluid–structure interaction that includes a 1D elastic mesh and takes into account structural displacements in all
three spatial directions. Numerical simulations based on the finite element discretization of the coupled FSI problem are
presented.
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1. Introduction

We study a fluid–structure interaction (FSI) problem between the flow of a viscous, incompressible fluid
modeled by the time-dependent Stokes equations in a 3D cylindrical domain, and an elastic, composite
structure, consisting of a cylindrical shell supported by a mesh-like elastic structure. A mesh-like structure
is a 3D elastic body consisting of a collection of slender elastic rod-like components. The linear Koiter shell
equations allowing displacement in all three spatial directions are used to model the elastodynamics of the
lateral wall of the fluid domain cylinder, and a 1D hyperbolic net model consisting of a collection of linearly
elastic curved rods is used to model the elastodynamics of the mesh-like structure. The mesh and the shell
are coupled via the no-slip condition and via the balance of forces and moments. The resulting composite
structure is then coupled to the fluid equations through the no-slip condition and balance of forces, which
are evaluated at the fixed fluid–structure interface, giving rise to a linearly coupled FSI problem. This is
a multiphysics fluid–structure interaction problem of mixed, parabolic–hyperbolic–hyperbolic type.

Problems of this type arise in many applications. In particular, the benchmark problem studied here
was motivated by the interaction between the flow of blood in a coronary artery treated with a vascular
device called a stent. In coronary arteries, the Reynolds number is small (Re < 100), thereby justifying
the use of the time-dependent Stokes equations. Stents are metallic mesh-like devices used to prop the
elastic coronary arteries open. The problem in this manuscript corresponds to FSI between blood flow and
a fully expanded stent implanted in an elastic artery. A better understanding of the complex interactions
between blood flow, artery and stent can lead to improved stent design (see, e.g., [11]).

Until recently, mathematical modeling of stents has been based almost exclusively on 3D approaches
where a stent is assumed to be a single, 3D elastic body, approximated using 3D-based finite elements.
Such approaches are associated with large computer memory requirements and significant computing
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time due to the slender nature of the local stent components, known as stent struts. To reduce computa-
tional costs, an alternative approach was suggested in [52], where a stent was modeled as a network of 1D
curved rods, allowing the use of 1D finite elements for their numerical simulation. Although the model is
one-dimensional, it provides 3D information about the deformation of stent struts in all three spatial direc-
tions. The resulting model has been justified both computationally [13] and mathematically [33,39,40].

In a recent work [12], this 1D stent net problem was coupled to an elastic shell of Naghdi type, and the
corresponding static problem was analyzed. No fluid was considered in [12]. This contrasts the present
work where dynamic models for both the stent and shell are considered, the shell is modeled using the
cylindrical Koiter shell equations, and the resulting composite structure is coupled to the motion of an
incompressible, viscous fluid.

In terms of the results related to the interaction between structures and incompressible, viscous fluids,
we mention a few references which are most closely related to the present work in the area of analy-
sis [16,17,19,24–26,29,32,38,44,45,47] and numerical simulations [4–6,9,10,27,37]. The fluid–structure
interaction problems with composite structure were studied in [7,49]. The only works in which analysis
of an FSI problem including an approximation of a stent-supported vessel were considered are [8,15]. In
[15], a different, simplified, reduced coupled problems was studied, and in both papers the presence of a
stent were modeled by the jump in the elasticity coefficients of a shell. In [8], a Koiter shell allowing only
radial displacement was considered. This is significantly different from the present work where a stent
is modeled as a separate mesh-like structure, and displacement in all three spatial directions is taken
into account. In fact, one of the goals of our future research is to compare the results of the present
manuscript with those of [8] to understand the impact of the full coupling between the stent and shell on
the elastodynamics of the composite structure.

In the present manuscript, we prove the existence of a weak solution to the coupled fluid–mesh–shell
interaction problem by adapting the methodology introduced in [47] (see also [36]) where the existence of
a weak solution to a nonlinear moving boundary FSI problem involving a 2D incompressible Newtonian
fluid and a 1D linearly elastic shell was proved. The method is based on a semi-discretization approach,
where the coupled problem is discretized in time, and at the same time split into a fluid and a struc-
ture subproblem using the so-called Lie operator splitting strategy (for more information about splitting
methods see, e.g., [30,31]). The main feature of this method is that it allows decoupling the problem into
subproblems with different physics, and is, therefore, especially suitable for complex multiphysics prob-
lems [7,46,48–51]. The constructed weak solutions are of Leray type, and they satisfy an energy inequality.
Based on a carefully designed splitting strategy, uniform energy estimates can be obtained, and existence
of weak and weak*-convergent subsequences established. We note that the regularity in space for the 1D
hyperbolic net displacement considered in this work, is obtained from the inextensibility and unshear-
ability condition of curved rods, and not directly from the energy estimates. The resulting regularity
provides sufficient information to pass to the limit in the weak formulation of the semi-discrete problem.
Because the problem we consider is linear, limits of the weakly and weakly*-convergent subsequences can
be shown to satisfy the weak formulation of the coupled continuous FSI problem.

Although the displacement of the composite structure is considered small, the velocity of displacement
is not necessarily small and is taken into account in the coupling conditions at the interface. Due to
the smallness of displacement, the fluid–structure interface is considered to be fixed (linearized). Such,
somewhat restrictive, assumption has been used frequently in FSI problems (see, e.g., [2,3,14,18,26,
43] and the references therein). The extension of our analysis to the nonlinear case involving moving
boundaries is challenging and will be addressed in our future work.

In summary, the main novelties of the present work are:

1. Analysis of an evolution problem for a mesh-like structure, modeled as a 1D hyperbolic net.
2. A fluid–mesh–shell interaction model that takes into account the structure displacement in all three

directions.
3. An existence result for the coupled fluid–mesh–shell linear problem.
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4. A constructive proof giving rise to a loosely coupled partitioned scheme for the fluid–mesh–shell
interaction problem.

Details of the result are presented in the following six sections, with the last section (“Appendix”)
dedicated to the summary of notation used in the paper to help the reader get through the details of the
proof. Theoretical results are illustrated by numerical examples in Sect. 8.

2. Model description

2.1. The fluid

We consider the flow of an incompressible, viscous fluid through a cylindrical domain, denoted by Ω:

Ω = {(z, x, y) ∈ R
3 : z ∈ (0, L),

√
x2 + y2 ≤ R}.

The fluid domain boundary consists of three parts: the lateral boundary Γ, which is a cylinder of radius
R, the inlet boundary Γin, which is a circular area of radius R located at z = 0, and the outlet boundary
Γout, which is a circular area of radius R, located at z = L.

The time-dependent Stokes equations for an incompressible, viscous fluid are used to model the flow
in Ω:

ρF ∂tu = ∇ · σ
∇ · u = 0

}
in Ω, t ∈ (0, T ), (1)

where ρF denotes the fluid density, u is the fluid velocity, σ = −pI + 2μFD(u) is the fluid Cauchy stress
tensor, p is the fluid pressure, μF is the dynamic viscosity coefficient, and D(u) = 1

2 (∇u + ∇Tu) is the
symmetrized gradient of u. At the inlet and outlet, we prescribe the pressure, with the tangential fluid
velocity equal to zero (see [23]):

p = Pin/out(t)
u × ez = 0

}
on Γin/out,

where Pin/out are given. Therefore, the fluid flow is driven by the pressure drop, and the fluid flow is
orthogonal to the inlet and outlet boundary.

The fluid velocity will be assumed to belong to the following classical function space

VF = {u ∈ H1(Ω;R3) : ∇ · u = 0,u × ez = 0 on Γin/out}. (2)

2.2. The shell

The lateral boundary of the fluid domain will be assumed elastic, and modeled by the cylindrical Koiter
shell equations. The shell thickness will be denoted by h > 0, the length by L, and its reference radius of
the middle surface by R. We consider a clamped cylindrical shell. This reference configuration, which we
denote by Γ, can be parameterized by

ϕ : ω → R
3, ϕ(z, θ) = (R cos θ,R sin θ, z),

where ω = (0, L) × (0, 2π), and R > 0, thus:

Γ = {(R cos θ,R sin θ, z) : z ∈ (0, L), θ ∈ (0, 2π)}.

The first fundamental form of the cylinder Γ, also known as the metric tensor, will be denoted by Ac in
covariant components, and by Ac in contravariant components:

Ac =
(

1 0
0 R2

)
, Ac =

(
1 0
0 1

R2

)
,
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and the area element is dS =
√

det Ac dzdθ = R dzdθ. The second fundamental form of the cylinder Γ
or the curvature tensor in covariant components is given by

Bc =
(

0 0
0 R

)
.

Under loading, the Koiter shell is displaced from its reference configuration Γ by a displacement η =
η(t, z, θ) = (ηz, ηr, ηθ), where ηz, ηr, and ηθ denote the tangential, radial and azimuthal components of
displacement. The end points of the shell will be assumed to be clamped, giving rise to the following
boundary conditions:

η(t, 0, θ) = η(t, L, θ) = 0, θ ∈ (0, 2π),

∂zηr(t, 0, θ) = ∂zηr(t, L, θ) = 0, θ ∈ (0, 2π),

whereas the boundary conditions at θ = 0, 2π, will be periodic:

η(t, z, 0) = η(t, z, 2π), z ∈ (0, L),

∂θηr(t, z, 0) = ∂θηr(t, z, 2π), z ∈ (0, L).

The elastic properties of the shell are defined by the following elasticity tensor A:

AE =
2λμ

λ + 2μ
(Ac · E)Ac + 2μAcEAc, E ∈ Sym(R2),

where λ and μ are Lamé constants. Tensor A defines the following elastic energy of the deformed Koiter
shell:

E(η) =
h

2

∫

ω

Aγ(η) : γ(η)R +
h3

24

∫

ω

A�(η) : �(η)R, (3)

where γ denotes the linearized change of metric tensor, measuring the stretch of the middle surface
(membrane effects), and � denotes the linearized change of curvature tensor, measuring flexure (bending,
shell effects). They are given by:

γ(η) =

(
∂zηz

1
2 (∂θηz + R∂zηθ)

1
2 (∂θηz + R∂zηθ) R∂θηθ + Rηr

)

,

�(η) =

( −∂zzηr −∂zθηr + ∂zηθ

−∂zθηr + ∂zηθ −∂θθηr + 2∂θηθ + ηr

)

.

Let VK denote the following function space:

VK = {η = (ηz, ηr, ηθ) ∈ H1(ω) × H2(ω) × H1(ω) :

η(t, z, θ) = ∂zηr(t, z, θ) = 0, z ∈ {0, L}, θ ∈ (0, 2π),

η(t, z, 0) = η(t, z, 2π), ∂θηr(t, z, 0) = ∂θηr(t, z, 2π), z ∈ (0, L)},

(4)

equipped with the corresponding norm:

‖η‖2
k = ‖ηz‖2

H1(ω) + ‖ηr‖2
H2(ω) + ‖ηθ‖2

H1(ω).

