
Fast and Scalable Implementations of Influence Maximization Algorithms

Marco Minutoli∗†, Mahantesh Halappanavar∗, Ananth Kalyanaraman†,
Arun Sathanur∗, Ryan Mcclure∗, Jason McDermott∗
∗Pacific Northwest National Laboratory, Richland, WA, USA

Email: {marco.minutoli,hala,arun.sathanur,ryan.mcclure,jason.mcdermott}@pnnl.gov
†Washington State University, Pullman, WA, USA

Email: {marco.minutoli,ananth}@wsu.edu

Abstract—The Influence Maximization problem has been ex-
tensively studied in the past decade because of its practical
applications in finding the key influencers in social networks.
Due to the hardness of the underlying problem, existing
algorithms have tried to trade off practical efficiency with
approximation guarantees. Approximate solutions take several
hours of compute time on modest sized real world inputs and
there is a lack of effective parallel and distributed algorithms
to solve this problem. In this paper, we present efficient parallel
algorithms for multithreaded and distributed systems to solve
the influence maximization with approximation guarantee. Our
algorithms extend state-of-the-art sequential approach based
on computing reverse reachability sets. We present a detailed
experimental evaluation, and analyze their performance and
their sensitivity to input parameters, using real world inputs.
Our experimental results demonstrate significant speedup on
parallel architectures. We further show a speedup of up to
586× relative to the state-of-the-art sequential baseline using
1024 nodes of a supercomputer at far greater accuracy and
twice the seed set size. To the best of our knowledge, this
is the first effort in parallelizing the influence maximization
operation at scale.

1. Introduction

Given a graph, the objective of the influence maximiza-
tion problem is to identify a small set of k seed vertices,
which when activated, will likely result in the activation of
the maximum number of vertices in the input graph, based
on a given diffusion model for influence. The problem was
first introduced in 2001 by Domingos and Richardson [1],
and was formulated as a combinatorial optimization problem
by Kempe et al. [2], who also proved that the problem is
NP-hard. We review relevant algorithmic work in Section 2.

In contrast to traditional methods, influence maximiza-
tion is better equipped to capture the dynamics of informa-
tion diffusion on complex networks. Consequently, it has
found many applications in multiple network science do-
mains that critically depend on identifying influential actors
in a network, such as viral marketing and influential proteins
in a molecular network.

0 50 100 150 200
Seed Set Size

0.e+00

1.e+06

2.e+06

3.e+06

Ac
tiv

at
ed

 N
od

es

0.13
0.50

Figure 1. Number of activated nodes (higher is better) on the Orkut graph as
a function of the seed set size (k) and approximation quality (ε). The blue
arc is representative of what the current state-of-the-art can achieve. The
red arc is from the parallel implementation presented in this paper. Our
parallel implementation enables to improve quality while also reducing
time to solution (Table 3).

Since the seminal work of Kempe et al., significant
strides have been made in improving the performance of
influence maximization algorithms, either by exploiting spe-
cial properties of the problem such as its submodular struc-
ture (e.g., [3]) or by devising randomized techniques with
approximation guarantees for the quality of the solution
(e.g.,[4], [5]). An extended review of these approaches is
presented in Section 2.

Despite the advancements in algorithms, little to no work
exists on efficiently parallelizing the algorithms. State-of-
the-art implementations support only a small degree of par-
allelism, if any, using multithreading at the node level where
possible. Parallelism is essential for scaling up influence
maximization for a variety of reasons. However, real-world
networks on which the algorithm needs to be performed
have dramatically increased, with networks of millions to
billions of nodes becoming a commonplace. Further, it is
not just the input size that is a deterrent to performance.
Most algorithms for influence maximization rely on approx-
imation; and as the quality of the targeted approximation
(ε) is made higher, the running time of the algorithms also

978-1-7281-4734-5/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

increase significantly. Furthermore, users typically have to
test multiple k values (the seed set size) before identifying
an optimal configuration that can maximize their “return on
investment” on the seeds. However, the runtime of these
algorithms is also sensitive to increases in k. Finally, if the
edge probabilities used in the diffusion mechanism are not
readily available from the application domain, it adds further
burden on experimentation with different edge probability
distributions. A fast and scalable parallel implementation
that can enable multiple runs at scale is therefore funda-
mental to a wider adoption of influence maximization.

In this paper, we present the design and development of
efficient parallel implementations for carrying out influence
maximization at scale, on both shared and distributed mem-
ory platforms. Our parallel implementations are for a state-
of-the-art influence maximization algorithm, IMM [5]. IMM
represents a significant improvement over its predecessors
in achieving scale of the network (millions of nodes) and
performance. Using IMM as our sequential baseline for
comparison, we demonstrate the ability to solve large-scale
problems with an unprecedented accuracy and performance.
Figure 1 illustrates the case in point using an example;
it shows the improvement that our parallel implementation
(red arc) can achieve compared to the state-of-the-art (blue
arc). To the best of our knowledge, this is the first effort in
parallelizing the influence maximization operation at scale.

In summary, we make the following contributions:
• We introduce new shared and distributed memory algo-

rithms for influence maximization based on the work
of Tang et al. [5].

• We empirically evaluate the performance and scalabil-
ity of our implementations on two compute clusters,
first with large per-node memory and second, a mas-
sively parallel processor.

• We provide a new tool to the research community that
enables the study of influence spread on real-world
networks, with significantly higher approximation guar-
antees achieved in orders of magnitude shorter time-
to-solution. For instance, on an Orkut network, we
demonstrate a speedup of up to 586× with respect to
the serial IMM implementation.

• We show a novel application of influence maximiza-
tion on two case studies from biology: metabolomic
and metatranscriptomic data examining the microbial
community of a soil ecosystem, and proteomic and
transcriptomic data derived from tumor samples from
human patients. The findings in this case-study validate
the high utility and relevance of our influence max-
imization implementation compared to other existing
approaches.

2. Related Work

The seminal work by Kempe et al. [2] formalized the
problem of influence maximization. The approach used
in their work involves a greedy hill-climbing optimization
(submodular maximization) procedure operating on an or-
acle that computes the expected reachability from a set

of candidate nodes over a given network. The expectation
itself is computed by harnessing a large number of Monte
Carlo trials (10000 being a typical number used in literature)
while reachability computations involve BFS (Breadth First
Search) kernels. Thus, the combined complexity of the over-
all flow meant that it could be run only on small networks
(< 10k nodes). Thus, one of the main themes of the research
on the topic of influence maximization following [2] is
addressing the scalability aspects of the overall flow. Two
sub-themes along this line of research focus on accelerating
the submodular optimization approach and accelerating the
oracle computation.

