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1 Introduction and summary

A class of counterexamples to weak cosmic censorship in anti-de Sitter (AdS) spacetime

was proposed in [1] and studied numerically in [2]. They involve solutions where an electric

field grows in time without bound, producing arbitrarily large curvature that is visible to

infinity. It was suggested [3] that these counterexamples might be removed if the weak

gravity conjecture [4] holds, which states that any consistent quantum theory of gravity

must have a stable particle with q/m ≥ 1. The idea behind this suggestion is that if

charged particles are present, they will be pair created in the growing electric field, and

their backreaction might stabilize the electric field.

This possible connection between weak gravity and cosmic censorship was explored

in [5]. Rather than tackle the difficult quantum field theory in curved spacetime problem

mentioned above, the charged matter was modeled by a classical charged scalar field.1 It

was found that if the charge to mass ratio of the scalar field was large enough, the original

Einstein-Maxwell solutions became unstable to turning on the scalar, and the electric field

did not diverge. Remarkably, the minimum value of this ratio required to preserve cosmic

censorship was found to be precisely the weak gravity bound.

To further explore this mysterious connection, we now investigate two generalizations.

The first is to add a dilaton, i.e., a neutral scalar field φ with a coupling to the Maxwell field

of the form e−2αφF 2 for some constant α. In the asymptotically flat case, static charged

1This is a reasonable classical version of the weak gravity conjecture if the predicted particle has spin

zero. We will assume this is the case.
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black holes to this theory were found in [6, 7]. These black holes have an extremal limit

with Q2/M2 = 1 +α2. The fact that extremal black holes have Q2 > M2 is a consequence

of the result that (like Reissner-Nordstrom black holes) there is no force between them, so

the electrostatic repulsion must now balance both the gravitational and scalar attraction.

The weak gravity bound in the presence of dilatons has been discussed in the literature

(see, e.g., [8]). The new bound is simply that q/m should violate the extremality bound

for black holes: q2/m2 ≥ 1 + α2.

We will first show that there are analogs of our counterexamples to cosmic censorship

if we add a dilaton with any coupling α. We will then show that these counterexamples

are all removed if we add a charged scalar field satisfying the modified weak gravity bound.

This would not be true if we used the original weak gravity bound. (As discussed in [5]

and reviewed below, the weak gravity bound is slightly different in AdS, and we use the

AdS version.) When α < 1 we will also show that the weak gravity bound is not only

sufficient but also necessary to preserve cosmic censorship for this class of examples. For

α > 1, we have not been able to establish that the bound is necessary, and it may be

possible to lower the charge to mass ratio slightly. It is interesting to note that spherical

charged black holes also behave very differently depending on whether α < 1 or α > 1. For

α < 1, as one approaches extremality, the Hawking temperature T goes to zero, just like

the familiar Reissner-Nordstrom black holes. However, for α = 1, T approaches a constant

and for α > 1, T diverges. If the bound is not strictly necessary for α > 1, it might be

related to this unusual black hole behavior.

The second generalization that we will consider is to add a second Maxwell field. It is

easy to see that the weak gravity bound must again be modified in this case. This bound

is supposed to allow extremal black holes to decay. With two Maxwell fields, an extremal

black hole satisfies M2 = Q2
1 + Q2

2. Suppose it tries to decay into two particles, one with

q1 = Q1 and the other with q2 = Q2. If mi = qi, then M2 = m2
1 + m2

2 < (m1 + m2)2.

So there is not enough energy in the black hole to create the two particles. The general

condition on the charge to mass ratios of the particles that allows a black hole with multiple

charges to decay was derived in [9]. This is the weak gravity bound that we will investigate.

We study a theory with two Maxwell fields and two charged scalars coupled to gravity

(with a negative cosmological constant). Without the scalars, there are counterexamples

to cosmic censorship as before. We then add the scalars and find that the new weak gravity

bound is again precisely what is needed to remove these counterexamples. This is highly

nontrivial as the bound on q1/m1 depends on q2/m2 (and vice versa) and the two scalar

fields interact with each other only through gravity.

We find these results quite mysterious. The main open problem raised by this work is

to understand why there is such a close connection between cosmic censorship and weak

gravity, two conjectures that appear totally unrelated.

It is perhaps ironic that for many years people hoped that cosmic censorship would

fail so that we had the possibility of observing effects of quantum gravity. Now we find

that a conjecture about quantum gravity is preserving cosmic censorship. It appears that

quantum gravity wants to remain hidden.
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2 Review of previous work

In this section we review the earlier work showing a connection between the cosmic cen-

sorship and weak gravity conjectures. Consider the bulk action

S =
1

16πG

∫
d4x
√
−g
(
R+ 6− F abFab

)
, (2.1)

F ≡ dA is the Maxwell field and we have set the AdS length scale to one. With AdS

boundary conditions, one is free to specify the (conformal) boundary metric at asymptotic

infinity, as well as the asymptotic form of the vector potential Aa. We choose the boundary

metric to be flat (as in standard Poincaré coordinates for AdS)

ds2
∂ = −dt2 + dr2 + r2dϕ2 , (2.2)

and the potential to asymptotically have only a nonzero time component of the form

A∂ =
A(t) dt(
1 + r2

`2

)n
2

=
a(t) dt

(1 + r2)
n
2

. (2.3)

where ` is a length scale and n is an integer controlling the fall-off at large r. In the last

step we have used the conformal invariance of the asymptotic boundary metric: only the

dimensionless product a = A ` is physically meaningful so we can set ` = 1 without loss

of generality.