We are interested in weak solutions η = (ηz, ηr, ηθ) ∈ VK satisfying the following elastodynamics problem
for a cylindrical Koiter shell (see [22,41,42]): find η = (ηz, ηr, ηθ) ∈ VK such that

ρKh

∫

ω

∂2
t η · ψR + 〈Lη,ψ〉 =

∫

ω

f · ψR, ∀ψ ∈ VK , (5)
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where ρK is the shell density, f is the outside loading, and L is the linear operator associated with the
Koiter elastic energy (3):

〈Lη,ψ〉 = h

∫

ω

Aγ(η) : γ(ψ)R +
h3

12

∫

ω

A�(η) : �(ψ)R.

We emphasize that from Theorems 2.6 to 4 in [21], we get the coercivity of the operator L, i.e., 〈Lη,η〉 ≥
c‖η‖2

k, ∀η ∈ VK . The differential form of the cylindrical Koiter shell elastodynamics problem on (0, T )×ω
is then given by:

ρKh∂2
t ηR + Lη = fR, (6)

where f is outside force density, and L corresponds to the elastic force associated with the elastic
energy (3).

2.3. The elastic mesh

An elastic mesh is a three-dimensional elastic body defined as a union of three-dimensional slender
components called struts [13,52]. Since struts are slender or “thin”, meaning that the ratio between the
thickness of each strut versus its length is small, 1D (reduced) models can be used to approximate their
elastodynamic properties. In particular, keeping the stent application in mind, we will be using a 1D
curved rod model to approximate the elastodynamic properties of slender mesh struts. The one space
dimension corresponds to the parameterization of the middle line of curved rod. For the i-th curved rod,
the middle line is parameterized via

Pi : [0, li] → ϕ(ω), i = 1, . . . , nE ,

where nE denotes the number of curved rods in a mesh. By using s ∈ (0, li) to denote the location along
the middle line, and di(t, s) to denote the displacement of the middle line from its reference configuration,
wi(t, s) the infinitesimal rotation of cross sections, qi(t, s) the contact moment, and pi(t, s) the contact
force, the following system of equations will be used to model the elastodynamics of 1D curved rods:

ρSAi∂
2
t di = ∂spi + fi,

ρSMi∂
2
t wi = ∂sqi + ti × pi,

0 = ∂swi − QiH
−1
i QT

i qi,
0 = ∂sdi + ti × wi.

(7)

Here, ρS is the strut’s material density, Ai is the cross-sectional area of the i-th rod, Mi is the matrix
related to the moments of inertia of the cross sections, fi is the line force density acting on the i-th rod,
and ti is the unit tangent on the middle line of the i-th rod. Matrix Hi is a positive definite matrix
which describes the elastic properties and the geometry of the cross section, while matrix Qi ∈ SO(3)
represents the local basis at each point of the middle line of the i-th rod (see [1] for more details). The
first two equations describe the linear impulse-momentum law and the angular impulse-momentum law,
respectively, while the last two equations describe a constitutive relation for a curved, linearly elastic rod,
and the condition of inextensibility and unshearability, respectively.

System (7) is defined on a graph domain, determined by the geometry and topology of the mesh
structure. The graph consists of a set of vertices V (points where the middle lines meet), and a set of
edges E (pairing of vertices). The ordered pair N = (V, E) defines the mesh net topology. At each vertex
V ∈ V, the following coupling conditions are enforced:

• Kinematic coupling conditions describing continuity of displacements and infinitesimal rotations,
• Dynamic coupling conditions describing the balance of contact forces and contact moments.
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Here, we note that even though each individual stent strut is inextensible, the struts can deform
(bend) to accommodate the overall expansion or contraction of the stent radius, which influences the
overall length of the stent. The impact of inextensibility of stent struts will be discussed in Sect. 8.

We are interested in weak solutions to the 1D mesh net problem, i.e., to the problem consisting of all
the functions satisfying the system of linear equations (7) on a graph domain, with the above-mentioned
coupling conditions holding at graph’s vertices. To define the weak solution space, we first introduce a
function space consisting of all the H1-functions (d,w) defined on the entire net N , such that they satisfy
the kinematic coupling conditions at each vertex V ∈ V :

H1(N ;R6) = {(d,w) = ((d1,w1), . . . , (dnE
,wnE

)) ∈
nE∏

i=1

H1(0, li;R6) :

di(P−1
i (V )) = dj(P−1

j (V )),wi(P−1
i (V )) = wj(P−1

j (V )),

∀V ∈ V, V = ei ∩ ej , i, j = 1, . . . , nE}.

The solution space is defined to contain the conditions of inextensibility and unshearability as follows:

VS = {(d,w) ∈ H1(N ;R6) : ∂sdi + ti × wi = 0, i = 1, . . . , nE}. (8)

For a function (d,w) ∈ VS , we consider the following norms on H1(N ;R3):

‖d‖2
H1(N ;R3) :=

nE∑

i=1

‖di‖2
H1(0,li;R3), ‖w‖2

H1(N ;R3) :=
nE∑

i=1

‖wi‖2
H1(0,li;R3),

and the following norms on L2(N ;R3):

‖d‖2
L2(N ;R3) :=

nE∑

i=1

‖di‖2
L2(0,li;R3), ‖w‖2

L2(N ;R3) :=
nE∑

i=1

‖wi‖2
L2(0,li;R3).

The weak formulation for a single curved rod is obtained by first multiplying the first equation in (7)
by a test function ξ, the second equation in (7) by a test function ζ, and integrating over [0, l] (we are
dropping the sub-script i in this calculation). The two equations added together give:

ρSA

l∫

0

∂2
t d · ξ + ρS

l∫

0

M∂2
t w · ζ −

l∫

0

∂sp · ξ −
l∫

0

f · ξ

−
l∫

0

∂sq · ζ +

l∫

0

p · (t × ζ) = 0.

The terms that involve the partial derivative with respect to s can be rewritten by using integration by
parts:

ρSA

l∫

0

∂2
t d · ξ + ρS

l∫

0

M∂2
t w · ζ +

l∫

0

p · ∂sξ − p(l) · ξ(l) + p(0) · ξ(0)

−
l∫

0

f · ξ +

l∫

0

q · ∂sζ − q(l) · ζ(l) + q(0) · ζ(0) +

l∫

0

p · (t × ζ) = 0.
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Finally, by using the constitutive relation and the condition of inextensibility and unshearability, we
obtain the weak formulation for a single rod problem: find (d,w) such that

ρSA

l∫

0

∂2
t d · ξ + ρS

l∫

0

M∂2
t w · ζ +

l∫

0

QHQT ∂sw · ∂sζ

=

l∫

0

f · ξ + p(l) · ξ(l) − p(0) · ξ(0) + q(l) · ζ(l) − q(0) · ζ(0),

(9)

for all (ξ, ζ) ∈ H1(0, l) × H1(0, l) that satisfy the condition of inextensibility and unshearability.
To get a weak formulation for the mesh net problem, we sum up the weak formulations for each local

mesh component (i.e., curved rod, or strut). At each vertex, the boundary terms from (9) involving p
and q will add up to zero due to the dynamic coupling conditions. The weak formulation for the mesh
net problem then reads: find (d,w) ∈ VS such that

ρS

nE∑

i=1

Ai

li∫

0

∂2
t di · ξi + ρS

nE∑

i=1

li∫

0

Mi∂
2
t wi · ζi

+
nE∑

i=1

li∫

0

QiHiQ
T
i ∂swi · ∂sζi =

nE∑

i=1

li∫

0

fi · ξi,

(10)

for all test functions (ξ, ζ) = ((ξ1, ζ1), . . . , (ξnE
, ζnE

)) ∈ VS .

2.4. Koiter shell and 1D mesh problem coupling

We will be assuming that the elastic mesh is always confined to the shell surface so that the following
holds:

nE⋃

i=1

Pi([0, li]) ⊂ Γ = ϕ(ω).

Since ϕ is injective on ω, functions πi, denoting the reparameterizations of the stent struts:

πi = ϕ−1 ◦ Pi : [0, li] → ω, i = 1, . . . , nE ,

are well defined. The reference configuration of the mesh defined on ω will be denoted by
ωS =

⋃nE

i=1 πi([0, li]), and of the mesh defined on Γ will be denoted by ΓS =
⋃nE

i=1 Pi([0, li]). See Fig. 1.
The elastic mesh and the shell are coupled through the kinematic and dynamic coupling conditions.

The kinematic coupling condition states that the displacement of the shell at the point (R cos θ,R sin θ, z)
∈ Γ, which is associated with the point (z, θ) ∈ ωS via the mapping ϕ, is equal to the displacement of
the stent at the point si = π−1

i (z, θ), that is associated with the same point (z, θ) ∈ ωS via the mapping
πi. For a point si ∈ [0, li] such that πi(si) = (z, θ) ∈ ωS , the kinematic coupling condition reads:

η(t,πi(si)) = di(t, si). (11)

The dynamic coupling condition describes the balance of forces. The force exerted by the Koiter shell
onto the mesh is balanced by the force exerted by the mesh onto the Koiter shell. More precisely, let
Ji = πi([0, li]), and

〈δJi
, f〉 =

∫

Ji

fdγi, i = 1, . . . , nE ,
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Fig. 1. Parameterization of the mesh struts

where dγi is the curve element associated with the parameterization πi. The weak formulation of the
shell (5) can then be written as:

ρKh

∫

ω

∂2
t η · ψR + 〈Lη,ψ〉 =

nE∑

i=1

〈δJi
, f · ψR〉

=
nE∑

i=1

∫

Ji

f(z, θ) · ψ(z, θ)Rdγi

=
nE∑

i=1

li∫

0

f(πi(s)) · ψ(πi(s))‖π′
i(s)‖Rds.

If we denote by fi the force exerted by the i-th mesh strut onto the shell, by force balance, the right-hand
side has to be equal to −∑nE

i=1

∫ li
0
fi(s) · ξi(s)ds. Thus, f(πi(si))‖π′

i(si)‖R = −fi(si), i.e., f(πi(si))R =

− fi(si)
‖π′

i(si)‖ , si ∈ (0, li). For a point (z, θ) = πi(si) ∈ ωS , which came from an si ∈ (0, li), the dynamic

coupling condition reads: fR = − fi ◦ π−1
i

‖π′
i ◦ π−1

i ‖ . For an arbitrary point (z, θ) ∈ ω, the dynamic coupling

condition reads:

fR = −
nE∑

i=1

fi ◦ π−1
i

‖π′
i ◦ π−1

i ‖δJi
. (12)

Now, the weak formulation for the coupled mesh–shell problem reads:

ρKh

∫

ω

∂2
t η · ψR + 〈Lη,ψ〉 = −

nE∑

i=1

〈δJi
,

fi ◦ π−1
i

‖π′
i ◦ π−1

i ‖ψ〉, (13)

for all test functions ψ ∈ VK . Here, fi’s are defined in (10), where the test functions ξi are such that
ψ ◦ πi = ξi. The coupled mesh–shell weak solution space is given by:

VKS = {(η,d,w) ∈ VK × VS : η ◦ π = d on
nE∏

i=1

(0, li)},
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where we denoted η ◦ π = (η ◦ π1, . . . ,η ◦ πnE
).