Leskovec et al. [3] adopt a lazy-greedy submodular
maximization approach called CELF (Cost-Effective Lazy
Forward). In this approach, by making use of the submodu-
lar nature of the reachability objective function, they save on
additional computations of the marginal gain [6] that do not
contribute to the selection of the top node as the iterations
proceed. This method is exact when compared to the greedy
algorithm and provides the same approximation guarantee
of (1 − 1

e) (63%). The work by Goyal et al. [7] improved
on the CELF algorithm, again by exploiting the submodular
nature of the objective function and resulted in the CELF++
algorithm. Chen et al. [8] combine two complementary ap-
proaches, namely an improvement over the CELF algorithm
and the introduction of a heuristic called degree discounting.
While their heuristics show excellent speedups in run times
on relatively large datasets, the introduction of the heuristic
also results in the inability to provide approximation guar-
antees. Chen et al. [9] propose a heuristic algorithm based
on local arborescence (trees in a directed graph with all
edges pointing either towards the root or away from the root)
and shortest path algorithms. The authors also demonstrate
the scalability of their methods to graphs with millions of
edges. The concept of per-node summary structures called
combined reachability sketches are leveraged by Cohen et
al. [10] to speedup the influence computations, resulting in
up to two orders of magnitude speedups. Borgs et al. [11]
introduce the concept of collections of reverse reachable
paths; in conjunction with the greedy algorithm operating on
the hyper-edges constructed as reverse reachable sets, they
provide a near-linear time algorithm to mine for influential
nodes. This concept was further developed by Tang et al.
[4] where they provide an efficient practical implementation
of the algorithm presented in [11] resulting in the ability
to analyze billion-edge graphs in hours. Note that many of
these algorithms work mainly with the Independent Cascade
model of local influence.

Another research trend in accelerating the influence
maximization flow is to leverage the modular nature or the
community structure present in real-world graphs. These
approaches mine for influential nodes in the communities
which are dense subgraphs. Wang et al. [12], at each step
of finding the k seeds, first select a community that results in
maximum marginal influence gain and then mine the corre-
sponding influential node from that community. In another
work, Chen et al. [13] first perform community detection
as a pre-processing step and then select candidate seeds

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

based on the community features and heuristics followed
by a pruning step that finalizes the overall seed set. In a
more recent work, Halappanavar et al. [14] use commu-
nity detection, a proportional seed allocation heuristic and
OpenMP-based parallelization of the Monte Carlo iterations
to achieve scalability. A major shortcoming of these methods
is the inability to include the effects of inter-community
edges since the subgraphs are disjoint.

One particular area of research along the lines of scalable
influence maximization that has not received much interest
is the parallelization of the underlying components. Kim
et al. [15] propose a new algorithm called the Indepen-
dent Path Algorithm and leveraging OpenMP pragmas, they
demonstrate scalability ranging from 3×–6× on 8 cores. Du
et al. [16] report parallel running times of their improved
continuous-time influence maximization algorithm but they
do not provide any details on the scaling behavior. Finally,
Lucier et al. [17] use sampling approaches to provide for
scalable implementations of influence maximization that
are amenable to distributed processing paradigms such as
MapReduce and Wu et al. [18] propose a parallel algorithm
using k-shell decomposition. However, a thorough evalua-
tion of the parallel performance is missing.

3. Parallel Algorithms

Problem Statement. Let G = (V,E) be a directed
graph with n vertices in V and m edges in E. A network
diffusion model M is a stochastic process that defines how
information originating from a small subset of initially “ac-
tive” vertices (called the seed set and denoted by S) spreads
through the rest of the network. Each edge e ∈ E from u
to v is associated with an activation probability of p(e).
Intuitively, the diffusion process specifies how a vertex gets
activated based on the state of its neighbors. We consider
two models: (i) Linear Threshold (LT) model where a vertex
can get activated if a fraction of neighboring vertices that
are active is greater than a threshold, and (ii) Independent
Cascade (IC) model where there is a one-shot chance for
an activated vertex to activate its neighbor. We refer you to
Kempe et al. [2] for details.

From an implementation perspective, the diffusion pro-
cess can be described as a probabilistic variant of the
Breadth First Search (BFS) from S. We use Ai to denote the
set of vertices in G activated during time step ti; initially,
A0 = S. To compute Ai, where i > 0, the following
procedure is used. For each vertex u ∈ Ai−1, consider
every (outgoing) edge e of the form (u, v) such that v is
not active (yet). Then, for each such edge e, v is added to
the active set Ai with a probability of p(e). Once activated,
a vertex remains active for all remaining time steps. The
algorithm proceeds until the time step when no more vertices
are activated. Let tc denote the time step at which this
convergence criterion is achieved (i.e, Ac = ∅). Then, the
influence set of the seed set S in G, denoted by I(S), is
given by

⋃c
i=0Ai.

TABLE 1. NOTATION

Description

n, m The number of vertices and edges in G, respectively
p The number of ranks (i.e., no. threads or no. processes)
θ The number of Random Reverse Reachable sets to be computed
ε The parameter controlling the approximation factor
S The seed set of k vertices for initial activation
Rv A Random Reverse Reachable set obtained from source vertex v
R A collection of Random Reverse Reachable sets
Ri The ith Random Reverse Reachable set in R
Ri A subset (partition) of R stored at (process or thread) Rank i
LT Linear Threshold model for diffusion
IC Independent Cascade model for diffusion

Definition 1 (The Influence Maximization Problem). Given
a graph G, a network diffusion model M , and a positive
integer k, the influence maximization problem is to identify a
seed set S of cardinality k such that E[|I(S)|] is maximized.

IMM. In this section, we describe the IMM algo-
rithm [5]. We consider the diffusion model M described in
Section 3. Table 1 shows the notation we use in this paper.

Definition 2 (Reverse Reachable Set). Let v denote a vertex
in G and g denote a graph obtained by removing each edge
e in G with a probability of 1 − p(e). Then, the reverse
reachable set for v in g, denoted by RRg(v), is given by:

RRg(v) = {u | ∃ a directed path from u to v in g}

Definition 3 (Random Reverse Reachable Set). A random
reverse reachable (RRR) set for v, denoted by Rv , is an
RRg(v) where g is randomly sampled graph, drawn from
a distribution of graphs induced by the randomness of edge
removals.

