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Abstract

This work is devoted to study the dynamics of the supercritical gKDV equations near solitary waves in 
the energy space H 1. We construct smooth local center-stable, center-unstable and center manifolds near 
the manifold of solitary waves and give a detailed description of the local dynamics near solitary waves. In 
particular, the instability is characterized as follows: any forward flow not starting from the center-stable 
manifold will leave a neighborhood of the manifold of solitary waves exponentially fast. Moreover, orbital 
stability is proved on the center manifold, which implies the uniqueness of the center manifold and the 
solutions on it exist globally and asymptotically approach the solitary waves.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

We consider the supercritical gKDV equation

ut + (uxx + uk)x = 0, k > 5, u ∈ H 1(R). (1.1)

The cases of the integer k < 5, k = 5, and k > 5 are referred to as the subcritical, critical, and 
supercritical cases, respectively. The well-posedness of (1.1) is classical (see [12] and [11]). 
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The subcritical gKDV equation is globally well-posed in H 1, while the critical and supercritical 
gKDV are locally well-posed.

Blow-up solutions have been obtained in the critical case by Martel and Merle [20] and the 
slightly supercritical case of 5 < k < 5 + ε with ε � 1 by Lan [17].

The gKDV equation has a Hamiltonian form ut = JE′(u), where J = ∂x is the symplectic 
operator and

E(u) =
∫
R

1

2
u2

x − 1

k + 1
uk+1dx

is the conserved energy. Due to the translation invariance, the momentum

P(u) = 1

2

∫
R

u2dx

is also conserved. Moreover, the gKDV equation is invariant under the scaling

(T λu)(t, x) = λ
2

k−1 u(λ3t, λx). (1.2)

The linear dispersion and nonlinear effect interact to produce solitary waves, uc(x, t) =
Qc(x − ct), where

Qc(x) =
(
T

√
cQ

)
(x) = c

1
k−1 Q(

√
cx)

with

Q(x) =
(k + 1

2
sech2(k − 1

2
x
)) 1

k−1 ∈ H 1

being the unique positive even solution to

Qxx − Q + Qk = 0, Q(±∞) = 0. (1.3)

These solitary waves play a fundamental role in the dynamics of the gKDV equation. The 
stability of the solitary waves has been studied extensively. For the subcritical gKDV equation, 
solitary waves are orbitally stable, see [5–7,33]. Furthermore, for k = 2, 3 Pego and Weinstein 
[30] proved asymptotic stability of the whole family of solitary waves for initial data with ex-
ponential spatial decay at ∞. Mizumachi[26] proved asymptotic stability of the whole family of 
solitary waves for initial date with algebraic spatial decay at ∞ for k = 2, 3, 4. Martel and Merle 
[19] proved asymptotic stability in weak topology for the subcritical gKDV equation for initial 
data in H 1, that is for any δ > 0, there exists α, such that for any u0 satisfying ‖u0 −Qc‖H 1 ≤ α, 
there exists c(t), x(t), such that 

(
u(t, · + x(t)) − Qc(t)

)
⇀ 0 in H 1 as t → ∞.

For the critical case, in a series of works [23–25], Martel, Merle and Raphaël classified the 
dynamics for a set of initial data
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A = {u0 = Q + v : ‖v‖H 1 ≤ α0,

∫
x>0

x10v2(x)dx < 1}.

More specifically, the solutions with initial data in A are classified into three classes: (i) blow 
up in finite time; (ii) exist globally in time and stay close to the orbits of solitary waves for 
any t > 0; (iii) exist globally and exit a neighborhood of the traveling wave manifold. Recently, 
Martel, Merle, Nakanishi and Raphaël [22] constructed a co-dimension 1 threshold manifold 
separating the initial data satisfying (i) and (iii), and showed that the solutions with initial data 
on the threshold manifold belong to (ii).

For the supercritical gKDV equations, Bona, Souganidis and Strauss [7] proved the solitary 
waves are orbitally unstable. Namely there exist solutions starting arbitrarily close to the traveling 
wave manifold, but eventually go away. Combet [9] constructed special solutions converge to 
solitary waves exponentially fast as t → +∞ in H 1.

Naturally, one may raise the question: whether there exist solutions starting near solitary 
waves behaving differently than the above two types? Furthermore, how are all these different 
type of solutions organized/located in the energy space H 1 near the traveling waves?

Define the soliton manifold consisting of translations of all solitary waves of (1.1) as

M = {Qc(· + y) : c ∈R+, y ∈ R}. (1.4)

In this work, we give a detailed description of the local dynamics of the supercritical gKDV 
equation near the soliton manifold M . Our main results are the following:

(1) Existence (Section 4) and smoothness (Section 5) of local invariant manifolds of M in H 1:
• There exist co-dimension 1 center-stable and center-unstable manifolds W cs(M ) and 

W cu(M ) of M , respectively, such that M ⊂ W cs,cu and for any m ≥ 1, there exist neigh-
borhoods of M where W cs,cu(M ) are Cm submanifolds.

• Moreover, W cs(M ) and W cu(M ) intersect transversally along the center manifold 
W c(M ) = W cs(M ) ∩ W cu(M ) which is a smooth co-dimension 2 submanifold.

