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ABSTRACT

Counting k-mers (substrings of fixed length k) in DNA and protein
sequences generate non-uniform and irregular memory access
patterns. Processing-in-Memory (PIM) architectures have the
potential to significantly reduce the overheads associated with
such frequent and irregular memory accesses. However, existing
k-mer counting algorithms are not designed to exploit the
advantages of PIM architectures. Furthermore, owing to thermal
constraints, the allowable power budget is limited in conventional
PIM designs. Moreover, k-mer counting generates unbalanced and
long-range traffic patterns that need to be handled by an efficient
Network-on-Chip (NoC). In this paper, we present an NoC-
enabled software/hardware co-design framework to implement
high-performance k-mer counting. The proposed architecture
enables more computational power, efficient communication
between cores/memory - all without creating a thermal
bottleneck; while the software component exposes more in-
memory opportunities to exploit the PIM and aids in the NoC
design. Experimental results show that the proposed architecture
outperforms a state-of-the-art software implementation of k-mer
counting utilizing Hybrid Memory Cube (HMC), by up to 7.14X,
while allowing significantly higher power budgets.
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1 INTRODUCTION

Analysis of biomolecular data such as DNA and proteins has been
one of the primary drivers of scientific discovery in biological
sciences. From a computational perspective, these biomolecules
can be represented as strings (equivalently, sequences). Hence,
sequence analysis occupies a significant portion of many
bioinformatics workflows. One such operation is k-mer counting,
where the goal is to determine the counts of all distinct fixed
length substrings of length k in a large collection of input
sequences. Computing k-mer abundance profiles is often
necessary for several bioinformatics applications e.g., de novo
genome assembly, repeat identification, etc.

Challenges: From a software perspective, implementing k-mer
counting in a resource- and time-efficient manner is a challenging
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task. Existing software-only solutions for efficient k-mer counting
e.g. KMC2 [1], Gerbil [2], do not consider hardware limitations,
resulting in sub-optimal performance. The counting process
generates irregular memory accesses and sparse computations
that results in more frequent memory read/writes. Conventional
memory architectures provide limited bandwidth with higher
read/write latencies. This presents a performance bottleneck for
k-mer counting, which relies on repeated memory access. As a
result, computing units often remain idle, as a large portion of the
execution time is spent moving data to/from memory. Moreover,
k-mer counting generates significant communication between the
Processing Elements (PEs). For example, in Gerbil [2], k-mers are
repeatedly distributed among the threads responsible for
counting, introducing significant amount of on-chip traffic.
Without an efficient communication backbone, this can lead to
longer execution times as PEs would remain idle for a greater
number of cycles waiting for data. To overcome these
inefficiencies in conventional architectures, we posit that a
carefully designed software/hardware co-design framework can
be better equipped to derive the best out of both worlds. More
specifically, in this work, we argue that the emerging paradigm of
Processing-in-Memory (PIM), enabled by a Network-on-Chip
(NoC), presents a promising solution to these applications.

PIM takes advantage of emerging 3D-stacked memory + logic
devices (such as Micron’s Hybrid Memory Cube or HMC) to
enable high-bandwidth, low latency and low energy memory
access [3]. However, conventional PIM architectures are restricted
by thermal constraints as temperature impacts both memory
retention and overall performance [4, 5]. Conventional 2.5D PIM
and 3D PIM architectures often have limited power budget and
computational capability before reaching the allowable
temperature threshold [5, 6]. The role of NoC in PIM architectures
is also understudied. Due to a single layer of logic in existing PIM
architectures, planar NoC is used for efficient communication
among the PEs [7]. However, 2D NoCs such as mesh, are not
suited for long range communication that is inherent in k-mer
counting. Moreover, k-mer counting generates unbalanced traffic
that imposes an additional layer of design complexity.

To overcome the above-mentioned challenges, in this paper, we
propose an NoC enabled manycore architecture that exploits the
benefits of emerging Monolithic 3D (M3D) integration to integrate
multiple logic layers in PIM architectures with 3D-stacked
memory, for high-performance k-mer counting. Experimentally,
we show that even with multiple logic layers and higher power
budget, the proposed architecture does not violate thermal
constraints. The main contributions of this work are:
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. We profile k-mer counting to extract features relevant
to the design of a high-performance NoC and the
overall PIM architecture for k-mer counting.

. We present a software/hardware  co-design
framework: the hardware consists of a PIM with
multiple logic layers enabled by M3D integration while
the software component enables high-performance k-
mer counting by utilizing the benefits of PIM and aids
in NoC design.

. We perform a thorough experimental evaluation of the
proposed co-design framework and show significant
improvements over an appropriate baseline.