The dynamic coupled mesh–shell problem presented here is an extension of the coupled mesh–shell
problem first studied in [12] for the static case.

2.5. The fluid–composite structure coupling

From now on, by ‘structure’ we will refer to the Koiter shell coupled with the 1D elastic mesh described
above. The coupling between the fluid and the structure is defined by two sets of coupling conditions:
the kinematic and dynamic coupling conditions, satisfied at the fixed, lateral boundary Γ, giving rise
to a linear fluid–structure coupling. The coupling conditions impose continuity of velocity and balance
of contact forces. Let us emphasize that in our work, the dynamic coupling condition also reflects the
presence of a 1D elastic mesh at the fluid–structure interface. The coupling conditions read:

• The kinematic condition: ∂tη = u|Γ ◦ ϕ on (0, T ) × ω,
• The dynamic condition:

ρKh∂2
t ηR + Lη +

nE∑

i=1

fi ◦ π−1
i

‖π′
i ◦ π−1

i ‖δJi
= −J(σ ◦ ϕ)(n ◦ ϕ), on (0, T ) × ω,

where J denotes the Jacobian of the transformation from cylindrical to Cartesian coordinates, and n
denotes the outer unit normal on Γ. For the linear fluid–structure interaction problem considered here,
the Jacobian J is equal to R.

In summary, we study the following fluid–structure interaction problem:

Problem 1. Find (u, p,η,d,w) such that

ρF ∂tu = ∇ · σ
∇ · u = 0

}
in (0, T ) × Ω, (14)

∂tη = u ◦ ϕ

ρKh∂2
t ηR + Lη +

nE∑

i=1

fi ◦ π−1
i

||π′
i ◦ π−1

i ||δJi
= −J(σ ◦ ϕ)(n ◦ ϕ)

⎫
⎪⎬

⎪⎭
on (0, T ) × ω, (15)

ρSAi∂
2
t di = ∂spi + fi

ρSMi∂
2
t wi = ∂sqi + ti × pi

0 = ∂swi − QiH
−1
i QT

i qi

0 = ∂sdi + ti × wi

⎫
⎪⎪⎬

⎪⎪⎭
on (0, T ) × (0, li). (16)

Problem (14)–(16) is supplemented with the following set of boundary and the initial conditions:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p = Pin/out(t), on (0, T ) × Γin/out,
u × ez = 0, on (0, T ) × Γin/out,
η(t, 0, θ) = η(t, L, θ) = 0, on (0, T ) × (0, 2π),
∂zηr(t, 0, θ) = ∂zηr(t, L, θ) = 0, on (0, T ) × (0, 2π),
η(t, z, 0) = η(t, z, 2π), on (0, T ) × (0, L),
∂θηr(t, z, 0) = ∂θηr(t, z, 2π), on (0, T ) × (0, L),

(17)

u(0) = u0, η(0) = η0, ∂tη(0) = v0,di(0) = d0i, ∂tdi(0) = k0i, wi(0) = w0i, ∂twi(0) = z0i. (18)
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3. The energy of the coupled fluid–mesh–shell problem

We formally prove that problem (14)–(16) satisfies the following energy inequality:

d
dt

E(t) + D(t) ≤ C(Pin(t), Pout(t)), (19)

where E(t) denotes the total energy of the coupled problem (the sum of the kinetic and elastic energy),
D(t) denotes dissipation due to fluid viscosity, and C(Pin(t), Pout(t)) is a constant which depends only
on the L2-norms of the inlet and outlet pressure data. More precisely, if we denote by ‖w‖m and ‖w‖r

the following norms associated with the elastic energy of the elastic mesh:

‖w‖2
m :=

nE∑

i=1

‖wi‖2
m =

nE∑

i=1

li∫

0

Miwi · wi,

‖w‖2
r :=

nE∑

i=1

‖wi‖2
r =

nE∑

i=1

li∫

0

QiHiQ
T
i ∂swi · ∂swi,

and by ‖η‖L2(R;ω) the weighted L2 norm on ω, with the weight R associated with the geometry of the
Koiter shell (Jacobian):

‖η‖2
L2(R;ω) :=

∫

ω

|η|2R dω,

then the total energy of the coupled FSI problem is defined by

E(t) =
ρF

2
‖u‖2

L2(Ω) +
ρKh

2
‖∂tη‖2

L2(R;ω) +
ρS

2

nE∑

i=1

Ai‖∂tdi‖2
L2(0,li)

+
ρS

2
‖∂tw‖2

m +
1
2
〈Lη,η〉 + ‖w‖2

r,

while D(t) is given by

D(t) = 2μF ‖D(u)‖2
L2(Ω).

Notice that the norm ‖ · ‖m is equivalent to the standard L2(N ) norm.

Proposition 3.1. There exists a constant C > 0 such that

‖w‖2
r ≤ C‖w‖2

H1(N ).

Proof. Since Qi is orthogonal and Hi positive definite, for each i = 1, . . . , nE , the following inequality
holds:

‖wi‖2
r =

li∫

0

QiHiQ
T
i ∂swi · ∂swi =

li∫

0

HiQ
T
i ∂swi · QT

i ∂swi

≤
li∫

0

λmax(Hi)QT
i ∂swi · QT

i ∂swi = λmax(Hi)‖QT
i ∂swi‖2

L2(0,li)

= λmax(Hi)‖∂swi‖2
L2(0,li)

≤ λmax(Hi)
(
‖∂swi‖2

L2(0,li)
+ ‖wi‖2

L2(0,li)

)

≤ λmax(Hi)‖wi‖2
H1(0,li)

,

where λmax(Hi) is the maximum eigenvalue of matrix Hi. �
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To derive the energy inequality (19), we first multiply the first equation in (1) by u and integrate by
parts over Ω to obtain:

∫

Ω

ρF ∂tu · u −
∫

Ω

∇ · (−pI + 2μFD(u)) · u

=
ρF

2
d
dt

∫

Ω

|u|2 −
∫

Ω

∇ · ((−pI + 2μFD(u))u) +
∫

Ω

(−pI + 2μFD(u)) : ∇u

=
ρF

2
d
dt

∫

Ω

|u|2 −
∫

∂Ω

(−pI + 2μFD(u))n · u −
∫

Ω

pI : ∇u + 2μF

∫

Ω

D(u) : ∇u

=
ρF

2
d
dt

∫

Ω

|u|2 −
∫

∂Ω

(−pI + 2μFD(u))n · u −
∫

Ω

p∇ · u + 2μF

∫

Ω

D(u) : D(u)

=
ρF

2
d
dt

∫

Ω

|u|2 −
∫

∂Ω

(−pI + 2μFD(u))n · u + 2μF

∫

Ω

|D(u)|2,

where we have used ∇u : ∇u = tr(∇u∇Tu) = tr(∇Tu∇u) = ∇Tu : ∇Tu.

To calculate the boundary integral over ∂Ω, we first notice that on Γin/out the boundary condition
u × ez = 0 gives ux = uy = 0. Using divergence-free condition, we also obtain ∂zuz = 0. Now, since the
normal to Γin/out is equal to n = (∓1, 0, 0), we get:

−
∫

∂Ω

(−pI + 2μFD(u))n · u

= −
∫

Γ

σn · u −
∫

Γin∪Γout

(−pI + 2μFD(u))n · u

= −
∫

Γ

σn · u −
∫

Γin

puz +
∫

Γout

puz.

(20)

To calculate the boundary integral over Γ we first multiply the Koiter shell equation (6) by ∂tη and
integrate over ω:

∫

ω

f · ∂tηR = ρKh

∫

ω

∂2
t η · ∂tηR + 〈Lη, ∂tη〉

=
ρKh

2
d
dt

∫

ω

∂tη · ∂tηR +
1
2

d
dt

〈Lη,η〉

=
ρKh

2
d
dt

‖∂tη‖2
L2(R;ω) +

1
2

d
dt

〈Lη,η〉.

Next, we want to use (∂tdi, ∂twi), i = 1, . . . , nE , as test functions in the weak formulation for the mesh
problem (10). Before doing so, we need to check if these test functions are admissible, i.e., if they satisfy
the condition of inextensibility and unshearability ∂sdi + ti ×wi = 0, i = 1, . . . , nE . We differentiate this
condition with respect to t and use the fact that ti do not depend on t, to obtain

∂s(∂tdi) + ti × (∂twi) = 0, i = 1, . . . , nE ,

which implies that, indeed, (∂tdi, ∂twi) ∈ VS , i = 1, . . . , nE .
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By using (∂td, ∂tw) = ((∂td1, ∂tw1), . . . , (∂tdnE
, ∂twnE

)) as a test function in the weak formulation
for the mesh problem, we obtain:

nE∑

i=1

li∫

0

fi · ∂tdi = ρS

nE∑

i=1

Ai

li∫

0

∂2
t di · ∂tdi + ρS

nE∑

i=1

li∫

0

Mi∂
2
t wi · ∂twi

+
nE∑

i=1

li∫

0

QiHiQ
T
i ∂swi · ∂s∂twi

=
ρS

2
d
dt

nE∑

i=1

Ai‖∂tdi‖2
L2(0,li)

+
ρS

2
d
dt

nE∑

i=1

‖∂twi‖2
m

+
d
dt

nE∑

i=1

‖wi‖2
r.

By enforcing the kinematic and dynamic boundary conditions on Γ, and recalling that the Jacobian of
the transformation between Γ and ω is J = R, we obtain:

−
∫

Γ

σn · u = −
∫

ω

J(σ ◦ ϕ)(n ◦ ϕ) · ∂tη =
∫

ω

f · ∂tηR +
nE∑

i=1

∫

Ji

fi ◦ π−1
i

‖π′
i ◦ π−1

i ‖δJi
· ∂tη

=
∫

ω

f · ∂tηR +
nE∑

i=1

li∫

0

fi · ∂tη ◦ πi =
∫

ω

f · ∂tηR +
nE∑

i=1

li∫

0

fi · ∂tdi.

(21)

By inserting the expressions for f and fi from the shell and mesh problems into (21), we get:

−
∫

Γ

σn · uf =
ρKh

2
d
dt

‖∂tη‖2
L2(R;ω) +

1
2

d
dt

〈Lη,η〉

+
ρS

2
d
dt

nE∑

i=1

Ai‖∂tdi‖2
L2(0,li)

+
ρS

2
d
dt

nE∑

i=1

‖∂twi‖2
m +

d
dt

nE∑

i=1

‖wi‖2
r.

(22)

Finally, by replacing the trace of the normal stress on Γ in (20) by (22), one obtains the following energy
equality:

ρF

2
d
dt

‖u‖2
L2(Ω) + 2μF ‖D(u)‖2

L2(Ω) +
ρKh

2
d
dt

‖∂tη‖2
L2(R;ω)

+
1
2

d
dt

〈Lη,η〉 +
ρS

2
d
dt

nE∑

i=1

Ai‖∂tdi‖2
L2(0,li)

+
ρS

2
d
dt

nE∑

i=1

‖∂twi‖2
m

+
d
dt

nE∑

i=1

‖wi‖2
r =

∫

Γin

puz −
∫

Γout

puz.

