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RADO-KNESER-CHOQUET THEOREM
FOR SIMPLY CONNECTED DOMAINS
(p-HARMONIC SETTING)

TADEUSZ IWANIEC AND JANI ONNINEN

ABSTRACT. A remarkable result known as the Radé-Kneser-Choquet theorem
asserts that the harmonic extension of a homeomorphism of the boundary of a
Jordan domain Q C R? onto the boundary of a convex domain Q C R? takes
Q diffeomorphically onto Q. Numerous extensions of this result for linear and
nonlinear elliptic PDEs are known, but only when Q is a Jordan domain or, if
not, under additional assumptions on the boundary map. On the other hand,
the newly developed theory of Sobolev mappings between Euclidean domains
and Riemannian manifolds demands extending this theorem to the setting of
simply connected domains. This is the primary goal of our article. The class
of the p-harmonic equations is wide enough to satisfy those demands. Thus
we confine ourselves to considering the p-harmonic mappings.

The situation is quite different from that of Jordan domains. One must
circumvent the inherent topological difficulties arising near the boundary.

Our main theorem is the key to establishing approximation of monotone
Sobolev mappings with diffeomorphisms. This, in turn, leads to the existence
of energy-minimal deformations in the theory of nonlinear elasticity.
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2308 T. IWANIEC AND J. ONNINEN

1. INTRODUCTION

The basis for the discussion of our main results is the theorem of Radd-Kneser-
Choquet. We shall abbreviate it to RKC-theorem.

Theorem 1 (Rad6-Kneser-Choquet). Let h = u +iv : 9Q =% 9Q be a home-
omorphism of the boundary of a (bounded) Jordan domain 2 C R? onto the
boundary of a convexr domain Q C R?. Then its continuous harmonic extension
H=U+1iV is a €>-diffeomorphism of § onto Q.

A brief historical account and extensions of this theorem in different directions
are given in Subsection 1.2. It is Kneser’s original proof [34] that underlies the
basic ideas in the present paper. Thus in Subsection 1.3 we sketch his proof. This
will help us organize and confer about our own ingredients.

1.1. p-harmonic mappings. We are concerned with mappings H = U +:V
defined in a bounded simply connected domain Q C R? ~ C, whose coordinate
functions U and V satisfy the p-harmonic equation

div [VU[P~2 VU =0,
(1.1) U, VeWFQ), 1<p< .
div|VV[P~2VV =0,

A marked difference between (1.1) and the commonly studied coupled p-harmonic
system div|DH|[P~2DH = 0 should be noted. The latter has been considered in [24]
with the purpose of generalizing the RKC-theorem for coupled systems. The task
was accomplished for smooth domains. Solving it in a general setting seems to be
complicated because of a shortage of estimates up to the boundary. One major
advantage of using (1.1) lies in the existence and uniqueness of the solution to the
Dirichlet problem in simply connected domains. Let us briefly outline the key points
of the arguments for such a general Dirichlet problem and refer to [21] and [40] for
a thorough treatment. By virtue of the famous Wiener’s criterion the existence
and uniqueness of the solution hold whenever the complement R?\ Q is p-thick at
every boundary point; see [40, Corollary 6.22] and [40, (2.22)] for a formulation of
Wiener’s criterion. Simply connected domains indeed satisfy this criterion, a fact
not difficult to verify though not explicitly stated in the literature.

Proposition 2. Let Q be a bounded simply connected domain in R?. Then every
continuous function u : 9Q — R admits a unique continuous extension, denoted by

U e€(Q)N#LP(Q), which is p-harmonic in €.

loc

We refer to U: Q — R as the p-harmonic extension of u.

First observe that when {2 is not a Jordan domain, one cannot speak of a
homeomorphism from 99 2% 9Q. A relevant notion in this context is that of
monotone boundary map. C. B. Morrey [45] was the first to propose the concept of
a monotone map between general topological spaces. Let us phrase his definition
in a form suitable for our purposes.

Definition 3. A continuous map h : X 2% Y between compact metric spaces is
monotone if the preimage h~!(y,) of every point y, € Y is a continuum (connected
and compact) in X. This yields, as shown by Whyburn, that the preimage of every
connected subset of Y is connected in X; see [42, p. 2].
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RKC-THEOREM FOR SIMPLY CONNECTED DOMAINS 2309

Description of a monotone map h = u+iv : 9Q % 9Q between Jordan curves
is rather straightforward. Namely, the preimages of points in 99, except for a
countable set of them, are single points in 02, while preimages of the remaining
exceptional points are compact Jordan arcs in 9€). If € is only simply connected,
the lack of such description of the monotone boundary map is the main source
of difficulties in this paper. Nonetheless, we succeeded in proving the following
theorem, which is the main result of the present paper.

Theorem 4. Consider a bounded simply connected domain  C R? and a bounded
convex domain Q C R%. Let h: 000 2% 0Q be a continuous monotone mapping
and let H: Q — R? denote its p-harmonic extension, 1 < p < co. Then H is a
E>° -diffeomorphism of Q onto Q.

This theorem, since it deals with general simply connected domains, is new even
in the case of harmonic mappings (p = 2).

With the aid of a Riemann conformal transformation of the target domain the
following topological fact is immediate.

Corollary 5. Every monotone map h : 0Q = 9U of the boundary of a sim-
ply connected domain onto the boundary of a Jordan domain admits a continuous

extension to Q) which takes €1 homeomorphically onto U .

Remark 6. We could simplify some of the topological arguments in this paper if
we knew in advance that the monotone boundary map h : 9Q =% 9 Q indeed
admits a homeomorphic extension H: Q = Q; see [27]. In light of this remark
a question arises whether Corollary 5 remains valid if ¢/ is only simply connected.
The answer is not known to us.

1.2. Historical account and related comments. Theorem 1 was conjectured in
1926 by Radé [48] and proved the same year by Kneser [34]; see also [22, pp. 78-80]
for a nice presentation. Choquet [16], apparently unaware of Kneser’s work, gave
his own proof. Regarding a more recent approach, let us note that the univalence
property of H : Q 2% Q is unaffected if one performs an isotopy of the boundary
homeomorphism. This is due to the minimum principle of the Jacobian determi-
nant. In [29] we constructed an isotopy that connects h : 9Q 2% 9Q with a
boundary homeomorphism h, : 9Q 2% 9Q whose harmonic extension is holomor-
phicin €. This latter becomes a conformal homeomorphism regardless of convexity
of 9Q . This new idea has led us to yet another proof of the RKC-theorem. It was
also explored in [24] for the nonlinear coupled isotropic p-harmonic systems. The
interested reader is referred to [32] and [49] for further development in the mani-
fold setting. A full treatment of the RKC-theorem for linear second-order elliptic
systems can be found in [3-5,11]. We aslo refer to [18,38] for information about
harmonic transformations of multiply connected domains.

Actually, the inspiration for Theorem 4 was the paper of G. Alessandrini and
M. Sigalotti [7] on the extension of the RKC-theorem to the anisotropic p-Laplace
type systems. This paper provided us with the essential tool for establishing strong
approximation of Sobolev homeomorphisms with diffeomorphism; see [25]. The
novelty of the paper by Alessandrini and Sigalottii lies in finding a second-order
elliptic equation for a linear combination alU + SV of the p-harmonic functions
U and V. We exploit this idea in Section 10.
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For more related results and comments about harmonic mappings, we refer to
Duren’s book [17] and to the survey article by Bshouty and Hengartner [15].

1.2.1. Further comments. The RKC-theorem is extremely sensitive to slight changes
in its hypotheses; see the first two itemized comments.

(1.2)

If the target (a Jordan domain Q C R?) fails to be convex, one can always
find a homeomorphism h : 9Q 2% 9Q whose harmonic extension fails to
be injective. This was already observed by Choquet [16]. Nevertheless, the
convexity assumption on @ is redundant if the harmonic extension hap-
pens to take © onto Q. For this and for further results about nonconvex
domains we refer to [5,33].
Let us stress that all the existing extensions of the RKC-theorem to linear
and nonlinear PDEs, except for [12,24], deal essentially with the systems
in which both U and V satisfy the same equation. Notably, any small
perturbation of only one of the equations in the system (1.1) results in
failure of the RKC-theorem [6]. Therefore, possible changes in the RKC-
theorem should be made simultaneously in both equations. But how?
Except for the harmonic case of p = 2, the system (1.1) is not invariant
under a rotation of the domain €2 ; neither it is invariant under a rotation of
the target Q. Different choices of the coordinates through rotations result
in new systems of PDEs. In general, these new systems become coupled
systems. Nonetheless, the RKC-theorem still applies. One must admit,
therefore, that the unisotropic p-harmonic mappings (as defined in 1.1)
are not geometric objects. Also from a physical perspective the mapping
H =U + iV cannot be interpreted as deformation of an elastic body.
From this point of view, the general problem of extending the RKC-theorem
to coupled systems of PDEs which are coordinate free, partially solved
in [24] for isotropic p-harmonic systems with “nice” boundary data, is
important. The problem remains open.
The RKC-theorem for harmonic mappings fails in higher dimensions. In-
deed in [36], Laugesen constructed a self-homeomorphism of the sphere in
R™ n > 3, whose harmonic extension to the ball is not injective. In a related
construction for R3, Melas [43] showed that the harmonic extension of a
homeomorphism of sphere need not be a diffeomorphism. However, Melas’
construction is impossible under an additional hypothesis on the harmonic
mapping. For example, if a homeomorphism (in 3D) is the gradient of a
real-valued harmonic function, it is automatically a diffeomorphism [19,37].
In this latter case, what are the variational-energy-problems for 3D-deforma-
tions whose minima are gradients of harmonic functions?
Are the total energy-minimal maps, introduced in [28], diffeomorphisms if
the boundary data is a homeomorphism?

