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Abstract—Phytoplankton communities residing in the open
ocean, the largest habitat on Earth, play a key role in global pri-
mary production. Through their influence on nutrient supply to the
euphotic zone, open-ocean eddies impact the magnitude of primary
production and its spatial and temporal distributions. It is impor-
tant to gain a deeper understanding of the microbial ecology of
marine ecosystems under the influence of eddy physics with the aid
of advanced technologies. In March and April 2018, we deployed
autonomous underwater and surface vehicles in a cyclonic eddy in
the North Pacific Subtropical Gyre to investigate the variability of
the microbial community in the deep chlorophyll maximum (DCM)
layer. One long-range autonomous underwater vehicle (LRAUV)
carrying a third-generation Environmental Sample Processor (3G-
ESP) autonomously tracked and sampled the DCM layer for four
days without surfacing. The sampling LRAUYV’s vertical position
in the DCM layer was maintained by locking onto the isotherm cor-
responding to the chlorophyll peak. The vehicle ran on tight circles
while drifting with the eddy current. This mode of operation en-
abled a quasi-Lagrangian time series focused on sampling the tem-
poral variation of the DCM population. A companion LRAUYV sur-
veyed a cylindrical volume around the sampling LRAUYV to monitor
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spatial and temporal variation in contextual water column proper-
ties. The simultaneous sampling and mapping enabled observation
of DCM microbial community in its natural frame of reference.

Index Terms—Autonomous underwater vehicle (AUV), eddy,
Environmental Sample Processor (ESP), phytoplankton, sampling,
tracking.

1. INTRODUCTION

CEANIC life depends upon photosynthetic production of
O organic matter by microscopic organisms. Photosynthe-
sis requires light and nutrients, and in the open ocean it is lim-
ited by low concentrations of nutrients in shallow water that
receives the most sunlight. At the base of the nutrient impov-
erished surface layer (~100-m depth), nutrient concentrations
increase across the strong density gradient of the pycnocline.
This creates a vertically limited layer in which photosynthetic
microbes can access both nutrients from below and light en-
ergy from above. With its locally enhanced concentration of the
photosynthetic pigment chlorophyll, this layer is referred to as
the deep chlorophyll maximum (DCM) [1], [2]. The DCM is a
ubiquitous feature of open-ocean stratified ecosystems. Physi-
cal processes that alter the vertical distributions of nutrients and
DCM microbes shape the functioning of open-ocean ecosystems
and global biogeochemical cycles [3].

Among the physical processes influencing the DCM are ed-
dies, vortical circulations that affect vertical transport. Global
analyses of eddies using satellite altimeter data [4], [5] show
that eddies in our study region, north of the Hawaiian Islands
(see Fig. 1), are responsible for approximately half of the vari-
ance in sea level anomaly (SLA). These eddies have a mean
radius scale of ~100 km and a mean westward zonal propa-
gation speed of ~5 cm/s. Eddy circulation can be cyclonic or
anticyclonic (counterclockwise and clockwise in the northern
hemisphere, respectively). In the context of this study, cyclonic
eddies are of particular importance because of the consequences
of their circulation, including upward transport of nutrients and
DCM populations, which enhances both nutrient and light re-
sources for photosynthesis and thus productivity and biomass,
and changes in species composition and export of organic matter
to the deep sea [6], [7]. Furthermore, the interacting eddy field
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Fig. 1. SLA and geostrophic current velocity around the Hawaiian Islands on March 28, 2018. SLA is negative in cyclonic (counterclockwise) eddies, and positive

in anticyclonic (clockwise) eddies. Range of current speeds: 0 ~ 0.72 m/s. On
within the cyclonic eddy (marked by the box) located immediately north of the
(CMEMYS).

(see Fig. 1) can create enhanced stirring and vertical circulations
within frontal zones, which influence productivity and export of
carbon from the surface mixed layer [8].