(23)

The right-hand side is equal to
∫

Γin

Pin(t)uz −
∫

Γout

Pout(t)uz.
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Using the trace theorem, Korn inequality and Cauchy inequality (with ε), one can estimate:
∣∣∣

∫

Γin/out

Pin/out(t)uz

∣∣∣ ≤ C|Pin/out|‖u‖H1(Ω) ≤ C|Pin/out|‖D(u)‖L2(Ω)

≤ C

2ε
|Pin/out|2 +

Cε

2
‖D(u)‖2

L2(Ω).

We note that, indeed, the fluid velocity u satisfies the conditions for Korn inequality (Theorem 6.3–4 in
[20]). Namely, the boundary condition u × ez = 0 on Γin/out gives us ux = uy = 0 and ∂zuz = 0. Using
the kinematic coupling condition uz = ∂tηz (on ω), we obtain that uz = 0, so u = 0 on Γin/out. Finally,
by choosing ε such that Cε

2 ≤ μF , we get the energy inequality (19).

4. The operator splitting scheme

Our goal is to approximate the coupled FSI problem using time-discretization via operator splitting, and
then prove that solutions to the approximate problems converge to a weak solution of the continuous
problem, as the time-discretization step tends to zero.

We use the Lie splitting scheme which can be summarized as follows. Let N ∈ N,Δt = T/N and
tn = nΔt. Consider the following initial-value problem

dφ

dt
+ Aφ = 0 in (0, T ),

φ(0) = φ0,

where A is an operator defined on a Hilbert space, and A can be written as A = A1 + A2. Set φ0 = φ0

and for n = 0, . . . , N − 1, i = 1, 2, compute φn+ i
2 by solving

dφi

dt
+ Aiφi = 0 in (tn, tn+1),

φi(tn) = φn+ i−1
2 ,

and then set φn+ i
2 = φi(tn+1).

To perform the time-discretization via operator splitting, we need to rewrite our FSI problem as a
first-order system in time. This will be done by replacing the second-order time derivative of η, with
the first-order time derivative of the Koiter shell velocity v = ∂tη, by replacing the second-order time
derivative of d by the first-order time derivative of the mesh velocity k = ∂td, and by replacing the
second-order time derivative of w by the first-order time derivative of the rotation velocity z = ∂tw.

We apply this approach to split Problem 1 into a fluid and a structure subproblem, and then

1. Solve the structure subproblem on (tn, tn+1) using for the initial data the solution of the fluid
subproblem from the previous time step, and then

2. Solve the fluid subproblem on (tn, tn+1) using for the initial data the solution of the just calculated
structure subproblem.

There are many different ways to split the coupled problem into a fluid and a structure subproblem. Only
certain splitting strategies would lead to a stable and convergent scheme. Here, we define a structure and
a fluid subproblem for the Lie splitting scheme that will, indeed, provide a convergent scheme, converging
to a weak solution of the coupled, continuous problem.
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4.1. The structure subproblem

In this step, we solve an elastodynamics problem for the location of the deformable boundary, which is
defined by the dynamic coupling condition involving only the elastic energy of the structure. The motion
of the structure is driven by the initial velocity of the structure, obtained, using the kinematic coupling
condition, from the trace of the fluid velocity calculated in the previous time step. The fluid velocity u
remains unchanged in this step. The structure subproblem reads: for a given (un,ηn,vn,dn,wn,kn, zn),
calculated in the previous time step, find (u,η,v,d,w,k, z) such that

∂tu = 0, in (tn, tn+1) × Ω,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρKh∂tvR + Lη + ρS

nE∑

i=1

Ai
∂tki ◦ π−1

i

‖πi ◦ π−1
i ‖δJi

+ ρS

nE∑

i=1

Mi
∂tzi ◦ π−1

i

‖πi ◦ π−1
i ‖δJi

+
nE∑

i=1

QiHiQ
T
i

∂swi ◦ π−1
i

‖πi ◦ π−1
i ‖ δJi

= 0, in (tn, tn+1) × ω,

η ◦ πi = di, in (tn, tn+1) × (0, li), i = 1, . . . , nE ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tη = v, in (tn, tn+1) × ω,

∂tdi = ki, in (tn, tn+1) × (0, li), i = 1, . . . nE ,

∂twi = zi, in (tn, tn+1) × (0, li), i = 1, . . . , nE ,

∂sdi + ti × wi = 0, in (tn, tn+1) × (0, li), i = 1, . . . , nE ,

with boundary data:
{

η(t, 0, θ) = η(t, L, θ) = ∂zηr(t, 0, θ) = ∂zηr(t, L, θ) = 0, on (tn, tn+1) × (0, 2π),

η(t, z, 0) = η(t, z, 2π), ∂θηr(t, z, 0) = ∂θηr(t, z, 2π), on (tn, tn+1) × (0, L),

and initial data:
{
u(tn) = un,η(tn) = ηn,v(tn) = vn,d(tn) = dn,

w(tn) = wn,k(tn) = kn, z(tn) = zn.

Then, set un+1/2 = u(tn+1),ηn+1/2 = η(tn+1),vn+1/2 = v(tn+1),dn+1/2 = d(tn+1),wn+1/2 = w(tn+1),
kn+1/2 = k(tn+1), zn+1/2 = z(tn+1).

4.2. The fluid subproblem

In this step, we solve the Stokes equations for the fluid, with a Robin-type boundary condition on Γ,
which is obtained by using the remaining part of the dynamic coupling condition, not used in the structure
subproblem. Thus, the boundary condition involves the first-order time derivative term corresponding
to the shell inertia, and the trace of the fluid normal stress on Γ. Since the fluid and the elastic mesh
“feel” each other only through the motion of the shell, meaning that the fluid motion affects the shell
motion, and then the shell motion affects the mesh motion whose elastodynamics is influenced by the
presence of the mesh, we exclude the mesh from the fluid subproblem. Namely, since we are working
with weak solutions of Leray type, the fluid velocity has no trace on the mesh domain since it is a one-
dimensional set. Thus, in this step, the structure displacement, the velocity of the mesh displacement,
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and the velocity of infinitesimal rotation of cross sections remain unchanged. The fluid subproblem reads:
for a given (un+ 1

2 ,ηn+ 1
2 ,vn+ 1

2 ,dn+ 1
2 ,wn+ 1

2 ,kn+ 1
2 , zn+ 1

2 ), find (u,η,v,d,w,k, z) such that:
{

ρF ∂tu = ∇ · σ, in (tn, tn+1) × Ω,

∇ · u = 0, in (tn, tn+1) × Ω,

{
ρKh∂tvR = −J(σ ◦ ϕ)(n ◦ ϕ), in (tn, tn+1) × ω,

u|Γ ◦ ϕ = v, in (tn, tn+1) × ω,

{
p = Pin/out(t), on Γin/out,

u × ez = 0, on Γin/out,

⎧
⎪⎨

⎪⎩

∂tη = 0, in (tn, tn+1) × ω,

∂tdi = 0, in (tn, tn+1) × (0, li), i = 1, . . . , nE ,

∂twi = 0, in (tn, tn+1) × (0, li), i = 1, . . . , nE ,

{
∂tki = 0, in (tn, tn+1) × (0, li), i = 1, . . . , nE ,

∂tzi = 0, in (tn, tn+1) × (0, li), i = 1, . . . , nE ,

with initial data:
{
u(tn) = un+1/2,η(tn) = ηn+1/2,v(tn) = vn+1/2,d(tn) = dn+1/2,

w(tn) = wn+1/2,k(tn) = kn+1/2, z(tn) = zn+1/2.

Then set un+1 = u(tn+1),ηn+1 = η(tn+1),vn+1 = v(tn+1),dn+1 = d(tn+1),
wn+1 = w(tn+1),kn+1 = k(tn+1), zn+1 = z(tn+1).

Crucial for a design of a stable scheme is the inclusion of structure inertia into the fluid subproblem,
which guarantees energy balance at the time-discrete level, thereby avoiding stability problems due to the
so-called added mass effect . Added mass effect is used to describe the elastodynamics of structures inter-
acting with fluids with comparable densities, for which there is a significant exchange of energy between
the fluid and structure motion, potentially causing instabilities is schemes that do not approximate well
the energy exchange that occurs at the continuous level. Here, we emphasize that there is no added mass
effect associated with the stent since the fluid velocity does not have the trace defined on the 1D set
describing the stent, and therefore it is enough to include only the shell inertia into the fluid subproblem.

5. Existence of weak solutions

5.1. Function spaces

Motivated by the energy inequality (19), we define the following evolution spaces associated with the
fluid problem, the Koiter shell problem, the mesh problem and the coupled mesh–shell problem:

• VF (0, T ) = L∞(0, T ;L2(Ω)) ∩ L2(0, T ;VF ),
where VF is defined by (2),

• VK(0, T ) = W 1,∞(0, T ;L2(R;ω)) ∩ L∞(0, T ;VK),
where VK is defined by (4),

• VS(0, T ) = W 1,∞(0, T ;L2(N )) ∩ L∞(0, T ;VS),
where VS is defined by (8),
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• VKS(0, T ) = {(η,d,w) ∈ VK(0, T ) × VS(0, T ) : η ◦ π = d on
∏nE

i=1(0, li)}.

The solution space for the coupled fluid–mesh–shell interaction problem involves the kinematic coupling
condition, which is, thus, enforced in a strong way:

V (0, T ) = {(u,η,d,w) ∈ VF (0, T ) × VKS(0, T ) : u ◦ ϕ = ∂tη on ω}.

The associated test space is given by:

Q(0, T ) = {(υ,ψ, ξ, ζ) ∈ C1
c ([0, T );VF × VKS) : υ ◦ ϕ = ψ on ω}.

5.2. Definition of a weak solution

We are now in a position to state a definition of weak solutions of our fluid–mesh–shell interaction
problem, with the fluid flow in Ω.

Definition 5.1. We say that (u,η,d,w) ∈ V (0, T ) is a weak solution of Problem 1 if for all test functions
(υ,ψ, ξ, ζ) ∈ Q(0, T ) the following equality holds:

− ρF

T∫

0

∫

Ω

u · ∂tυ + 2μF

T∫

0

∫

Ω

D(u) : D(υ) − ρKh

T∫

0

∫

ω

∂tη · ∂tψR

+

T∫

0

aK(η,ψ) − ρS

nE∑

i=1

Ai

T∫

0

li∫

0

∂tdi · ∂tξi − ρS

nE∑

i=1

T∫

0

li∫

0

Mi∂twi · ∂tζi

+

T∫

0

aS(w, ζ) =

T∫

0

〈F (t),υ〉Γin/out + ρF

∫

Ω

u0 · υ(0) + ρKh

∫

ω

v0 · ψ(0)R

+ ρS

nE∑

i=1

Ai

li∫

0

k0i · ξi(0) + ρS

nE∑

i=1

li∫

0

Miz0i · ζi(0),

where

aK(η,ψ) = 〈Lη,ψ〉,

aS(w, ζ) =
nE∑

i=1

li∫

0

QiHiQ
T
i ∂swi · ∂sζi,

and

〈F (t),υ〉Γin/out = Pin(t)
∫

Γin

υz − Pout(t)
∫

Γout

υz.