2 RELATED WORKS

2.1 k-mer counting

The task of k-mer counting is memory-intensive and involves
creating a histogram of all k-length substrings in a DNA sequence.
KMC2 [1], DSK [8] and Gerbil [2] are some of the popular tools
for this purpose, with Gerbil representing the state-of-the-art in
software as it outperforms most of the other tools. However, it
requires the repetitive use of off-chip secondary memory and
therefore will fail to fully exploit the high-bandwidth, low latency
memory access facilitated by PIM. Manycore CPU- and GPU-
based platforms are the preferred choices for implementing k-mer
counting [1, 2]. However, these works do not address the memory
bottleneck issues. In [9], the authors designed a custom FPGA-
based architecture connected to an HMC for approximate k-mer
counting. However, the memory (HMC) is connected to the PEs
using serial links in a 2.5D architecture, which is not as efficient
as completely on-chip solutions i.e. 3D PIM [3, 10].

2.2 Processing-in-memory

Processing-in-Memory (PIM) involves moving the computational
units closer to memory. This allows efficient data transfer from
memory enabled by 3D integration [3]. Prior works has mostly
focused on Through Silicon Via (TSV)-based PIM architectures,
which are prone to high temperatures [5, 11]. Heat from
processing elements can significantly affect the retention time of
DRAMs [4]. Beyond 85°C, the overheads to counter lower DRAM
retention can significantly offset the benefits of PIM [5].

To reduce the effect of temperature, 2.5D architecture is a popular
choice to implement PIM where PEs are placed near the memory
and connected via interposers. However, lateral heat flow from
PEs can significantly affect memory temperature [6]. In 3D-PIM
architectures, memory is stacked directly on top of the PEs, which
enables better throughput and latency [3]. However, they are
more prone to high temperature as PEs are placed in the same
vertical stack. In [12], the authors propose to use a mix of 2.5D +
3D PIMs. They map the application on PEs based on its memory
and compute requirements for best performance. However, their
methodology assumes prior knowledge of an application, which
is often not feasible. Memory-centric NoC, that connects multiple
HMC:s to facilitate efficient data transfer has been studied [7]. The
role of NoC connecting different vaults of an HMC is discussed in
[13]. However, these implementations are limited to 2D NoC
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which is inefficient in addressing the challenges posed by k-mer
counting i.e. unbalanced traffic and long-range communication.
To overcome these limitations, we propose an NoC-enabled PIM-
based architecture that amalgamates: (a) multiple logic layers in
conventional PIM, (b) M3D-based vertical integration, and (c)
efficient 3D-NoC design for high-performance k-mer counting,
while remaining within 85°C temperature. To take advantage of
PIM’s more efficient memory access and aid NoC design, we also
propose an alternative software approach to count k-mers that
outperforms the Gerbil framework.

3 High-performance k-mer counting

Problem statement: Given a DNA sequence s of length [, a “k-
mer” is defined as a substring of length k in s (k being an integer,
k<']). All k-mers in s can be generated by simply sliding a window
of length k over s. Given a set S of n such input sequences (aka.
“reads”), the problem of k-mer counting is one of determining the
total number of occurrences for each distinct k-mer that is present
in the reads of S. In this work, we mainly focus on Gerbil [2] as
our software baseline for k-mer counting. Gerbil is a recently
proposed methodology that outperforms several well-known
counters e.g. KMC2 [1] and DSK [8] for higher values of k, e.g.
k=32, making it an appropriate software baseline to consider.

3.1 Gerbil: Overview and Analysis

Gerbil is a two-phase algorithmic implementation for k-mer
counting: (a) 'Distribution' phase where the input reads are
partitioned into multiple intermediate files on the disk, and (b)
'Counting' phase, which reads each of these intermediate files (one
by one) for counting. The entire procedure is designed to make
optimal use of conventional manycore architectures. Each step in
Gerbil operates in a pipelined fashion for high throughput
counting. Popular techniques like load balancing and use of failure
buffers to handle hash conflicts, etc., have also been used for better
performance. Fig. 1 illustrates the overall workflow of Gerbil.
Next, we thoroughly analyze Gerbil using detailed full-system
simulations on Gemb5 [14] to study relevant features that are
crucial in designing an efficient manycore architecture. Fig. 2(a)
shows the different categories of instructions (operations)
involved in Gerbil with real-world inputs. We observe that nearly
two-thirds of Gerbil consists of integer operations. Memory
operations (including I/O) constitute the second largest category
(32.5%). The remaining is made up of NoOps while floating-point
instructions are negligible.