Studies of how eddies influence open-ocean microbial pop-
ulations have largely relied on ship-based sampling strategies.
While this approach permits synoptic descriptions of eddies and
microbial populations, it cannot provide effective sampling of
DCM microbial populations in their natural frame of reference,
which is moving with ocean currents. Previously developed
Lagrangian platforms were used to measure volume transport
in the Gulf Stream [9] and Drake Passage [10], track water par-
cel motion in the convecting layer of the Labrador Sea [11]-[13],
and reveal mesoscale dynamics that influence the North Atlantic
spring bloom [14]. These passive Lagrangian platforms were
not designed to possess mobility for finding an oceanographic
feature. There is a growing effort toward enabling AUV to au-
tonomously detect and track a variety of ocean features, such
as the thermocline [15]-[18], internal waves [19], [20], various
plumes [21]-[25], intermediate nepheloid layers [26], phyto-
plankton patches [27], [28], and coastal upwelling fronts [29],
[30]. In [31], an AUV demonstrated the ability to perform a
Lagrangian-box survey around a drifter. Some AUVs are now
equipped with water samplers to take advantage of the vehicle’s
mobility to collect material while underway [26], [32]-[36].

This study integrates multiple autonomous systems, including
surface and underwater vehicles, and a robotic molecular ana-
Iytical instrument installed in one underwater vehicle, to study
DCM microbial ecology in its natural frame of reference on time
scales from hours to days, thereby permitting resolution of time-
dependent evolution of the microbial population in response to
environmental variations. The design of the March-April 2018

the day represented by this map, a four-day quasi-Lagrangian study was initiated
central islands. Data source: Copernicus Marine Environment Monitoring Service

SCOPE (Simons Collaboration on Ocean Processes and Ecol-
ogy) Hawaiian Eddy Experiment is illustrated in Fig. 2, and
details are given in Section III.

A drifting second-generation Environmental Sample Pro-
cessor (2G-ESP, a robotic sample acquisition and analysis
system [36], [37]) has been deployed to study microbial ecology
off the northern California coast [38] and in the North Pacific
Subtropical Gyre [39], [40]. The 2G-ESP was suspended at a
fixed depth (23 m) beneath a free-drifting surface float, and took
water samples every 2 or 4 h. This drifting ESP was intended
for quasi-Lagrangian sampling, but windage from the large sur-
face buoy, and the fixed depth of all samples made it difficult to
stay in the areas of greatest biological activity within the water
column. In the study presented in this paper, our goal was to
accurately follow and observe a plankton community over mul-
tiple diel cycles in the DCM layer in a cyclonic eddy. The DCM
layer is not only deep, but also undulates in depth due to internal
tides and inertial oscillations. Hence, a 2G-ESP suspended at
a fixed depth from a surface float cannot accomplish the task.
A Tethys-class LRAUV equipped with a 3G-ESP and targeted
sampling intelligence enables precise and persistent occupancy
of the DCM layer.

LRAUV Aku containing a 3G-ESP (deployed in the 2018
Hawaiian Eddy Experiment) is shown in Fig. 3. The vehicle is
3.2 m long and 0.3 m in diameter at the midsection. A Tethys-
class LRAUV can run from 0.5 to 1 m/s using a propeller.
Using a primary battery, the vehicle has demonstrated a range
of 1800 km (three-week duration) at 1-m/s speed [41]. Long
range is realized by minimizing propulsion power consump-
tion through an innovative design of a low-drag body and a
high-efficiency propulsion system [42]. In addition, by using a
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Tllustration of collaborative operation of LRAUVs Aku, Opah, and Wave Glider Mola in the experiment. Opah and Mola both acoustically tracked Aku.

Aku tracked and sampled the DCM layer (marked by the orange curve). Opah spiraled around Aku to collect contextual data.