• W cs,cu,c(M ) are invariant under spatial translation and rescaling (1.2).
• These manifolds W cs,cu,c(M ) are locally invariant under the flow of (1.1). Namely, an 

orbit starting on W cs,cu,c(M ) can leave them only through their boundaries.
(2) (Local dynamics near traveling waves)

• W cs(M ) (or W cu(M ), or W c(M ), respectively) is the set of initial data whose orbits un-
der (1.1) stay close to M for all t ≥ 0 (or t ≤ 0, or t ∈ R, respectively). (Propositions 6.9, 
6.1, and 6.4)

• If the initial data is not on W cs(M ) (or W cu(M )), then the forward (or backward) orbit 
exits a neighborhood of M exponentially fast. (Propositions 6.1 and 6.4)

• W c(M ) is exponentially stable on W cs(M ) as t → +∞ and on W cu(M ) as t → −∞. 
(Propositions 6.7)

• M is orbitally stable on W c(M ) in the sense that, for any neighborhood U ⊂ W c(M )

of M , there exists a neighborhood V ⊂ U such that orbits starting in V stay in U for all 
t ∈R. (Propositions 6.7)

Remark 1.1. In this paper we focus on the center-stable, center-unstable, and center manifolds 
of the 2-dimensional traveling wave manifold M . The stable and unstable manifold of the latter 
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should follow from an easier (see Remark 6.14) construction and would be carried out in a 
separate paper.

Let us briefly outline our proof. As a convention, we write the gKDV equation in the traveling 
frame (t, x − ct) with a fixed wave speed c and let u(t, x) = U(t, x − ct), where U(t, x) satisfies

Ut − cUx + (Uxx + Uk)x = 0. (gKDV − T r)

Clearly Qc , the profile of the traveling wave, is an equilibrium of (gKDV-Tr). The linearization 
of (gKDV-Tr) at Qc takes the Hamiltonian form of

Ut = JLcU, where J = ∂x, Lc = c − ∂xx − kQk−1
c .

Thanks to this Hamiltonian structure, the energy space H 1 can be decomposed into three invari-
ant subspaces (under the linearized flow etJLc )

X = X+ ⊕ X− ⊕ Xc, where X± = span{V ±}, JLcV
± = ±λcV

±, λc > 0.

Here Xc = XT ⊕ Xe is the center space, where XT = span{∂xQc} = ker(JLc) and Lc is uni-
formly positive definite on Xe. Furthermore, the following trichotomy holds

‖eJLct |X±‖ ≤ e±λct , for ∓ t ≥ 0

‖eJLct |Xc‖ ≤ M(1 + t), for t ∈R.
(1.5)

The linearized dynamic structure described by this trichotomy serves as the cornerstone of the 
study on the nonlinear dynamics, with the bridge classically provided by the invariant manifold 
theory for ODEs and PDEs (mainly for semilinear PDEs). Roughly, the linear trichotomy in 
the phase space along with nonlinear terms being smooth mappings from the phase space to 
itself imply that there exist nonlinearly locally invariant submanifolds very close to the invariant 
subspaces. However, this classical theory does not apply to gKDV directly as its nonlinearity 
contains a loss of derivative.

Fortunately, the linear flow e−t∂xxx has a smoothing effect, which may still allow the stable and 
unstable manifolds of Qc to be constructed through a modification of the classical approaches. 
Since the stable and unstable manifolds are unique for each Qc(· + y) and extend in transver-
sal directions of M , one can construct the stable and unstable manifolds for Qc first and then 
translate them along M to form the stable and unstable manifolds of the whole M .

Compared to stable and unstable manifolds, there is an additional difficulty in the construction 
of invariant manifolds containing center directions. Unlike stable and unstable manifolds, center 
manifolds usually are not unique and they extend in the direction of M , therefore one can not 
translate center manifolds of Qc to obtain the ones of M . As M should be contained in the 
center manifolds, so it is reasonable to attempt to construct the center manifolds of the whole M
directly. This brings up an issue how to set up a suitable coordinate system in a neighborhood 
of M . A tempting choice is to use the translational parametrization to write any U in a tubular 
neighborhood of M as

U = φ(y, a+, a−,V e) = (Qc + a+V + + a−V − + V e)(· + y), V e ∈ Xe.
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However, this translational parametrization is not smooth in H 1. To see this, we take the 
derivative of U with respect to y and a term ∂yV

e(· + y) ∈ L2 appears, while the other terms 
in ∂yU are regular enough. This was also the main difficulty in the work of Nakanishi and 
Schlag[29], where the authors constructed the center-stable manifolds of the manifold of ground 
states for the Klein-Gordon equation. They constructed a nonlinear “optimal mobile distance” to 
overcome this difficulty. In this paper, we follow the approach as in [2,10] to utilize a smooth 
bundle coordinate system. Namely, any U in a tubular neighborhood of M is written as

U = ψ(y, a+, a−,V e) = (Qc +a+V + +a−V −)(·+y)+V e, V e ∈ Xe
y = {u : u(·−y) ∈ Xe}.

Since Qc and V ± are smooth functions, the corresponding projection 
e
y : H 1 → Xe

y with 
ker
e

y = span{∂xQc(· + y), V ±(· + y)} is smooth in y. Consequently, X̃e = {(y, V ) : V ∈ Xe
y}

is a smooth bundle over y ∈ R by Lemma 2.2. We rewrite (gKDV-Tr) using this smooth bundle 
coordinate system ψ . Even though some geometric notions are involved, we still manage to 
obtain certain desired smoothing estimates (Proposition 3.4).