Traditional off-chip main-memory and secondary memory
accesses are slower [10], which can cause significant CPU stalls.
In Gerbil, memory and I/O operations contribute significantly to
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Fig. 1: lllustration of workflow in Gerbil (F: Input files, B: Buckets,
C: CPU; ‘Buckets’ is synonymous to ‘intermediate files’ in [2])
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Fig. 2: Gerbil: (a) Instruction types, and (b) CPU utilization and
runtime (normalized) for varying number of intermediate files

the runtime, the effect of which is captured in Fig. 2(b). Full-
system simulations on Gem5 with 64 Intel x86 cores executing
Gerbil shows that CPUs are utilized less than 15% of the time (Fig.
2(b)) for any number of intermediate files. The intermediate files
are generated after Distribution phase of Gerbil which are stored
and then eventually read back from the slow off-chip secondary
memory for further processing (as shown in Fig. 1). Moreover, the
counting process involves irregular memory accesses, which
makes caching ineffective. As a result, even though integer
instructions constitute the majority of Gerbil operations, Fig. 2(b)
clearly highlights that most of the execution time is spent in
fetching/storing data rather than actual computation. The CPU
utilization gets worse if more intermediate files are generated
(4.5% CPU utilization in the case of 512 files) as it involves more
off-chip memory access. This translates to a significant increase
in runtime as observed in Fig. 2(b). Overall, it is clear that Gerbil
does not efficiently utilize the computing resources resulting in
sub-optimal performance. Fig. 2 also proves that slow memory
access presents a more serious bottleneck to performance than
computation, for k-mer counting, making it an ideal case for PIM.
However, Gerbil’s dependence on secondary memory (Fig. 1)
makes it inappropriate for PIM architectures as it’ll fail to fully
exploit the high-bandwidth, low latency memory access
facilitated by PIM. Therefore, A PIM-friendly k-mer counting
software solution that complements the hardware is necessary.

Fig. 3 shows the communication between every CPU (Ci) pair for
three different input datasets in the form of a heat map. Here, we
define amount of communication (traffic) as the number of flits
exchanged between a pair of cores during k-mer counting as
obtained using full-system Gem5 simulations considering a
manycore system with 64 cores. As shown in Fig. 3, k-mer
counting in Gerbil exhibits significant amount of data exchanges
between cores. Darker patches (a few have been highlighted in red
in Fig. 3(a) as examples) indicate heavier communication between
a pair of cores. Planar logic in conventional PIM offers only a
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Fig. 4: Illustration of workflow in proposed k-mer counting
methodology: PIM-Counter (F: Input files, B: Buckets, C: CPU)

limited number of design and floor-planning choices. Hence,
frequently communicating cores may get potentially placed far
from each other, leading to long range communication. Also, we
observe several lighter patches indicating lower communication
in Fig. 3. This shows that the communication in Gerbil is highly
unbalanced. Few of the cores have heavy data traffic while the rest
have relatively negligible traffic. These heavily communicating
cores e.g. C1 in Fig. 3(a), can become traffic hotspot during
execution, which affects performance. Without a suitable NoC
backbone, this can result in higher latency that in turn will
increase execution time. It is well known that 2D NoCs (due to
single layer of logic in conventional PIM) are not scalable and not
suited to handle long range communication. Therefore, an
efficient NoC is crucial for high-performance k-mer counting.

3.2 PIM-Counter: PIM Friendly k-mer Counter

In this section we present PIM-Counter, a PIM-friendly multi-
threaded algorithm designed to overcome the I/O bottleneck of
Gerbil, exploit the PIM-based architecture and aid in the NoC
design. Fig. 4 shows the workflow of PIM-Counter. As discussed
earlier, Gerbil relies on secondary memory usage, which results in
inefficient CPU utilization (Fig. 2) and is not suited for PIM-based
architectures. In contrast, the proposed PIM-counter (Fig. 4), uses
an on-chip memory-friendly approach to utilize the benefits of
PIM. As illustrated in Fig. 4, PIM-Counter has three main steps:
Step-1: Input loading: Instead of reading the input files in
batches using multiple I/O passes as in Gerbil (Fig. 1), PIM-
Counter performs a single I/O pass. The inputs are then loaded
uniformly across the PIM cubes. Here, a cube (Fig. 5, which shows
the overall PIM architecture) is analogous to an HMC vault [13]
that consists of both logic and memory. However unlike
conventional HMC vaults, we also consider PEs e.g. CPUs, as part
of the logic layer (i.e. 3D PIM). We discuss the hardware
architecture in more details in next section.