5.3. Statement of main existence result

Our goal is to prove the existence of such weak solutions. More precisely, we prove the following main
result of this manuscript:
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Theorem 5.1. Let u0 ∈ L2(Ω), η0 ∈ H1(ω), v0 ∈ L2(R;ω), (d0,w0) ∈ VS, (k0, z0) ∈ L2(N ;R6) be such
that

∇ · u0 = 0, (u0|Γ ◦ ϕ) · er = (v0)r, u0|Γin/out × ez = 0, η0 ◦ π = d0.

Furthermore, let all the physical constants be positive: ρK , ρS , ρF , λ, μ, μF > 0 and Ai > 0,∀i = 1, . . . , nE ,
and let Pin/out ∈ L2

loc(0,∞). Then, for every T > 0, there exists a weak solution to Problem 1 in the
sense of Definition 5.1.

The rest of the manuscript is dedicated to designing a constructive proof of this existence result.

6. Approximate solutions

We construct approximate solutions to Problem 1 by semi-discretizing the subproblems defined in Sect. 4
using the Backward Euler scheme. Let Δt = T/N be the time-discretization parameter so that the
time interval (0, T ) is subdivided into N subintervals of width Δt. We define the vector of unknown
approximate solutions

Xn+i/2
N = (un+i/2

N ,η
n+i/2
N ,v

n+i/2
N ,dn+i/2

N ,wn+i/2
N ,kn+i/2

N , zn+i/2
N ),

n = 0, 1, . . . , N, i = 1, 2, where i = 1, 2 denotes the solution of the structure and the fluid subproblem,
respectively. We semi-discretize the problem so that the discrete version of the energy inequality (19) is
preserved at every time step. We define the semi-discrete versions of the kinetic and elastic energy, and
of dissipation, by the following:

E
n+i/2
N = ρF

∫

Ω

|un+i/2|2 + ρKh

∫

ω

|vn+i/2|2R + aK(ηn+i/2,ηn+i/2)

+ρS

∑nE

i=1 Ai

∫ li
0

|kn+i/2
i |2 + ρS

∑nE

i=1

∫ li
0

Mi|zn+i/2
i |2

+aS(wn+i/2,wn+i/2),

(24)

Dn+1
N = 4ΔtμF

∫
Ω

|D(un+1)|2, n = 0, . . . , N − 1, i = 1, 2. (25)

6.1. The semi-discretized structure subproblem

In this step, u does not change, so

un+1/2 = un.

Furthermore, we define (ηn+1/2,vn+1/2,dn+1/2,wn+1/2,kn+1/2, zn+1/2) as the solution of the following
problem, written in weak form:

ρKh

∫

ω

vn+1/2 − vn

Δt
· ψR + aK(ηn+1/2,ψ) + ρS

nE∑

i=1

Ai

li∫

0

kn+1/2
i − kn

i

Δt
· ξi

+ρS

nE∑

i=1

li∫

0

Mi
zn+1/2

i − zn
i

Δt
· ζi + aS(wn+1/2, ζ) = 0, (26)
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∫

ω

ηn+1/2 − ηn

Δt
· ψR =

∫

ω

vn+1/2 · ψR,

li∫

0

dn+1/2
i − dn

i

Δt
· ξi =

li∫

0

kn+1/2
i · ξi,

li∫

0

wn+1/2
i − wn

i

Δt
· ζi =

li∫

0

zn+1/2
i · ζi,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

i = 1, . . . , nE ,

for all test functions (ψ, ξ, ζ) ∈ VKS , where the solution space is defined by:

V Δt
S := {(η,v,d,w,k, z) ∈ VK × L2(R;ω) × VS × L2(N ) × L2(N ) :

η ◦ π = d on
nE∏

i=1

(0, li)}.
(27)

Proposition 6.1. For each fixed Δt > 0, the structure subproblem has a unique solution (ηn+1/2,vn+1/2,
dn+1/2,wn+1/2,kn+1/2, zn+1/2) ∈ V Δt

S .

Proof. The proof is a direct consequence of the Lax–Milgram lemma. To show this, we define a bilinear

form on the mesh–shell space by replacing vn+1/2 by
ηn+1/2 − ηn

Δt
, kn+1/2

i by
dn+1/2

i − dn
i

Δt
and zn+1/2

i

by
wn+1/2

i − wn
i

Δt
, for i = 1, . . . , nE , in the first equation in (26). We obtain

ρKh

∫

ω

ηn+1/2 − ηn

(Δt)2
· ψR + aK(ηn+1/2,ψ) + ρS

nE∑

i=1

Ai

li∫

0

dn+1/2
i − dn

i

(Δt)2
· ξi

+ ρS

nE∑

i=1

li∫

0

Mi
wn+1/2

i − wn
i

(Δt)2
· ζi + aS(wn+1/2, ζ)

= ρKh

∫

ω

vn

Δt
· ψR + ρS

nE∑

i=1

Ai

li∫

0

kn
i

Δt
· ξi + ρS

nE∑

i=1

li∫

0

Mi
zn

i

Δt
· ζi.

We multiply this equality by (Δt)2 and move all the terms from the n-th step to the right-hand side to
obtain:

ρKh

∫

ω

ηn+1/2 · ψR + (Δt)2aK(ηn+1/2,ψ) + ρS

nE∑

i=1

Ai

li∫

0

dn+1/2
i · ξi

+ ρS

nE∑

i=1

li∫

0

Miw
n+1/2
i · ζi + (Δt)2aS(wn+1/2, ζ) = ρKh

∫

ω

(
ηn + Δtvn

)
· ψR

+ ρS

nE∑

i=1

Ai

li∫

0

(
dn

i + Δtkn
i

)
· ξi + ρS

nE∑

i=1

li∫

0

Mi

(
wn

i + Δtzn
i

)
· ζi.
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The left-hand side of the above equation defines the following bilinear form associated with the structure
subproblem:

a((η,d,w), (ψ, ξ, ζ)) :=ρKh

∫

ω

η · ψR + (Δt)2aK(η,ψ) + ρS

nE∑

i=1

Ai

li∫

0

di · ξi

+ ρS

nE∑

i=1

li∫

0

Miwi · ζi + (Δt)2aS(w, ζ). (28)

In order to apply the Lax–Milgram lemma, we need to prove the continuity and coercivity of the bilinear
form (28) on VKS . To show that a is coercive, we write

a((η,d,w), (η,d,w))

= ρKh

∫

ω

|η|2R + (Δt)2aK(η,η) + ρS

nE∑

i=1

Ai

li∫

0

|di|2

+ ρS

nE∑

i=1

li∫

0

Mi|wi|2 + (Δt)2aS(w,w)

≥ c
(
‖η‖2

L2(R;ω) + ‖η‖2
k + ‖d‖2

L2(N ) + ‖w‖2
L2(N ) + ‖∂sw‖2

L2(N )

)

≥ c
(
‖η‖2

k + ‖d‖2
L2(N ) + ‖w‖2

H1(N )

)
.

Now, we use the condition of inextensibility and unshearability to get a bound on ‖∂sd‖2
L2(N ):

‖∂sd‖L2(N ) = ‖ − t × w‖L2(N ) ≤ C‖w‖L2(N ).

Notice how the L2-norm of infinitesimal rotation of cross sections keeps control over the gradient of
displacement of the middle line. This now provides coercivity, i.e.,

a((η,d,w), (η,d,w)) ≥ c
(
‖η‖2

k + ‖d‖2
H1(N ) + ‖w‖2

H1(N )

)
.

The Lax–Milgram lemma implies the existence of a unique solution of problem (26). �

Proposition 6.2. For each fixed Δt > 0, the structure subproblem (26) satisfies the following discrete
energy equality:

E
n+1/2
N + ρKh‖vn+1/2 − vn‖2

L2(R;ω) + aK(ηn+1/2 − ηn,ηn+1/2 − ηn)

+ ρS‖kn+1/2 − kn‖2
a + ρS‖zn+1/2 − zn‖2

m

+ aS(wn+1/2 − wn,wn+1/2 − wn) = En
N ,

(29)

where

‖k‖2
a :=

nE∑

i=1

Ai‖ki‖L2(0,li).

Proof. We take (vn+1/2,kn+1/2, zn+1/2) as a test function in the first equation in (26), and replace them
with the corresponding expressions: (ηn+1/2 − ηn)/Δt and (wn+1/2 − wn)/Δt in the bilinear forms aS

and aK , respectively, to obtain:
ρKh

Δt

∫

ω

(vn+1/2 − vn) · vn+1/2R +
1

Δt
aK(ηn+1/2,ηn+1/2 − ηn)
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+
ρS

Δt

nE∑

i=1

Ai

li∫

0

(kn+1/2
i − kn

i ) · kn+1/2
i +

ρS

Δt

nE∑

i=1

li∫

0

Mi(z
n+1/2
i − zn

i ) · zn+1/2
i

+
1

Δt
aS(wn+1/2,wn+1/2 − wn) = 0.

We then use the algebraic identity (a − b) · a = 1
2 (|a|2 + |a − b|2 − |b|2) to deal with the mixed products.

After multiplying the entire equation by 2Δt, the first equation in (26) can be written as:

ρKh(‖vn+1/2‖2 + ‖vn+1/2 − vn‖2) + aK(ηn+1/2,ηn+1/2)+

aK(ηn+1/2 − ηn,ηn+1/2 − ηn) + ρS(‖kn+1/2‖2
a + ‖kn+1/2 − kn‖2

a)+

ρS(‖zn+1/2‖2
m + ‖zn+1/2 − zn‖2

m) + aS(wn+1/2,wn+1/2) + aS(wn+1/2 − wn,

wn+1/2 − wn) = ρKh‖vn‖2 + aK(ηn,ηn) + ρS‖kn‖2
a + ρS‖zn‖2

m + aS(wn,wn).

Recall that un+1/2 = un in this subproblem, so we can add ρF ‖un+1/2‖2 on the left-hand side, and
ρF ‖un‖2 on the right-hand side of the equation, to obtain exactly the energy equality (29). �

6.2. The semi-discretized fluid subproblem

In this step, the shell displacement η, the mesh displacement d, and the infinitesimal rotation w do not
change, thus:

ηn+1 = ηn+1/2, dn+1 = dn+1/2, wn+1 = wn+1/2.

Furthermore, the velocity of the mesh displacement and of the infinitesimal rotation has to be zero:

kn+1 = kn+1/2, zn+1 = zn+1/2.