Then we are able to perform Lyapunov-Perron method to construct invariant manifolds of the 
soliton manifold, which help to reveal a rather complete picture of the local dynamic structure 
near the soliton manifold. In particular, the orbital stability of M on the center manifold is ob-
tained from a Lyapunov functional argument based on the fact that Qc is a critical point of the 
energy momentum functional E−cP whose Hessian is uniformly positive definite in Xe. The or-
bital stability on center manifolds yields characterizations (Proposition 6.9) of the center-stable, 
center-unstable, and center manifolds of M , which in turn lead to their local uniqueness.

Consequently, any solution u(t, x) on the center-stable manifold close to M satisfies the 
assumption in Theorem 1 in [21] and thus there exist c0 > 0 and functions c(t) and ρ(t), t > 0, 
such that

‖u(t) − Qc(t)(· − ρ(t)‖
H 1

x (x>
c0
10 t)

→ 0, as t → ∞.

Similar results hold on the center-unstable manifold for t < 0 and center manifold for t ∈R.
There are some previous results on the construction of invariant manifolds for semilinear 

PDEs. Bates and Jones [1] proved a general theorem for the existence of local invariant manifolds 
of equilibria for semilinear PDEs by the graph transform, and then applied it to the Klein-Gordon 
equation in the radial setting. In [32], Schlag constructed a co-dimension 1 center-stable man-
ifold of the manifold of ground states for 3D cubic NLS in W 1,1(R3) 

⋂
W 1,2(R3) under an 

assumption that the linearization of NLS at each ground state has no eigenvalue embedded in the 
essential spectrum and proved scattering on the center-stable manifold. Later, this result was im-
proved by Beceanu [3,4] who constructed center-stable manifolds in W 1,2(R3) 

⋂ |x|−1L2(R3)

and in critical space Ḣ 1/2(R3). Similar results were obtained in Krieger and Schlag [16] for 
the supercritical 1D NLS. Nakanishi and Schlag [27] constructed a center-stable manifold of 
ground states for 3D cubic NLS in the energy space with a radial assumption by using the frame-
work in Bates and Jones [1]. Nakanishi and Schlag [29] constructed center-stable manifolds of 
ground states for nonlinear Klein-Gordon equation without radial assumption. Also, see [13–15,
28] for related results. To the best of our knowledge, this current work is the first one constructing 
invariant manifolds of a global soliton manifold for a dispersive PDE with derivative nonlinear-
ities. Our approach, involving using the bundle coordinates and deriving space-time estimates 
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with small exponential growth, seems to be rather general and, with minimal essential modifica-
tions, applicable to unstable relative equilibria (including ground and excited states) of a class of 
Hamiltonian PDEs with natural symmetries (see also [10]).

This paper is organized as follows. In Section 2, we establish bundle coordinates over the soli-
ton manifold and rewrite the equations. In Section 3, we derive smoothing space-time estimates 
in the bundle coordinates and then prove several a priori estimates. In Section 4, we construct 
Lipschitz invariant manifolds of the soliton manifold, whose smoothness is proved in Section 5. 
In Section 6.1, we analyze the local dynamics near soliton manifold by invariant manifolds.

A remark on notations. Throughout the paper, 〈·, ·〉 denotes the dual pairing between elements 
of a Banach space and its dual space. The generic upper bound C may depend on c > 0, but not 
other phase space variables or parameters, unless specified.

2. A bundle coordinate system near the soliton manifold

2.1. Linear decomposition and local coordinates near solitary waves

To study the dynamics near the travel waves with traveling speed c > 0, we rewrite (1.1) in 
the traveling frame by letting u(t, x) = U(t, x − ct) which satisfies

Ut − cUx + (Uxx + Uk)x = 0. (2.1)

For any y ∈ R, Qc(· + y) becomes an equilibrium of (2.1). Linearizing (2.1) at Qc(· + y), one 
has

Ut = JLc,yU, (2.2)

where

J = ∂x, Lc,y = c − ∂xx − kQk−1
c (· + y) = (cP + E)′′

(
Qc(· + y)

) ∈ L (H 1,H−1).

For convenience, we let Lc := Lc,0. Up to a scalar multiplication, JLc are conjugate to each 
other for different c > 0, through the rescaling

JLcT
√

c

0 U = c
3
2 T

√
c

0 JL1U, where (T λ
0 U)(x) = λ

2
k−1 U(λx), (2.3)

and Lc,y is conjugate to Lc through the translation

Lc,yU = (LcU(· − y)) (· + y). (2.4)

Lemma 2.1. For any c > 0, there exist closed subspaces XT,e,+,−
c such that

(1) H 1 = XT
c ⊕ Xe

c ⊕ X+
c ⊕ X−

c associated with bounded projection 
T,e,+,−
c ;

(2) XT
c = kerLc = span{∂xQc};

(3) X±
c = span{V ±

c }, with

JLcV
±
c = ±λcV

±
c with λc = c

3
2 λ1 > 0. Moreover V ±

c ∈ C∞ and, for any l ≥ 0, ∂l
xV

±
c → 0

exponentially as |x| → ∞;
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(4) ∂cQc ∈ Xe
c and there exists Ac > 0 such that 〈LcV

e, V e〉 ≥ Ac‖V e‖2
H 1(R)

for any V e ∈ Xe
c .