Step-2: Bucketing: Once the strings are loaded onto the memory,
uniformly across the partitions (‘cubes’ in Fig. 5), the local
thread(s) in the corresponding cubes generate all k-mers from
each string by sliding a window of length k. To overcome the
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challenge imposed by the use of a large value of k, we use the
concept of minimizers, which was originally introduced in the
context of building de Bruijn graphs [15]. The idea is to hash each
k-mer using its least (or equivalently, most) frequent m-mer,
where m<k (e.g., m=7; k=32) and migrate that k-mer to the
minimizing m-mer’s bucket. Here, the term bucket refers to the
collection of all k-mers that share the same minimizer and is
analogous to the ‘intermediate files’ used in Gerbil. However,
unlike Gerbil, these buckets are present in the on-chip memory.
Each cube is responsible for a different, non-overlapping set of
buckets. The mapping of bucket to cube id is achieved using a hash
function in linear congruential form (e.g. ((Ax+B) mod P), A, B and
P are constants), which distributes all possible buckets across the
different cubes. As a result, the responsible bucket for a k-mer
could either reside on the local cube (same cube as the computing
PE) or on a remote cube (any other cube except the local cube). For
example, in Fig. 5, Cube-16 is a local cube to CPU-16, while Cube-
1 is remote cube to CPU-16. Memory in local cube can be accessed
by the cores using vertical interconnects only. A remote cube,
however, must be reached via the use of one or more planar links.
Accessing remote cubes is costlier as data must traverse longer
physical distance that can result in higher execution time. The
NoC should support this data movement.

In PIM-Counter, the data movement (traffic pattern) between PEs
depends on the hash function which defines the mapping of k-mer
buckets to cube-ids. Therefore, it is important to choose suitable
values for A, B and P (and hence the hash function) such that the
resulting traffic is balanced. Overall, our aim here is to choose a
suitable mapping that distributes the traffic among the PEs evenly
to avoid hotspots in the NoC during execution. We use full-system
Gemb simulations to determine the hash function that yield better
traffic distribution (shown in experimental results).

Step 3: Counting: In the final step, the thread(s) local to each
cube aggregate the counts for each distinct k-mer represented in
its local buckets; this is achieved using a parallel reduction. Here,
PIM-Counter fully exploits the locality benefits of PIM as data is
already available on each thread’s corresponding local cube (due
to the previous bucketing phase) and can be accessed using just
the vertical links. Due to the physical proximity of memory in
PIM, CPU stalls are greatly reduced as data can be fetched
relatively faster than in conventional architectures (where data is
fetched from physically distant/off-chip memory).

Overall, PIM-Counter presents a PIM-friendly k-mer counting
alternative that can outperform other counting tools as it benefits
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from high-bandwidth, low-latency and low-energy memory
access facilitated by PIM. It also enables efficient communication
between PEs by reducing traffic hotspots.

4 NoC-ENABLED 3D-PIM DESIGN

In this section, we introduce the features of the proposed 3D-PIM
enabled by M3D integration followed by the NoC design that
supports the communication generated by k-mer counting.

4.1 PIM-architecture for k-mer Counting

PIM allows high bandwidth, low-latency and low-energy memory
access by moving computation closer to memory [10]. The faster
memory access enabled by PIM is crucial for k-mer counting as a
large fraction of time (>85%) is spent in fetching/storing data
to/from memory in Gerbil (Fig. 2). However, temperature presents
an important limitation in conventional PIM architectures. DRAM
retention capability is lowered beyond 85°C. After temperature
exceeds this threshold, refresh rate must be doubled for every
~10°C increase in memory temperature. Higher refresh rates
consume more power and, results in lower memory performance
[5]. Also, traditional power management techniques are often not
tailored for memory. Therefore, placing memory directly on top
of (or nearby) the PEs in PIM, without addressing thermal issues,
can be detrimental to performance.

In [6], the authors found that 2.5D PIM architectures are prone to
lateral heat flow from PEs even when placed 10mm farther from
the HMC. Placing memory farther away to reduce temperature,
also defeats the main purpose of PIM, which is to bring
computation closer to memory. 3D PIM architectures where PEs
are in same vertical stack as memory, are even more sensitive.
Therefore, conventional PIM architectures (both 2.5D and 3D)
typically use either (a) PEs with simpler architectures (as complex
cores e.g. Out-of-Order (OoO) CPUs tend to consume more power
[5]), (b) fewer number of cores e.g. [12], or (c) minimal computing
power [6], (or all of the above) to remain within the temperature
threshold. Due to these conventional PIM
architectures have lower computation capability that affects

restrictions,

performance and are not scalable with increasing system size.