A weak solution of the semi-discretized fluid subproblem is defined to be a function (un+1,vn+1)
satisfying:

ρF

∫

Ω

un+1 − un

Δt
· υ + 2μF

∫

Ω

D(un+1) : D(υ)

+ρKh

∫

ω

vn+1 − vn+1/2

Δt
· ψR =

∫

Γin

Pn
inυz −

∫

Γout

Pn
outυz,

(30)

for all test functions (v,ψ) ∈ VF × L2(R;ω) such that v|Γ ◦ ϕ = ψ on ω, where the weak solution space
is defined by:

V Δt
F := {(u,v) ∈ VF × L2(R;ω) : u|Γ ◦ ϕ = v on ω}. (31)

Proposition 6.3. For each fixed Δt > 0, the fluid subproblem (30) has a unique solution (un+1,vn+1) ∈
V Δt

F .

Proof. The proof is again a consequence of the Lax–Milgram lemma. We rewrite the first equation in
(30) as follows:

ρF

Δt

∫

Ω

un+1 · υ + 2μF

∫

Ω

D(un+1) : D(υ) + ρKh

∫

Ω

vn+1

Δt
· ψR

=
ρF

Δt

∫

Ω

un · υ +
ρKh

Δt

∫

ω

vn+1/2 · ψR +
∫

Γin

Pn
inυz −

∫

Γout

Pn
outυz.
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This defines the following bilinear form associated with problem (30):

a((u,v), (υ,ψ)) := ρF

∫

Ω

u · υ + 2Δtμ

∫

Ω

D(u) : D(υ) + ρKh

∫

ω

v · ψR. (32)

We need to prove that this bilinear form a is coercive and continuous. In order to prove coercivity, we
write:

a((u,v), (u,v)) = ρF

∫

Ω

|u|2 + Δt2μF

∫

Ω

|D(u)|2 + ρKh

∫

ω

|v|2R

≥ c(‖u‖2
L2(Ω) + ‖D(u)‖2

L2(Ω) + ‖v‖2
L2(R;ω))

≥ c(‖u‖2
H1(Ω) + ‖v‖2

L2(R;ω)).

By applying Hölder inequality we get the continuity of a:

a((u,v), (υ,ψ)) ≤ C
(
ρF ‖u‖L2(Ω)‖υ‖L2(Ω) + ΔtμF ‖u‖H1(Ω)‖υ‖H1(Ω)

+ ρKh‖v‖L2(R;ω)‖ψ‖L2(R;ω)

)
.

he Lax–Milgram lemma now implies the existence of a unique weak solution (un+1,vn+1) of the fluid
subproblem (30). �

Proposition 6.4. For each fixed Δt > 0, the solution of problem (30) satisfies the following discrete energy
inequality:

En+1
N + ρF ‖un+1 − un‖2

L2(Ω) + ρKh‖vn+1 − vn+1/2‖2
L2(R;ω) + Dn+1

N

≤ E
n+1/2
N + CΔt((Pn

in)2 + (Pn
out)

2),
(33)

where Pn
in/out = 1

Δt

∫ (n+1)Δt

nΔt
Pin/out(t)dt.

Proof. We begin by replacing the test functions (υ,ψ) by (un+1,vn+1) in the weak formulation (30) to
obtain:

ρF

Δt

∫

Ω

(un+1 − un) · un+1 + 2μF

∫

Ω

D(un+1) : D(un+1)

+
ρKh

Δt

∫

ω

(vn+1 − vn+1/2) · vn+1R =
∫

Γin

pnun+1
z −

∫

Γout

pnun+1
z .

After applying the algebraic identity (a − b) · a = 1
2 (|a|2 + |a − b|2 − |b|2) and multiplying the resulting

equation by 2Δt, we obtain:

ρF (‖un+1‖2 + ‖un+1 − un‖2) + 4Δtμ‖D(un+1)‖2

+ ρKh(‖vn+1‖2 + ‖vn+1 − vn+1/2‖2)

≤ ρF ‖un‖2 + ρKh‖vn+1/2‖2 + CΔt((Pn
in)2 + (Pn

out)
2).

Finally, recall that ηn+1 = ηn+1/2 and wn+1 = wn+1/2 in the fluid subproblem, so we can add
aK(ηn+1,ηn+1) and aS(wn+1,wn+1) on the left-hand side, and aK(ηn+1/2,ηn+1/2) and aS(wn+1/2,
wn+1/2) on the right-hand side. Furthermore, since kn+1 = kn+1/2 and zn+1 = zn+1/2, we add ‖kn+1‖2

a

and ‖zn+1‖2
m on the left-hand side, and ‖kn+1/2‖2

a and ‖zn+1/2‖2
m on the right-hand side, to obtain

exactly the energy inequality (33). �
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6.3. Uniform energy estimates

Our goal is to ultimately show that there exists a subsequence of functions, parameterized by N (or Δt),
defined by the time-discretization via Lie splitting specified above, which converges to a weak solution of
Problem 1. To obtain this result, we start by showing that the sequence of approximations defined above,
is uniformly bounded (uniformly with respect to Δt) in energy norm.

Lemma 6.1. Let Δt > 0 and N = T/Δt. Furthermore, let E
n+1/2
N , En+1

N and Dn+1
N be the kinetic energy

and dissipation given by (24) and (25), respectively. Then, there exists a constant K > 0, independent of
Δt (or N) such that the following estimates hold:

1. E
n+1/2
N ≤ K,En+1

N ≤ K,∀n = 0, . . . , N − 1,

2.
∑N−1

n=0 Dn+1
N ≤ K,

3.
∑N−1

n=0

(
ρF ‖un+1 − un‖2 + ρKh‖vn+1 − vn+1/2‖2 + ρKh‖vn+1/2 − vn‖2

)
≤ K,

4.
∑N−1

n=0 ρS

(
‖kn+1 − kn‖2

a + ‖zn+1 − zn‖2
m

)
≤ K,

5.
∑N−1

n=0 aK(ηn+1 − ηn,ηn+1 − ηn) ≤ K,

∑N−1
n=0 aS(wn+1 − wn,wn+1 − wn) ≤ K.

Proof. We begin by adding the energy estimates (29) and (33) to obtain:

E
n+1/2
N + ρKh‖vn+1/2 − vn‖2 + aK(ηn+1/2 − ηn,ηn+1/2 − ηn)

+ ρS‖kn+1/2 − kn‖2
a + ρS‖zn+1/2 − zn‖2

m

+ aS(wn+1/2 − wn,wn+1/2 − wn) + En+1
N + ρF ‖un+1 − un‖2

+ ρKh‖vn+1 − vn+1/2‖2 + Dn+1
N ≤ En

N + E
n+1/2
N + CΔt((Pn

in)2 + (Pn
out)

2).

We take the sum from n = 0 to n = N − 1 on both sides to obtain:

EN
N +

N−1∑

n=0

Dn+1
N +

N−1∑

n=0

(
ρF ‖un+1 − un‖2 + ρKh‖vn+1 − vn+1/2‖2

+ ρKh‖vn+1/2 − vn‖2 + ρS‖kn+1/2 − kn‖2
a + ρS‖zn+1/2 − zn‖2

m

+ aK(ηn+1/2 − ηn,ηn+1/2 − ηn) + aS(wn+1/2 − wn,wn+1/2 − wn)
)

≤ E0 + CΔt
N−1∑

n=o

(
(Pn

in)2 + (Pn
out)

2
)
.

The term involving the inlet and outlet pressure data can be easily estimated by recalling that on each
subinterval (tn, tn+1) the pressure data is approximated by a constant, which is equal to the average value
of the pressure over that time interval. Therefore, after using Hölder inequality, we have:

Δt
N−1∑

n=0

(Pn
in)2 = Δt

N−1∑

n=0

( 1
Δt

(n+1)Δt∫

nΔt

Pin(t)dt
)2

≤ ‖Pin‖2
L2(0,T ). (34)

We can now bound the right-hand side in the above energy estimate by using the just calculated pressure
estimate, to obtain all the statements in the Lemma, with the constant K = E0 + C

(
‖Pin‖2

L2(0,T )+

‖Pout‖2
L2(0,T )

)
. �
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7. Convergence of approximate solutions

The approach described above defines a set of discrete values in time, which can be used to define
approximate functions on (0, T ). Indeed, we define approximate solutions on (0, T ) to be the functions,
which are piecewise constant on each subinterval ((n − 1)Δt, nΔt], n = 1, . . . , N of (0, T ):

• uN (t, ·) = un
N , ηN (t, ·) = ηn

N ,∀t ∈ ((n − 1)Δt, nΔt],
• vN (t, ·) = vn

N , v̂N (t, ·) = v
n−1/2
N ,∀t ∈ ((n − 1)Δt, nΔt],

• dN (t, ·) = dn
N , wN (t, ·) = wn

N ,∀t ∈ ((n − 1)Δt, nΔt],
• kN (t, ·) = kn

N , zN (t, ·) = zn
N ,∀t ∈ ((n − 1)Δt, nΔt].

In the second bullet above, we used v̂N (t, ·) = v
n−1/2
N to denote the approximate shell velocity functions

determined by the structure subproblem, and vN (t, ·) = vn
N to denote the approximate shell velocity

functions determined by the fluid subproblem. We emphasize that these are not necessarily the same.
As a consequence, the kinematic coupling condition, which involves the shell velocity, is asynchronously
satisfied by this scheme at each time step. We will show, however, that the difference between these
approximate sequences for the shell velocity converges to zero in L2 as Δt → 0.

7.1. Weak and weak* convergence

Using the energy estimates presented in Lemma 6.1, we will show that the approximate sequences of func-
tions defined above for all t ∈ (0, T ), are uniformly bounded in the appropriate solution spaces involving
both space and time. This will provide weakly and weakly* convergent subsequences of approximate
functions, for which we will show convergence to a weak solution of the coupled, continuous problem, as
Δt → 0.

Proposition 7.1. The sequence (uN )N∈N is uniformly bounded in L∞(0, T ;L2(Ω))
∩ L2(0, T ;H1(Ω)).

Proof. The uniform boundedness of (uN ) in L∞(0, T ;L2(Ω)) follows directly from the first statement of
Lemma 6.1. To show the uniform boundedness of (uN ) in L2(0, T ;H1(Ω)), notice that from the second
statement of Lemma 6.1 we have:

N∑

n=1

∫

Ω

|D(un
N )|2Δt ≤ K, (35)

where D(un
N ) is the symmetrized gradient. By applying Korn inequality, we obtain

‖∇un
N‖2

L2(Ω) ≤ C‖D(un
N )‖2

L2(Ω).

Taking the sum from n = 1, . . . , N , we get the following estimate
N∑

n=1

‖∇un
N‖2

L2(Ω)Δt ≤ C

N∑

n=1

‖D(un
N )‖2

L2(Ω)Δt,

which implies that the sequence (∇uN ) is uniformly bounded in L2(0, T ;L2(Ω)), and so the sequence
(uN ) is uniformly bounded in L2(0, T ;H1(Ω)). �

Proposition 7.2. The sequence (ηN )N∈N is uniformly bounded in L∞(0, T ;VK), and the sequence
(wN )N∈N is uniformly bounded in L∞(0, T ;H1(N )).

Proof. From Lemma 6.1, we have that En
N ≤ K, ∀n = 0, . . . , N − 1, which implies

‖ηN (t)‖2
k ≤ aK(ηN (t),ηN (t)) ≤ K, ∀t ∈ [0, T ].
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Therefore,

‖ηN‖L∞(0,T ;VK) ≤ K.