When the amplitude a is constant, static zero temperature solutions were found in [10]

for various n. One family of such solutions describe static, self-gravitating electric fields

in AdS. This family extends from a = 0, where it meets with pure Poincaré AdS, to

a maximum amplitude a = amax, where a naked curvature singularity appears. amax

increases with n but is always finite.2 In [1], it was shown that the singularity extends for

all a > amax.

Now suppose a(t) is initially zero, and increases to a constant value larger than amax.

Since there is no smooth static endpoint, it is likely that the curvature will grow indefinitely.

In [2], the time dependent solution was found numerically for the case n = 1 and it was

shown that F 2 does indeed grow as a power of time. This produces increasing curvature not

just near the axis of symmetry, but everywhere along the horizon. Interestingly enough, the

intrinsic geometry of the horizon does not become singular. It is derivatives off the horizon

that became large. The solutions are axisymmetric, but nonaxisymmetric perturbations

do not affect the evolution. This is because they are clearly stable in pure AdS, so will

decay away before a(t) is turned on. Even though the curvature does not diverge in finite

time, this clearly violates the spirit of cosmic censorship.

To see the effect of the weak gravity conjecture, we add a charged scalar field Φ

with action

Sm = − 1

4πG

∫
d4x
√
−g
[
(DaΦ)(DaΦ)† + m2ΦΦ†

]
, (2.4)

2Even if A∂ has compact support, there is a maximum amplitude.
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where Da = ∇a − i q Aa, m is the charged scalar field mass and q its charge. The weak

gravity conjecture in AdS differs from the asymptotically flat version. To derive the new

bound, we require that extremal charged black holes can decay. In flat space, this is a

purely quantum mechanical instability, but in AdS it turns out to give rise to a classical

instability. This instability is the so called charged superradiant instability [11, 12] whose

endpoint has been studied over the past decade [13–19].

In AdS, the onset of this superradiant instability depends on the size of the black

hole. To stay as close as possible to the original weak gravity conjecture, we consider an

arbitrarily small black hole. Superradiant scattering for a scalar field of mass m and charge

q occurs if [11, 12]

0 < ω < q µ , (2.5)

where ω is the frequency of the perturbation we are considering and µ is the difference

between At at infinity and on the horizon. To leading order in the size of the black hole,

small extremal black holes have µ = 1 and the minimum possible frequency is given by the

normal mode in AdS: ω = ∆ where

∆ =
3

2
+

√
9

4
+m2 . (2.6)

In the context of gauge/gravity duality, ∆ is the conformal dimension of the operator dual

to Φ. Substituting in eq. (2.5), gives the following lower bound on the scalar field charge q

q ≥ qW ≡ ∆ . (2.7)

This is the weak gravity bound in AdS.

It was shown in [1] that if q ≥ qW , the static solutions with constant a become unstable

to turning on Φ as a is increased: for all profiles n, Φ perturbations become unstable before

a reaches amax. It was also shown that once Φ is nonzero, there is no maximum amplitude,

so cosmic censorship cannot be violated as before. The previous solutions also become

unstable for q slightly less than qW , but in this case, the solution with scalar field included

becomes singular as a increases, so one could again violate cosmic censorship. Thus, the

minimum q to preserve cosmic censorship is precisely the weak gravity bound. Note that we

do not require that our field with q > m has the smallest charge for this gauge field. If there

was another field with q � m, it would simply remain zero and not affect the evolution.

In [20] an attempt was made to find analogous vacuum counterexamples to cosmic

censorship in AdS. The boundary metric was chosen to take the form

ds2
∂ = −dt2 + dr2 + r2[dφ− ω̃(r)dt]2 , (2.8)

with

ω̃(r) = a p(r). (2.9)

These metrics describe geometries with differential rotation with an amplitude a and profile

p(r) that vanishes as r →∞. It was again found that smooth stationary solutions exist only

up to a maximum amplitude amax. This is true both at zero and nonzero temperature. To

– 4 –



J
H
E
P
0
6
(
2
0
1
9
)
1
2
2

try to violate cosmic censorship, one can work at zero temperature and let the amplitude

increase from zero to a value greater than amax. Since there is no smooth stationary final

state, it is likely that the curvature will grow without bound. The weak gravity bound

cannot remove these examples since there is no Maxwell field.

However there is a problem with these vacuum examples. Before reaching amax, the

boundary metric develops an ergoregion which extends into the bulk. The amplitude where

the ergoregion first forms depends on the profile, but it is always less than amax. Since

there are negative energy excitations in the ergoregion, the total energy can be reduced.

It was argued in [20] that with boundary metrics of this type, the energy is likely to be

unbounded from below. Since one usually requires theories to have a minimum energy

ground state, these examples are not on the same footing as the electromagnetic ones.