In other words, if a vertex u appears in Rv , then u
has a chance to influence v. Consequently, the larger the
number of random reverse reachable sets a given vertex u
appears in, the larger its influence is expected to span in the
input network. In [11], Borgs et al. take advantage of this
intuition to construct a random sampling based algorithm,
called Reverse Influence Sampling or RIS. Their algorithm
first generates a certain number (denoted by θ) of random
reverse reachable sets (as samples1), and then computes a
set of k seed vertices that cover the maximum number of
those samples. Here, the number of samples to generate, θ,
depends on a user-defined threshold defined over the number
of vertices and edges visited during the sample generation
process. We use R to denote the set of θ samples. The RIS
algorithm is a randomized algorithm with an approximation
guarantee of (1− 1/e− ε).

The IMM algorithm [5] is an approximation algorithm
that extends the RIS algorithm by removing the need for
the use of a threshold. Instead, the algorithm provides a
way to estimate θ. The estimation process depends on the
input graph G, the seed set size k, and the parameter ε.

1. Henceforth, we use the terms “sample” and “RRR set” interchange-
ably.

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: InfluenceMaximization

Input : G, k, ε
Output: S
begin
〈R, θ〉 ← EstimateTheta(G, k, ε)
R ← Sample(G, θ − |R|, R)
S ← SelectSeeds(G, k, R)
return S

Tang et al. [5] prove that IMM provides (1 − 1/e − ε)-
approximate solution with probability at least 1− 1/nl (l is
set to 1 in [5]). Algorithm 1 shows the major steps of the
IMM algorithm. In what follows, we describe our parallel
algorithm for IMM.

3.1. Parallel IMM

In order to effectively scale the influence maximization
algorithms, we need to address multiple key challenges.
These challenges will become clear when describing the
individual steps of the algorithm, but at the outset they
emerge from: i) the need to explicitly store the RRR sets,
thereby involving a significantly larger memory footprint
compared to input; ii) the need to synchronize among the
process or thread ranks during the greedy iterative selection
of k seeds; and iii) the complexities that arise in the context
of a distributed memory implementation, including the need
to efficiently generate random numbers in parallel and in
optimizing communication.

In this section, we present our approach to overcome
these challenges toward a scalable implementation of in-
fluence maximization. Wherever possible, we express our
algorithms as generic parallel pseudocodes without assum-
ing a particular parallel programming model. The details of
implementing these algorithms on shared memory should be
more evident from these pseudocodes. Section 3.2 expands
on the details for our distributed memory implementation.

The key phases of the algorithm are: i) estimation of θ,
ii) computation of θ samples (R), and iii) selection of the k
most influential seeds (S), as illustrated in Algorithm 1.

Estimation. Algorithm 2 shows the algorithm for
estimating θ. The algorithm iterates by first computing an
initial estimation, θ̂, followed by the computation of θ̂
reverse reachable sets originating from vertices selected at
random by invoking Algorithm 3. The algorithm then selects
a seed set, S, by invoking Algorithm 4. The analysis in
[5] shows that FR(S)|V | is an unbiased estimator of the
unknown optimum (OPT), where FR(S) is the fraction of
reverse reachable sets covered by the seed set S computed
by Algorithm 4. The martingale strategy in Algorithm 2 uses
the estimator to establish a lower bound (LB) on OPT . The
lower bound LB is then used to derive an tighter bound on
θ. We refer the reader to Tang et al.[5] for further details.

Sampling. A significant portion of the execution time
is spent in the computation of the reverse reachable sets
illustrated in Algorithm 3. While the computation can be
easily parallelized by generating each Ri in parallel, the key

challenge emerges from the large memory footprint in stor-
ing the reverse reachability information (R). As illustrated
in Figure 2, θ grows nonlinearly with the number of vertices
and target accuracy value (ε). Previous implementations [5]
store this information in two directions using the notion
of a hypergraph, where each RRR set (or sample) is a
hyperedge consisting of a subset of vertices in the input
graph. Information for each vertex about the samples that
it participates in is also maintained. Thus, each association
between a sample and a vertex is stored twice. While this
information aids in faster selection of seed set later, the
memory footprint can become a limitation. Therefore, we
only store the information in one direction, where each sam-
ple in R is stored as a list of vertices in the corresponding
RRR set—sorted by the vertex ids.

The key operation in Algorithm 3 is the call to function
GenerateRR for a given source vertex v, that traverses
incoming edges from their destination to their source. The
insertion policy into the next frontier varies according to the
diffusion model (IC vs. LT in our implementation). The BFS
is performed probabilistically over random graph samples g
generated from G. Our implementation achieves this without
explicitly generating each g and instead choosing to proba-
bilistically select each edge as the traversal progresses. The
function returns the vertices traversed sorted by ids. Sorting
the traversed vertices has two main advantages during the
seeds selection. First, it ensures that each Ri set stores the
partition {vl, . . . , vh}, assigned to a rank Pt, in contiguous
memory so that the counting steps in Algorithm 4 will
proceed in cache order. Second, vl and vh can be efficiently
found using binary search and, therefore, each rank Pt can
avoid to traverse Ri entirely to check for vertices in the
partition assigned to it.

Seed set generation. The last phase of the IMM
algorithm is the computation of the seed set. We first
describe our multithreaded implementation in Algorithm 4.
The selection algorithm is a two-step procedure. First, we
maintain a counter for each vertex to keep track of the
number of samples any given vertex is part of. This counter
is first computed by scanning through the list of θ samples
in R. To avoid synchronization during this step, we evenly
partition the set of n vertices across the p threads such that
each thread rank takes ownership of updating the counters

Algorithm 2: EstimateTheta

Input : G, k, ε
Output: 〈R, θ〉
begin

for x ∈ 1→ log |V | do
θ̂ ← f(x, k, ε, |V |) % Refer to Tang et al.[5]

R ← Sample(G, θ̂ − |R|, R)
S ← SelectSeeds(G, R)
if FR(S) > 1/2x then

LB ← FR(S)|V |√
2

break

θ ← f ′(k, ε, |V |, LB) % Refer to Tang et al. [5]
return 〈R, θ〉

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

for a distinct interval of vertices [vl, vh]. This way we avoid
synchronization (e.g., alternative would have necessitated
atomic updates). Note that each thread rank still has to visit
all samples in R. However, since the vertex lists are kept
sorted (by vertex ids), navigating to identify vertices that
fall in the interval of a rank can be quickly accomplished
using binary search.