Even in the planar case very little is known about this question. The
existing methods fall short of providing sufficient (Lipschitz) regularity of
the minimal maps. To illustrate, examine the simplest total energy integral,

éa[H]d:ef/Q (DH(m)|2+%%) dz.

1.3. General plan. All the significant extensions and refinements of the RKC-
theorem can be derived from the same scheme of ideas found in [34]. In brief
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outline, here are the key steps which give guidance to our proofs as well. Thus
let us look, temporarily, at the harmonic extension H = U +iV : Q2% O see
Figure 1.

(A) First we aim to establish local injectivity of H by showing that the Jacobian
determinant Jy(z) = U,V, — U,V, does not vanish in Q.
(B) Suppose that, on the contrary, Jgy(z,) = 0. This means that there is a

nontrivial linear combination W &£ o U+ BV (which is also a nonconstant
harmonic function) whose gradient vanishes at z .

(C) The complex gradient %—VZ dof (W, —iW,), being a nonconstant holomor-
phic function, admits only isolated zeros.

(D) Striving for a contradiction, we look at the level set
L={zeQ W(z)=W(z)}.

(E) The local structure of £ near z, is established by considering a holomor-

phic function F' C w4 iw , where W stands for a harmonic conjugate of
W . The derivative of F' vanishes at z,. This is where complex function
theory comes into play. It tells us that from z, there emanate 2n + 2
Jordan arcs, where n is the order of zero of F’ at z,. In particular,
2n+22>4.

(F) Each of the above arcs extends along £ and terminates at exactly one point
on 0. Call it the endpoint of the arc. No two of the extended arcs can
meet in 2. We have 2n + 2 endpoints (possibly with repetition) in 9.

(G) We look at the homeomorphism H = U+iV : 9Q 2% Q and the straight
line {(U,V) € R? : aU + BV = constant = W (z,)} in the (U, V)-plane.
Typically, this line intersects a convex curve like 9Q at two distinct points,
sometimes at one point or along a line segment which happens to be a part
of 0Q. In either case, we may select two extended arcs emanating from z,
which terminate at the same point on 92, or their endpoints are connected
by a Jordan arc in 9§ along which W = a U 4+ SV = constant = W(z,) .
In this way we obtain a simple closed Jordan curve along which W is
constant (in case of a simply connected domain and the monotone boundary
map a similar construction will be more complicated).

(H) The bounded complementary domain of the above constructed Jordan curve
must lie in Q. It then follows that W is constant in this complementary
domain. By virtue of the unique continuation property, W is constant in
the entire 2. This is a clear contradiction of the fact that H =U +:V :
0N 22 9Q is a homeomorphism.

(I) Therefore, H is a local homeomorphism in €, actually a local diffeomor-
phism. Finally, global injectivity of H follows by a general topological
reasoning. We shall appeal to the original work of Banach and Mazur [10].

Our proof of Theorem 4 is organized along similar lines. However, all of these
lines require their own further considerations and new ingredients. Through Sec-
tions 2-7, we present the detailed proofs of some general facts together with com-
ments which might be of independent interest. Certainly, new topological ideas are
necessary when studying the behavior of the level curves near the boundary. We
aim to present these ideas and arguments in a perfectly rigorous manner, either by
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2312 T. IWANIEC AND J. ONNINEN

' constant
U
L/ H alU + BV = constant

FI1GURE 1. Kneser’s proof of the RKC-theorem in one drawing.

providing complete proofs or by referring to equally rigorous papers. This lengthens
the paper.

2. COMPLEX GRADIENT OF A p-HARMONIC FUNCTION

Whenever it is convenient, we shall freely identify the vector space R? with the
complex plane C. We will use the symbols R2 = R?\ {0} and C, = C\ {0} of
the punctured plane.

Consider a nonconstant solution of the p-harmonic equation in a domain Q C
R%2~C,

div|VulP2Vu = 0, uwe# P (Q), 1<p< oo

loc

Its complex gradient f(z) aef +(uy — iuy) = u. turns out to be a W,2(Q) -

loc

solution of a quasilinear uniformly elliptic equation [13] (for p > 2) and extended
to 1l <p<2in [26,41]:

o _1efior 107
0z 2p | f 0z f 0z

In particular, f satisfies a Beltrami-type equation

(2.1) }, z=x+1y.

0 0 2
(2.2) a—JZ_C = ,u(z)a—ic ,  where |u(z)|<k:’1—z—)‘ <1.
Recall that the term K -quasireqular mapping refers to an f € ”//1(1)’3 (©,C) whose
distortion function Ky(z) e % is bounded by K, 1 < K < oo. We have

CURIHIEDE 1aE| {1
@3 K@) = e T T )] S {” l’p—l}'
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Thus the complex gradient f = wu, is a K -quasiregular mapping with K =
max {p -1, ﬁ} . It is known [46] that every K -quasiregular mapping is locally
Holder continuous of exponent a = % In particular,

1
(2.4) u€GLQ), with a=min {p—l, ﬁ}
The interested reader is referred to [26] for an optimal Holder exponent and other
sharp regularity results.

2.1. Stoilow factorization. The principal feature of the solutions to the Beltrami
equation (2.2) is the following Stoilow factorization, first established by C.B. Mor-
rey [46]:

(2.5) f(2) = H(9(2)) ,

where ¢ : Q =2 ¢(Q) is a quasiconformal homeomorphism, which also solves the
Beltrami equation (2.2), and H : ¢(€2) — C is a holomorphic function.

2.2. Critical points. As a consequence of Stoilow’s factorization we see that f
has isolated zeros. These are the critical points of w. Let us introduce the domain
), obtained from € by removing zeros of f. It then follows from equation (2.1)
that f € €°(Q). A detailed proof can be found in [9, Theorem 15.7.1, p. 400].

We are going to examine the local structure of the level curves of u near its
critical point. For this we may (and do) restrict ourselves to a small neighborhood
of the isolated critical point. Let us assume that the origin 0 € C is a critical point
and ) is a small neighborhood of 0 which contains no other critical points. Thus
the holomorphic function H in (2.5) takes the form H(¢) = [®(¢)]™, @'(0) # 0,
where n > 1 is the order of zero of H , also referred to as the order of the critical
point of u. In fact ® = Y/H is a continuous branch of the n-th root of ..

We may, if necessary, further restrict f to a somewhat smaller neighborhood of

0, again denoted by 2, so that the mapping x(z) def O(¢(z))is a K -quasiconformal
homeomorphism in Q.

Proposition 7. We have a Stoilow factorization

(2.6) f(z) =@, x(0)=0

where x : Q % x(Q) is a quasiconformal homeomorphism. Actually x is a € -
diffeomorphism in Qo = Q\ {0} .

Proof. To see that y is a €°°-diffeomorphism in €, we substitute f from (2.6)
into (2.1) to obtain a quasilinear elliptic equation for x,

O _2-p X" Ox , X" X

0z 2p | x" Oz X" 0z )

The equation for the inverse map F = F (£) = x (&) becomes linear and uniformly

elliptic:

oF p—2{§" or N &n 8F}

& 2p gm oe g oog )
We again appeal to the regularity result in [9, Theorem 15.7.1, p. 400] to infer that
both x and x~! are ¥*°-smooth outside the origin. ]
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2314 T. IWANIEC AND J. ONNINEN

3. THE (p, q)-HOLOMORPHIC PAIR, % + % =1

To every p-harmonic function w, defined in a simply connected domain €2,
there corresponds a g-harmonic conjugate function v (stream function). The pair
(u, v) satisfies a first-order system of PDEs,

|VulP~2u, = v,
(3.1) thus v € #;.9(€) is ¢ — harmonic.
|VulP~2u, = —vy;

An analogy with the Cauchy-Riemann equation motivates us to call the complex

function F £ + i a (p, q)-holomorphic pair. The gradients Vu and Vv are
orthogonal and vanish at the same set of points, which is the common set of critical
points of u and v. Thus, by (2.4) F € Cﬁl(l)’co‘ (©). Outside the critical points F' is
%>° -smooth. Compute its complex derivatives

2F; = Fy +iFy, = uy + iv, + iuy — vy, = (1 — |VuP~?) (uy + iuy)

=201 - |fP*)f.
Similarly,
2F, = F, —iF, = uy + v, — iuy + vy = (1 + |Vul|P~?) (uy — iuy)
=201+ ") f,
so we obtain a complex Beltrami equation in €2
—|f|P=2) f
(3.2) Fs=pu(z)F, , with p= % € ().

Throughout, we confine ourselves to discussing F' in a small neighborhood of one
(and only one) critical point, say at 0 € 2. Furthermore, it simplifies the writing
and causes no loss of generality to assume that such a neighborhood is the unit disk
{z € C: |z| < 1} = D (by rescaling if necessary).