Fig. 3.
were taken by Elisha Wood-Charlson during the experiment.)

buoyancy engine, the vehicle is capable of ballasting to neutral
buoyancy and drifting in a lower power mode. The LRAUV
thus combines the mobility and speed of propeller-driven
vehicles and energy savings of buoyancy-driven vehicles.
Aku’s science sensors suite (all in the nose section) includes
Sea-Bird Scientific (SBE) Glider Payload Conductivity-
Temperature-Depth (GPCTD) sensors,! a WET Labs BB2FL

!The SBE GPCTD sensors are installed on the vehicle’s horizontal center
plane and just outside the hull. The temperature measurement range is —5 to
442 °C with a resolution of 0.001 °C. The conductivity measurement range is
0 to 9 S/m, with a resolution of 0.00001 S/m. The depth measurement range is
0 to 350 m, with a resolution of 0.007 m.

LRAUYV Aku deployed in the March—April 2018 Hawaiian Eddy Experiment. The 3G-ESP was installed in the vehicle’s fore-mid section. (The photos

fluorescence/backscatter sensor (chlorophyll fluorescence ex-
citation wavelength 470 nm and emission wavelength 695 nm),
an Aanderaa 4831F dissolved oxygen sensor, and a LI-COR
LI-192SA PAR (photosynthetically active radiation) sensor. The
WET Labs fluorescence sensor’s raw count output is converted
to chlorophyll concentration using a formula provided by the
manufacturer, and the sensor is periodically sent back to the
manufacturer for routine calibration. The PAR sensor points to
20° from the vertical (when the vehicle lies horizontal). In this
configuration, when the vehicle runs on a yo-yo trajectory of
+20° pitch angles, the PAR sensor will point upward on ascent
profiles for accurate light irradiance measurement.
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The LRAUV software architecture uses state configured lay-
ered control [43], which divides the vehicle’s operations into a
group of behaviors assigned with hierarchical levels of prior-
ity. For each AUV mission, the vehicle runs a mission script
that invokes appropriate AUV behaviors to achieve a specified
goal [41], [44].

The 3G-ESP instrument [35], [36] is installed in the forward
pressure housing of the LRAUV. It uses cartridges to collect
and process ocean microbial samples. Up to 60 cartridges are
installed on a circular wheel, and each cartridge contains the
filters and reagents necessary for collecting and processing one
sample. The cartridges connect to a central ring of valves that are
part of a pumped seawater loop. When the LRAUV mission pro-
gram triggers a sampling event, the 3G-ESP rotates the motor-
driven cartridge wheel to align a designated cartridge with the
processing station, where power and actuators can be applied to
the cartridge. The pumped seawater loop is flushed clear, and ac-
tuators open valves to direct the seawater through the cartridge,
concentrating particles and small organisms onto the filters. Af-
ter a specified volume of water has been filtered, the seawater
valves are closed and a valve in the cartridge is moved so the
particulate material can be processed with reagents. When pro-
cessing a cartridge, either a preservative reagent in the cartridge
can be added to the sample to preserve the cellular material for
later analysis in the laboratory, or the cartridge can prepare the
sample for in situ detection and quantification of environmen-
tal targets. In this study, all particulate samples were preserved
onboard for subsequent analyses in a shore side laboratory [45].

We previously designed and field tested an algorithm for an
LRAUYV to autonomously detect and track the depth of the
chlorophyll peak, and sample at that depth [46]. However, the
chlorophyll peak’s depth varies over time because of the phy-
toplankton’s vertical migration and internal waves [47], which
was also seen in our experiment [46].

Based on the underlying physics of the chlorophyll maximum
layer in an eddy, we developed a new method for an LRAUV
to accurately track and sample the DCM layer. In the 2018
Hawaiian Eddy Experiment, a 3G-ESP LRAUV Aku ran the al-
gorithm to track the DCM layer in a cyclonic eddy for four days
and acquired 38 ESP samples. The algorithm is presented in
Section II. The experiment is described in Section III. We con-
clude and outline future work in Section IV.

II. AUTONOMOUS DETECTION, TRACKING, AND SAMPLING OF
THE DCM LAYER

A. Design Principle

Horizontal and temporal variations of the DCM layer depth
tend to follow those of an isopycnal layer [47], [48]. When den-
sity variation is dominated by temperature variation, an isopyc-
nal can be effectively tracked by tracking an isotherm. Hence, we
developed an algorithm to enable an LRAUV to autonomously
track and sample the DCM layer by locking onto the isotherm
corresponding to the chlorophyll peak. The algorithm comprises
the following key components.