The second step in seed selection is a greedy iterative
procedure which identifies one seed per iteration (over k
iterations), by selecting the next vertex that has the maxi-
mum counter. However, when a vertex u is identified as a
seed, then all RRR sets (samples) that contain that vertex u
should be removed from R because those RRR sets become
redundant—i.e., each such RRR set can no longer contribute
to increasing the overall influence set size. Consequently,
with the removal of such RRR sets, the counters for all
vertices that exist in those RRR sets also need to decre-
mented. The while loop in Algorithm 4 shows our parallel
approach for this step. Here again, we use the idea of
partitioning the workload of vertex-level counter updates,
with each thread rank assuming responsibility to update the
counters for a distinct interval [vl, vh]—thereby eliminating
a need to synchronize across thread ranks.

3.2. Distributed Implementation

For the distributed implementation, we first observe that
the number of samples (θ) can grow significantly larger
than the input number of vertices (n), as the estimation
procedure depends primarily on the target accuracy ε and
number of seeds k. Empirical evidence of this nonlinear
growth is shown in Figure 2. Consequently, the sampling
procedure (Algorithm 3) tends to be a dominant contributor
to the overall execution time in practice. Given this ob-
servation, we devised a distributed memory approach that
targets scaling up the enumeration of samples by evenly
partitioning the samples to be generated among the p ranks,
such that each rank is responsible to generate a distinct
batch of θ

p samples, Ri. In order to compute local sam-
ples, each MPI process stores the entire input graph and
performs the probabilistic BFS starting from a source vertex
chosen uniformly at random. Therefore, accurate generation
of pseudorandom numbers in parallel is critical to guarantee
the approximation bounds of the algorithm. We employ the
linear congruential generator for this purpose by splitting
the sequence between ranks using the Leap Frog method

Algorithm 3: Sample

Input : G, θ, R
Output: R
begin

for i ∈ 1→ θ do in parallel
Select v ∈ V uniformly at random
Ri ← GenerateRR(G, v)
R ← R ∪{Ri}

return R

Algorithm 4: SelectSeedsMultiThreaded at all ranks Pt, t ∈
{1, . . . , p}

Input : G, k, R
Output: S
vl ← (|V | ∗ t)/p
vh ← (|V | ∗ (t+ 1))/p
foreach Rj ∈ R do

foreach u ∈ Rj : vl ≤ u < vh do
counter[u] ← counter[u] + 1

S ← ∅
while |S| < k do

v ← argmaxx∈{1,...,|V |} counter[x] % par. reduce

if i=0 then
S ← S ∪ {v}
counter[v]← 0

foreach Rj ∈ R do
if v ∈ Rj then

foreach u ∈ Rj : vl ≤ u < vh do
counter[u] ← counter[u] - 1

if i=0 then
R ← R \ {Rj}

return S

implemented in TRNG [19]. The pseudorandom numbers
are generated as needed to compute Ri in parallel.

For the seed selection phase, the distributed implementa-
tion initializes an array of n counters—one for each vertex—
on each process. Next, the frequencies of all vertices covered
in Ri, are computed. These local counts are subsequently
aggregated into global counts across all p processes, using
the MPI All-Reduce collective operation. Subsequently,
each process identifies the k seeds, one vertex per iteration,
over k iterations. Identifying the next vertex seed in a given
iteration is a strictly local operation as all processes have
the global counts for all vertices. The subsequent process of
removing all RRR samples that contain the identified seed
vertex is also a local operation, as each process only needs
to purge the redundant RRR sets from its local partition Ri.
However, as this purge is carried out, the counters for the
vertices contained in those RRR sets will need to be decre-
mented. This is achieved in two steps: i) decrement the local
counters for each vertex, and ii) perform an All-Reduce
to update the global counts of all n vertices.

Consequently, the dominant communication of the dis-
tributed implementation is due to the All-Reduce opera-
tions that happen at each iteration—yielding a net commu-
nication complexity of O(kn lg p). The sampling procedure,
on the other hand, is memory-bound with a complexity of
O(θpm) (since the cost of generating each sample through a
probabilistic BFS is O(m)). In our experiments, we found
the cost of sampling far exceeds the cost of seed selection
(Section 4.2). On each process rank, our implementation
employs the division of vertex set as shown in Algorithm 4
using a hybrid MPI and OpenMP programming model.

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

TABLE 2. SERIAL EXECUTION TIME AND MEMORY USAGE OF IMM VS IMMOPT (ε = 0.5, k = 50)

Graph Nodes Edges Avg. Degree Max Degree IMM (s) IMMOPT (s) Speedup IMM (MB) IMMOPT (MB) % savings

cit-HepTh 27,770 352,807 12.70 2,468 8.00 2.84 2.82× 357.23 190.80 46.59%
soc-Epinions1 75,879 508,837 13.41 3,079 41.59 14.62 2.84× 2198.25 1170.05 46.77%
com-Amazon 334,863 925,872 5.53 549 521.04 188.48 2.76× 19222.59 10927.92 43.15%
com-DBLP 317,080 1,049,866 6.62 343 526.82 170.32 3.09× 13260.18 5547.77 58.15%
com-YouTube 1,134,890 2,987,624 2.63 28,754 1592.08 511.77 3.11× 49710.07 25785.04 48.13%
soc-Pokec 1,632,803 30,622,564 37.51 20,518 5552.37 2350.27 2.36× 63210.72 51643.09 18.30%
soc-LiveJournal1 4,847,571 68,993,773 28.47 22,889 16434.81 3954.59 4.16× ◦ 64501.89 ◦
com-Orkut 3,072,441 117,185,083 76.28 33,313 28024.56 9027.50 3.10× ◦ ◦ ◦

4. Experimental Evaluation

Experimental Setup. For empirical evaluation pre-
sented in this work, we used used eight networks from
the Stanford Large Network Dataset Collection (SNAP)
collection [20]. Table 2 summarizes the key features of this
dataset.

All experiments were conducted on two compute clus-
ters. On the first cluster named Puma, each node is equipped
with two 10-cores Intel Xeon E5-2680 v2 CPUs running at
2.8GHz (hyper-threading disabled) and has 768GB mem-
ory. Nodes on Puma are connected through a single Infini-
band FDR 4× switch. The second cluster is Edison at the
NERSC facility. Each node on Edison consists of two 12-
cores Intel “Ivy Bridge” CPUs running at 2.4GHz with
the option of using hyper-threading and has 64GB memory.
Nodes on Edison are connected through the Cray Aries high-
speed interconnect with Dragonfly topology.