Thus, at present, the strongest counterexamples to cosmic censorship involve a Maxwell

field and are removed by assuming the existence of charged matter satisfying the weak

gravity bound. Below we will present further evidence for a deep connection between the

cosmic censorship and weak gravity conjectures.

3 The dilatonic case

3.1 Charged dilatonic black holes and the weak gravity bound

Supergravity and string theory contain dilatons, i.e., neutral scalar fields with exponential

coupling to matter fields. We will consider the following action

S =
1

16πG

∫
d4x
√
−g
[
R+ 6− e− 2αφF abFab − 2∇aφ∇aφ

]
, (3.1)

where φ is the dilaton and α ∈ R is a dilatonic coupling. The equations of motion derived

from the action (3.1) can be recast in the following form

Rab + 3gab = 2∇aφ∇bφ+ 2 e− 2αφ

(
F c
a Fbc −

1

4
gabF

cdFcd

)
, (3.2a)

∇a
(
e− 2αφF ab

)
= 0 , (3.2b)

∇a∇aφ+
α

2
e− 2αφF abFab = 0 . (3.2c)

The system of PDEs (3.2) enjoys the following discrete symmetry (φ, α) ↔ −(φ, α), that

we can use to take α ≥ 0 without loss of generality. Also, we note that when α = 0, we

can consistently set φ = 0, in which case eq. (3.1) reduces to the Einstein-Maxwell action

which was studied in great detail in [1, 2, 5, 10] and reviewed in the previous section.

The weak gravity bound for theories with dilatons was discussed in [8]. To motivate

their condition, consider the static asymptotically flat black hole solutions to the equa-

tions (3.2) without the cosmological constant. These were found in [6, 7] and take the form

ds2 = −f(r)dt2 + f(r)−1dr2 +R(r)2dΩ (3.3)

where

f(r) =

(
1− r+

r

)(
1− r−

r

) 1−α2
1+α2

, R(r) = r

(
1− r−

r

) α2

1+α2

(3.4)
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The vector potential is A = (Q/r)dt and the dilaton is

eφ =

(
1− r−

r

) α
1+α2

(3.5)

The mass and charge of these black holes are

M =
r+

2
+

(
1− α2

1 + α2

)
r−
2
, Q =

(
r+r−

1 + α2

)1/2

(3.6)

and their Hawking temperature is

T =
1

4πr+

(
r+ − r−
r+

) 1−α2
1+α2

(3.7)

The extremal limit corresponds to r+ = r−, which implies

Q2

M2
= 1 + α2 (3.8)

Note that in the extremal limit, the horizon shrinks to zero size and the solution is singular.

The dilaton diverges there, but F 2 remains finite. For α < 1, T → 0 in the extremal limit

as usual, but for α = 1 it remains constant and for α > 1 it diverges. Some implications of

this unusual behavior are discussed in [21].

The weak gravity bound should be the condition for (near) extremal black holes to

exhibit charged superradiance. For a charged scalar field that is not directly coupled to

the dilaton, this condition is still ω < qµ. But now µ = Q/r+ = (1 + α2)−1/2. So in

asymptotically flat spacetime, the weak gravity bound would be q/m > (1 + α2)1/2 since

the minimum frequency is ω = m. Note that this is just the statement that one needs a

particle that exceeds the extremality bound for black holes. However, as explained earlier,

in AdS the minimum frequency is not m but ∆. So the bound is

q ≥ qW ≡ ∆(1 + α2)1/2 (3.9)

3.2 Results without charged matter

We numerically constructed static, zero temperature solutions to this theory with a flat

boundary metric and boundary vector potential

A∂ =
a dt(

1 + r2
)4 . (3.10)

(Other choices of fall-off yield similar results.) In the appendix we briefly describe the

numerical method used to obtain these solutions. We again investigated whether a max-

imum amplitude exists when there is a dilatonic coupling. This turns out to be the case,

as can be observed in figure 1, where we plot in a logarithmic scale the maximum of the

Kretschmann scalar, over the whole spacetime, as a function of the boundary amplitude a.

For this case, we used α = 1, but similar results hold for different values of α. The solution

appears to develop a singularity as we approach amax.

– 6 –
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Figure 1. Logarithmic plot of the maximum of the Kretschmann scalar, over the whole spacetime,

as a function of the boundary amplitude a for α = 1. Different values of α show a similar qualitative

behaviour. The red dashed line denotes the curvature of pure AdS.
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Figure 2. amax as a function of α: increasing α decreases amax.

Next we studied how amax depends on α. It turns out that as α increases, we see that

amax decreases. This is exemplified in figure 2, where we plot amax as a function of α. This

is perhaps expected since the electromagnetic contribution to the stress energy tensor is

enhanced by a e−2αφ factor with respect to the α = 0 case, i.e., pure Maxwell case. We note

that for positive α, φ must be negative, because of a simple maximum principle argument:

since A only has a time component, F abFab ≤ 0 and eq. (3.2c) implies ∇2φ ≤ 0. Since

φ vanishes on all boundaries, it follows that it cannot have any local positive maximum,

so it must be negative everywhere. Naturally, we have checked this to be true for all our

solutions. However this argument is not the whole story, since we will soon see that the

Maxwell field itself is smaller (for the same source) when the dilaton is present.