IEEE JOURNAL OF OCEANIC ENGINEERING

B. Lowpass Filtering of Chlorophyll Measurement

To remove spurious peaks due to sensor noise, the raw chloro-
phyll measurement is lowpass filtered by a moving-average
window of duration 7ip. Given the chlorophyll sensor’s sam-
pling interval 75 ., the length of the lowpass filter window is
L = [1p/Ts_cni ] + 1 samples, where [-] rounds up to the near-
est integer. The real-time lowpass filtering of chlorophyll runs
as follows:

1 L-1
Chip(l) = - > Chi(l — i) (1)
1=0

where [ is the current sample index, Chl() is the raw chlorophyll
measurement, and Chlyp(() is the lowpass filtered signal.

The raw temperature measurement is lowpass filtered by the
same moving-average window of duration 7y p. Given the tem-
perature sensor’s sampling interval 7_emp, the length of the low-
pass filter window is M = [71p/Ts_temp | + 1 samples. The real-
time lowpass filtering of temperature runs as follows:

M-1

Tip(m) = % Z T(m — i) 2)

where m is the current sample index, 7'(m) is the raw tempera-
ture measurement, and 77 p(m) is the lowpass filtered signal.

The raw depth measurement is also lowpass filtered by the
same moving-average window of duration 7 p. Given the depth
sensor’s sampling interval 7,_gepm. the length of the lowpass fil-
ter window is N = [71p/Ts_depn | + 1 samples. The real-time
lowpass filtering of depth runs as follows:

N-1

2p(n) = % > xn—i) 3)

=0

where n is the current sample index, z(n) is the raw depth mea-
surement, and 2y p(n) is the lowpass filtered signal.

Note that the lowpass filter introduces a delay of 71p/2 in
Chlpp, Tip, and 2 p. Compared with chlorophyll, the tempera-
ture and depth measurements are much less noisy. Despite their
lower noise levels, we apply the same lowpass filter to tempera-
ture and depth as to chlorophyll to synchronize 71 p and 2z p with
Chlyp, as will be elaborated in Section III-B.

C. Autonomous Detection of the DCM Layer

The AUV performs the following steps to autonomously find
the peak chlorophyll layer and the corresponding isotherm, and
then stay on that isotherm. These steps are illustrated in Fig. 4,
labeled with the corresponding step number.

1) The AUV descends from the surface to DeppeepBound (@
deep bound that is sufficiently deeper than the antici-
pated DCM layer depth). On the descent, the AUV seeks
Chlip max (the peak of the Chlpp signal) and the corre-
sponding temperature 71 p chipeak- Because Chlyp and 71 p
carry the same delay of 71 p/2 (due to the same lowpass fil-
ter), T1p_chipeak truly marks the temperature of the chloro-
phyll peak, as will be seen in Fig. 7 in Section III-B.
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Fig. 4.
signal level. The darkest layer represents the DCM.

The vehicle can descend in spiral mode (propeller turned
ON with a nonzero rudder angle) or drift mode (propeller
turned OFF; adjusting buoyancy).

2) When reaching depth Deppeepound, the vehicle turns to an
ascent (in spiral mode or drift mode). To confirm the turn
from descent to ascent, the AUV checks the following two
conditions [18]: first, the depth has decreased four times in
arow. Second, the depth has decreased from the maximum
depth by more than 1 m. Once the turn is confirmed, the
vehicle reports the peak signal value Chlpp m,x of the entire
descent leg and the corresponding temperature 71 p_chipeak-

3) On the ascent, when the AUV reaches temperature
Tip_chipeak, it Stops ascending and follows the targeted wa-
ter mass by temperature. The isotherm tracking algorithm
is given in Section II-D.