Recall the distortion function

Kop(z) 2ef L)

T ()~ @ @

Equivalently,

FEP? Hl<p<2
Kr(2) = = ()72, for z £ 0.
F@ET if2<p

Next we invoke Stoilow’s factorization in (2.6), f(z) = [x(z)]™, where x is a
K -quasiconformal homeomorphism with K = max{p —1,1/p — 1}. This yields an
estimate |x(2)| = c|[z|¥ near the origin. The interested reader is referred to [26]
for sharp regularity results. Thus, |f(z)| > c[2|"¥ and, therefore,

Kp(z) < Clz|KIP=21 - pearz =0

We shall make a radial change of z-variable, in the interest of obtaining a mapping
whose distortion function is .#!-integrable near the origin. To this effect consider
a map defined in €2 by the rule

(3.3) G(z) dof F(¥(z)), where
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RKC-THEOREM FOR SIMPLY CONNECTED DOMAINS 2315

2
\I/(Z) = |Z‘E_1Z, 0<e< min{l, m} .

Clearly G # constant . Moreover, G lies in the Sobolev space #1?(D). In fact we
have explicit # !'2-estimates. To see these estimates first observe that the distortion

function of ¥ is constant; indeed, Ky (z) = def |D¥(z)|?/Ju(z) = L. The chain rule
yields DG(z) = DF(¥(z)) o D¥(z) and hence

IDG(2)[* < [DF(¥(2)* - [DU(2)* < é\DF(\I’(Z))IQJm(Z)-

Upon integration over the unit disk (by a change of variables) we infer that
1
/ |IDG(2)]?dz < —/ |DF(w)]? dw < oo.
Q € Jw (@)

Furthermore, the distortion function of G is #!-integrable, because

C C
Ka(2) < Kp(¥(2)) - Ku(2) < < W (z)| PR = ;IZI_E"K“’_Z‘~

We are now in a position to appeal to Stoilow’s factorization of mappings with
integrable distortion. It asserts the following; see [30].

Proposition 8. Suppose a function G € #12(D), such as the one in (3.3),
satisfies the distortion equation

(3.4) |IDG(2)]? = Kg(2)Ja(z), where Kg € (D)

Then G(z) = H(®(2)), where ® : D ©=% D 4s a homeomorphism of the same
distortion function, K¢ (z) = Kg(2). Moreover, H : D — C is holomorphic.

Here are additional properties of ®:
(i) ® € #11(D).
(i) @' ewH2(D).

For (i) we argue as follows: |D®(z)]
Holder’s inequality,

(/ DO (= |dz) < (/ Kc(z)dz) ~/DJ¢>(z)dz:7r/DKG(z)dz < 0.

For (ii) We make use of change of variables w = ®(z). Accordingly, D®~!(w) =
[D®(2)]"! = D*®(z)/Js(z), where D*g stands for the cofactor matrix of D®.
Dt (2) |

Hence
Jpereran= 155

= /]D)KG(Z) dz < oo.

2 dof Kg(2)Jo(2) = Kg(2)Jo(z). Hence, by

J@(z)dz:/Dch(z)dz

Stoilow’s factorization of G in Proposition 8 yields a Stoilow factorization of F',

namely,

F(z) = H(w), where w=w(z) 4o <I>(|z\ = 2).

Clearly, w : D == D is a homeomorphism. Proceeding further in this direction,
we note that every holomorphic function H in D which vanishes only at the origin
can be written as H(w) = [P(w)]™, for some holomorphic function P : D — C
with P’(0) # 0. Here m is the order of zero of H. Thus P is a conformal
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2316 T. IWANIEC AND J. ONNINEN

homeomorphism near the origin. We summarize with a local representation of F'
in a spirit similar to that of Proposition 7.

Proposition 9. Recall that we conveniently confined ourselves to Q =D = {z €
C: |z| < 1}. For all z € 2, we have

(3.5) F(z) = [0(=)]"™.
Here © & Pow : Q — C is an orientation preserving homeomorphism defined
near the origin, ©(0) = 0. Actually, © is a € -diffeomorphism in Qo = Q\ {0}.

Corollary 10. Near a critical point at 0 € , where u(0) = 0, the level set L, =
{z: u(z) = 0} consists of 2m Jordan arcs emanating from 0. Precisely,

Lo=0UlU- - Ulyy,
-1 def 2k=1 .
where €, = O~ (Ly), Ly = {te™=m ™: 0<t<p}, k=1,...,2m.
Figure 2 illustrates Corollary 10.

e77rz/6

@ (Q) p eQ‘n’i/G

m =3

FiGURE 2. The level curves /4,...,¢s , emanating from a critical
point, are rectified by a homeomorphism © = O(z) to become
straight rays Lq,...,Lg in a disk. Then the conformal cubic map
© — 62 takes them into two vertical rays, v, and t_.

Later we shall show that m = n + 1, where n > 1 is defined via Stoilow’s
factorization of the complex gradient of u; see (2.6). The proof will follow very
closely a computation by G. Aronsson and P. Lindqvist [8, Theorem 6, pp. 166-167];
see also the subsequent papers [1,2] concerning the critical points of p-harmonic
functions. The idea in [8] is worth the effort of presenting it in detail. Sections 4
and 5 are devoted to necessary preliminaries.
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RKC-THEOREM FOR SIMPLY CONNECTED DOMAINS 2317

4. INCREMENT OF ARGUMENTS

Throughout this section I' C C will be an oriented Jordan arc with endpoints
or a simple closed curve oriented counterclockwise:

I'={z2(t);a<t<b} CR?® for asimple closed curve z(a) = z(b).

Thus the point z(¢) moves continuously along T' in a positive direction as param-
eter t increases. Consider a continuous (nonvanishing) vector field V : T' — C,.
To every parameter ¢ € [a, b] there corresponds a countable family of arguments of
the complex number V(z(t)) € C,. We may (and do) choose a continuous branch
of arguments of V(z(t)) as t varies from a to b. Denote it by Arg: [a,b] ™= R
and define the increment of arguments of V along I' by setting

Ar(arg V) = Arg(b) — Arg(a).

This definition is legitimate because it does not depend on the choice of the branch
Arg. One basic property of this concept should be pointed out. Suppose we divide
I' into closed subarcs, I' =Ty UT; U---UTy, in which every subarc has its own
parametrization and its own continuous branch of arguments of V. Then

(4.1) Ar(argV) = Ap, (arg V) + Arp,(arg V) +--- + Ar, (arg V)

Here it is important that V is nonvanishing and continuous along I'.

4.1. Tangent vector field. Let I' be a €' -smooth simple closed curve. Thus I'
surrounds a simply connected Jordan domain 2. We assume that I' is positively
oriented so that traveling along T' in a positive direction (counterclockwise) the
domain remains on the left hand side. Thus we have well-defined continuous unit

tangent vector field T : T — S, T(z(t)) = % .

Proposition 11. The increment of the tangent argument Ar(argT) equals 27 .

Proof. Let 7 : [a,b] — C be an arclength parametrization of a 42 -smooth oriented
curve I'. Thus the unit tangent vector field 7' = ~+/(s) #0, a < s < b, represents
the orientation of T'. We express it by the formula +/(s) = €'?(*) . The derivative
of the angle 6 = 6(s) defined along the interval [a,b] gives well-defined signed
curvature of T', k(s) def g (s). The tangent increment along T' is none other than
f: k(s)ds. The integral f: k(s)ds is known as the total signed curvature.

There is an extensive literature dealing with the concept of total signed curvature
and its higher dimensional counterparts. The following statement can be viewed as
a special case of the Gauss-Bonnet theorem [20,44] .

Theorem 12. The total signed curvature of a smooth closed curve, v(a) = v(b),

in the plane is a topological invariant. More precisely, fb k(s)ds does not change

a
within a smooth homotopy deformation of T'.

This result, sometimes known as the Hopf winding number theorem, says, in
particular, that every positively oriented simple closed curve in the plane has total
signed curvature equal to 2. O

It is appropriate at this point to mention a paper by J. Maly [39] in which the
tangent increment is studied for closed curves with self-intersections.
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Remark 13. Given a %! -arc, or a simple closed curve, there are two continuous
unit tangent fields, T : T — S' and —T : T — S'. It may seem counterintuitive,
but in fact both have the same increment of argument. Indeed, regardless of the
choices of continuous branches of argument for T(z(t)), say T(z(t)) = "), we
have —T(z(t)) = e*®®+7) Thus their arguments differ by a constant independent
of the point z(t) € I'.

Remark 14. On the other hand, given a continuous (nonvanishing) vector field
V =a+ib: I' = C, the increment of its complex conjugate field V=a—ib:T = C,
changes sign:

(4.2) ArargV = —ArargV.
This observation is immediate from the formula
V(z) = P(Z)ew(z) = V(z) = p(z)e_w(z) for every z € T".

4.2. Curved polygons. Consider a simply connected Jordan domain Q C C
whose boundary I' = 9 (a simple closed curve oriented counterclockwise) contains
N distinct points C1,C5,...,Cn, N > 2, called corners of 2. One meets these
points in the above order when traveling in the positive direction along I'. Consider
the compact Jordan arcs (with endpoints) connecting two consecutive corners

(4.3) T2 (0~ Oy, o T & [Cp~ Crial], ..., Ty 2L Oy~ Ol

We assume that each T'y is ¢! -smooth up to its endpoints. To make this assump-
tion precise, we parametrize 'y as

Ty={z(t);0<t <1}, where z(1) = 2p41(0) = Cpy1.