As before, if we now allow the amplitude to be time dependent and grow from a = 0

to a > amax we expect the curvature to grow without bound. Thus these examples provide

– 7 –
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a new class of theories where one can violate weak cosmic censorship. Next, we would like

to understand whether the inclusion of a charged scalar field can save cosmic censorship.

3.3 Results with charged matter

We now add to eq. (3.1) a charged scalar field Φ with charge q and mass m:

S =
1

16πG

∫
d4x
√
−g
[
R+ 6− e− 2αφF abFab

− 2∇aφ∇aφ− 4(DaΦ)†(DaΦ)− 4m2 Φ†Φ
]
, (3.11)

where D = ∇ − i q A and q is the scalar field electric charge. The new equations of

motion read

Rab + 3gab = 2∇aφ∇bφ+ 2 e− 2αφ

(
F c
a Fbc −

1

4
gabF

cdFcd

)
(3.12a)

+ 2(DaΦ)(DbΦ)† + 2(DaΦ)†(DbΦ) + 2m2 gabΦ
†Φ ,

∇a
(
e− 2αφF ab

)
= i q [(DbΦ)Φ† − (DbΦ)†Φ] , (3.12b)

∇a∇aφ+
α

2
e− 2αφF abFab = 0 , (3.12c)

DaDaΦ = m2Φ . (3.12d)

To check whether the solutions discussed in section 3.2 are stable to turning on Φ, we

will first consider the case where Φ is perturbatively small, such that its backreaction on

the metric, gauge field and dilaton is negligible. In this case, we merely search for linear

solutions of eq. (3.12d) around the above backgrounds, for several values of m. Instead

of m, we will parametrise our solutions by ∆ (2.6). Finiteness of energy requires ∆ ≥ 1,

with saturation occurring at the so called unitarity bound. We considered both ∆ = 4

and ∆ = 2 corresponding to m2 = 2 and m2 = −2, and obtained similar results in all

our studies.

We are interested in studying the onset of scalar condensation around our backgrounds

as a function of the boundary amplitude a. These perturbative solutions are independent

of time and axisymmetric. We thus view eq. (3.12d) as an eigenvalue equation for q2, for

given value of a.

First, we studied the linear results for ∆ = 4. We find that for all α, there exists a

critical value of q above which the dilatonic solutions become unstable to charged scalar

perturbations. For a fixed amplitude on the boundary, the critical value of q increases with

α, since the electric field is reduced. Furthermore, as we approach amax, this critical value

always drops below the weak gravity bound. This is shown in figure 3, where we plot q/qW

as a function of a for several values of α, which are labelled on the figure. This means that

if the weak gravity bound is satisfied, our dilatonic counterexamples to cosmic censorship

are not valid, and we must study the solutions with the charged scalar included. This is

not true if we use the pure Maxwell bound q ≥ ∆. For α ≈ 1, the dilatonic solutions

remain stable for some charges satisfying this condition. One needs the stronger bound

– 8 –
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Figure 3. Minimal charge q for condensing Φ as a function of the boundary amplitude a for several

values of the dilaton coupling α, which are labelled on the right.

q > qW (3.9) predicted for dilatonic theories to ensure instability. Similar results hold for

any value of ∆ we have tried.

Next, we constructed the full nonlinear solutions with the charged scalar included

(see appendix). For this we found it easier to use ∆ = 2, which we assume henceforth. If

q ≥ qW, we find no evidence of a maximum amplitude. This is best illustrated by looking at

the expectation value of the operator O dual to Φ evaluated at the origin on the boundary.

In figure 4 we plot this expectation value for q = qW as a function of the amplitude a.

We see the condensation starting around a ∼ 3.33, and the solutions extending to values

as large as a ∼ 20. This figure was constructed for α =
√

3, but similar behaviour occurs

for different values of α. Thus, if the weak gravity bound is satisfied, one cannot violate

cosmic censorship this way.

Figure 3 shows that we can lower the charge slightly below the weak gravity bound and

still turn on Φ. However, if α < 1, there is again a maximum amplitude where the solution

becomes singular. To show this, we started with the q = qW solutions with a > amax and

lowered q until we found an obstruction. This is illustrated in figure 5 where we show the

onset curve for Φ for a < amax, and the corresponding singular curve for a > amax. The

two plots correspond to two different choices of dilaton coupling: α = 1/
√

3 and α = .9 .

(The value α = 1/
√

3 is obtained by dimensionally reducing a five dimensional charged

black string [22].) Notice that both singular curves approach the weak gravity bound, but

as α → 1, the approach becomes very slow. Whenever there is a maximum amplitude for

smooth solutions, one can violate cosmic censorship by increasing the amplitude on the

boundary past this bound. This shows that for α < 1, the weak gravity bound is precisely

what is needed to preserve cosmic censorship.

For α > 1, the singular curve does not seem to approach the weak gravity bound.