D. Isotherm Tracking Algorithm

We previously designed an AUV autonomous isotherm track-
ing algorithm [49]. In an initial vertical search, the vehi-
cle records the depth corresponding to the target temperature
Tiarger and holds that depth. During depth holding, if the mea-
sured temperature 7icasured g0€S beyond a tolerance range (e.g.,
Tiarger = 0.2 °C), the vehicle ascends or descends to reacquire
the target temperature. In each reacquisition maneuver, a lock-
out time (several minutes) is allowed for any depth overshoot to
damp down. In an experiment in Monterey Bay in June 2015,
an LRAUYV ran the algorithm to track a targeted temperature
for 13 h. The standard deviation of temperature was 0.11 °C;
95% of the temperature points fell within Tiyee £ 0.25 °C. In
this method, the AUV holds depth until the temperature error
is larger than the tolerance range. This introduces a latency in
responding to temperature discrepancy.

Therefore, we improved the approach so that the temperature
error is continuously fed back to the controller for achieving a

lustration of the algorithm for autonomous detection of the DCM temperature and tracking that isotherm. The gray scale level represents the chlorophyll

more responsive and accurate isotherm tracking, as illustrated in
Fig. 5. In each control cycle of duration At, a projected temper-
ature Tpoj is calculated based on the discrepancy between the
target temperature 7, and the measured temperature Tieasureds
as well as the rate of temperature change on the vehicle’s vertical
maneuver 7. The difference between Tproj and Tipeasurea produces
a depth adjustment z,qj, which is subtracted from the measured
depth Zpeasured to give the commanded depth Zcommanded- The
AUV maneuvers (by adjusting attitude when in flight mode) to
attain Zcommanded -

III. EXPERIMENT

A. Experimental Design

During March and April 2018, two LRAUVs along with one
Liquid Robotics Wave Glider were deployed to the north of
Hawaiian Islands to investigate the diel variability of the mi-
crobial community in the DCM layer residing in a cyclonic
eddy [50], as shown in Fig. 2. LRAUV Aku carried a 3G-
ESP. Aku ran the presented algorithm to autonomously find and
track the DCM layer, and trigger 3G-ESP water sampling. Dur-
ing Aku’s submerged tracking, Wave Glider Mola acoustically
tracked it to provide safety assurance and the functionality of ter-
minating Aku’s mission. LRAUV Opah also acoustically tracked
Aku and spiraled around it to measure the contextual water prop-
erties.

Prior to the experiment, the University of Hawaii scientists
studied satellite SLA maps to identify eddies and plan ship tracks
to transect the targeted eddy. A cyclonic eddy to the northeast
of Molokai was selected for study, as shown in Fig. 6. The
sea surface sloped downward toward the eddy center (hence
the most negative SLA at the center) to balance the Coriolis
force exerted on the eddy current by the Earth’s rotation. While
R/V Falkor transected through the eddy, the onboard scien-
tists identified the eddy center by observing in real time the
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Fig. 5. Diagram of LRAUV’s control mechanism for isotherm tracking.
Trajectories of Aku (red), Mola (white), and Opah (green) from 28-Mar 13:57 to 1-Apr 14:34
overlaid on 31-Mar 14:00 CMEMS SLA and geostrophic current velocity map
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Fig. 6. Trajectories of Aku, Opah, and Mola during the four-day mission, overlaid on the CMEMS SLA and geostrophic current velocity map. The triangle and

the square mark the start and the end of the mission, respectively. Time is in Hawaii Standard Time (HST). HST = Coordinated Universal Time (UTC) — 10:00.

diminishing current velocity measured by the shipboard Acous-
tic Doppler Current Profiler (ADCP) and by tracking the depth of
isopycnal surfaces measured with the underway Conductivity-
Temperature-Depth (CTD) sensors deployed from the ship’s
stern. At the eddy center, we deployed Aku, Opah, and Mola
to kick off the experiment which comprised two legs. In leg 1
from March 17 to 21, Aku took 36 ESP samples from the DCM

layer in three segments (the vehicle surfaced between segments).
At the end of this leg, we recovered the vehicles, and retrieved
the ESP samples. On March 28, we redeployed the vehicles at
the eddy center for leg 2 through April 2, in which Aku took
46 ESP samples from the DCM layer in three segments. In the
longest segment from March 28 13:57 to April 1 14:34 (all times
in HST), Aku tracked the DCM layer to the north of the eddy
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Aku-measured chlorophyll (first panel), temperature (second and third panels), depth (fourth panel), and PAR (fifth panel) during the four-day mission.