Hereafter, we adhere to the convention that zy11(t) = z1(¢) . In particular Cyy1 =
C1 and I'yy1 =Ty . Thus, we actually assume that the complex-valued functions
2 € €[0,1] have nonvanishing derivative in the closed interval [0, 1], where

. def ;. . . def .. .
20(0) = }{1(1) Zo(t) and Z¢(1) = }% Zo(t).

A continuous unit tangent vector field on I'y is given by

At every corner C; we have two unit vectors,

Tt Zo-1(1) tangent to I'y_1 at
T 21 (D) its destination point
(

Tt _ 20(0) tangent to I'y at
T 2(0)] its starting point /
The case Tt = Tf simply means that I'y_; Uy is a C'-smooth arc. In this

case the point Cy € I' can be viewed as a corner of zero angle; see below for
the definition of the angle. Nevertheless, whenever speaking of N as the number

of corners we mean sharp corners; that is, T¢ # T_fi for every ¢ = 1,2,...,N.
In this case [; C1,...,Cn)] is referred to as a curved N -polygon with (sharp)
corners Cp, ... ,Cy. Itssides I'q,... ,I'y are €' -smooth arcs. Such an oriented

(counterclockwise) curved polygon has uniquely defined angle ay € [—m, 7] at the
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corner (. For this, we first consider a cusp at C, and set ay = —7 for the inward
cusp and ay = w for the outward cusp. Otherwise, we define
(0 ‘
(4.4) ap = Arg .Zz( ) € (-m,+7). Thus T =e’*T".
25_1(1)

The vector T_{ is obtained by rotating T¢ counterclockwise if oy > 0 and clockwise
if ap <O0.

Let us take a quick look at an N -polygon whose sides are straight line segments.
Thus, we have no cusps. It follows from the definition of «y that S, def oy €
(0,27) is the angle inside the polygon at which the sides I'y—; and I'y meet. Call it
the interior angle of the polygon at Cy. The elementary geometric considerations
show that

B+ B2+ + By =(N—2)7, oo+ Fay =27

Since the sides are straight line segments, their tangent vector fields T are con-
stant, so Ar, arg T’ = 0. Thus, formally,

(4'5) (061 +oag+ -+ OéN) + (Aplarng 4+ -+ ArNargTN ) — 92
A generalization of this geometric observation reads as follows.

Proposition 15. Formula (4.5) remains valid for all curved N -polygons. In this
general formula the increments Ar,argT* may not vanish.

Proof. The idea is to round out the corners of I' and apply Proposition 11 for
a smooth curve. For every sufficiently small ¢ > 0 we construct a %' -smooth
Jordan curve I'¢ in close proximity to I'. To this effect, consider two adjacent
sides I'y_1; and I'y which meet at the corner C;. Near this corner one can draw
arbitrarily small open disk Dy C C\T' of radius < e, which is tangent to both
I'y—1 and T'y. There is no need to have the radius of D, exactly equal to €. Such
a disk lies either in Q or outside 2. The first case occurs when ay > 0, and
the second when «y < 0. The construction of D, is a nice exercise in elementary
geometry. Denote by v; C 0D, the shortest oriented circular arc whose starting
point lies in T'y_; and destination point lies in I'y. Thus at the points of tangency
the orientation of the arc ; agrees with that of I'. Precisely, the orientation of
v¢ is counterclockwise if a, > 0 and clockwise if ay < 0; see Figure 3.

Replace the sharp fragment of I' near Cy by +;. In this way we arrive at a
¢! -smooth counterclockwise oriented Jordan closed curve, denoted by I'¢.

Let T° denote the unit tangent vector field along I'*. Thus T¢ = T* on

s dof I'ynTe. For every sufficiently small € we have

N N
(4.6) ZA%; (argT®) + ZAF? (argT®) = Arpe(argT®) =27
¢ ¢

by Proposition 11. In the above sum each term has well-defined limit as ¢ — 0.
First, since T is continuous on I'y up to its endpoints,

. _ 0
glj}I%)AFZ (argT®) = Ap, (argT”).
For circular arcs, on the other hand, we have
gi_I)I}J AyeargT? = ay.

Now formula (4.5) follows from (4.6) after passage to the limit as ¢ — 0. O
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Angles and rounded corners
of a curved polygon

F1GURE 3. The circular arcs of small disks tangent to I'. We re-
place the sharp corners of I' by the circular arcs to form a %*-
smooth curve T'¢.

5. THE CURVED 4m-POLYGON AROUND THE CRITICAL POINT

We return to F' = u + iv = [O(2)]" in formula (3.5) and a homeomorphism
O Qe o ©(Q), where ©(0) = 0. Recall that © is a ¢ -diffeomorphism

of Q, onto Q and that the aim is to show that m =n + 1.
With this purpose in mind we may assume, by rescaling if necessary, that the
target €)' contains the closed disk

and |v] < —
2

Qg{(u,v):mé\%§ ﬁ}@ﬂ’.

Consider points & def exp W €St ¢=1,2,...,4m, so their m-th powers
are corners of Q. Namely, &£ = (£1 £ z)@ We then connect the consequent
corners &1 and & with a Jordan arc whose image under the power map & — £"
is a straight line outside (. Connecting the corners &;*; with & in this way we
obtain a “regular” curved 4m-polygon, denoted by Py4,,. Note that all angles at the
corners of Py, are equal to 5, because the power map is orientation preserving
and conformal; see Figure 4.

Next denote by Gy, = O (Py,,) € Q the preimage of Py, under the (ori-
entation preserving) homeomorphism 6 : Q % 0(Q) and T’ = Gy, . Thus O
takes a neighborhood of I' onto a neighborhood of 0Py, . In this way I' itself
becomes an oriented curved 4m-polygon. Following our notation in (4.3), we let
C1,C5,...,C4py and T'q,T'g,...,T'y,, denote the corners and sides of I', respec-

tively; see Figure 5.
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3 &, - bog

& 3

e — 6?2 u>

& &

g=¢

& &

FIGURE 4. The conformal map & — £2 takes a curved 8-polygon
with right angles at &7,...,&s onto a square.

FIGURE 5. Tranformation of a curved 8-polygon Gg onto a regular
8-polygon Pg and then onto a square.

Lemma 16. The oriented angles aq,aa, ..., a4y at the corners of ', defined by

(4.4), are also equal to 7 .

Proof. But the reasoning is not via transformation. We argue as follows. The
adjacent sides of Gy, meet at the right angle. The map F = u + iv = [O(z)]™
takes Gy, onto the square @ (covers it m-times). Each side I'y of ' = 0 Gy,
is mapped onto one of the sides of the square. Hence, one (and only one) of the

coordinate functions w or v is constant along I'; (equal to :I:‘/TE) The other

coordinate varies between —@ and @ These properties of u and v alternate

when passing from I'y to ['y11. As always, the gradient Vu is orthogonal to the
level curves of u. Similarly, Vv is orthogonal to the level curves of v. On the other
hand Vu and Vv are orthogonal everywhere in ), because they satisfy the same
p-harmonic equation because u and v satisfy the (p,q) system (3.1). Hence it is
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readily seen that the sides I'y and I'yy; meet at the corner of I' perpendicularly.
In terms of the oriented angles «g,aq, ..., Q4m , defined by (4.4), this means that
ap = £5, for all £ = 1,2,...,4m. The possibility ay = —F is ruled out as
follows. The orientation preserving %' -diffeomorphism © takes a neighborhood
of 0G4, onto a neighborhood of 0Py,,. The interior angles at the corners of Py,
are equal to +75. Now the following geometric observation tells us that the angles

a1, Qz, ..., 04y are equal to 5. O

Lemma 17. Suppose that a curved N-polygon T' is deformed onto N -polygon T
via a €' -diffeomorphism defined in a neighborhood of T'. Then every angle oy of
I' and the corresponding angle o), of I' have the same sign, £ =1,2,...,N.

Proof. This is actually a local fact, so we need only consider a % -deformation
near a given corner Cy of I'. Note that ay > 0 if and only if the interior angle
B¢ = ™ — ay belongs to (0, 7). Suppose, to the contrary, that oy and «) have
different signs. Then one of the angles 5y = 7 — oy or f; = 7 — «), would lie
in (0,7) while the other would lie in (7,27). But this is impossible. Just look
at the linear tangent map of the diffeomorphism in question. We are reduced
to a nonsingular linear transformation of a straight line angular sector to another
straight line angular segment. Such a linear map cannot convert an angular segment
of opening < 7 onto a segment of opening > 7; see Figure 6. (Il

v—/L\
/X

Lv=—La

\

\__

Lb

FIGURE 6. It is impossible to make 0 < 8 < 7 < ' < 27 by a
linear transformation L: R? — R%. Otherwise L would take two

independent vectors a and v into two linearly dependent vectors
La and —La.

6. THE RELATIONSHIP m =n + 1
Recall m and n from Propositions 9 and 7, respectively.
Proposition 18. We have
(6.1) m=n+12=2.

In particular, the number 2m = 2n + 2 of the level arcs emanating from a critical
point equals 4 at least. For completeness, the number of level arcs emanating from
a reqular point equals 2.
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Proof. We invoke the curved polygon Gy, and its boundary I' = 0G4, =1 UT>U
-+ +UTyy, in Section 5. The gradient Vu is a continuous vector field along I'. Tt is
either tangent or normal on every side of I'y, £ = 1,...,4m. This property reverses
in passing from T’y to T'yy;. We see that on each side of T'y (no matter if Vu is
tangent or normal to I'y) every continuous branch of arguments of Vu differs by a
constant from a continuous branch of arguments of the tangent field. Thus

Ap,argVu = Ap, argT’ for every £ =1,2, ..., 4m.
We now appeal to formula (4.5) with a, = § . This yields
2mm + Ar,argVu + Ap,argVu + -+ + Arp,, argVu = 2.
Since Vu is continuous (and nonvanishing) along T", it holds that

Ar, argVu + Ap, argVu + -+ + Ap, argVu = Arp arg Vu.