This is shown in figure 6 which was computed for α =
√

3. (This value is obtained by

– 9 –
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Figure 4. Central value of expectation value of the operator dual to Φ as a function of the boundary

amplitude a for α =
√

3. The condensation occurs around a ∼ 3.33, in accordance with the linear

results. There is no maximum amplitude.
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Figure 5. For α < 1, the bound on q/∆ needed to preserve cosmic censorship is precisely the weak

gravity bound: the blue solid line indicates the onset of solutions with Φ 6= 0, and the red dots

show the approximate location of singular solutions. On the left plot we have α = 1/
√

3 and on the

right α = 0.9. Notice the different scale on the horizontal axes. In both cases, ∆ = 2.

standard Kaluza-Klein reduction of a five dimensional vacuum solution.) It is possible

that the singular curve will eventually approach q/qW = 1 at much larger amplitudes, but

if not, cosmic censorship is preserved in these theories for charges slightly less than the

weak gravity bound. The borderline case of α = 1 is the value of the dilaton in string

theory. The plot in this case looks similar to the case α = 0.9.

We do not understand the qualitative difference between α < 1 and α > 1. However it

is worth recalling another qualitative difference between these two cases: the temperature

of black holes vanishes in the extremal limit if α < 1 and diverges if α > 1. It is tempting to
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Figure 6. The blue solid line indicates the onset of solutions with Φ 6= 0, and the red dots the

approximate location of singular solutions. This plot was generated with α =
√

3. Similar results

hold for α ≥ 1.

think there might be a connection between these two facts, even though there are no black

holes in our examples. It was shown in [21] that even though the temperature diverges

when α > 1, the flux of energy at infinity still goes to zero in the extremal limit. The black

hole effectively becomes thermally insulated from the asymptotic region by large potential

barriers. This means that extremal black holes will still not evaporate.

Finally, we note that the approach to the singularity is not monotonic in q. This is a

new feature which does not seem to occur for α = 0. In fact, we suspect that the approach

will exhibit a spiralling behaviour similar to the one observed in [23]. One quantity where

this behaviour is apparent is the maximum value of |F 2| over the whole spacetime, which

we plot in figure 7 for fixed a = 10 and α = 1. This maximum value is finite at qmin, but

then grows rapidly on a second branch of solutions at slightly larger q.

4 The multi-charged case

4.1 The field equations and weak gravity bound

In this section, we study the effect of two Maxwell fields and their respective charged

scalars, without a dilaton. The new action reads

S =
1

16πG

∫
d4x
√
−g

[
R+6−

2∑
I=1

(
F ab
I FI ab + 4 (D a

I ΦI)
†(DI aΦI) + 4m2

IΦ
†
IΦI

)]
, (4.1)

where upper case latin indices label the fields, FI = dAI , DI = ∇ − iqI AI and m2
I =

∆I(∆I − 3), all for I = 1, 2. Unless otherwise stated, repeated upper case latin indices

should not be summed over.
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Figure 7. Approach to the singular solution for fixed α = 1, and a = 10: for a small range of q,

there is a two-fold non-uniqueness.

The equations of motion are:

Rab + 3gab = 2

2∑
I=1

[
F c
I aFI bc −

1

4
gabF

cd
I FI cd

]

+ 2

2∑
I=1

[
(DI aΦI)(DI bΦI)

† + (DI aΦI)
†(DI bΦI) + m2

I gabΦ
†
IΦI

]
, (4.2a)

∇aF a
I b = i qI [(DI bΦI)Φ

†
I − (DI bΦI)

†ΦI ] , (4.2b)

DI aD a
I ΦI = m2

IΦI . (4.2c)

For concreteness we will also use ∆1 = ∆2 = 2, corresponding to the masses m2
1 = m2

2 = −2.

The weak gravity bound must be modified when there is more than one type of charge.

This can be seen as follows [9]. An extremal black hole with charges QI can decay into

particles with charges qI and masses mI only if QI = nIqI and

∑
I

(nIqI)
2 = M2 ≥

(∑
I

nImI

)2

(4.3)

In our case when there are two types of charge, this implies that the charge to mass ratios

zI = qI/mI satisfy

z2
1 + z2

2 ≤ (z1z2)2 or equivalently
1

z2
1

+
1

z2
2

≤ 1 (4.4)

Geometrically, this is the statement that the convex hull of the charge to mass ratios

includes the unit disk [9]. In AdS, the bound is identical with the understanding that

zI = qI/∆I .
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For simplicity, we take two scalar fields, but we suspect that our conclusions will remain

unchanged for more charged scalar fields. We will also take the profile of the gauge fields

at the boundary to have the same functional dependence in r, but different amplitudes.

That is to say, we choose

AI ∂ =
aI

(1 + r2)4
dt . (4.5)

We have tried a couple of different fall offs, and the results remain unchanged.