In the first three panels, the lowpass filtered signal is plotted only on the initial dive and the succeeding ascent.

center for four days without surfacing, and took 38 ESP samples.
This longest nonstop segment is reported below.

B. LRAUV Aku’s Detection, Tracking, and Sampling of the
DCM Layer

From March 28 13:57 to April 1 14:34, Aku autonomously
found the DCM and continuously tracked the DCM layer with-
out surfacing, as shown in Fig. 7. During the four-day tracking,
Aku took 38 ESP samples: 24 samples in the layer at 3-h inter-
vals, followed by 14 samples in, below, and above the layer for
comparison. In the first panel, the raw chlorophyll is shown by
the blue dots, and the lowpass filtered chlorophyll (on the initial
dive and the succeeding ascent) is shown by the red line. The red
circle marks the peak of the lowpass filtered chlorophyll found
on the initial dive. The green dots mark the ESP sampling dura-
tion of each sample. In the second panel, the raw temperature is
shown by the blue dots, and the lowpass filtered temperature is
shown by the red line. The red circle marks the lowpass filtered
temperature corresponding to the chlorophyll peak. In the third
panel, temperature is zoomed in for examining Aku’s isotherm

tracking accuracy. The fourth panel shows Aku’s depth trajec-
tory. We see that the tracked isotherm undulated in depth. In the
fifth panel, Aku’s PAR measurement clearly shows four daily
cycles. Note that the very high PAR peak on 1 April was due to
Aku ascending to a much shallower depth (50 m) in daylight.
Details of DCM detection, tracking, and sampling are given
below.

1) Autonomous Detection of the DCM Layer: A close-up
view of the initial dive and the succeeding ascent is shown in
Fig. 8. Aku spiraled from the surface down to DeppecpBound =
260 m to seek the DCM layer. The vehicle’s rudder angle was
set to 13° and the vehicle speed was 1 m/s (with the vertical
component of 0.14 m/s). At 102.36-m depth, the vehicle found
the peak chlorophyll Chlyp hax = 0.72 pg/L and the corre-
sponding temperature 77 p cppeax = 21.04 °C. All values were
lowpass filtered output from an 8-s moving-average window.

The WET Labs BB2FL fluorescence/backscatter sensor’s
sampling frequency was 2 Hz. Hence, the 8-s sliding window
averaged 16 chlorophyll measurements to produce the lowpass
filtered output at each time instant. This was sufficient to smooth
out the noise, as shown in the upper left panel of Fig. 8. At the
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vehicle’s 0.14 m/s vertical speed, the 8-s time window was equiv-
alent to a 1.1 m depth window. The DCM thickness on Aku’s
initial dive was 8 m (when chlorophyll dropped to 90% of the
peak level). The 8-s lowpass sliding window’s thickness was
small compared with the DCM layer thickness, thus well pre-
serving the chlorophyll signal. The SBE GPCTD temperature
sensor and Keller depth sensor’s sampling frequencies were 1
and 2.5 Hz, respectively. Hence, the 8-s sliding window averaged
8 temperature measurements or 20 depth measurements.