Hence ArargVu = 2(1 —m)w. Concerning the complex conjugate field f =
1 (ug — iuy), by Remark 14, we obtain

Ararg f = —Ar arg(u, + iuy) = —ApargVu = 2(m — 1) 7.

argT = arg Vu +5

tangent field tangent field

argVu —m = argT arg T = arg Vu

arg Vu -5 = argT arg T = arg Vuu —

arg Vu =argT argT = argVu —7r

tangent field tangent field

arg Vu +5 = arigT

Ficure 7. Along I' the continuous gradient field Vu is either
tangent or normal on every side of T.

This combined with formula (2.6) gives Arargf = 27n. Hence m =n+1, as
desired. This is illustrated in Figure 7. ]

7. THE p-HARMONIC DENDRITE

Recall a nonconstant p-harmonic function u : 2 — R defined in a simply

connected domain © C R?, its level set £ 2% {z € Q; u(z) =0}, and the discrete
set {z; Vu(z) = 0} of critical points. Thus Vu does not vanish in the punctured
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domain Q, 22 {z; Vu(z) # 0} . It follows from the local structure of the level set,
described in detail by Corollary 10, that

(a) £ islocally path connected.

Proof. For thorough arguments, we introduce the so-called branching neighborhoods
B.(¢) of a point z € £. Let z =0 € £. Corollary 10 combined with Proposition 18
tells us that from every point z € £ there emanate 2k Jordan arcs #1, /4o, ..., 0o C
£, 1 <k < oo. Precisely, £ = 1 if z is a regular point, and k = 2m > 4
when z is a critical point. The branching neighborhoods are defined by the rule
B.(e) def O~ 1(D.), where D. = {z: |z] < €} and € > 0 is sufficiently small. Clearly,
the set £ N B,(g) is path connected. In fact, every point in £ N B,(g) can be
connected with z by a path in £NB,(e). O

(b) £ contains no simple closed Jordan arc.

Proof. Suppose, to the contrary, that there is a simple closed Jordan arc v C £
on which u vanishes. By the Jordan Closed Curved Theorem, since € is simply
connected, the bounded complementary domain of v lies in €. Then by the max-
imum/minimum principle, u vanishes in this domain. By the unique continuation
principle u vanishes in €2, contrary to the assumption that u 0. (I

The above two properties (a) and (b) motivate our calling £ a p-harmonic
dendrite, see Figure 8. Note that £ is neither compact nor (in general) connected.

(c) £ can be covered by a locally finite family of branching neighborhoods, say
B={B,,B.,,...}

Proof. Begin with a cover £ C |J,., 8. and select a locally finite subcover % =
{B.,,B.,,...}. O

We may, and do, include % branching neighborhoods of critical points, so that
{21, 22, ...} contains all critical points. Once such A is selected and fixed, we refer
to z1,29,..., as the branching points of the dendrite. It has to be pointed out that
some branching points need not be critical points: exactly those from which there
emanate two half open arcs ¢1,..., 0, k=1.

(d) Fixapoint z, € {21, 22,...} andlet ¢1,..., s be the half open arcs which
emanate from z,. Then for every v =1,2,...,2k there exists a half open
Jordan path &2, C £ which begins at z,, contains ¢, , and terminates on
the boundary of 2. The latter means that 71,\ P, CIoN.

Proof. The construction of &2, begins with the extension of ¢, beyond its
open endpoint along £ until it reaches a branching point of the dendrite;
denote it by z;, € {z1,22,...}. Let us denote the extension by [y;1) C £.
This notation indicates that the arc [y1) is half closed and half open. From
its open endpoint at z;, there emanate along £ a local half open arc that
is different from [y;). We prolong this arc until it reaches a branching
point, say, z;, € { z1,22,...}. Denote this arc by [y2) C £. Of course the
choice of z;, is unique only if z;, is a regular point of u. Continuing in
this fashion we obtain a path

«@ug[%)th)Uhs)U'“-
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This chain of arcs can be infinite or can terminate with a half open arc
[yn) € £. The latter happens if [yy) has no open endpoint in Q. Since
the dendrite £ contains no closed Jordan curve, we see that ([l

(e) &, does not intersect itself. In particular, the selected branching points
Ziy s Ziy s Zig, ... are distinct.

Let us parametrize &, via a homeomorphism ¥, : [0,00) 2% &2, so that
U,0) =2, 0, (1) =2, V,(2) =210, ..., Tu(N) =20,

If the chain terminates, the parametrization of the last arc [yy) is given by a
onto

homeomorphism W, : [N, 0c0) 2% [yx).
(f) £, converges to the boundary of Q, meaning that

(7.1) lim dist{, (1), 902} = 0.

Proof. Consider a locally finite cover of the dendrite by branching neigh-
borhoods, £ C %B,, U B,, U ---. It follows the structure of £N B, that
if &, intersects B,,, it must contain z;. On the other hand, ¥, (¢) cannot
assume value z; twice; otherwise, we would have a closed Jordan curve in
&, C £. In conclusion if &, enters one of those branching neighborhoods
it must leave it and never enter it again. Now, given any compact subset
G € Q) there is only a finite number of the branching neighborhoods in the
family {9B,,, B.,, ...} which intersect G. Therefore, for ¢ sufficiently
large ¥(t) ¢ G. This is exactly what (7.1) means. O

(g) The end-set of &, is a continuum in 9.

Proof. The term end-set of &, refers to the cluster values of U, (t) at ¢t = o0, in
symbols

P, {0} df { tli_I)noo U, (t;); whenever such a limit does exist.
J

Equivalently,
P o0} =P, \ P, CON.

The proof follows by looking at #2,{c0} as the intersection of a decreasing sequence
of continua, namely &, {oc} =[5, V. [(,00). O

Note that no pair &, &, ,1 < v,u < 2k of different paths in £ emanating
from z, can rejoin elsewhere in 2, since otherwise the dendrite would contain a
closed Jordan curve. The union of such a pair,

y def
c=c¥ oz, 02z,

gives rise to what we call a generalized crosscut of €1 passing through z,. It is
convenient to parametrize C by a homeomorphism ¢ : R 2% C defined by the

rule
[ w,(t) fort>=0,
o(t) = { U, (—t) fort<O.

Thus C has two end-sets (not necessarily disjoint or distinct). These are continua
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F1GURE 8. The shaded region marks a simply connected domain
Q C R2. As we see, © need not be the only complementary do-
main of ). Bullets are the critical points of u. The bold smooth
open arcs are the level curves along which Vu # 0. These arcs
together with the critical points form what we call a p -harmonic
dendrite. The dendrite is locally connected and contains no simple
closed Jordan curve. Every path along the dendrite that emanates
from a critical point approaches the boundary of €2, possibly in a
bizarre way.

in 9§ defined by
C{+oo} =[]l 00) and C{—oc} =[] d(—00,1].

>0 £<0

8. GENERALIZED CROSSCUT OF A SIMPLY CONNECTED DOMAIN

This section needs handling with great care. Indeed, intuitively obvious topo-
logical facts can be invalid for several reasons. Let € C R? be a domain. An open
Jordan arc C C € which has two different endpoints in 02 is commonly called
a crosscut of Q. It is well known in complex function theory that every crosscut
of a simply connected domain 2 C C divides 2 into two simply connected do-
mains, say 2~ and Q% . That is, such a crosscut makes a disjoint decomposition
Q=Q UCUQ", where C=90Q" NoQ™.

Let a bounded simply connected domain € C R? be fixed for the remainder of
this section. Its boundary 9§ is a continuum which disconnects R? into a number
of (possibly infinitely many) connected open sets, called complementary domains
of Q. One of them is the domain Q itself.

Definition 19. The term generalized crosscut of 2 refers to a set C C 2 which
is homeomorphic to the real line R and is closed in {2 with respect to the relative
topology of © C R?. Thus the set C\C, which we call the closure increment of C,
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lies in 9. Hereafter the notation A stands for the closure of a subset A C R2
in the usual topology of R?; see Figure 9.

Theorem 20 (Generalized crosscut). A generalized crosscut C C Q divides §)

into two simply connected domains, denoted by QT and Q= . We call them =+
components of Q\ C. Thus we have a disjoint decomposition
(8.1) Q=0 ucCcuQt.

The following inclusion holds:
(i)
CcoQ nont.
This inclusion is generally not an equality.
(ii) The boundary of Q0 can be expressed by the formula
0N = (00 \C)u(ant\cC),
which together with (i) yields
(iii)
00 C o0 UINT = CuUN.
Warning. It is possible that 992~ = 9Q" . Construction of such a simply connected

domain (with a nice crosscut) follows closely the familiar example of 3-lakes in R?
that share the same boundary; see Figure 10.

FIGURE 9. Generalized crosscut of a nice Jordan domain (rectan-
gle) can be complicated. Here we have 9 C 90~ = 9QT .