4.2 Results without charged fields and their stability

When ΦI = 0, the solutions for any a1 and a2 can be determined from the results for the

single field case [1, 5, 10] by symmetry. First we note that without any scalars, our action

has a U(1) symmetry which rotates the two Maxwell fields. This means that for any a1,

a2, we can choose an angle θ so that a1 sin θ = a2 cos θ. Then if we define

Â = A1 cos θ +A2 sin θ (4.6)

the orthogonal linear combination will have no source on the boundary and hence vanish

everywhere. Thus, our solutions reduce to the one charge case for Â with amplitude

a = (a2
1 + a2

2)1/2. It follows that everywhere in the solution

A1 = Â cos θ , A2 = Â sin θ . (4.7)

Clearly, smooth static solutions again only exist up to a maximum amplitude, and the

counterexamples to cosmic censorship that we had before trivially extend to this theory

(with ΦI = 0).

When we add the two scalars with different charges we break the U(1) symmetry. But

to compute when these solutions become unstable, we treat the scalars as linear pertur-

bations and can use the background symmetry. At linear order, i.e., solving for eq. (4.2c)

around solutions with ΦI = 0, we have an equation depending on, e.g., q1A1 = q1Â cos θ.

For any amplitude for Â, the onset of the instability must satisfy

q1 cos θ = q2 sin θ ⇒ q1a1 = q2a2. (4.8)

This relation makes it easy to read off the onset of the instability of the two Maxwell

field solutions from the known results for a single field. If the single field solution with ampli-

tude a0 becomes unstable for q > q0, then the two charge solution with a1 = a0 cos θ, a2 =

a0 sin θ becomes unstable for q1 > q0/ cos θ or q2 > q0/ sin θ. Thus the onset of the insta-

bility for solutions with a2
1 + a2

2 = a2
0 satisfies(
q0

q1

)2

+

(
q0

q2

)2

= 1 (4.9)

In particular, this is true at the maximum amplitude amax. For a profile such as (4.5) for

the single field case, we find q0 ≈ 1.38564 for amax ≈ 7.97 [5, 10].

This result of linear stability is illustrated in figure 8. The top orange region is the

region satisfying the weak gravity bound (4.4). The lower boundary of the blue region is
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Figure 8. The weak gravity bound (4.4) is satisfied in the orange region. The boundary of the

blue region denotes the stability boundary (for ∆1 = ∆2 = 2) in the sense that the solutions remain

stable for all a < amax only for charges below (or to the left of) this boundary. Since these regions

do not intersect, our solutions always become unstable before reaching amax.

the curve (4.9) with q0 ≈ 1.38564 corresponding to a = amax. For smaller amplitudes, this

threshold curve moves up into the blue and orange regions. Note that if a point (q̃1, q̃2)

is the onset of the instability for a particular solution with amplitudes aI , that solution

is stable only if both charges are less than these values, i.e., only if the charges lie in the

bottom rectangle 0 ≤ q1 ≤ q̃1 and 0 ≤ q2 ≤ q̃2. Once we reach amax, this bottom rectangle

never intersects the orange region showing that if the weak gravity bound is satisfied, the

solutions always become unstable before reaching amax.

4.3 Results with charged matter

We again numerically solved the full nonlinear equations with scalars, looking for zero

temperature static solutions. We took data of the form a1 = λ a2 for different values of

λ > 1.3 By virtue of this choice, a1 will be larger than a2, so it will always be easier to

condense Φ1 than Φ2, i.e., the minimum value of q1 necessary to condense Φ1 will always

be smaller than the value of q2 needed to condense Φ2.

We first explore whether there is still a maximum amplitude. So we fix λ > 1 and take

a pair (q1, q2) saturating the the weak gravity bound. We then increase the amplitude a2

keeping a1 = λ a2. There are three different phases: an initial phase where both ΦI = 0, a

second phase where one scalar turns on but the other is still zero, and a final phase with

both ΦI 6= 0.

If we allow only the first scalar to condense, the solution eventually becomes singular

at some critical value of a2 = a?2 > a2 max: the reason being that there is no charged scalar

field to shield the electric field created by the second Maxwell field. This is illustrated in

figure 9 where we fixed q1 = 4/
√

3, q2 = 4 and λ = 3. With these values, Φ1 condenses

3Values of λ < 1 can be recovered by exchanging (Φ1, A1)↔ (Φ2, A2).
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Figure 9. |F 2
I | as a function of a2, for a1 = 3 a2, q1 = 4/

√
3 and q2 = 4. The blue disks correspond

to |F 2
1 |, and the orange squares to |F 2

2 |. The vertical dashed black line marks the onset of Φ1.

first. The plot shows the maximum value of both |F 2
1 | and |F 2

2 | as we increase a2. The

vertical line marks the onset of condensation of Φ1, before which the solution has vanishing

scalar fields, and after which Φ1 6= 0 but Φ2 = 0. The blue disks represent |F 2
1 | and the

orange squares |F 2
2 |. As a2 increases, Φ1 condenses and screens the electric field due to A1,

but there is nothing to screen A2, since we have enforced Φ2 = 0. Eventually, |F 2
2 | becomes

too large, leading to an appearance of a singularity in the bulk, which is signalled by the

fact that |F 2
2 | appears to diverge. Notice that after Φ1 condenses, |F 2

1 | stops growing and

remains approximately constant.

However, if we do not insist that Φ2 = 0, before we reach a?2, Φ2 will also condense,

and this phase with two condensed scalars appears to extend to arbitrarily large amplitude

a2. This can be seen in figure 10 where we plot the expectation values of the operators

dual to ΦI : 〈O1〉|r=0 and 〈O2〉|r=0 as a function of a2 for q1 = 4/
√

3, q2 = 4 and λ = 3.