(5) In this decomposition, Lc and JLc take the following forms

Lc ←→

⎛⎜⎜⎝
0 0 0 0
0 Le

c 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , JLc ←→

⎛⎜⎜⎝
0 AT e 0 0
0 Ae 0 0
0 0 λc 0
0 0 0 −λc

⎞⎟⎟⎠ , (2.5)

where

Le
c = (
e

c)
∗Lc


e
c, Ae = 
e

cJLc

e
c, AT e = 
T

c JLc

e
c.

Proof. In [31], it was shown that kerLc = span{∂xQc} and all spectra of JLc belong to iR
except one algebraically simple positive eigenvalue λc and one algebraically simple negative 
eigenvalue −λc with corresponding eigenfunctions denoted by V +

c and V −
c . Moreover

〈LcV
+
c ,V +

c 〉 = 〈LcV
−
c ,V −

c 〉 = 0, (2.6)

and 〈LcV
+
c , V −

c 〉 = 1 by a normalization of eigenfunctions.
Since span{V +

c , V −
c } is invariant under JLc, it is easy to verify directly that its Lc-orthogonal 

complement

Y := {v ∈ H 1 : 〈LcV
+
c , v〉 = 〈LcV

−
c , v〉 = 0}

is also invariant under JLc. Moreover, (2.6) implies 〈Lc·, ·〉 is non-degenerate on span{V +
c , V −

c }
and thus H 1 = span{V +

c , V −
c } ⊕ Y . Clearly, XT

c ⊂ Y . Let

Xe
c = {v ∈ Y : 〈∂xQc, v〉 = 0}.

The block form (2.5) follows directly from the definition of the subspaces.
In the next we give the explicit forms of the associated projection operators. Any V ∈ H 1 can 

be decomposed as

V = a+V +
c + a−V −

c + aT ∂xQc + V e, (2.7)

where V e ∈ Xe
c . Applying LcV

−
c and LcV

+
c to (2.7), respectively, we obtain

a+ = 〈LcV
−
c ,V 〉, a− = 〈LcV

+
c ,V 〉.

Applying ∂xQc to (2.7), we have

aT = ‖∂xQc‖−2
L2

(〈∂xQc,V 〉 − a+〈∂xQc,V
+
c 〉 − a−〈∂xQc,V

−
c 〉) .

Clearly


T
c V = aT ∂xQc, 
±

c V = a±V ±
c , 
e

c = I − 
T
c − 
+

c − 
−
c .

As ∂xQc ∈ D(J ∗) = D(J ), clearly AT e = 
T
c JLc


e
c is bounded.
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Since, for any c > 0, Qc satisfies

(cP + E)′(Qc) = 0 =⇒ JLc∂cQc = −JP ′(Qc) = −∂xQc,

we have

〈LcV
±
c , ∂cQc〉 = ±λ−1

c 〈LcJLcV
±
c , ∂cQc〉 = ±λ−1

c 〈LcV
±
c , ∂xQc〉 = 0

and thus ∂cQc ∈ Y . Due to the evenness of Qc, it is clear that 〈∂xQc, ∂cQc〉 = 0, which implies 
∂cQc ∈ Xe

c .
To complete the proof of the lemma, we show that uniform positivity of 〈Le

c·, ·〉. As Lc is a 
relatively compact perturbation to the uniformly positive operator c − ∂xx on H 1, it is uniformly 
positive except in possibly finite many directions. Since kerLc = span{∂xQc} and ∂xQc changes 
sign exactly once, Lc has only 1-dim negative direction and 1-dim kernel. From (2.6), Lc has 
one negative and one positive directions in span{V +

c , V −
c } and

H 1 = span{V +
c ,V −

c } ⊕ kerLc ⊕ Xe
c

is a Lc-orthogonal decomposition, therefore there exists Ac > 0 such that

〈LcV
e,V e〉 ≥ Ac‖V e‖2

H 1(R)

for any V e ∈ Xe
c . This is a special and rather explicit case of the general framework studied in 

[18]. �
For any y ∈ R and α ∈ {T , e, +, −}, define

Xα
c,y = {v ∈ H 1|v(· − y) ∈ Xα

c }.

Clearly,

H 1 = XT
c,y ⊕ Xe

c,y ⊕ X+
c,y ⊕ X−

c,y .

Lemma 2.2.

(1) XT
c,y = span{∂xQc(· + y)} = kerJLc,y .

(2) X±
c,y = span{V ±

c (· + y)} and JLc,yV
±
c (· + y) = ±λcV

±
c (· + y).

(3) ∂cQc(· + y) ∈ Xe
c,y and 〈Lc,yV

e, V e〉 ≥ Ac‖V e‖2
H 1(R)

for any V e ∈ Xe
c,y .

(4) The associated bounded projection operators 
α
c,y are smooth in c, y for α = +, −, T , e.

(5) In the decomposition H 1 = XT
c,y ⊕ Xe

c,y ⊕ X+
c,y ⊕ X−

c,y , Lc,y and JLc,y take the form

Lc,y ←→

⎛⎜⎜⎝
0 0 0 0
0 Le

c,y 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , JLc,y ←→

⎛⎜⎜⎝
0 AT e(y) 0 0
0 Ae(y) 0 0
0 0 λc 0
0 0 0 −λ

⎞⎟⎟⎠ . (2.8)
c
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where

Le
c,y = (
e

c,y)
∗Lc,y


e
c,y, Ae(y) = 
e

c,yJLc,y

e
c,y, AT e(y) = 
T

c,yJLc,y

e
c,y .