Our C++ implementation for shared memory machines
uses the OpenMP programming model, while the imple-
mentation for distributed memory machines uses a hy-
brid MPI plus OpenMP programming model. Both imple-
mentations are publicly available as part of the Ripples
framework [21]. In our experiments, programs were com-
piled using GCC 7.3.0 with optimizations enabled using
“-O3” switch. Parallel implementations are enabled using
the default OpenMP (libgomp) and MPI libraries (Puma:
OpenMPI 2.1.1, Edison: Cray mpich 7.7.3) provided on
the system. Finally, the edge weights for probabilistic BFS
are generated uniformly at random in the range [0; 1]. For
the linear threshold (LT) diffusion model, the weights are
readjusted such that the sum of the probabilities of traversing
one of the neighboring edges and of not traversing any
of them, is one; we implement an equivalent model as
described in Kempe et al. [2] for this purpose. Alternatively,
for the Independent Cascade (IC) model, the probability
of diffusion from an active vertex to any of its inactive
neighbors is a constant and independent of history, and
therefore, probabilities are used without any modifications.
Since edges are chosen without any restrictions in the IC
model, significantly larger number of edges need to be
traversed for the IC model relative to the LT model. We
see the impact of runtime presented later in this section.

Sequential Baseline Construction. A sequential im-
plementation of IMM algorithm is available from Tang et
al. [5]. We refer to this implementation as IMM. Our
preliminary experiments with this implementation suggested

0.2 0.3 0.4 0.5 0.6
Approximation Factor

1.e+03

1.e+04

1.e+05

1.e+06

(lo
gs

ca
le

)

K
10
20

30
40

50
60

70
80

90
100

Figure 2. Number of random reverse reachable sets (θ) for cit-HepTh, as
function of k and the approximation factor 1−1/e−ε. Note that ε decreases
from left to right; smaller values of ε correspond to a higher precision.

high runtime and memory demands. Consequently, we im-
plemented our own native version of the IMM algorithm to
use not only as a sequential baseline but also to construct
the parallel implementations. We refer to our serial imple-
mentation as IMMOPT. We compared the two sequential
implementations and the results are shown in Table 2. We
instrumented the code in order to measure the peak memory
footprint using Valgrind’s Massif tool and, as a consequence
of the instrumentation overhead, we were not able to run
it for larger instances. We have marked these instances
with an ◦ symbol in Table 2. We observe that, compared
to IMM, our serial implementation IMMOPT is 2 – 4×
faster and consumes 18 – 58% less memory. These im-
provements in both performance and memory footprint can
be attributed to the compact representation of the random
reverse reachability sets in our implementation, as described
in Section 3.1. We validated the correctness of our imple-
mentation by comparing the outputs of both the code using
similar parameters and observed high rank-biased overlaps
of the two outputs. Minor differences arise due to different
pseudorandom number generation skemes but we observed
similar total activation numbers such as the one presented
in Figure 1.

We use the baseline serial implementation for the mul-
tithreaded (OpenMP) implementation. Key differences arise
in the construction of R and in the seed selection phase.
The multithreaded implementation forms the basis for the
distributed hybrid MPI+OpenMP implementation.

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

4.1. Effect of Parameters

The number of RRR sets to generate (θ) is a function of
the number of seeds, k, and accuracy, ε. We illustrate this
relationship in Figure 2 for input citHepTh for a range of
ε and k values. As can be observed, θ quickly grows as the
target precision is increased (i.e., lower ε) or if a larger k
is used. It is also noteworthy that θ quickly exceeds n (the
number of vertices in the input graph).

Consequently, these two parameters, k and ε also affects
the runtime. In Figure 3, we present the performance results
by varying ε for a fixed value of k; and in Figure 4 by
varying k for a fixed value of ε. A larger value of ε implies
lower accuracy and therefore a smaller runtime. The total
runtime in both the figures is shown decomposed into four
sections—Estimation (Algorithm 2), Sample (Algorithm 3),
SelectSeeds (Algorithm 4) and other—that map to the cor-
responding phases of Algorithm 1. While studying these
figures, note that there are two sets of invocations to the
Sample function—one from within the Estimation function
(Algorithm 2), and another directly from the main skeleton
of the algorithm (Algorithm 1). The “Sample” bars shown in
all the runtime performance figures of this section only ac-
counts for the latter invocations from the skeleton; whereas
the cost of the calls to Sample from within the Estimation
function are included as part of the “Estimation” bars.

Figure 3 shows that the runtime increases when ε is
decreased (i.e., increase in approximation factor)—which is
to be expected. Increasing the size of the seed set k also
causes an increase in runtime as shown in Figure 4. These
observations match the growth rate of θ shown in Figure 2.
While the relationship between ε and the seed set size k is
different, the phase breakdown in Figures 3 and 4 shows
a common reduction of the fraction of the execution time
spent in the Sample phase by increasing the size of the input.

From these figures, we also observe that the dominant
contributors to overall execution time are the Estimation
and Sample (in that order). In fact, we observed that most
of the time for Estimation is also consumed within its
Sample invocations. We also note that the probabilities on
the edges have a nonlinear influence on the runtime. We
assigned probabilities uniformly at random from [0, 1] while
[5] assigned 0.10 to all the edges. Therefore, the runtime
reported in the two work are significantly different.

4.2. Strong Scaling Analysis

We now present strong scaling results of our parallel
implementations on both shared and distributed memory
platforms. We note that previous work [5] limits the ex-
periments to ε = 0.5 (approximation factor of 0.13) due
to the effects that the parameter has on the compute time
and on the memory requirements (Figure 2). In contrast,
we report results with ε up to 0.13 (approximation factor
of 0.50) for our parallel and distributed algorithm, which
is unprecedented to the best of our knowledge (Table 3,
Figures 7 and 8).