Proof. A homeomorphism (say a conformal mapping) of the unit disk onto 2 takes
concentric disks into an increasing family of smooth Jordan domains, say,

YeheeQe e [J%W=0, CnQ#o.
n=0
Let us parametrize the general crosscut by a homeomorphism ¢ : R ™2 . That
is,
C={z€Q;2=0(t), —00o<t<-+oo, ¢(0) < 2, € .}
We have

t_l}r_noo dist{¢(t),00} =0 and tlg?oo dist{¢(t), 02} = 0.
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FIGURE 10. A nice straight line crosscut C of a simply connected
domain, 90~ = 90+ = C U IN.

As indicated before, the end-sets of C, defined by the rules:

def . . ——
C{+o00} = {all limits tnl/lg_l(ﬂ o(tn) } = m (L, +00) C 09,

(8.2) £>0

C{—oo} & fan limits | lim_ (ta) } = ) (=00, ) c 09,
noxTee £<0

are continua in 0€2. They need not be disjoint however. Denote the union of these
end-sets by

C{too} = C{+o0} UC{—c} =C\C C 9.

Let ¢} > 0 be the largest parameter for which ¢[0,¢}) C Q, and let ¢, <0

be the smallest parameter for which ¢(¢, ,0] C €, . The open Jordan arc C, def

o(t,, ;) is a crosscut of the Jordan domain €, , with endpoints at ¢(¢,,) and

é(t}). Thus C, splits €, into exactly two simply connected Jordan domains €2,
and Q. In particular, for every n we have a disjoint decomposition

Q, =Q, UC,UQt and the equation C, C9Q, NIQ; .

Letting n " oo, we observe that {Q, }n>1 , {Cn}n>1, and {Q}},>1 are increas-
ing sequences of sets. Their unions, denoted by 9=, C, and QT , respectively, form
the required generalized crosscut decomposition Q = Q- UCU Q™. L

To see the inclusion (i) C C 902~ NINT we argue as follows: C, C 90 = QF \
QF € QF\ Q. On the other hand, for every fixed integer k > 1 and all variable
n >k, we have the inclusions C, C C, C QF\ Q. Thus C), C ﬂn>k(Q_+\ Qf) =
QF\ Unse &F = QF\ Qt = 90+, This yields C C Urs1 Cr € 0Q* . Similarly,
C C 99, which yields the inclusion (i).
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To see the equation (ii), we need to show two opposite inclusions. Let us begin
with:

N = Q\Q=0"UCUQT\Q=(Q UCUQH\Q=0"UQF\Q
= (T \Qu(er\9Q) c (e \[@ uchu(ar\[efuc)
= ([27\Q7]\ QU ([aF\QF]\C) = (927 \C) U (997 \ ().

On the other hand, since Q= and Q% are disjoint, we have

INT\C=OQF\QNH\Cc=0r\(CuQh) =0\ (Q ucuQ™)

=0F\QCc O\ Q=00

Similarly, we argue for the inclusion 9Q~ \ C C 99Q. This completes the proof of
the equality at (ii) and the proof of Theorem 20. O

Next, we proceed to a detailed analysis of the complementary domains of the
continuum
Kk&cuan=Ccuan.
At this point we invoke the following topological concept.

Definition 21 (Janiszewski space). A locally connected continuum X is called
Janiszewski space if the following holds true: Whenever the intersection Cy NC; of
two continua Cy, C; C X is not connected, the union Cy UC; disconnects X.

Theorem 22 ([31]). The sphere S? is a Janiszewski space.

See [35, Theorem 2, p. 506] and also [14].

By the theorem of Janiszewski our continuum K disconnects the plane. There
can be infinitely many complementary domains of I, but only two of them “touch”
C . This is understood to mean the following:

Lemma 23. The + components QF and Q= of Q\C are among the complemen-
tary domains of K =CU 0§). These are the only ones whose boundaries intersect
C. Actually, by virtue of item (i) in Theorem 20, their boundaries contain C
entirely.

Proof. Choose and fix a complementary domain A of C U 92 whose boundary
contains a point in C. Thus A intersects every neighborhood of C; in particular,
it intersects the entire domain @ = Q- UCUQT. Since ANCCANK =2, we
have two possibilities:

(Ay) ANQt+£o and/or  (A-) ANQ™ # 2.
It will appear later that only one of them may occur; precisely, A will be equal
to QT or Q.

Case(+). Since Q7 is connected and disjoint with K, it must lie entirely in the
complementary domain of K, in symbols QT C A.

We now claim that Qt = A. Suppose, to the contrary, that Q7 ¢ A. This
yields AN 9N # @, in contradiction with ANIQT Cc ANK = @. Thus A = QT

Case(A_). As before, we conclude that A =Q~. O
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8.1. A refinement of Theorem 20 and Lemma 23. We shall need to consider
complementary domains of a subcontinuum of C U 99, say, T ey I', where T'
is a continuum in 9. We need to ensure that 7 is a continuum that disconnects
R?. For this we employ Janiszewski’s theorem. Assume that I' contains both

end-sets of the generalized crosscut C. In symbols,
c\CcrT con.

The idea behind our use of I' is that one of the complementary domains of C U T,
say U, is contained in €. By virtue of Lemma 23 this idea works well for I' = 99,
in which case we have two such complementary domains, Y = Q- C Q and U =
QT C Q. Observe the general rule:

The smaller continuum T C CUOIQ the fewer complementary domains.

Unfortunately, it often happens that no complementary domain of 7T is con-
tained in 2. The point is that the complement A &t ON\T need not be connected.
We resolve this problem by imposing an extra assumption on I': namely,

Theorem 24. Consider a continuum ' C 0Q which contains C\ C and its com-

plement A L H0 \ T which is connected (possibly empty). Then the boundary of
one of the + components of Q\C lies in CUT . In symbols,

(8.3) ot ccur or 9Q c CUT.
Figure 11 illustrates this theorem.

Let us point out in advance that the above hypotheses will be fulfilled in the
forthcoming application; see Section 9.

A

FI1GurRE 11. The complement A = 9Q \ I' must be connected.
Otherwise, no complementary domain of C UT lies in €.

Proof. We have already seen that both inclusions in (8.3) hold if I' = 9. Thus
we assume that A # & . Striving for a contradiction, we also assume that

(8.4) 90T ¢ CUT and 00~ ¢ CUT .
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Equivalently,
(8.5) ANOQT £ and ANON #@.

The proof proceeds along the same lines as the proofs of Theorem 20 and Lemma
23, but the concluding details involve connectedness of both A and T'.

Janiszewski’s theorem tells us that CUT" disconnects R? into (possibly infinitely
many) complementary domains, usually fewer than those for CUJQ). Among them
there is at least one complementary domain which touches C (actually it contains
C in its closure). Denote this complementary domain by A. Thus, we have the
inclusion

OA CCUT.
To complete the proof of Theorem 24 it remains to show the following.

Lemma 25. The following alternative holds:
(8.6) either A=Q" or A=Q".

Proof. One of the & components QF or Q= shares points with A near C, say,
QTN A # @. This yields

(8.7) Qt c A

Indeed, Q% is a connected subset of the complement of C U 98 ; hence it is a
connected subset of the complement of C UT' as well. This means that Q% lies
entirely in one of the complementary domains of C UTI'", obviously, the one which
shares points with Q1. The aim is to show that A = QT . First observe that

(8.8) QO NA=2.

Indeed, suppose to the contrary that 2~ NA # @& . In much the same way as for
the inclusion QT C A, we infer that Q= C A. Thus,
Q" uUQt CA.

Choose and fix a point p, € C C 92~ NIQT . This point does not belong to A,
but there are points p~ € Q= and pt € Q7 arbitrarily close to p,. We join them
by a simple Jordan arc &« C AU{p,} and by another simple Jordan arc § C A\ «.
The union v = a U f is a closed Jordan arc in A U {p,} which disconnects R?
into two complementary domains, say, P~ and DT. Thus R?> = D~ U~ UDT.
The point p, divides the closed generalized crosscut C into two connected subsets
which lie in different complementary domains of -y, say

C\{p,}=C,uUC_, where C, CD" and C_CD .

To justify the last two inclusions we observe that both connected sets C, and C_
are disjoint with 7; one of them contains a point in Dt (near p,) and the other
contains a point in D~ (near p, ).

The above two inclusions show that the end-sets C{+oco} and C{—oc} (see
the definition in (8.2)) lie in different complementary domains of . Hence the
continuum I', being a connection between these end-sets, must intersect . On
the other hand v C AU {p.}. The latter set is disjoint with I" because A is a
complementary domain of C UT'. This is a clear contradiction which proves (8.8).

We are now in a position to show that equality takes place in (8.7).

Suppose to the contrary, that A 2 QT . Thus, there are points a € A\ QF
and b€ ANQT (bis near C). We connect a and b by a Jordan arc 7 C A. It
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must intersect QT at some point ¢ € TN INT C ANAGQN. This point cannot
liein T' C 99, because no point in A (a complementary domain of CUT") lies
in I'. Thus ¢ € 9Q\T = A. On the other hand, in view of (8.4), there is also
a point d € ANIN~ C R? \ A, because of (8.8). We summarize by saying that
the connected set A C 0€) contains both a point ¢ € A and a point d ¢ A. This
means that there is a point in the intersection A N 9 A C CUT . But neither C
nor I' contains a point in A. The above contradiction proves Lemma 25. (]

This also completes the proof of Theorem 24. |

9. NO CRITICAL POINTS OF U AND V

In this section we make the following standing assumptions on a p-harmonic
map H=U +:iV.