(6) All above blocks are translation invariant in the sense of (2.4). Moreover, Le
c,y + ∂xx ∈

L (H 1) and AT e(y), Ae(y) + ∂xxx ∈ L (H 1, L2) depend on c > 0 and y ∈R smoothly.

Proof. All the statements in the lemma, except the smoothness of the operators in c and y, follow 
from the translation invariance (2.4) of JLc,y . To show the smoothness of 
α

c,y in c and y, we 
use their explicit forms. Any V ∈ H 1 can be written as

V = a+V +
c (· + y) + a−V −

c (· + y) + aT ∂xQc(· + y) + V e, (2.9)

where V e(· − y) ∈ Xe
c . One can calculate that

a+ = 〈Lc,yV
−
c (· + y),V 〉, a− = 〈Lc,yV

+
c (· + y),V 〉, (2.10)

and

aT = ‖∂xQc‖−2
L2

(〈∂xQc(· + y),V 〉 − a+〈∂xQc,V
+
c 〉 − a−〈∂xQc,V

−
c 〉) . (2.11)

Therefore


T
c,yV = aT ∂xQc(· + y), 
±

c,yV = a±V ±
c (· + y) (2.12)

and 
e
c,y = I −
T

c,y −
+
c,y −
−

c,y . The above explicitly forms yield the smoothness of 
+,−,T ,e
c,y

in c, y. Finally the smoothness of Le
c,y + ∂xx, AT e(y), Ae(y) + ∂xxx follow from similar calcu-

lations based on the regularity of Qc and the eigenfunctions V ±
c . �

2.2. A local bundle coordinate system

In this section, we set up the bundle coordinates near M precisely and discuss its smoothness. 
This subsection is in the same spirit as Section 2.2 in [10].

Fixing c > 0, denote the orbit of a single solitary wave by

Mc = {Qc(· + y)|y ∈R}.

Define a vector bundle X e
c over R with fibers Xe

c,y as

X e
c = {(y,V e) | y ∈ R, V e ∈ Xe

c,y}, (2.13)

and balls on this bundle

X e(δ) = {(y,V ) ∈ X e | ‖V ‖H < δ}. (2.14)
c c 1
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Let y∗ ∈ R and 0 < δ � 1, the map

(y∗ − δ, y∗ + δ) × Xe
c,y∗ −→ X e

c

(y,V ) −→ (y,
e
c,yV )

gives a smooth local trivialization of X e
c , where the smoothness is due to the smoothness of 


e
c,y with respect to c and y. Thus it provides X e

c with a local coordinate system.

With other subspaces like XT,+,−
c,y , we will often consider bundles Rn ⊕ X e

c over R with 
fibers Rn ⊕ Xe

c,y , as well as their balls

Bn(δ1) ⊕ X e
c (δ2) = {(y, a,V e) | a ∈ Rn, |a| < δ1, (y,V e) ∈ X e

c (δ2)}. (2.15)

Define an embedding

Em :R3 ⊕ X e
c → H 1

as

Em(y,aT , a+, a−,V e)

=aT ∂xQc(· + y) + a+V +
c (· + y) + a−V −

c (· + y) + V e

=
(
aT ∂xQc + a+V +

c + a−V −
c

)
(· + y) + V e.

(2.16)

The embedding Em⊥ : R2 ⊕ X e
c → H 1 defined on the transversal (to the translational direc-

tion) bundle will be used in the rest of this paper,

Em⊥(y, a+, a−,V e) = Em(y,0, a+, a−,V e). (2.17)

Clearly Em⊥ is translation invariant in the sense, for any ỹ ∈R,

Em⊥(
y + ỹ, a+, a−,V e(· + ỹ)

) = Em⊥(y, a+, a−,V e)(· + ỹ). (2.18)

On the one hand, according to the above trivialization, given any Banach space Z, a mapping 
f : Z → X e

c is said to be smooth near some z0 ∈ Z if y(z) and V e(z) ∈ Xe
c(z0),y(z0)

are smooth 
in z near z0, where f (z) = (

y(z), 
e
c(z),y(z)V

e(z)
)
. Due to the smoothness of 
e

c,y , in fact this is 

equivalent to the smoothness of y(z) and V (z) ∈ H 1 where f (z) = (
y(z), V (z)

)
.

On the other hand, for any Banach space Y , a mapping g : X e
c → Y is said to be smooth near 

some (y∗, V∗) if

g̃(y,V ) = g(y,
e
c,yV ), y ∈ R, V ∈ Xe

c∗,y∗

is smooth in (y, V ) ∈ R × Xe
c,y∗ near (y∗, V∗). It is straightforward to verify

• g is smooth if and only if locally g(y, 
e
c,yV ), y ∈R, V ∈ H 1, is smooth on R × H 1;
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• g is smooth if and only if locally it is the restriction to X e
c of a smooth mapping defined on 

R × H 1;
• g is smooth if and only if g ◦ f is smooth for any smooth f : Z → X e

c defined on any 
Banach space Z;

• Em is smooth with respect to (y, V e).

Near the 2-dim manifold M of solitary waves, we will work through the mapping � defined 
on R2 ⊕ X e

c

U =�(y,a,V e) = Qc(· + y) + Em⊥(y, a,V e). (2.19)

For any fixed c > 0, �(·) is diffeomorphic when a ∈R2 and ‖V e‖H 1 are sufficiently small.