TABLE 3. IMPROVEMENT IN RUNTIME RELATIVE TO IMM [5]

com-Orkut (s) Speedup

IMM (ε = 0.5, k = 100) 28024.56 1.00×
IMMopt (ε = 0.5, k = 100) 9027.50 3.10×
IMMmt (ε = 0.5, k = 100) 1319.21 21.24×
IMMdist (ε = 0.13, k = 200) 47.77 586.61×

soc-LiveJournal1 (s) Speedup

IMM (ε = 0.5, k = 100) 16434.81 1.00×
IMMopt (ε = 0.5, k = 100) 3954.59 4.16×
IMMmt (ε = 0.5, k = 100) 1026.21 16.02×
IMMdist (ε = 0.13, k = 200) 55.12 298.16×

Multithreaded Implementation. We begin the presen-
tation of scaling results for our multi-threaded implementa-
tion on a single node of Puma with up to 20 threads. Results
for the LT model are presented in Figure 5 and those for
the IC model in Figure 6. We provide execution times from
two threads to 20 threads (hyper-threading is disabled) in
increments of one.

Figures 5 and 6 show that the speedups improve roughly
with the increase in input size, delivering up to a peak
speedup of 12.55× relative to the 2-thread execution, for
com-Orkut on the IC model. This is to be expected as for
the small inputs (such as cit-HepTh) the overheads due to
the greedy strategy of seed selection starts to dominate. As
the input size increases, the graph traversals from within
both the Estimate and Sample functions start to dominate the
proceedings. In fact, we start observing near-linear speedups
for the larger inputs on the IC model.

The LT model tends to produce very small RRR sets
(when compared to the IC model) due to its mechanics and,
because of the small workload, it shows limited scalability
only for the bigger inputs. In fact, we observed up to 5.67×
faster execution time on cit-HepTh and up to 6.37× faster
on com-Orkut, compared to the corresponding executions
using the IC model.

Distributed Implementation. We present two sets of
distributed scaling results: on up to 16 nodes of Puma, and
up to 1024 nodes on Edison. We note that the amount of
memory per node on Puma is much larger than the amount
of memory on Edison and that the processors on Puma are
faster. We used hyper-threading on Edison; therefore, the
largest run on Edison with 1, 024 nodes amounts to 49, 152
(1024×24×2) threads. On the other hand, the configuration
of the system on Puma does not allow us to enable hyper-
threading, so the number of threads is 320 (16× 20).

Figures 7 and 8 shows the scalability study on Puma
and Edison clusters for the four biggest graphs considered
in our evaluation. (Smaller graphs do not produce sufficient
work to justify high processor count).

For Puma, Figure 7 shows that our distributed algorithm
has scalability on the IC and the LT model generating
speedups up to 8×. It is important to note that points missing
in Figures 7c and 7d are experiments that were killed by the
Linux Out of Memory (OMM) killer. These failures show
the practical need of algorithms that can scale out to enable

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

0.20
0.25

0.30
0.35

0.40
0.45

0.50

0

0.5

1

1.5

2

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(a) cit-HepTh

0.20
0.25

0.30
0.35

0.40
0.45

0.50

0

2.5

5

7.5

10

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(b) soc-Epinions1

0.20
0.25

0.30
0.35

0.40
0.45

0.50

0

25

50

75

100

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(c) com-Amazon

0.20
0.25

0.30
0.35

0.40
0.45

0.50

0

25

50

75

100

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(d) com-DBLP

0.20
0.25

0.30
0.35

0.40
0.45

0.50

0

100

200

300

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(e) com-YouTube

0.20
0.25

0.30
0.35

0.40
0.45

0.50

0

250

500

750

1000
Ti

m
e

(s
ec

on
ds

)

Phase
Other SelectSeeds Sample EstimateTheta

(f) soc-Pokec

0.20
0.25

0.30
0.35

0.40
0.45

0.50

0

1000

2000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(g) soc-LiveJournal1

0.20
0.25

0.30
0.35

0.40
0.45

0.50

0

1000

2000

3000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(h) com-Orkut

Figure 3. Impact of ε on runtime for k = 50 using IC model. Runtimes are in seconds using 20 threads on Puma.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
K

0

0.2

0.4

0.6

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(a) cit-HepTh

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
K

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(b) soc-Epinions1

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
K

0

10

20

30

40

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(c) com-Amazon

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
K

0

10

20

30

40

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(d) com-DBLP

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
K

0

30

60

90

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(e) com-YouTube

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
K

0

100

200

300

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(f) soc-Pokec

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
K

0

250

500

750

1000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(g) soc-LiveJournal1

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
K

0

500

1000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(h) com-Orkut

Figure 4. Impact of k on runtime for ε = 0.5 using IC model. Runtimes are in seconds using 20 threads on Puma.

to find solution with good approximation guarantees.
For Edison, Figure 8 shows the scalability results on the

IC and LT models. While it can be observed that algorithm
is scaling reasonably well for the IC model, we observed
that low parallel efficiency under the LT model is caused by
the low amount of work with respect to the thread count.

Table 3 summarizes the key contribution and impact
with respect to the previous state-of-the-art. We observe
scalability in both performance and accuracy of the solution.

5. Case study in biology

As a case of novel scientific application, we present case
study of applying influence maximizaiton to two datasets

containing multi-omic data from the life sciences. The first
is a dataset containing metabolomic and metatranscriptomic
data examining the microbial community of a soil ecosystem
as it responds to changes in moisture. The second is a
dataset containing proteomic and transcriptomic data derived
from tumor samples of human patients. We inferred feature
co-expression networks for these datasets using a random
forest method implemented in GENIE3 [22]. The edges in
these networks link transcripts and proteins, or transcripts
and metabolites, based on instances of co-expression across
the range of experiments in the dataset under analysis.
To determine which features are crucial to the network
structure we applied influence maximization to the networks
to identify a seed set size of 200. For comparison, we

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

0.1

0.2

0.3

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(a) cit-HepTh

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(b) soc-Epinions1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

5

10

15

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(c) com-Amazon

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

5

10

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(d) com-DBLP

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

20

40

60

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(e) com-YouTube

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

50

100

150

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(f) soc-Pokec

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

200

400

600

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(g) soc-LiveJournal1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

100

200

300

400

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(h) com-Orkut

Figure 5. Multithreaded strong scaling using up to 20 threads of Puma. Parameters: ε = 0.5, k = 100, LT model.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(a) cit-HepTh

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

5

10

15

20

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(b) soc-Epinions1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

50

100

150

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(c) com-Amazon

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

50

100

150

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(d) com-DBLP

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

200

400

600

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(e) com-YouTube

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

500

1000

1500

2000

2500

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(f) soc-Pokec

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

2000

4000

6000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(g) soc-LiveJournal1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Threads

0

2500

5000

7500

10000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(h) com-Orkut

Figure 6. Multithreaded strong scaling using up to 20 threads of Puma. Parameters: ε = 0.5, k = 100, IC model.

also carried out centrality analysis of each node in the two
networks. Several previous works have demonstrated the
effectiveness of centrality analysis on biological networks to
identify biological important nodes [23]–[26]. As additional
measures for analysis, we included vertex degrees and vertex
betweenness (a measure of how many shortest paths linking
two random nodes pass through the node in question).