Moreover, PIM architectures are restricted to single logic layer and
multiple memory layers, as logic (PEs) dissipates more heat than
memory [5]. It is well known that 2D logic provides limited floor-
planning choices and require more die area than an equivalent 3D
counterpart. However, multiple logic layers stacked vertically in
3D ICs are prone to higher temperatures as PEs farther away from
the sink cannot dissipate heat easily, resulting in worse
temperature [16]. As PEs consume more power than memory, use
of multiple layers of logic in PIMs is typically avoided. As a result,
only a few cores can be integrated given a fixed area constraint.
Overall, our objective for a “suitable PIM architecture” is one that
should: (a) allow larger volume of computation (logic) to be
integrated without incurring extra area and thermal overheads;
and (b) enable efficient data exchange between cores and memory.
Taking advantage of the benefits of 3D ICs in this work, we
propose a PIM architecture that incorporates multiple logic layers
in conventional PIM for high-performance. Fig. 5 shows the
proposed architecture with multiple logic layers (similar to 3D ICs
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[16]) and multiple memory layers. Each logic layer consists of
multiple PEs, while the memory layers consists of conventional
DRAM. The cores are connected using a Network-on-Chip (NoC)
to support efficient on-chip communication between cores. We
discuss NoC design in the next sub-section. The use of multiple
logic layers enables a greater number of cores to be integrated
compared to traditional PIM (single logic layer) under an “iso-
area” setting. All the layers are virtually (not physically) divided
into several equal cubes. Each cube consists of equal amount of
resources i.e. one core per logic layer (placed vertically on top of
each other) and the portion of memory directly above it. For
example, in Fig. 5 (assuming 2-logic layers and following similar
numbering convention of CPUs), Cube-16 consists of CPU-16,
CPU-32 and part of memory directly above it.

Conventional TSV-based 3D architectures are susceptible to
higher temperatures and hence cannot be used to design the
proposed architecture (Fig. 5) [11]. Consecutive layers in TSV-
based designs are physically attached using a bonding material
e.g. Benzocyclobutene (BCB), that exhibits poor thermal
conductivity. This impedes the seamless flow of heat across the
layers resulting in considerable increase in temperature in the
layers away from the heat sink. Moreover, the relatively thicker
silicon substrate (several micrometers) in TSV-based designs
causes the heat to spread laterally within the substrate instead of
vertically towards the sink. This results in higher on-chip
temperatures, which is undesirable in PIM architectures.

On the other hand, emerging M3D integration allows faster
dissipation of heat than its TSV-based counterparts [16]. Absence
of a bonding material and relatively smaller dimensions
(nanometers as opposed to micrometers) leads to superior thermal
characteristics than TSV-based designs. Therefore, we argue that
we should design high-performance yet thermally viable PIM
architectures with multiple logic (and memory) layers as shown
in Fig. 5 using M3D integration. Experimentally, we show that
M3D-based PIM designs are superior in terms of both
performance and temperature, enabling higher power budgets
compared to their TSV-based solutions. Moreover, M3D enables
design of area- and power-efficient multi-tier logic blocks [17].
The possibility of multi-tier logic blocks e.g. NoC routers, enable
design of high-performance and energy-efficient NoCs, which is
essential to support efficient k-mer counting.

4.2 NoC design for k-mer Counting

For achieving high performance, the choice of overall NoC
connectivity should be governed by the traffic pattern generated
by the application under consideration. As shown in Fig. 3, k-mer
counting introduces significant long-range and unbalanced traffic
pattern that should be handled by the NoC. The unbalanced traffic
in k-mer counting is addressed by choosing a suitable mapping to
cubes (hash-function) in PIM-Counter as discussed in Section 3.
PIM-Counter makes the traffic more uniform compared to Gerbil,
reducing chances of traffic hotspots (shown later in experimental
results section). To efficiently handle the long-range traffic
pattern, 3D small-world (SW) NoC architecture is a suitable
choice. The vertical links in 3D NoCs bring cores physically closer

NOCS 19
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Fig. 6: Illustration of proposed M3D-enabled SW-NoC with multi-
tier routers [17] and small-world properties [19] (The color
contrast between Layer] and Layer2 is for differentiation only)

and enable long-range communication shortcuts necessary for
designing high-performance SW NoC [19]. Moreover, the vertical
connectivity in M3D is facilitated by monolithic inter-tier vias
(MIVs), which are 100x smaller and more energy efficient than
conventional TSVs [18]. Overall, we utilize the benefits of M3D to
design high-performance, yet energy efficient SW NoCs.

To design a suitable 3D SW NoC, the placement of links and
routers need to be optimized based on the application (k-mer
counting in this case). By optimizing the placement of the
routers/links, it is possible to address the communication
challenges inherent in k-mer counting (Fig. 3) effectively. We
demonstrate that the designed NoC (executing PIM-Counter)
outperforms Gerbil running on an equivalent platform, in later
section. Next, we discuss the details of the NoC optimization.
Optimization Objective: For the NoC performance evaluation,
we consider two objectives: latency and energy. We estimate
network latency and energy using analytical models proposed in
[16] for optimization purpose. For an N core system, the average
network latency is modeled as:

N N
1
Lat:Z—f;]ZZ(Thl]+dlj)ﬁ] (1)

i=1j=1

Here, f;; represents the number of flits exchanged between core i
and core j (Fig. 3) obtained from full-system k-mer counting
simulations on Gem5. The parameter r represents the number of
router stages, h; j denotes the number of hops between the two
cores while d;; incorporates the effect of physical distance that
messages must traverse based on the routing protocol.