The boundedness of the sequence (wN )N∈N also follows from the first statement of Lemma 6.1. Namely,
we have

‖wN (t)‖2
L2(N ) ≤ ‖wN (t)‖2

m ≤ K,

‖∂swN (t)‖2
L2(N ) ≤ aS(wN (t),wN (t)) ≤ K,

which concludes the proof. �

The following uniform bounds for the shell and mesh approximate velocities are a direct consequence of
Lemma 6.1.

Proposition 7.3. The following uniform bounds for the shell and mesh approximate velocities hold:

(i) (vN )N∈N is uniformly bounded in L∞(0, T ;L2(R;ω)),
(v̂N )N∈N is uniformly bounded in L∞(0, T ;L2(R;ω)),

(ii) (kN )N∈N is uniformly bounded in L∞(0, T ;L2(N )),
(zN )N∈N is uniformly bounded in L∞(0, T ;L2(N )).

To pass to the limit in the weak formulation of approximate solutions, we need additional regularity in
time of the sequences (ηN )N∈N, (dN )N∈N and (wN )N∈N. For this purpose, we introduce a slightly different
set of approximate functions. Namely, for each fixed Δt, define η̃N , d̃N and w̃N to be continuous, linear
on each subinterval [(n − 1)Δt, nΔt], n = 1, . . . , N , and such that

ũN (nΔt, ·) = uN (nΔt, ·),
η̃N (nΔt, ·) = ηN (nΔt, ·), ṽN (nΔt, ·) = vN (nΔt, ·),
d̃N (nΔt, ·) = dN (nΔt, ·), w̃N (nΔt, ·) = wN (nΔt, ·),
k̃N (nΔt, ·) = kN (nΔt, ·), z̃N (nΔt, ·) = zN (nΔt, ·).

(36)

We now observe:

∂tη̃N (t) =
ηn+1

N − ηn
N

Δt
=

η
n+1/2
N − ηn

N

Δt
= v

n+1/2
N , t ∈ (nΔt, (n + 1)Δt].

Since v̂N is a piecewise constant function, as defined before via v̂N (t, ·) = v
n+1/2
N , for t ∈ (nΔt, (n+1)Δt],

we see that

∂tη̃N = v̂N a.e. on (0, T ). (37)

From (37), and from the uniform boundedness of E
n+i/2
N provided by Lemma 6.1, we obtain the uni-

form boundedness of (η̃N )N∈N in W 1,∞(0, T ;L2(R;ω)). Now, since sequences (η̃N )N∈N and (ηN )N∈N

have the same limit (distributional limit is unique), we get that the weak* limit of ηN is, in fact, in
W 1,∞(0, T ;L2(R;ω)).

Using analogous arguments, one also obtains that the weak* limits of (dN )N∈N and (wN )N∈N are in
W 1,∞(0, T ;L2(N )). This is because the corresponding velocity approximations are uniformly bounded in
the corresponding norms, as stated in part 4. of Lemma 6.1.

Notice that we do not get any bounds on the sequence (dN )N∈N from the uniform energy estimates.
Nevertheless, using the condition of inextensibility and unshearability, together with the regularity of
wN , one can easily prove the H1-regularity in space of dN . More precisely, the following result holds
true:
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Corollary 7.1. The sequence (dN )N∈N is uniformly bounded in L∞(0, T ;H1(N )).

From the uniform boundedness of approximate sequences, we can now conclude the following weak
and weak* convergence results:

Lemma 7.1. There exist subsequences (uN )N∈N, (ηN )N∈N, (vN )N∈N, (v̂N )N∈N,
(dN )N∈N, (wN )N∈N, (kN )N∈N, (zN )N∈N, and the functions u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),η ∈
L∞(0, T ;VK) ∩ W 1,∞(0, T ;L2(R;ω)),d,w ∈ L∞(0, T ;H1(N )) ∩ W 1,∞(0, T ;L2(N )),v, v̂ ∈
L∞(0, T ;L2(R;ω)), and k, z ∈ L∞(0, T ;L2(N )), such that

uN ⇀ u weakly* in L∞(0, T ;L2(Ω)),

uN ⇀ u weakly in L2(0, T ;H1(Ω)),

ηN ⇀ η weakly* in L∞(0, T ;VK),

ηN ⇀ η weakly* in W 1,∞(0, T ;L2(R;ω)),

dN ⇀ d weakly* in L∞(0, T ;H1(N )),

dN ⇀ d weakly* in W 1,∞(0, T ;L2(N )),

wN ⇀ w weakly* in L∞(0, T ;H1(N )),

wN ⇀ w weakly* in W 1,∞(0, T ;L2(N )),

vN ⇀ v weakly* in L∞(0, T ;L2(R;ω)),

v̂N ⇀ v̂ weakly* in L∞(0, T ;L2(R;ω)),

kN ⇀ k weakly* in L∞(0, T ;L2(N )),

zN ⇀ z weakly* in L∞(0, T ;L2(N )).

Furthermore,

v = v̂.

Proof. We only need to show that v = v̂. To show this, we use the definition of approximate sequences
as step functions in t, i.e.,

‖vN − v̂N‖2
L2(0,T ;L2(R;ω)) =

T∫

0

‖vN − v̂N‖2
L2(R;ω)dt =

N−1∑

n=0

tn+1∫

tn

‖vn+1
N − v

n+1/2
N ‖2

L2(R;ω)dt

=
N−1∑

n=0

‖vn+1
N − v

n+1/2
N ‖2

L2(R;ω)Δt. ≤ KΔt.

The last inequality follows from the third statement of Lemma 6.1. By letting Δt → 0, we get that
v = v̂. �

7.2. Passing to the limit and proof of main result

We start by first writing the weak formulation of the coupled, semi-discretized problem. For this purpose,
take (ψ(t), ξ(t), ζ(t)) as the test functions in the first equation in (26) and integrate with respect to t
from nΔt to (n + 1)Δt. Then, take (υ(t),ψ(t)) as the test functions in the first equation in (30) and
again integrate over the same time interval. Add the two equations together to obtain

ρF

(n+1)Δt∫

nΔt

∫

Ω

un+1 − un

Δt
· υ + 2μF

(n+1)Δt∫

nΔt

∫

Ω

D(un+1) : D(υ)
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+ ρKh

(n+1)Δt∫

nΔt

∫

ω

vn+1 − vn

Δt
· ψR +

(n+1)Δt∫

nΔt

aK(ηn+1/2,ψ)

+ ρS

(n+1)Δt∫

nΔt

nE∑

i=1

Ai

li∫

0

kn+1/2
i − kn

i

Δt
· ξi + ρS

(n+1)Δt∫

nΔt

nE∑

i=1

li∫

0

Mi
zn+1/2

i − zn
i

Δt
· ζi

+

(n+1)Δt∫

nΔt

aS(wn+1/2, ζ) =

(n+1)Δt∫

nΔt

∫

Γin

pnυz −
(n+1)Δt∫

nΔt

∫

Γout

pnυz.

By using the definition of approximate solutions as functions of t, and by taking the sum from n =
0, . . . , N − 1 to get the time integrals over (0, T ), we get:

ρF

T∫

0

∫

Ω

∂tũN · υ + 2μF

T∫

0

∫

Ω

D(uN ) : D(υ)

+ ρKh

T∫

0

∫

ω

∂tṽN · ψR +

T∫

0

aK(ηN ,ψ)

+ ρS

T∫

0

nE∑

i=1

Ai

li∫

0

∂t(k̃N )i · ξi + ρS

T∫

0

nE∑

i=1

li∫

0

Mi∂t(z̃N )i · ζi

+

T∫

0

aS(wN , ζ) =

T∫

0

PN
in

∫

Γin

υz −
T∫

0

PN
out

∫

Γout

υz.

Here, ũN , ṽN , k̃N and z̃N are the piecewise linear functions defined in (36), while uN ,ηN and wN are
piecewise constant functions. Integration by parts with respect to time gives:

− ρF

T∫

0

∫

Ω

ũN · ∂tυ + 2μF

T∫

0

∫

Ω

D(uN ) : D(υ) − ρKh

T∫

0

∫

ω

ṽN · ∂tψR

+

T∫

0

aK(ηN ,ψ) − ρS

T∫

0

nE∑

i=1

Ai

li∫

0

(k̃N )i · ∂tξi

− ρS

T∫

0

nE∑

i=1

li∫

0

Mi(zN )i · ∂tζi +

T∫

0

aS(wN , ζ) =

T∫

0

PN
in

∫

Γin

υz (38)

−
T∫

0

PN
out

∫

Γout

υz + ρF

∫

Ω

u0 · υ(0) + ρKh

∫

ω

v0 · ψ(0)R

+ ρS

nE∑

i=1

Ai

li∫

0

k0i · ξi(0) + ρS

nE∑

i=1

li∫

0

Miz0i · ζi(0),

where we recall that

∇ · uN = 0, uN |Γ ◦ ϕ = vN , ηN ◦ π = dN .
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Using the convergence results obtained for the approximate functions in Lemma 7.1, we can pass to the
limit in all the terms. Thus, we have shown that the limiting functions satisfy the weak form of Problem 1
in the sense of Definition 5.1. This completes the proof of the main result of this manuscript, stated in
Theorem 5.1.

8. Numerical examples

In this section, we present numerical simulations of the FSI problem studied above and compare our
numerical results with the results of the FSI simulation in which stent is assumed to be a mesh-like
structure, embedded in the 2D Koiter shell of thickness h, and modeled via jump discontinuities in the
Koiter shell coefficients, as studied in [8]. The scheme we developed to solve the resulting FSI problem
follows the Lie splitting strategy, used in the proof of existence of solutions, presented above.

8.1. The 1D stent model FSI

For the simulation of the fluid–shell–mesh interaction problem where the stent is modeled as a 1D
hyperbolic mesh described above, we use a finite element method-based approach. The stent is simulated
using the mixed formulation, described in [35], in which the inextensibility and unshearability of the
curved rods are included in the function space (8). See [34] for details of the numerical scheme and for
error estimates. These estimates hold in the finite element framework in which the finite elements used
for Lagrange multipliers associated with the inextensibility and unshearability are of one order less than
the order of the finite elements used for displacement and rotations.

The shell in our fluid–shell–mesh interaction simulations is assumed to be of Naghdi type. Naghdi shell
is a small perturbation of the Koiter model with respect to the shell thickness [53]. The reason for the use
of Naghdi shell instead of the Koiter shell is computational simplicity and efficiency. Koiter shell is fourth
order in flexural displacements, which leads to the use of C1 Hermite finite elements in the conformal
approximation, instead of the Lagrangian elements which can be used for the simulation of the Naghdi
shell model, which can be formulated within H1, as shown in [53]. As a result, the coupling between the
Naghdi shell and the 1D stent model is computationally easier and more natural than the Koiter shell-1D
stent coupling, see [12]. The finite elements used for the shell model are P2 elements and the elements
for the stent model are restrictions of the shell elements on the stent struts, i.e., P2 for displacements
and rotations (and P1 for Lagrange multipliers) as suggested by the error estimates in [34]. The fluid is
solved using P1b elements for the velocity and P1 for the pressure, see Fig. 2.