To compare the ability of the IMM method with topo-
logical measures we ranked nodes in the cancer network
based on degree and betweenness centrality and considered
the top 200 nodes in statistical enrichment to match the

results of the IMM method. We then applied functional
enrichment in which Fisher’s exact test was applied to
pathways (sets of functionally related genes/proteins) from
the MSIG database. Results from this comparison revealed
that IMM identifies nodes with more significant enrichment
(372 pathways enriched with adjusted p < 0.05) than
betweenness (159 pathways) but fewer than degree (614
pathways). However, examining the most enriched pathways
resulting from application of the three methods showed that
the top pathways indicated by IMM were cancer related
pathways including invasive breast cancer, prostate cancer,

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

2 4 6 8 10 12 14 16
Number of Nodes

0

500

1000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(a) com-YouTube (IC)

2 4 6 8 10 12 14 16
Number of Nodes

0

1000

2000

3000

4000

5000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(b) soc-Pokec (IC)

2 4 6 8 10 12 14 16
Number of Nodes

0

2000

4000

6000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(c) soc-LiveJournal1 (IC)

2 4 6 8 10 12 14 16
Number of Nodes

0

2500

5000

7500

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(d) com-Orkut (IC)

2 4 6 8 10 12 14 16
Number of Nodes

0

100

200

300

400

500

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(e) com-YouTube (LT)

2 4 6 8 10 12 14 16
Number of Nodes

0

250

500

750

1000

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(f) soc-Pokec (LT)

2 4 6 8 10 12 14 16
Number of Nodes

0

500

1000

1500

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(g) soc-LiveJournal1 (LT)

2 4 6 8 10 12 14 16
Number of Nodes

0

500

1000

1500

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(h) com-Orkut (LT)

Figure 7. Distributed strong scaling using IC and LT model with up to 16 nodes of Puma. Parameters: ε = 0.13, k = 200.

64 128 256 512 1024
Number of Nodes

0

10

20

30

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(a) com-YouTube (IC)

64 128 256 512 1024
Number of Nodes

0

20

40

60

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(b) soc-Pokec (IC)

64 128 256 512 1024
Number of Nodes

0

50

100

150

200

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(c) soc-LiveJournal1 (IC)

64 128 256 512 1024
Number of Nodes

0

100

200

300

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(d) com-Orkut (IC)

64 128 256 512 1024
Number of Nodes

0

25

50

75

100

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(e) com-YouTube (LT)

64 128 256 512 1024
Number of Nodes

0

50

100

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(f) soc-Pokec (LT)

64 128 256 512 1024
Number of Nodes

0

200

400

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(g) soc-LiveJournal1 (LT)

64 128 256 512 1024
Number of Nodes

0

100

200

300

Ti
m

e
(s

ec
on

ds
)

Phase
Other SelectSeeds Sample EstimateTheta

(h) com-Orkut (LT)

Figure 8. Distributed strong scaling using LT and IC models with up to 1024 nodes of Edison. Parameters: ε = 0.13, k = 200.

and inflammation pathways like complement and coagula-
tion. In contrast, the top pathways indicated by betweenness
included focal adhesion and T cell pathways, which are not
necessarily specific to cancer. Also, while the top pathways
indicated by degree centrality included invasive breast can-
cer, they also included liver and muscle processes that are
not closely related to cancer. Therefore, the IMM method
provides complementary, and potentially improved, identi-
fication of biological functions important in the network.
Extensive further investigation of this intriguing observation
is necessary, which we plan to undertake in the near future.

When examining soil networks we also used degree as
a measure of centrality and found that several nodes of

high centrality were those metabolites that were central to
pathways within bacterial species and communities. These
include glucose, trehalose, ribose and 3,4-dihydroxybutanoic
acid. These metabolites showed the highest number of con-
nections to other transcripts and other metabolites in the
network. When looking at the top 30 nodes (transcripts or
metabolites) that had the highest degree centrality nine of
them (9/30, 30%) were also predicted by IMM to have
central network positions. These include trehalose and 3,4–
dihydroxybutanoic acid as well as transcripts coding for
cytochrome C oxidase, a transketolase and maltose trans-
ferase. Similar to the analysis of cancer networks, there is
complementarity in the standard centrality approaches and

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

IMM as well as possibly improved identification with IMM.
We are currently building large scale networks with tens

of millions of nodes, and therefore, the ability to compute
high quality seed set will be of significance to biology.

6. Conclusions and Future Work

Influence maximization is rapidly emerging as an ef-
fective technique to identify top influential actors in a
network in the context of several applications including
social networks, advertising, and life sciences. While several
algorithms have been proposed in the literature, there is a
lack of rigorous implementations in parallel. To the best
of our knowledge, the developments reported in this paper
represent the first parallel implementations that are designed
to execute influence maximization operations at scale. More
specifically, our approach parallelizes one of the fastest
sequential algorithms, the IMM, on shared and distributed
memory systems. Our experiments demonstrate the ability of
our parallel implementations to achieve significant improve-
ments in both performance and output precision on large-
scale real-world inputs. The fast and scalable performance
achieved can enable multiple parameteric experiments and
evaluation of complex networks at scale.

Directions for future research, development, and appli-
cation include (but not limited to): i) extension to settings
where the input graph is also partitioned (in addition to R);
ii) exploitation of problem properties such as submodularity,
and input properties such as communities—toward improv-
ing performance and/or precision; iii) extension to other
architectures such as GPUs and vector processing units;
and iv) application to a wider range of complex real-world
networks.

Acknowledgment

This research used resources of the NERSC Center, a
DOE Office of Science User Facility supported by the Office
of Science of the U.S. DOE under Contract No. DE-AC02-
05CH11231. This research was in part supported by the U.S.
DOE by the U.S. DOE ExaGraph project, a collaborative
effort of U.S. DOE SC and NNSA at Pacific Northwest
National Laboratory (PNNL) and by the U.S. National Sci-
ence Foundation (NSF) grant 1815467 to Washington State
University. PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

References

[1] P. M. Domingos and M. Richardson, “Mining the
network value of customers,” in Proceedings of the
seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, San Fran-
cisco, CA, USA, August 26-29, 2001, ACM, 2001,
pp. 57–66.