The network energy is modeled using the following equations:

N N R
Erower = ). ) fiy D 1y (B, P) @)

i=1j=1 k=1
N N L 4
Elink = Z Zfl} : <Z Dijk - dk : Eplanar + Z qijk ° Euertical) (3)
i=1j=1 k=1 k=1
E = Erouter T Etinie 4)

Here E,. denotes the average router logic energy per port and P,
denotes the number of ports available at router k. The total link
energy can be divided into two parts due to the different physical
characteristics of planar and vertical links. d, represents the
physical link length of link k. Here, q;j and 7jj; indicate if a
vertical link or router k is utilized to communicate between core i
and core j respectively. E,jgngr and Eyericq denote the energy
consumed per flit by planar metal wires and vertical links (TSV or
MIV) respectively. All the required power numbers were obtained
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using Synopsys Prime Power for 28nm nodes. The total network
energy E is the sum of router logic and link energy.

We optimize the two objectives, latency and energy, using a
machine learning-enabled Multi-Objective Optimization (MOO)
algorithm: MOO-STAGE [16]. By learning the search space, MOO-
STAGE can find better solutions than several conventionally used
MOO algorithms in much less time. Hence, it is a suitable choice
of MOO solver for optimizing the NoC. Overall, MOO-STAGE
finds the best placement of links and routers in the SW NoC that
achieves good trade-off between both objectives: latency and
energy, to enable high-performance k-mer counting To ensure
that the optimized architectures are realistic, we make sure that
there is always at-least one path for communication between any
pair of cores. M3D specific design aspects, e.g. possibility of multi-
tier routers has also been incorporated in the optimization.
Following prior designs, e.g. [17], we restrict routers to span
across at-most two layers only. Fig, 6 shows an illustration of the
NoC for the proposed M3D-enabled PIM

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed NoC-
enabled, software/hardware co-design framework for k-mer
counting. First, we analyze PIM-Counter (Sec. 3) in detail. Next,
we evaluate the performance and thermal profile of the proposed
PIM architecture and the designed NoC.

5.1 Experimental Setup

We use a detailed full system simulator, Gem5 [14] to characterize
the performance of the PIM-based manycore architecture
proposed in this work. We modify the memory and Garnet
network models within Gem5 to implement the various memory
and NoC architectures considered in this work. All experiments
are performed on a 64-core system where each core is based on
Intel x86 architecture. The memory system comprises of private
32KB L1 instruction and data caches, shared 16MB L2 cache
(256KB distributed L2 per core). The simulated system operates
with a clock frequency of 2.5GHz. The CPU power profiles are
extracted using McPAT [20] while the on-chip temperatures are
obtained using Hotspot [21] simulations. The TSV and M3D layers
are modeled in Hotspot based on parameters e.g. layer thickness,
thermal conductivity, etc. as listed in [11]. For all experiments, we
have considered DRAM-based memory. Following prior works,
the memory is modeled as a multi-layer stack in the proposed PIM
design. All layers in the same vertical stack have equal area i.e.
the memory die area is assumed to be same as the logic die area
in the proposed 3D-PIM architecture.

6

B.K.Joardar et al.
100% H Gerbil B Pim-Counter

75%
50%
25%
0% | | [ | [ | | | [ | [ | = [ | ] | |

Api BacDcnDro Eco Pla Pro Rat Str Vib
Fig 8: Average CPU utilization in Gerbil and PIM-Counter

CPU
utilization

For experimental evaluations, we chose ten different genomic
sequences from across the species spectrum: six prokaryotic
genomes including, Prochlorococcus sp. (Pro), S. pneumoniae (Str),
V. cholerae (Vib), E. coli (Eco), B. circulans (Bac), P. vivax (Pla) and
four eukaryotic genomes namely, A. melifera (Api), D.
melanogaster (Dro), D. labrax (Dcn) and R. norvegicus (Rat). This
collection represents a wide variety in genome input complexities
(including k-mer composition and abundance levels), intended to
help us test our framework under different input scenarios, as k-
mer counting is known to be an input-dependent problem [22].