We study a benchmark problem consisting of a straight cylinder containing the fluid whose flow is
driven by the time-dependent inlet and outlet normal stress data, as in [8] (see also [28]). At the inlet,
the normal stress is a pressure pulse, while at the outlet the normal stress is set to zero:

σn|Γin = −pNn = −Pmax

2

[
1 − cos

(
πt

2.5

)]
n, (39)

teltuOtelnI

Γ

Fig. 2. Reference domain with an unstructured tetrahedron mesh. In the stented region, the mesh follows the 1D geometry

of the stent, which cannot be explicitly seen, but can be compared to the 2D stent geometry in Fig. 8
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Table 1. Structure parameters for the elastic shell and 1D stent model

Shell density ρa = 1100 kg/m3 Shell thickness ha = 5.8 × 10−4 m
Stent density ρs = 8500 kg/m3 Stent thickness hs = 1.0 × 10−4 m
Shell Poisson ratio νa = 0.4 Stent Poisson ratio νs = 0.31

Shell Young modulus Ea = 4 × 105 Pascal Shell Shear modulus Ga = Ea
2(1+νa)

= 1.43 × 105 Pascal

Stent Young modulus Es = 2.1 × 1011 Pascal Stent Shear modulus Gs = Es
2(1+νs)

= 0.8 × 1011 Pascal

Fig. 3. 1D stent FSI simulations: the snapshots of radial displacement at six different times (t = 2 ms, 4 ms, 6 ms, 8 ms,
10 ms and 12 ms)

σn|Γout = −pNn = 0, (40)

where

Pmax =
{

2 × 103 Pa, t ≤ 5 ms,
0, t > 5 ms.

The tube length is 3.3 cm, and the stent is located between xL = 0.825 cm and xR = 2.475 cm.
The tube reference radius is R = 1.5 mm. The stent geometry is shown in Fig. 8. The values of all the
parameters in the structure model are given in Table 1. The shell is clamped at the inlet and outlet. The
pressure pulse propagates from left to right and it hits the right end of the tube at t = 12 ms. We show
the results of our simulations for t ∈ (0, 12) ms at six different snapshots. Figure 3 shows a sequence
of 3D plots of structure displacement with blue denoting zero displacement, and red denoting maximal
displacement of 2.6 × 10−6 m, which is around 0.2% of the reference cylinder radius. One can see that
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Fig. 4. 1D stent FSI simulations: the pressure along the line y = 0, z = 0 at six different times (t = 2 ms, 4 ms, 6 ms, 8
ms, 10 ms and 12 ms)

the incident wave traveling from left to right hits the left (proximal) end of the stent at t ∈ (2, 3) ms,
generating a reflected and a transmitted wave. The reflected wave travels backward and hits the left end
of the tube which is clamped, generating another reflected wave traveling from left to right. The snapshot
at t = 4 ms shows a superposition of the reflected waves. The blue dip corresponds to the wave reflected
off the proximal end of the stent, while the red peaks correspond to the waves reflected off the left end
of the tube. This can be seen better in the 2D plots of displacement, shown in Fig. 5. The transmitted
wave continues to travel downstream the tube, giving rise to displacement in both the stent and the
shell, which can be seen in the 3D and 1D plots, shown in Figs. 3 and 5. The 3D plots show the outline
of the stent struts as the struts do not displace much, while the shell in between the struts has larger
displacement. The shell displacement in between the struts is visible in Fig. 5 for t ≥ 4 ms. The overall
stiffness of the stent keeps the radial displacement in the stented region smaller than in the nonstented
region, giving rise to a slight dampening of the pressure wave, see Fig. 4, as the velocity there increases.
The axial and radial components of velocity are shown in Fig. 6. The snapshots at t = 8 ms are shown.
This is the moment when the pressure wave enters the stented region of the tube. In the plot of the radial
velocity, the red color denotes positive and the blue color negative radial displacement. The top half and
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Fig. 5. 1D stent FSI simulations: radial displacement along the line y = 0.015, z = 0 at six different times (t = 2 ms, 4 ms,
6 ms, 8 ms, 10 ms and 12 ms)

Fig. 6. 1D stent FSI simulations: axial and radial components of fluid velocity at t = 8 ms (longitudinal cut through the
middle of the tube)

bottom half have opposite colors because they correspond to the positive and negative parts of the y-axis.
The red color in the top half of the tube denotes upward radial displacement, and the blue color denotes
downward radial displacement. One can see how the radial velocity within the stented region of the tube
is smaller than the radial velocity outside the stented region.
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Fig. 7. 1D stent FSI simulations: longitudinal displacement along the line y = 0.015, z = 0 at six different times (t = 2 ms,
4 ms, 6 ms, 8 ms, 10 ms and 12 ms)

teltuOtelnI

Γ

Fig. 8. 2D stent FSI: reference domain with an unstructured tetrahedron mesh

It is interesting to observe the behavior of longitudinal displacement, shown in Fig. 7. At the begin-
ning when the pressure wave enters the tube and hits the proximal end of the stent, the longitudinal
displacement becomes positive, see the plots for t = 4 ms and t = 6 ms. This means that the portion of
the tube occupied by the stent behaves almost as a rigid body and causes a significant change in the total
longitudinal displacement when the pressure wave hits the rigid part. Once the pressure wave is located
well within the stented region, i.e., t ≥ 8 ms, the longitudinal displacement of the tube becomes negative
as the tube recoils from its longitudinal stretch.
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Fig. 9. 2D stent FSI simulation: the snapshots of radial displacement at six different times (t = 2 ms, 4 ms, 6 ms, 8 ms, 10
ms and 12 ms)

8.2. 2D stent FSI and comparison with 1D stent FSI

In this section, we present the FSI results in which the stent is considered to be a 2D body immersed
in the Koiter shell and modeled by the change in the elasticity coefficients of the shell at the location
of stent struts, as was done in [8]. We will be comparing the results of the FSI simulations obtained by
modeling the stent as a 1D mesh, described above, with the stent modeled as a 2D structure, embedded
in the shell. The first problem is referred to as 1D stent FSI, while the second one as 2D stent FSI. The
boundary conditions, the location and geometry of the stent, and parameter values for the 2D stent FSI
are the same as for the 1D stent FSI simulations. The computational domain is shown in Fig. 8. The
resulting 3D plot of radial displacement is shown in Fig. 9, and the corresponding 1D plots of pressure,
radial and longitudinal displacement are shown in Figs. 10, 11, and 12, respectively. The 1D plots of the
2D stent FSI simulations are superimposed over the plots of 1D stent model FSI simulations. Dashed
lines denote results of the 2D stent model FSI simulations, while solid lines denote FSI simulations with
the 1D stent model discussed in this paper.

One can see that the pressure wave propagation in both simulations are in very good agreement,
as shown in Fig. 10. The radial and longitudinal displacements differ slightly, which is primarily due
to the use of two different stent FSI models to study the corresponding FSI problem. It is interesting
to notice that the radial displacement within the stented region is smaller for the 2D stent case, while
the longitudinal displacement within the stented region is smaller for the 1D stent case for t ≤ 6 ms.
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Fig. 10. The pressure along the line of Y = 0, Z = 0 at six different time moments (t = 2 s, 4 s, 6 s, 8 s, 10 s and 12 s)

There is a significantly smaller recoil in the longitudinal direction for the 2D stent case occurring for
t > 6 ms. One explanation for this behavior is the inextensibility of the stent struts in the 1D model,
which causes the 1D stent to behave almost like a rigid body in terms of longitudinal displacement.
Most of the elastic energy of the 1D stent is spent on the deformation leading to the radial stent expan-
sion.

It is important to notice that the assumptions of inextensibility and unshearability of rods in the 1D
stent model were shown in [13] to be reasonable in the sense that static loading of the 1D stent produced
results that are “consistent” with the observed full 3D stent behavior. More precisely, the work in [13]
compared the 1D stent model deformation with the deformation produced by using full 3D elasticity to
model the elastic behavior of stents. It was shown that under uniform inflation the L∞-difference between
the two models in the magnitude of displacement was < 3%.

Therefore, we conclude that the FSI simulations obtained using the 1D stent model, coupled to the
elastodynamics of the shell and the flow of an incompressible, viscous fluid produce reasonable results
in the sense that they are close to the FSI simulations obtained by approximating the stent as a 2D
body immersed in a 2D shell interacting with the flow of an incompressible, viscous fluid. The slight
differences between the two models in the radial and longitudinal displacement can be attributed to the
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Fig. 11. The radial displacement along the line of Y = 0.015, Z = 0 at six different time moments (t = 2 s, 4 s, 6 s, 8 s, 10
s and 12 s)

difference in how the stent is modeled and coupled to the shell and fluid models. Considering the 1D
stent model has the advantages of accounting for the physics of the stent–shell coupling, and can be
extended to more complicated scenarios involving stent “dislodgement” and sliding, observed in certain
patients treated with stents (which can be modeled by using a slip condition in the stent–shell coupling),
and incomplete stent contact with the surrounding tissue (which gives rise to a free-boundary problem in
the contact region between the stent and shell). Furthermore, computationally, simulating the thin stent
struts in the 2D stent FSI model requires very fine 2D meshes at the location of stent struts to achieve
reasonable accuracy. This is associated with large memory requirements and expensive computations. It
was shown in [13] that 3D simulation of stents was converging to 1D results with the 3D mesh refinement,
until memory limitation was reached beyond which 3D simulations were no longer possible. Similar
conclusions hold for the comparison between 2D stent FSI and 1D stent FSI problems. Due to the issues
associated with fine meshes at the location of stent struts in 2D stent FSi simulations, the computational
cost and efficiency of 1D stent FSI simulations are significantly better when compared to 2D stent FSI
simulations.
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Fig. 12. The snapshots of the longitudinal displacement along the line of Y = 0.015, Z = 0 at six different time moments
(t = 2 s, 4 s, 6 s, 8 s, 10 s and 12 s)
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9. Appendix (Notation)

The fluid

Constants Ω = (0, L) × B(0, R) Fluid domain
μF Dynamic viscosity
ρF Fluid density

Unknowns u Velocity
p Pressure
υ Associated test functions

The shell

Constants ω = (0, L) × (0, 2π) Shell domain
Γ = ϕ(ω) Cylinder in R

3

h Thickness
L Length
R Reference radius
ρK Shell density

Unknowns η Displacement
v = ∂tη Velocity of the displacement

ψ Associated test functions

The mesh

Constants ωS =
⋃nE

i=1 πi(0, li) Mesh configuration on the shell
A Area of the cross section
M Moment of inertia
H Matrix of elastic properties
Q Local basis at each point
ρS Mesh density

Unknowns d Displacement of the middle line
k = ∂td Velocity of the displacement

ξ Associated test functions
w Infinitesimal rotation of the cross section

z = ∂tw Velocity of the rotation
ζ Associated test functions

q,p Contact moment and force
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