Remark 2.3. Since � is a local diffeomorphism with properties uniform in y, locally the total 
|a| + ‖V e‖H 1 of the transversal components is equivalent to the H 1 distance from �(y, a, V e)

to Mc.

This is a smooth vector bundle coordinate system in a neighborhood of M ⊂ H 1. From (2.16)
and (2.17), � can be naturally extended into a smooth mapping on R3 ⊕ H 1.

Remark 2.4. It is tempting to use the coordinate system

U =
(
T

√
c

0 (Q + a+V +
1 + a−V −

1 + V e)
)

(· + y)

where V e ∈ Xe
1 and y ∈ R. However, such rescaling and translation parametrization is not 

smooth in H 1 because the differentiation in c and y causes a loss of one order regularity in 

Dy(T
√

c

0 V e)(· + y) and Dc(T
√

c

0 V e)(· + y). This is one of the main issues in Nakanishi and 
Schlag [29], where the authors constructed the center-stable manifolds of the manifold of ground 
states for the Klein-Gordon equation. They introduced a nonlinear “mobile distance” to over-
come that difficulty. Instead, the above bundle coordinate system (2.19), where V e ∈ Xe

c,y is not 
directly parametrized by a translation in y and a rescaling in c, represents a different and general 
framework based on the observation that, while the parametrization by the spatial translation of 
y and rescaling of c are not smooth in H 1 with respect to y and c respectively, the vector bun-
dles XT,e,+,−

c,y over M are smooth in c and y as given in Lemma 2.2. This geometric bundle 
coordinate system has been used in [2,10], in the latter of which we constructed local invariant 
manifolds near unstable traveling waves of the 3D Gross-Pitaevskii equation.

2.3. An equivalent form of the gKDV equation near M

Fix c > 0. Let U(t, x) be any solution to (2.1). If U(t, x) stays in a small neighborhood of 
{Qc(· + y) | y ∈R}, we can use the coordinate system (2.19) to write it as

U(t) = �(y(t), a+(t), a−(t),V e(t)), (2.20)

where (y(t), a+(t), a−(t), V e(t)) ∈ B2(δ) ⊕ X e
c (δ).
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Plugging (2.20), (2.19) into (2.1), we obtain

∂xQc(· + y)∂ty + (∂ta
±)V ±

c (· + y) + a±∂xV
±
c (· + y)∂ty + ∂tV

e

=(±λc)a
±V ±

c (· + y) + JLc,yV
e + G(y,a+, a−,V e),

(2.21)

where

G(y,a+, a−,V e) = −∂x

[(
Qc(· + y) + Em⊥(c, y, a+, a−,V e)

)k

− Qk
c(· + y) − kQk−1

c (· + y)Em⊥(c, y, a+, a−,V e)
]

:= ∂x

(
G1(c, y, a+, a−,V e)

)
.

(2.22)

Throughout the paper, we often omit the dependence of G and other quantities on c which is 
mostly fixed. As a convention of notations, a±V ±

c always means summation of the terms corre-
sponding to ‘+’ and ‘−’ signs.

We shall apply projections 
T,±,e
c,y , by using (2.10) and (2.11), to (2.21) to obtain equations 

of each components y, a±, V e . Firstly applying Lc,yV
−
c (· + y) to (2.21), we obtain

∂ta
+ = λca

+ + A+(c, y, a+, a−,V e)∂ty + Ḡ+(y, a+, a−,V e), (2.23)

where

A+(y, a+, a−,V e) = − a±〈Lc,yV
−
c , ∂xV

±
c 〉

+ 〈(∂yLc,y)V
−
c (· + y) + Lc,y∂xV

−
c (· + y),V e〉,

and

Ḡ+(y, a+, a−,V e) = −〈∂xLc,yV
−
c (· + y),G1(c, y, a+, a−,V e)〉.

Similarly, applying Lc,yV
+
c (· + y) to (2.21), we obtain

∂ta
− = −λca

− + A−(c, y, a+, a−,V e)∂ty + Ḡ−(y, a+, a−,V e), (2.24)

where

A−(y, a+, a−,V e) = − a±〈Lc,yV
+
c , ∂xV

±
c 〉

+ 〈(∂yLc,y)V
+
c (· + y) + Lc,y∂xV

+
c (· + y),V e〉,

and

Ḡ−(y, a+, a−,V e) = −〈∂xLc,yV
+
c (· + y),G1(c, y, a+, a−,V e)〉.

Taking the L2 inner product of (2.21) with ∂xQc(· + y), then plugging in (2.23) and (2.24), 
we obtain
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AT (y, a+, a−,V e)∂ty = −〈Lc,yJ ∂xQc(· + y),V e〉
+ 〈∂xQc(· + y),G(y, a+, a−,V e)〉 − 〈∂xQc,V

±
c 〉Ḡ±(y, a+, a−,V e).

where

AT (y, a+,a−,V e) = ‖∂xQc‖2
L2 + a±〈∂xQc, ∂xV

±
c 〉

− 〈V e, ∂2
xQc(· + y)〉 + 〈∂xQc,V

±
c 〉A±(y, a+, a−,V e).