The purpose of applying the same lowpass filter to tempera-
ture and depth as to chlorophyll was to synchronize 71 p and zy p
with Chlyp. Because they carried the same delay of 8 s/2 = 4 s,
Tip_chipeak truly marked the temperature of the chlorophyll peak,
as shown in the right panels of Fig. 8. In the upper right panel,
Chlpp (red line) has a 4-s delay relative to the raw chlorophyll
(blue dots). The red circle marks ChlLp max. With a 4-s displace-
ment (to correct the delay), the red circle falls back onto the
raw chlorophyll and is recolored blue. In the middle right panel,
Tip (red line) has a 4-s delay relative to the raw temperature
(blue dots). The red circle marks T1p chipeak that corresponds
to ChlLp max. The 4-s delay-corrected T1p chpeak (blue circle)
falls back on the raw temperature. Delay-corrected Chlip ax
and Tip chpeax are vertically aligned in the two panels, both
lying on the raw chlorophyll’s peak. This verifies that 71 p_cpipeak
corresponded to the chlorophyll peak.

Elapsed time (second) since initial dive

Aku-measured chlorophyll (upper), temperature (middle), and depth (lower) on the initial dive and the succeeding ascent.

2) Autonomous Tracking and Sampling of the DCM Layer:
Aku locked onto the 21.04 °C peak-chlorophyll isotherm for
three days to track and sample the DCM layer, as shown in the
second and third panels of Fig. 7. The standard deviation of tem-
perature was 0.06 °C; 98% of the temperature points fell within
21.04 °C £ 0.15 °C. The isotherm tracking accuracy improved
by a factor of two over the previous algorithm (in Section II-D).
The depth of the peak-chlorophyll isotherm undulated between
83 and 124 m depths. The large depth undulation of the DCM
layer manifests the importance of enabling the LRAUV to track
the peak-chlorophyll isotherm rather than a certain depth.

Aku triggered the 3G-ESP sampling every 3 h. For each sam-
ple, filtration took 65 min and processing took 12 min. A 100-
min wait was inserted before the next sampling to make the inter-
sample spacing 3 h. Thus, 24 samples were acquired inside the
DCM layer in three days. On the fourth day, Aku switched to
a different sampling sequence to acquire 14 ESP samples from
inside, below and above the DCM layer for comparison: 2 in
DCM; 2 at 250-m depth; 2 at 50-m depth; 2 in DCM; 2 at 250-m
depth; 2 at 50-m depth; 2 in DCM. In total, 38 samples were
acquired in four days. All particulate samples were preserved to
support transcriptomic analysis after vehicle recovery.

The chlorophyll fluorescence and PAR levels in the DCM
layer measured by Aku are shown in the first and fifth panels
of Fig. 7, respectively. The DCM chlorophyll fluorescence level
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exhibited diel variation, and the daily highest level was reached
around 15:00 (local time), following the daily peak in PAR. The
daily chlorophyll fluorescence peak level also showed day-to-
day variation co-varying with the PAR level. These variations
in chlorophyll fluorescence may have been associated with pop-
ulation growth, variation of cell pigmentation levels [48], and
nonphotochemical quenching, which can occur at low PAR lev-
els [51]. The diel pattern of the DCM chlorophyll level is similar
to that observed in a separate experiment in the North Pacific
Ocean (27.7° N, 139.5° W) measured by an autonomous pro-
filer [52].

On the 21.04 °C isotherm of the DCM, Aku ran on tight circles
(circle radius ~10 m) at 13° rudder angle and 1 m/s speed while
drifting with the eddy current. The trajectories of Aku, Opah,
and Mola during Aku’s four-day mission are shown in Fig. 6.
Mola’s trajectory is given by its continuous GPS tracking on the
sea surface. Opah’s trajectory is estimated by underwater dead-
reckoned navigation that is corrected by periodic GPS fixes on
the surface. Aku’s trajectory is estimated by combining Mola’s
own location and Aku’s acoustic range and bearing from Mola
(with a horizontal positioning error of about 50 m).