There is no sign of a maximum amplitude.

So if the two scalar fields satisfy the weak gravity bound, one can no longer violate

cosmic censorship. To see if this bound is sharp, we need to move the charges below the

weak gravity bound and increase the amplitude. We will consider two cases, each consisting

of lowering one of the charges, while keeping the other fixed. We start by fixing q2 = 4

and lowering q1. The results are shown in figure 11. At small a2 we plot the minimum

charge that is needed to condense Φ1 around solutions with ΦI = 0 (the blue disks). For

larger a2 we follow the condensed phase and lower q1, at fixed a2 and q2 = 4, until we

find evidence of singular behaviour (the divergence of the Kretschmann scalar). We then

mark such points with a red square. Note that the condensed phase has both ΦI 6= 0 for

sufficiently large a2. We find that for large a2, the singular curve approaches the weak

gravity bound (we reach it within 0.07%). Thus if we try to reduce q1 (at fixed q2) below

the weak gravity bound, there is again a maximum amplitude and one could violate cosmic

censorship. This figure is very similar to the results for a single Maxwell field [5].
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Figure 10. 〈OI〉|r=0 as a function of a2, for a1 = 3 a2, q1 = 4/
√

3 and q2 = 4. The blue disks

correspond to 〈O1〉|r=0, and the orange squares to 〈O2〉|r=0.
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Figure 11. Phase diagram of solutions at fixed a1 = 3 a2, q2 = 4. Solutions with Φ1 6= 0

exist above a line connecting the blue disks and red squares, and Φ1 → 0 along the blue line

(a2 < a2 max ≈ 2.51), but develops singularities along the red line (a2 > a2 max). Φ2 6= 0 for a2
larger than an amplitude close to a2 max.

The results for the second case of fixing q1 = 4/
√

3 and lowering q2 are more surprising

and shown in figure 12. The blue disks denote the onset for condensing Φ2 about the

background with no charged scalars. This is analogous to the blue curve in figure 11 but

not as relevant after Φ1 condenses. The green diamonds show the onset of Φ2 about the

background with Φ1 6= 0. So above the green curve, both scalars are nonzero. The red

squares represent singular solutions, where the Kretschmann scalar appears to diverge.

Notice that the singular points curve around to meet the green curve. Thus there is a

range of a2 where a smooth solution exists in two disconnected regions of q2. Once again

the singular points approach the weak gravity bound for large a2. (At the last data point,

the singularity appears when the charge is just 0.06% lower than qW2 ).
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Figure 12. Phase diagram of solutions at fixed a1 = 3 a2, q1 = 4/
√

3: when increasing a2, the blue

disks denote the onset for condensing Φ2 about the background with no charged scalars, the green

diamonds show the onset of Φ2 about the background with Φ1 6= 0, and the red squares represent

singular solutions.

Similar results are obtained starting with other choices of (q1, q2) that saturate the weak

gravity bound (4.4). These results show that just like the cases of a single Maxwell field

or dilatonic gravity (with α < 1), the condition on the charge to mass ratio of the scalars

needed to preserve cosmic censorship for two Maxwell fields is precisely the appropriate

weak gravity bound.
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A The Ansätze for numerical solutions

To solve the dilatonic field equations (3.2) we use the DeTurck trick, first introduced

in [24, 25] and reviewed in great detail in [26, 27]. We add to eq. (3.2a) a gauge fixing term

Rab + 3gab −∇(aξb) = 2∇aφ∇bφ+ 2 e− 2αφ

(
F c
a Fbc −

1

4
gabF

cdFcd

)
, (A.1)

where ξa = [Γabc(g)− Γabc(ḡ)] gbc and Γabc(g) is the Levi-Civitta connection associated with

a metric g. ḡ is a reference metric which controls our gauge choice. The DeTurck trick is

by now a standard method to find stationary solutions of the Einstein equation, so we will

limit ourselves to presenting the reference metric ḡ, and Ansätze for (g,A, φ) and not delve

into more details regarding uniqueness of solutions or gauge choice (the interested reader

should consult [27–29]).
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We will use the same coordinate system as in [5, 10], which maps standard Poincaré

coordinates (where we use polar coordinates at the conformal boundary)

ds2 =
1

z2

(
−dt2 + dr2 + r2 dϕ2 + dz2

)
, (A.2)

into

ds2 =
1

(1− x2)2

[
−(1− y2)2 dt2

y2(2− y2)
+

4dy2

y2(1− y2)2(2− y2)2
+

4dx2

2− x2
+ x2(2− x2)dϕ2

]
(A.3)

via the map

z =
y
√

2− y2

1− y2
(1− x2) , (A.4a)

r =
y
√

2− y2

1− y2
x
√

2− x2 . (A.4b)

In the (x, y) coordinates, y = 0 corresponds to the boundary point r = z = 0 where the

boundary intersects the axis of rotation, x = 1 is the location conformal boundary, y = 1

the Poincaré horizon and x = 0 the axis of rotation.