It is clear that AT (y, a+, a−, V e) > 0 when |a±|, ‖V e‖H 1 � 1, therefore

∂ty =(AT )−1[ − 〈Lc,yJ ∂xQc(· + y),V e〉 + 〈∂xQc(· + y),G〉 − 〈∂xQc,V
±
c 〉Ḡ±,

]
:=ḠT (y, a+, a−,V e)

:= − ‖∂xQc‖−2
L2 〈Lc,yJ ∂xQc(· + y),V e〉 + GT (y, a+, a−,V e),

(2.25)

where in the last line we separated terms which are linear and of higher order in a± and V e. 
Substituting (2.25) into (2.23) and (2.24), we obtain

∂ta
± = ±λca

± + G±(y, a+, a−,V e), (2.26)

where

G±(y, a+, a−,V e) = (A±ḠT + Ḡ±)(y, a+, a−,V e).

Using the higher order regularity of V ±
c , ∂xQc and ∂cQc, one can check that G+,−,T are 

well-defined and smooth in the energy space and at least quadratic in a± and V e.
Applying 
e

c,y to (2.21), we have


e
c,y∂tV

e = 
e
c,yJLc,yV

e + Ge(y, a+, a−,V e), (2.27)

where

Ge =
e
c,yG − a±ḠT 
e

c,y

(
∂xV

±
c (· + y)

)
, (I − 
e

c,y)G
e = 0.

An equivalent form of the V e equation. To avoid estimating the geometric equation (2.27)
involving bundles, we first transform it to an equivalent form which may be posed in the whole 
space H 1. Let


⊥
c,y = I − 
e

c,y and X⊥
c,y = 
⊥

c,yH
1. (2.28)

Since 
⊥
c,y(t)V

e(t) = 0 for all t , differentiating this identity with respect to t yields


⊥ ∂tV
e = ∂ty∂y


e V e.
c,y c,y
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The term ∂y

e
c,yV

e actually serves as the second fundamental form of the bundle X e
c . In order to 

make the V e equation posed in the whole space H 1, we define a bounded linear map F (c, y) ∈
L (H 1)

F (c, y)V = ∂y

e
c,y(


e
c,yV − 
⊥

c,yV ) = −∂y

⊥
c,y(I − 2
⊥

c,y)V . (2.29)

The above form of F , which is a modification of the second fundamental form of X e
c , would 

bring us certain convenience to carry out some calculations in later sections.
Accordingly, we consider the following extension of (2.27)

∂tV = 
e
c,yJLc,y


e
c,yV + ∂tyF (c, y)V + Ge. (2.30)

In the below, we demonstrate that, if V (s) ∈ Xe
c,y(s) for some s, then V (t) ∈ Xe

c,y(t) for any t , 
and consequently (2.27) and (2.30) are identical according to the definition of F (c, y). In fact, 
let V (t) be the solution to

∂tV = 
e
c,yJLc,y


e
c,yV + ∂tyF (c, y)V + f e(t), f e(t) ∈ Xe

c,y . (2.31)

Since 
e
c,y


e
c,y = 
e

c,y , differentiating this identity in y we have

∂y

e
c,y


e
c,y + 
e

c,y∂y

e
c,y = ∂y


e
c,y . (2.32)

Using this identity, we calculate

∂t (

⊥
c,yV ) = ∂ty
⊥

c,y∂y

e
c,y(


e
c,yV − 
⊥

c,yV ) + ∂ty∂y

⊥
c,yV

= −∂ty∂y

⊥
c,y(


⊥
c,yV ).

(2.33)

Observe that the above equation of 
⊥
c,yV is a well-posed homogeneous linear equation in a 

finite dimensional space, therefore if V (s) ∈ Xe
c,y(s)

, i.e. 
⊥
c,y(s)V (s) = 0, then 
⊥

c,y(t)V (t) = 0
for all t .

We will work with (2.30) since it is more convenient to obtain estimates compared to (2.27). 
In summary, in a small neighborhood of solitary waves, we will write the gKDV equation in the 
bundle coordinates (2.20) as a system consisting of (2.25), (2.26) and (2.30).

3. Linear analysis

The aim of this section is to establish linear estimates to be utilized for equation (2.30). The 
unknown of (2.30) is in X e, however, with our definition of F it is also well-posed in H 1. As 
one will see later, the following more general form of (2.30) with the unknown V ∈ H 1 (not 
necessarily in X e) will be more convenient for us to use

∂tV = 
e
c,yJLc,y


e
c,yV + ∂tyF (c, y)V + f (t, x), (3.1)

where y = y(t) is a given Lipschitz function.
With our definition of F , the equations of V e = 
e

c,yV and V ⊥ = 
⊥
c,yV are decoupled. In 

fact, similar to (2.33), one can calculate
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∂tV
e = 
e

c,yJLc,yV
e + ∂tyF (c, y)V e + f e (3.2)

∂tV
⊥ = ∂tyF (c, y)V ⊥ + f ⊥. (3.3)

where f e = 
e
c,yf and f ⊥ = 
⊥

c,yf . We will work with (3.2), (3.3), and estimate V e and V ⊥
separately. In particular, we note that (2.29) and (2.32) imply

F (c, y)Xe
c,y ⊂ X⊥

c,y, F (c, y)X⊥
c,y ⊂ Xe

c,y. (3.4)

Energy estimates of homogeneous equations. Starting with energy estimates, we analyze (3.1)
with f = 0. Fix c > 0. According to Lemma 2.2, there exists Ac > 0 such that 〈Lc,yV

e, V e〉 ≥
Ac‖V e‖H 1 for any V e ∈ Xe

c,y , therefore 〈Lc,yV
e, V e〉1/2 is equivalent to the H 1 norm on Xe

c,y . 
For any V ∈ H 1, define a semi-norm

‖V ‖H̃ 1
y

:= 〈Lc,y

e
c,yV ,
e

c,yV 〉1/2 ∼ ‖
e
c,yV ‖H 1, (3.5)

which depends on c and y.