[2] D. Kempe et al., “Maximizing the spread of influence
through a social network,” in Proceedings of the Ninth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Washington, DC,
USA, August 24 - 27, 2003, ACM, 2003, pp. 137–146.
DOI: 10.1145/956750.956769.

[3] J. Leskovec et al., “Cost-effective outbreak detec-
tion in networks,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Jose, California,
USA, August 12-15, 2007, ACM, 2007, pp. 420–429.
DOI: 10.1145/1281192.1281239.

[4] Y. Tang et al., “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in Inter-
national Conference on Management of Data, SIG-
MOD 2014, Snowbird, UT, USA, June 22-27, 2014,
ACM, 2014, pp. 75–86. DOI: 10 . 1145 / 2588555 .
2593670.

[5] Y. Tang et al., “Influence maximization in near-linear
time: A martingale approach,” in Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, ACM, 2015, pp. 1539–1554.
DOI: 10.1145/2723372.2723734.

[6] M. Minoux, “Accelerated greedy algorithms for maxi-
mizing submodular set functions,” Optimization Tech-
niques, pp. 234–243, 1978.

[7] A. Goyal et al., “CELF++: optimizing the greedy
algorithm for influence maximization in social net-
works,” in Proceedings of the 20th International Con-
ference on World Wide Web, WWW 2011, Hyderabad,
India, March 28 - April 1, 2011 (Companion Volume),
ACM, 2011, pp. 47–48. DOI: 10 . 1145 / 1963192 .
1963217.

[8] W. Chen et al., “Efficient influence maximization in
social networks,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, June 28
- July 1, 2009, ACM, 2009, pp. 199–208. DOI: 10.
1145/1557019.1557047.

[9] W. Chen et al., “Scalable influence maximization
for prevalent viral marketing in large-scale social
networks,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, July 25-28,
2010, ACM, 2010, pp. 1029–1038. DOI: 10 . 1145 /
1835804.1835934.

[10] E. Cohen et al., “Sketch-based influence maximiza-
tion and computation: Scaling up with guarantees,” in
Proceedings of the 23rd ACM International Confer-
ence on Conference on Information and Knowledge
Management, CIKM 2014, Shanghai, China, Novem-
ber 3-7, 2014, ACM, 2014, pp. 629–638. DOI: 10.
1145/2661829.2662077.

[11] C. Borgs et al., “Maximizing social influence in
nearly optimal time,” in Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA,

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

January 5-7, 2014, C. Chekuri, Ed., SIAM, 2014,
pp. 946–957. DOI: 10.1137/1.9781611973402.70.

[12] Y. Wang et al., “Community-based greedy algorithm
for mining top-k influential nodes in mobile social
networks,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, July 25-28,
2010, ACM, 2010, pp. 1039–1048. DOI: 10 . 1145 /
1835804.1835935.

[13] Y. Chen et al., “CIM: community-based influence
maximization in social networks,” ACM TIST, vol. 5,
no. 2, 25:1–25:31, 2014. DOI: 10.1145/2532549.

[14] M. Halappanavar et al., “Accelerating the mining
of influential nodes in complex networks through
community detection,” in Proceedings of the ACM
International Conference on Computing Frontiers,
CF’16, Como, Italy, May 16-19, 2016, ACM, 2016,
pp. 64–71. DOI: 10.1145/2903150.2903181.

[15] J. Kim et al., “Scalable and parallelizable processing
of influence maximization for large-scale social net-
works?” In 29th IEEE International Conference on
Data Engineering, ICDE 2013, Brisbane, Australia,
April 8-12, 2013, IEEE Computer Society, 2013,
pp. 266–277. DOI: 10.1109/ICDE.2013.6544831.

[16] N. Du et al., “Scalable influence estimation in
continuous-time diffusion networks,” in Advances in
Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held Decem-
ber 5-8, 2013, Lake Tahoe, Nevada, United States.,
2013, pp. 3147–3155.

[17] B. Lucier et al., “Influence at scale: Distributed
computation of complex contagion in networks,” in
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, Sydney, NSW, Australia, August 10-13, 2015,
ACM, 2015, pp. 735–744. DOI: 10 .1145/2783258.
2783334.

[18] H. Wu et al., “Parallel seed selection for influ-
ence maximization based on k-shell decomposition,”
in Collaborate Computing: Networking, Applications
and Worksharing - 12th International Conference,
CollaborateCom 2016, Beijing, China, November 10-
11, 2016, Proceedings, S. Wang and A. Zhou, Eds.,
ser. Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications
Engineering, vol. 201, Springer, 2016, pp. 27–36.
DOI: 10 . 1007 / 978 - 3 - 319 - 59288 - 6\ 3. [Online].
Available: https://doi.org/10.1007/978-3-319-59288-
6\ 3.

[19] H. Bauke and S. Mertens, “Random numbers for large
scale distributed monte carlo simulations,” CoRR,
vol. abs/cond-mat/0609584, 2006. arXiv: cond-mat/
0609584. [Online]. Available: http : / / arxiv.org /abs /
cond-mat/0609584.

[20] J. Leskovec and A. Krevl, SNAP Datasets: Stanford
large network dataset collection, http://snap.stanford.
edu/data, Jun. 2014.

[21] M. Minutoli et al., Pnnl/ripples. [Online]. Available:
https://github.com/pnnl/ripples.

[22] A. Irrthum et al., “Inferring regulatory networks from
expression data using tree-based methods,” PloS one,
vol. 5, no. 9, e12776, 2010.

[23] R. S. McClure et al., “Species-specific transcriptomic
network inference of interspecies interactions,” The
ISME Journal, p. 1, 2018.

[24] J. E. McDermott et al., “The effect of inhibition of
PP1 and TNFα signaling on pathogenesis of SARS
coronavirus,” BMC systems biology, vol. 10, no. 1,
p. 93, 2016.

[25] J. E. McDermott et al., “Identification and validation
of Ifit1 as an important innate immune bottleneck,”
PLoS One, vol. 7, no. 6, e36465, 2012.

[26] J. E. McDermott et al., “Topological analysis of
protein co-abundance networks identifies novel host
targets important for HCV infection and pathogene-
sis,” BMC systems biology, vol. 6, no. 1, p. 28, 2012.

Authorized licensed use limited to: Washington State University. Downloaded on May 05,2020 at 21:57:08 UTC from IEEE Xplore. Restrictions apply.