At the boundary (x = 1), we require a gauge potential that has only a nonzero time

component:

A∂ =
a(

1 + r2
)4 dt . (A.5)

At the conformal boundary, r|x=1 = y
√

2− y2/(1− y2), which gives

A∂ = a(1− y2)8 dt . (A.6)

The dilaton has zero mass and, using standard quantisation, this means that we expect

that φ ∼ z3 ∼ (1− x)3 as we approach the conformal boundary. Numerically, dealing with

exponentials is not an easy to task, so we perform the following function redefinition

φ =
1

α
arctanh

(
α φ̂
)
. (A.7)

Note that, at the boundary, φ̂ ∼ φ.

We are now ready to present our Ansätze for all fields:

ds2 =
1

(1− x2)2

{
− (1− y2)2Q1(x, y) dt2

y2(2− y2)
+

4Q2(x, y) dy2

y2(1− y2)2(2− y2)2

+
4Q4(x, y)

2− x2

[
dx+

Q3(x, y)

1− y2
dy

]2

+ x2(2− x2)Q5(x, y) dϕ2

}
,

(A.8a)

A = Q6(x, y) dt , (A.8b)

φ =
1

α
arctanh

[
α (1− x2)3Q7(x, y)

]
, (A.8c)
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where QI(x, y), I ∈ {1, . . . , 7} are functions of (x, y) to be determined in our numerical

procedure. For the reference metric, we take Q1 = Q2 = Q4 = Q5 = 1 and Q3 = 0,

corresponding to eq. (A.3).

We next discuss our boundary conditions. At the conformal boundary we demand

Q1(1, y) = Q2(1, y) = Q4(1, y) = Q5(1, y) = 1, Q3(1, y) = 0 and Q6(1, y) = a (1 − y2)n,

while for Q7 we find a simple Robin boundary condition by solving the Einstein-DeTurck

PDE system (A.1) order by order in (1− x):

(1− y2)2 ∂Q7

∂x

∣∣∣∣
x=1

+
α

8
y2(2− y2)

[(
∂Q6

∂x

∣∣∣∣
x=1

)2

+ y2(2− y2)2(1− y2)2

(
∂Q6

∂y

∣∣∣∣
x=1

)2
]

= 0 .

(A.9)

At the Poincaré horizon, located at y = 1, we demand Q1 = Q2 = Q4 = Q5 = 1 and

Q3 = Q6 = Q7 = 0. At the axis of rotation, located at x = 0, we impose

∂Q1

∂x

∣∣∣∣
x=0

=
∂Q2

∂x

∣∣∣∣
x=0

=
∂Q4

∂x

∣∣∣∣
x=0

=
∂Q5

∂x

∣∣∣∣
x=0

=
∂Q6

∂x

∣∣∣∣
x=0

=
∂Q7

∂x

∣∣∣∣
x=0

= 0

Q3(0, y) = Q4(0, y)−Q5(0, y) = 0 , (A.10)

with the latter condition enforcing a 2π period for ϕ. Finally, at y=0 we demand

Q1(x, 0) = Q2(x, 0) = Q4(x, 0) = Q5(x, 0) = 1 , Q3(x, 0) = 0 ,

Q6(x, 0) = a , and Q7(x, 0) = 0 . (A.11)

Next we discuss the boundary conditions for the charged scalar Φ. Since Φ has con-

formal dimension ∆ we expect Φ ∼ z∆ close to z ∼ 0, that is to say that Φ vanishes as

(1− x)∆ close to x = 1. Similarly close to y = 0, we expect Φ to vanish as y∆, as such we

perform a function redefinition of the form

Φ = (1− x2)∆y∆(2− y2)∆/2Q8 . (A.12)

We adopt this function redefinition both at the linear and nonlinear level. At the boundary,

axis of symmetry and y = 0 we find pure Neumann boundary condition

∂Q8

∂x

∣∣∣∣
x=0

=
∂Q8

∂x

∣∣∣∣
x=1

=
∂Q8

∂y

∣∣∣∣
y=0

= 0 , (A.13)

while at y = 1, the Poincaré horizon we impose a Dirichlet condition

Q8(x, 1) = 0 . (A.14)

These boundary conditions hold both at the linear and nonlinear level.

In figure 4, we plot the operator O dual to Φ evaluated at the origin on the boundary.

This is simply given by

〈O〉 = (1− y2)2Q8(1, y)⇒ 〈O〉|r=0 = Q8(1, 0) . (A.15)

To check our claim that there are no smooth solutions for a > amax without the

charged scalar, or for q < qmin with a charged scalar, we also tried to use DeTurck flow [28].
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However, we did not find any regular solution. Instead, the system approached a singular

solution at late flow times.

To find the nonlinear solutions with two Maxwell fields and two charged scalars nu-

merically, most of the work regarding our choice of boundary conditions and Ansätze for

the several fields is the same as above. For the metric ansatz we choose a line element

given by (A.8a), while for the gauge and scalar fields we take

AI = Q5+I(x, y) , and ΦI = y2(2− y2)(1− x2)2Q7+I(x, y) . (A.16)

The boundary conditions are the same as above.
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