5.2 Performance Evaluation of PIM-Counter

We first evaluate the performance of the proposed PIM-Counter
framework based on its traffic pattern, types of instructions and
CPU utilization to compare with Gerbil. We profile PIM-Counter
using full-system simulations on Gem5 similar to Gerbil (Sec. 3).
Fig. 7(a) shows the distribution of instructions for PIM-Counter
(similar to Fig. 2). Interestingly, we note that integer operations
constitute a far greater proportion i.e. 87.7% in PIM-Counter (as
opposed to 66.5% in Gerbil (Fig. 2)). Memory (including 1I/O)
instructions only contribute to 11.7% of overall instructions.
Floating point instructions and NoOps were negligible in both
Gerbil and PIM-Counter. Fig. 7(b) compares the actual number of
memory (including I/O) instructions for Gerbil and the PIM-
Counter. We note that the PIM-Counter reduces the number of
memory operations by ~2.5X compared to Gerbil. This is
important as memory operations contribute significantly to
execution time. Coupled with a more efficient memory access
provided by PIM, this results in a significant improvement in CPU
utilization — as shown in Fig. 8. On average, the CPUs are utilized
75% of the time as opposed to <15% in Gerbil. This shows that by
facilitating easier memory access, we can improve hardware
utilization significantly. This is expected as PIM-Counter reduces
the amount of I/O operations (which are slow), while promoting
more on-chip memory usage to take advantage of PIM.

Next, we look at the corresponding traffic pattern generated when
PIM-Counter is executed on a 64-core architecture. Fig. 9 (a-c)
shows the traffic pattern between CPUs for PIM-Counter with
three real world datasets, namely: Eco, Pro and Vib, as examples.
Fig. 9(d) compares the standard deviation of Gerbil’s traffic
(normalized) with respect to that of PIM-Counter for these three
datasets. The standard deviation of traffic captures the variation
among the number of flits associated with each PE. Higher values
of standard deviation indicate a more unbalanced traffic which
can lead to traffic hotspots in the NoC resulting in higher
execution times (discussed in Sec. 3). Contrasting these traffic
patterns with those of Gerbil shown in Fig. 3, it is clear that PIM-
Counter achieves a more balanced traffic. For instance, in the case
of Eco, PIM-Counter generates a 69% (Fig. 9(d)) better balanced
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Fig 9: CPU-to-CPU communication profile for PIM-Counter as heat map (Ci: Core i) for input datasets (a) E. Coli (Eco), (b) Prochlococcus
sp. (Pro), (c) Vibrio cholerae (Vib), and (d) Standard Deviation of Gerbil’s traffic normalized with respect to that of PIM-Counter (PC)

traffic pattern. This can be attributed to the appropriate mapping

of k-mers to cube-id in PIM-Counter. Hence, traffic hotspots are
less likely, leading to better performance in PIM-Counter.

5.3 Thermal Evaluation

For any new PIM architecture, thermal feasibility is a major
concern [5]. In Sec. 4, we argued that it is possible to integrate
multiple layers of logic (similar to conventional 3D ICs) in PIM
using M3D. Therefore, before performance analysis, in this
section, we first investigate and experimentally validate the
thermal feasibility of the proposed PIM architecture.

Fig. 10(a) shows the variation of maximum on-chip temperature
for k-mer counting as more logic layers are added. Each layer has
been modeled following [11] in HotSpot. Here, we assume that the
number of memory layers to be fixed while varying the number
of logic layers beneath it. For all experiments, an ambient
temperature of 45°C and an inexpensive low-end cooling
(convention resistance = 2°C/W [11]) is used. Fig. 10(a) indicates
that even with a simple cooling solution, up to four layers of logic
can be easily integrated in M3D-based 3D-PIM without reaching
temperature threshold of 85°C. On the other hand, TSV-based PIM
only allows a maximum of 2 logic layers for k-mer counting.
Beyond two layers, TSV-based PIM architectures necessitate
higher refresh rates and more expensive cooling solutions to be
viable. Note that adding the second layer of logic results in
temperature close to the threshold (81°C) which may still
necessitate precautions for safe operation. However, even with
four logic layers, M3D-based PIM architecture exhibits maximum
temperature of 74°C only. Therefore, contrary to conventional
PIM architectures, it is possible to have multiple logic layers in an
M3D-enabled PIM without violating thermal constraints.

Also, since core and memory power depend on several factors e.g.,
voltage-frequency settings, technology node etc., it is important
to study the power budget available in both architectures (without
exceeding 85°C) for a complete analysis. Fig. 10(b) shows the
amount of power budget available in both PIM architectures when
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logic and memory power is varied simultaneously to study the
maximum on-chip temperature. From Fig. 10(b) we note that M3D
based PIM provides a much higher power budget (up to 8W more)
than their TSV-based counterpart under similar settings. The
higher power budget is achieved as M3D-based architectures do
not have layers with poor thermal conductivity and have
relatively smaller dimensions (discussed in Sec. 4) which aide in
quick dissipation of heat. As a result, the temperature increase is
significantly contained allowing more power budget (and multiple
layers of logic) in an M3D-enabled PIM without exceeding 85°C.