Definition 26. We assume that:

e Hc%(,C) is a complex-valued continuous map defined on the closure
of a bounded simply connected domain Q C C.
e Its real part U and the imaginary part V are p-harmonic functions in €.
onto

e The boundary map H : 0 == 0 Q is monotone, where Q is a bounded
convex domain in C.

Proposition 27. If H is as in the above definition, then both gradients VU and
V'V do not vanish in Q.

Proof. Suppose that, contrary to our claim, VU(z,) = 0 at some point z, € ;
the case when V'V vanishes is similar. Without loss of generality we assume that
U(z,) =0. From z, there emanate 2k > 4 of level paths 92, , P ,..., Py con-
verging to the boundary of Q. Their end-sets % {+oo}, Po{+o0}, ..., Pop{toc}
are continua in J €, not necessarily disjoint. These end-sets are mapped via H
into a (U, V) -plane, precisely, into the intersection of 9/0Q), with the vertical axis
(0,V). Since Q is convex, there are at most two components of such intersection,
say A and/or B. More specifically, if the axis cuts Q, then it cuts 9Q at exactly
two points. These two points constitute the component A and the component B,
respectively. If, on the other hand, the axis only touches “tangentially” 0Q along a
straight segment (possibly one point), then A is the set of tangency and B is void.
Since H : 0Q 2% 9 Q is monotone, the preimage of each component is a contin-
uum in 0N which either contains or is disjoint with a given end-set. But we have at
most two such preimages H~'(A) and/or H~!(B). They contain all the end-sets
P{+o0}, Po{+x}, ..., Poy{+oo}. Therefore, one of the preimages H 1(A)

or H™'(B) must contain two end-sets, say 2,{+oo}, £, {+00} C H '(A4). We

are going to apply Theorem 24 to the continuum T’ def H71(A) C 99 and the

generalized crosscut C def &£, J P, C Q. To justify our application we notice

that not only I' but also its complement A 2 H0 \ T' is connected. This is true
because A is a preimage of a connected subset of the boundary of @, namely
A= H"1(0Q\ A); see Definition 3.

Now Theorem 24 tells us that there is an open subset O C {2, namely, one of
the £ components of 2\ C such that

00 Cc CUT. Thus U vanishes on 00 .
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By the max/min principle and unique continuation property of p-harmonic func-
tions, we conclude that U = 0 in O and hence U = 0 on (). This is a clear
contradiction of the fact that H : 9Q 2% 9 Q, completing the proof of Proposi-
tion 27. (Il

9.1. Jacobian determinant. The next step is to examine the Jacobian determi-
nant Jy(z) = UV, — U, V,, z = z+iy. Our standing assumptions are formulated
in Definition 26. The goal is to show that Jg(z) # 0 in Q. In the contrary case
we would have a point z, € © at which the gradients VU(z,) and VU(z,) are
linearly dependent, say, for some real coefficients

(9.1) aVU(z) + BVV(2) =0, ®>+82=1,a#0#8.
For the latter condition, we recall that Proposition 27 rules out the cases a = 0
and 8=0.

Remark 28. The case of harmonic mappings (p = 2) follows from Proposition 27 by
linear change of variables in the (U, V') -plane. Indeed, the mapping H =U + iV,
defined by the rotation H = [fg fy | H, is again harmonic and takes {2 onto a

convex region 2= [ 8 ‘Z ] Q2. Therefore, its coordinate function

(9.2) W(z) L aU(z) + BV(2)
has no critical points in §2, as desired.

Such nice direct argument, first presented in the original paper by Kneser [34],
does not apply to nonlinear PDEs. Nevertheless, once we establish an elliptic PDE
for W (by averaging a family of p-harmonic equations) the proof will continue in
the same way.

10. AN ELLIPTIC EQUATION FOR W =aU + BV

The derivation of a linear elliptic equation for W is based upon an idea found
in [7]. However, our computation differs from that in [7] in a number of details.

Recall the p-harmonic map H = U + iV with VU(z) # 0 and VV(z) # 0,
so both U and V are € -smooth. Then

Proposition 29. To every linear combination W et U + BV, with real coeffi-
cients, o?+ 2 =1, there corresponds a symmetric matriz field A = A(z) defined
everywhere in Q such that

(10.1) A(z)VW = |aVU|P2aVU + |BVV [P2VV

everywhere in ). The matriz A(z) € ngxrﬁ satisfies the ellipticity bounds
Az

(10.2) M lE? < e 1

=
(lavu @) + 189V (2)])
for all vectors & € R? and every point z € Q.
Some explicit bounds of the constants A, and A, are given in (10.11).

Corollary 30. We observe that each term in the right hand side of (10.1) is a € -
smooth divergence free vector field, because U and V are p-harmonic. Therefore,
we have an elliptic equation

(10.3) div A(z) VIV = 0.

Licensed to Syracuse Univ. Prepared on Tue May 5 16:42:52 EDT 2020 for download from IP 128.230.234.162.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2334 T. IWANIEC AND J. ONNINEN

Remark 31. It will be shown that A is €°°-smooth near every critical point of
W . Then we shall deduce that in fact W has no critical points; see the conclusion
of Section 11.

Proof of equation (10.1). Consider a one-parameter family of %> -smooth functions

Wi £ tal — (1-0)pV = tW =V = (=)W +al , 0<t<L,

and their gradient

VW, = taVU — 1-t)pVV = —8VV + tVW
=aVU - (1-t)VW.
Hence, for every 0 <t < 1, by triangle inequalities,
2IVWi| > |BVV| =t VW] + |aVU]| — (1—1t)|VW|
(10.4) = |aVU|+|8VV|—|VW|.

We see that VW;(z) # 0 whenever
VW (2) | < [a|[VUE) | +[B][VV(Z)].

In particular, near every critical point of W we have VW;(z) # 0 for every t €
[0,1]. In the region satisfying the above inequality we define the coefficient matrix
of (10.3) by

105) a6 2 [ || (1 oy THEE VIO

Obviously A is ¢°° -smooth in the above region. Now consider the complementary
set in which

VW ()| = [l [VUE) [+ ]B]VV(2)].
For some points in this set, we still may have VIV,(z) # 0 for all ¢ € [0,1]. In this
case the matrix A(z) will be defined by the same formula (10.5). There remains

the case when VW (z) # 0 but VW, (z) = 0 for some parameter ¢, € [0,1]. If
so, we notice that there can be at most one such parameter t,, namely,

(10.6) —BVV(2) + to VIW(2) =0= aVU(z) — (1 —1,) VIW(2).
the vV VU(2)
o= Phgwe) ™9 =l igwer

Furthermore, for every t € [0,1] the gradients VW,(z) are parallel to VW (z);
that is, VWi(z) = (t — to) VIW(2). Now the integrand at (10.5) is well-defined,
except for t = t,. Therefore, following (10.5), we put

p=2 VIV(z) @ VW (z
(=) | (I +(p-2) (vw ) / [t — to[P2dt.
The latter integral can explicitly be computed in terms of z,
1 -1 -1 -1
p 1—1t,)P P P
[m = O POV HavOG P

0 -1 (p—1)[VW(z)

and estimated from below and from above:
1 U (1—to)rt

—— min{1,2*77} < nll )

p—1 p—1 —1
Having defined A = A(z) we now proceed to the proof of the identity (10.1).

(10.7) A(z) &

X

max{1,2277}.
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Case 1. VW(z) = 0. The equation (10.1) holds because the left and the right
hand sides vanish, a« VU(z) = = VV(z).

Case 2. VW (z) # 0 but VW, (z) = 0 for some parameter ¢, € [0,1]. We use
formula (10.7). Accordingly,

1
A VW = |VW\H(VW+ (p—Q)VW) / It — to|P2dt
0

= (1 A=) (YW Pty
= [to VW P72t VW + | (1 —to) VW P72 (1 — t,) VIV
= |BVV [P72BVV + |aVU [P72aVU , by (10.6).
Case 3. VW (z) #0 and VW,(z) # 0 for all parameters ¢ € [0,1]. In this case
formula (10.5) applies. Observe that % VW, = VW | so we have
d
(10.8) = (| VW, P2 th)

= |VW,|P2YW + (p—2)| VW, P~ <VWt | VW> v,

o )

Integrating from ¢t =0 to ¢t =1 gives the identity
VW, P2V, — | VW P2V = A(2) VIV,
which is the same as (10.1). The proof is complete.

p—2

- ‘ YW, (2)

Proof of equation (10.2). Although the explicit constants A, and A, play no role
in the sequel, some computation is worth carrying out. We are going to reduce
(10.2) to an inequality which is well known in the study of the monotone operator
X ~ | X|P72X . Namely, for vectors X # Y in any inner product space, we have
(IXPP2X — [YP2Y | X —Y)
(X + [Y])r=2 | X = Y2

with certain constants 0 < m, < M, < co. Now consider a symmetric positive
definite form in ¢ € R?, with a given nonzero vector W € R?,

W o W
<<I + (p—2) W>§|£>
W |¢§)? < max{l,p— 1} [¢?
— 2 _ 2 < — ? I
0 DTRE = S il 1)
By virtue of (10.5) for every unit vector ¢ € St it holds that

(10.9) my <

< M,

1 1

1010) b [ VW) PR < (AG)ENG <K, [ 9WG) PR

0 0
where

kp, =min{l,p —1} and K, =max{l,p—1}.
We are left with the task of estimating (from below and from above) the integral
in both sides of these estimates. Note that this integral, in case of the definition at

p—2

(10.7), agrees with the expression ‘ VW (z) ‘ fol [t — to|P~2dt. For simplicity of

notation, let us write VIWy(z) 7, =tX + (1-%t)Y ,where X =aVU and Y =
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—B VY . Therefore, % Zy=X-Y and Z; =X, Zy =Y . We differentiate using
the product rule to obtain
d _ _ _
3 L&l P2 | X =Y )= 2P X =Y 4 (p—2) |4 (2 | X - Y)?
{< max{1, p— 1} |[ZX;|P72|X — Y%,
> min{l, p— 1} |ZXP72|X - Y2
Integrating from ¢t =0 to ¢t =1 we arrive at the inequalities

1
min{1, p — 1} / |ZX|P~2dt
0

S UXPTEX - VPRV | X - Y)
h X —Y[?