In 74-h continuous tracking of the DCM layer, Aku drifted
72 km in the eddy current at an average drift speed of 0.27 m/s.
Concurrently, a GPS-tracked drifter comprising a surface float
and a drogue at 120-m depth was deployed near Aku. In the
same 74-h duration, the drifter drifted 71 km at an average drift
speed of 0.27 m/s. Another reference was Falkor’s shipboard
ADCP measurement near Aku’s route. The ADCP-measured
Earth-referenced current velocity at the 103-m depth bin (nearest
DCM’s mean depth of 105 m) in this duration was 0.25 m/s. The

12:00

00:00
31 March

Aku’s depth trajectory overlaid on Opah-measured contextual chlorophyll (upper) and temperature (lower), respectively.

closeness between Aku’s drift speed and that of the drifter as well
as the ship ADCP-measured eddy current velocity shows that
Aku largely followed the DCM water mass in a quasi-Lagrangian
mode.

C. LRAUV Opah’s Contextual Mapping Around Aku

Mola, Opah, and Aku were each equipped with a Tele-
dyne Benthos directional acoustic transponder that integrates an
acoustic modem and an ultra-short baseline acoustic positioning
system. Opah acoustically tracked Aku, while spiraling up and
down between 50 and 200 m depths around Aku to measure the
contextual water properties. During the four-day mission, the
distance between the two vehicles varied from 30 m to 3 km, av-
eraging 840 m. It is useful to know how representative the water
column structure mapped by Opah was in relation to Aku, con-
sidering the distance between them and the DCM structure. This
requires synoptic mapping data of the eddy, as acquired by Opah
and Aku on two 100-km cross-eddy yo-yo transects (north-south
and east-west, respectively) prior to Aku sampling mission. The
average DCM thickness (when chlorophyll dropped to 90% of
the peak level) was 13 m. At 3-km distance, the average differ-
ence of DCM depths was 7 m, smaller than the DCM thickness.
This indicates that Opah water column data accurately repre-
sented the vertical structure around Aku during the sampling
mission.

In the upper panel of Fig. 9, Aku’s depth trajectory is over-
laid on Opah-measured contextual chlorophyll. The overlap of
Aku’s depth and Opah-measured chlorophyll-maximum depth
confirms that Aku precisely tracked the DCM layer. In the lower
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panel, Aku’s depth trajectory is overlaid on Opah-measured con-
textual temperature, which shows that Aku stayed on the targeted
isotherm corresponding to the DCM.

IV. CONCLUSION AND FUTURE WORK

In the 2018 SCOPE Hawaiian Eddy Experiment, a 3G-ESP
LRAUY ran our targeted sampling algorithm to autonomously
detect, track, and sample the DCM layer in a cyclonic eddy for
four days and acquired 38 water samples from inside, below,
and above the DCM layer. Molecular analysis of the samples
is underway, aimed at understanding the function, activity, and
environmental sensitivities of microbial populations over four
consecutive diel cycles. The result is expected to shed light on
how eddy physics affects biological processes and ocean pro-
ductivity over time.

In the Hawaiian Eddy Experiment, all cartridges were of
“archival” type, i.e., the samples were preserved for lab anal-
ysis after the LRAUV was recovered. We are currently working
on another type of cartridge that will allow on-board process-
ing of filtered material, creating a homogenate for downstream
in situ analysis [36]. To perform the in situ analysis, reactive
reagents are added to the filtered material, which is then heated
to release the genetic material and proteins. Additional reagents
are added to the sample, and the mixture is pushed from the car-
tridge to a detection instrument embedded within the 3G-ESP.
The detection instruments (under development) will target envi-
ronmental toxins or nucleic acids. Real-time molecular detection
and reporting opens exciting possibilities for 3G-ESP LRAUVs
to react to genomic findings and accordingly modify missions
to maximize scientific gains.

Multivehicle collaboration allowed continuous sampling and
contextual mapping in a moving eddy field, enabling quasi-
Lagrangian observation of DCM microbial ecology [53]. The
Wave Glider and the contextual-mapping LRAUV acoustically
tracked the sampling LRAUYV, but there was no data exchange
between them. We are in the process of testing intervehicle
acoustic messaging. Exchange of key information (e.g., chloro-
phyll level and ESP status) will greatly improve efficiency,
flexibility, and persistence of autonomous targeted sampling
missions.
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