5.4 Performance Evaluation

Next, we present the NoC and overall full-system performance
evaluation. Fig. 11 shows the performance of the optimized M3D-
enabled SW-NoC for both Gerbil and PIM-Counter. The NoCs for
both Gerbil and PIM-Counter have been designed following the
same optimization methodology discussed in Sec. 4.2. Here, we
assume a 64-core architecture arranged in four layers (16 cores per
layer) with M3D-integration for both Gerbil and PIM-Counter.
From Fig. 11, we note that the optimized NoC for PIM-Counter
outperforms its Gerbil counterpart by 14% on average for all the
datasets. This happens as PIM-Counter has a more balanced
traffic, which reduces hotspots leading to faster communication.
On the other hand, Gerbil has a handful of cores contributing
significantly higher traffic than the rest (Fig. 3). Routers/Links
near them experience more congestion, affecting performance.

Moreover, it is well known that the performance of the k-mer
counting is input-dependent [22]. Hence, it is possible that an NoC
optimized with traffic pattern associated with one input may
perform sub-optimally when used for a different input. However,
it is not desirable for an NoC design to exhibit significant
performance variation across inputs. Fig. 12 shows the NoC
performance variation for different datasets. For this experiment,
we consider the same NoC as in Fig. 11, which was optimized
following the traffic pattern (fj in Eqns. (1)-(4)) of one input
dataset (seen) e.g. Bac. This NoC is then used for executing k-mer
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Fig 10: (a) Maximum on-chip temperatures with varying number of logic layers for k-mer | NoC with PIM-Counter, normalized with respect
counting, and (b) Power budget study, in TSV and M3D-based PIM architectures to Gerbil running on an equivalent platform.
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counting with other remaining (unseen) nine datasets i.e.
excluding Bac, and so on. We observe from Fig. 12 that the
designed M3D-based SW-NoCs for PIM-Counter shows minimal
(<= 4.5%) performance variation when other datasets are tested
for performance. This happens as PIM-Counter uniformly
distributes traffic among the PEs for all datasets (Fig. 9), which
reduces the input-dependent behavior. Hence, from Fig. 11 and
Fig. 12, it is clear that PIM-Counter enables better NoC design that
outperforms Gerbil and deliver high-performance communication
support for all inputs tested. However, as Gerbil spends more than
85% of the time for memory (and I/O) accesses (Fig. 2), only
improvement in NoC performance does not capture the
performance gain of the proposed architecture for a large portion
of time Therefore, full system experiments are necessary.

For full-system evaluation, we compare the execution time for the
64-core NoC-enabled 3D-PIM architecture (similar to Fig. 5)
running PIM-Counter (PC + 3D-PIM), with Gerbil executing on an
equivalent 3D architecture connected to a conventional HMC
(GHMC). The cores are equally distributed over four layers and
connected by optimized M3D-enabled SW-NoCs (same ones
considered in Fig. 11) for both the cases. Overall, GHMC includes
both (a) software baseline: Gerbil, and (b) hardware baseline: 2.5D
PIM architecture with HMC similar to [9]. Here, we do not use the
custom FPGA-based PEs proposed in [9] as they are specifically
designed to implement probabilistic approximate counting
approaches, which is different than exact counting implemented
by both PIM-Counter and Gerbil. However, please note that the
proposed PIM architecture is generic and can incorporate any
type of PEs (e.g. the exact counting, FPGA equivalent of [9])
instead of the x86 cores used here. Fig. 13 shows the full system
runtime comparison between GHMC and PC + 3D-PIM. From Fig.
13, we note that PC + 3D-PIM outperforms GHMC by up to 7.14X
in runtime. The improvement is achieved as PIM-Counter avoids
external I/O and promotes the use of on-chip memory while
multiple layers of logic, optimized NoC and 3D-PIM enable faster
computation, communication and easier memory access.

6 CONCLUSION

Counting k-mers is a memory-intensive task essential in several
bio-informatics applications that process DNA and protein
sequences. Existing software frameworks significantly improve
the processing of k-mer counting. However, without proper
architectural support, software gains cannot be fully realized. In
this work, we proposed an NoC-enabled software/hardware co-
design that enables high-performance k-mer counting on a 3D-
PIM architecture. We show that using M3D integration, it is
possible to design PIM with multiple logic layers and significantly
higher power budget without violating temperature constraints.
As a result, we upgrade the capabilities of traditional PIM

B.K.Joardar et al.

o 8 m PC +3D-PIM B GHMC

S

s 4 I I

v Api Bac Dcn Dro Eco Pla Pro Rat Str Vib
Fig. 13: Speed-up in execution time using proposed co-design

framework over Gerbil + conventional HMC

architectures ie. more computation capability with lesser
footprint. Overall, the proposed architecture shows up to 7.14X
better execution times compared to a state-of-the-art software
framework executed on an equivalent 3D manycore system.
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