1
< max{l, p—1} / |Z X, |P~2 dt.
0

In view of (10.9) the expression in the middle of these inequalities is controlled from
below and from above by m,(|X|+ |Y])P~2? and M,(|X|+ [Y|)P~2 , respectively.
We then find that

my (|X] + [Y])P~2

1 -2
M, (|X| + [V
</|tX+(1—15)Y|P-201t< p(X] + VDP2
0

max{l,p— 1} min{l,p — 1}
This and (10.10) combined give the required estimate for all £ € R? and 2 € Q,
A(2) €€
MIEP < AR < e

(lavu@)| + 189V (=)1)

where

(10.11) Ap def min{p—1,1/p—1}m, <max{p—1,1/p—1} M, def Ap.

11. THE A-HARMONIC DENDRITE OF W = a U + gV

Let us now take a look at the level set £ = Ly = {z € Q; W(z) =0}. As
one might expect the topological structure of £y is the same as that of the p-
harmonic dendrite £, . But the proof in the case of £y is less involved. First note
that W # constant, since otherwise the map H = U + iV would take Q into a
straight line segment in the (U, V)-plane, which is not the case. Concerning local
structure of Ly, since W is €°° -smooth, through every regular point (where
VW # 0) there passes a unique ¢ -Jordan open arc. One cannot claim at this
stage that the critical points of W are isolated. That this is true will follow later
from an analysis of the elliptic equation (10.3). It is vital that A be smooth near
the critical points of W.

In [16,34,48] harmonic functions are real and imaginary parts are analytic func-
tions. An analogous approach for A-harmonic functions is provided via a Hodge
star operator; see [9]:

0 -1
* = [ 10 ] : R? 2% R?  (a counterclockwise rotation by 90 degrees).

In a simply connected domain every divergence free smooth vector field, such as
A(z)VW , can be expressed (uniquely up to an additive constant) as A(z)VW =

— VW, whose W € €>(Q) is called an A conjugate function. Let A = {j; j;z]
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Then the complex function F = W +iW € € (©) solves a first-order elliptic

system:
T ewe e e el <ke) <1
( ) . .AQQ(Z) - A11(z) — 24 .A12(Z) ( ) - 1 —det A(Z)
2= det[I + A(2)] y = det[I + A(2)]

At the given point z € Q the ellipticity bound k& = k(z) can be determined
from the estimates in (10.2). In particular, & can be made continuous in  so
the system (11.1) becomes uniformly elliptic on compact subdomains of € and
the complex coefficients p = p(z) and v = v(z) are € -smooth near the critical
points of W . Consequently, our solution F' is quasiregular on every subdomain
Q' € Q and, as such, admits Stoilow’s factorization,

F(z) = &(x(2))-

Here y : ¥ 2% C is a quasiconformal homeomorphism and & is holomorphic in
X(€) . Let us take advantage of this factorization and examine the behavior of F
near the critical point z, € Q of part W = Re F'. Clearly, z, is also a critical
point of the A -harmonic conjugate function W, meaning that

oF _or

5z =) = 5z
Remark 32. Caution should be exercised. Stoilow’s factorization shows that upon
the change of the independent variable, say z = x~1(£), the solution W = W (z) =
W(x~1(€)) = Re ®(£) becomes a harmonic function in . However, the correspond-
ing point & = x(z,) is generally not a critical point of the harmonic function
Re®. Consider the example F(2) = |22z, x71(€) = |¢]72/3 ¢, and (&) = € at
Zo = &, = 0. The reason is that x‘l fails to be smooth near &, .

(z0) =0.

Lemma 33. In a neighborhood of a critical point z, of W, there emanate from z,
half open Jordan arcs £1,0s, ..., lor, k > 2, along which W assumes a constant
value. These arcs do not join again, and outside those arcs W(z) # W( z,) .

Proof. To simplify the writing, take 2z, =0 , F(z,) =0, x(20) =0,80 ®(0) =0.
We may also modify Stoilow’s factorization near z, = 0 so as to obtain ®(¢) = &~.
Here k > 1 is the order of zero of ®. Thus the factorization near the origin takes
the form

(11.2) F(2) = [x(2)]F ( |x(2)] <r,with sufficiently small 7).
Claim 1. We have k > 2.
Proof of Claim 1. Suppose that k& = 1, contrary to our claim. Thus F is a

quasiconformal homeomorphism. Its inverse, denoted by G(§) def X 1(€), is also

quasiconformal. The elementary chain rule (see [9, equations (2.49), (2,50)] for
details) leads to the following formulas:

oF oG OF oG

Y ) il N =G
57 J(z, )85 and o J(z, )35 , z2=G(&)
Substituting into (11.1), we arrive at a quasilinear elliptic system for G,
oG oG oG
11.3 — + (@)= + v(G)—== = 0.
(113 S e+ o),
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»n

The Schauder Regularity Theory tells us (see Theorem 15.0.7 in [9]) that G i
%> -smooth near the origin. Now we have the required contradiction since I
DG(€) - DF(z), where DF(z2,) =0 € R**2?. This proves Claim 1.

We infer from the representation (11.2) that the level set {z; W(z)
Re F(z) =07} is the preimage under x of the straight rays Ly, Lo, ..., Lok , where

(2v—1)wi

L,=[0,re =z ) for v=1,2,...,2k. These are precisely the Jordan arcs
51,42,...,€2kC£, 1<k<007

in Lemma 33. O

Now the situation is in all respects similar to that of the critical level set of
U, which we discussed in Section 9. The rest of the study of VW is essentially
a repetition of the arguments used to prove that VU # 0. The outcome is that
VW #£0.

Returning to the condition (9.1) we infer that the Jacobian of H = U + iV
does not vanish in Q. Therefore, H : Q ™ R? is a local diffeomorphism.

12. GLOBAL INJECTIVITY
We begin with an elementary topological observation:

Lemma 34. Let X be a bounded domain in R? and let f : X — R? be a continuous
map such that

o f(X) is open, thus a domain.
o f(0X)=0Y, where Y is a Jordan domain.

Then f(X)=Y.

Proof. Tt simplifies the arguments, and causes no loss of generality, to assume that
Y is the open unit disk. Just make a conformal transformation of Y onto the unit
disk if necessary. We have the following inclusions:

e If(X)CIY.

Indeed, Of(X) = F(X) \ f(X) = F(R)\ F(X) = F(XUOX) \ f(X) =
[F(X)U F(OX)]\ f(X) C f(DX) = OY.

o fX)CY.

To see this latter inclusion consider a point y, € f(X) that is furthest
from the origin. This point certainly lies in 9 f(X). The latter is a subset
of OY, so y, € Y. Thus all other points in m must lie in the closed
unit disk Y. Consequently f(X), being open, must lie in Y.

e YC f(X) .

Suppose that, on the contrary, there is a point y, € Y which does not
liein f(X). We connect y, with a point in f(X) by a line segment. This
segment intersects 9f(X) at some point inside the disk. This is a clear
contradiction with 9f(X) C Y.

Q

O

We now return to our map H : Q — R? which takes 09 onto the boundary of
a convex domain Q. Lemma 34 tells us that

H(Q) = Q.

In addition we know that H is a local homeomorphism on 2. The general question
arises, when is a local homeomorphism a global homeomorphism? The early partial
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answers to this question can be traced back to the work of Banach and Mazur [10].
A very useful generalization of the Banach-Mazur proposition was published in 1975
by Ho in the following fashionable form.

Proposition 35 ([23]). Let X be pathwise connected and let Y be simply connected
Hausdorff spaces. A local homeomorphism f: X — Y is a global homeomorphism
of X onto Y if and only if f is proper.

What is left is to show that our map H : Q % Q is proper. For this, we consider
a compact set F' € Q and its preimage H~!(F) under the map H : Q 2% Q.
Certainly H~!(F) is a compact subset of Q. This set cannot intersect 92 because
H takes 99 onto 0Q. Thus H~!(F) is a compact subset of Q, as desired.

Remark 36. Global injectivity of H : % Q can also be deduced from a general
theory of covering spaces. In fact, our local diffeomorphism H : Q 2% Q is a
covering map, because every fiber H1(y,) C Q, being discrete and compact, is a
finite set. In particular, every point y, € Q has an evenly covered neighborhood
via the projection map H . Now, since ) is connected and Q is simply connected,
the covering map H : Q2% Q is injective [47, Chapter IV] and [50].

The proof of Theorem 4 is complete.
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