Lemma 3.1. Assume that f = 0 and y(t) satisfies ‖∂ty‖L∞ ≤ σ , then (3.1) generates a bounded 
evolution operator

S(t, s) ∈ L (H 1,H 1), ∀s, t ∈ [t0, t0 + T ]

satisfying

S(t, s) ∈ L (Xe
c,y(s),X

e
c,y(t)) and S(t, s) ∈ L (X⊥

c,y(s),X
⊥
c,y(t)).

Moreover, there exists a constant C independent of y, σ , such that for any V e(s) ∈ Xe
c,y(s) and 

V ⊥(s) ∈ X⊥
c,y(s), we have

‖S(t, s)V e(s)‖H̃ 1
y(t)

≤ eCσ |t−s|‖V e(s)‖H̃ 1
y(s)

,

and

‖S(t, s)V ⊥(s)‖H 1 ≤ eCσ |t−s|‖V ⊥(s)‖H 1 .

Proof. Due to the high regularity of Qc and X⊥
c,y , 
e

c,yJLc,y

e
c,yV is a bounded perturbation 

to JLc,∞ = ∂x(c − ∂xx). Moreover, F (c, y) ∈ L (H 1), therefore (3.1) is well-posed in H 1 and 
S(t, s) ∈ L (H 1) is well-defined.

The invariance of S(t, s) in the bundles X e and (c, y, X⊥
c,y) is an immediate consequence of 

the decoupled form of the equations (3.2) and (3.3) of V e and V ⊥.
It remains to prove the two inequalities. We have

〈Lc,yV
e,V e〉t = 2〈Lc,yV

e, ∂tV
e〉 + ∂ty〈(∂yLc,y)V

e,V e〉. (3.6)
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On the one hand, clearly from (3.2), (3.4), and the fact that H 1 = Xe
c,y ⊕X⊥

c,y is a Lc,y -orthogonal 
decomposition, we have

〈Lc,yV
e, ∂tV

e〉 = 〈Lc,yV
e,
e

c,yJLc,yV
e〉 = 〈Lc,yV

e, JLc,yV
e〉 = 0.

On the other hand, using the high regularity of Qc, it is easy to check that there exist constants 
C′ and C such that

|∂ty〈(∂yLc,y)V
e,V e〉| ≤ C′σ‖V e‖2

H 1 ≤ Cσ 〈Lc,yV
e,V e〉.

It follows that

〈Lc,yV
e,V e〉t ≤ Cσ 〈Lc,yV

e,V e〉,

which implies the first inequality.
Taking the H 1 inner product of (3.3) with V ⊥, one immediately obtains the second inequal-

ity. �
Remark 3.2. It is worth mentioning that in the above lemma the coefficient in front of eσ t is 1, 
which is crucial in future iteration steps.

Smoothing space-time estimates of homogeneous equations. In the rest of the section, we 
establish smoothing space-time estimates for (3.2) based on the space-time estimates established 
in [12] for the Airy equation ut + uxxx = 0.

Lemma 3.3. ([12]) Let W(t) be the group generated by

ut + uxxx = 0. (3.7)

The following estimates hold:

(1) If u0 ∈ L2(R), then

‖∂xW(t)u0‖L∞
x L2

t
≤ C‖u0‖L2 , (3.8)

and

‖D1/4
x W(t)u0‖L4

t L
∞
x

≤ C‖u0‖L2 . (3.9)

(2) If u0 ∈ Hs(R) with s > 3/4, then for any ρ > 3/4,

‖W(t)u0‖L2
xL∞[0,T ] ≤ C(1 + T )ρ‖u0‖Hs . (3.10)
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(3) If g(t, x) ∈ L1
xL

2
t , then for any T > 0 (can be ∞),

∥∥∥∥∥∥∂x

t∫
0

W(t − s)g(s)ds

∥∥∥∥∥∥
L∞[0,T ]L2

x

≤ C‖g‖L1
xL2[0,T ]

, (3.11)

and

∥∥∥∥∥∥∂xx

t∫
0

W(t − s)g(s)ds

∥∥∥∥∥∥
L∞

x L2[0,T ]

≤ C‖g‖L1
xL2[0,T ]

. (3.12)

Motivated by the above estimates, define norms ‖ · ‖ST ′[t0,t0+T ] as

‖V ‖ST ′[t0,t0+T ] = max{‖V ‖L∞[t0,t0+T ]H 1
x
,‖∂xxV ‖L∞

x L2[t0,t0+T ]
,

‖V ‖L2
xL∞[t0,t0+T ],‖∂xV ‖L4[t0,t0+T ]L∞

x
}, (3.13)

and ‖ · ‖ST c[t0,t0+T ] as

‖V (t, x)‖ST c[t0,t0+T ] = ‖V (t, x − ct)‖ST ′[t0,t0+T ] . (3.14)

Proposition 3.4. There exists C > 0 independent of y(·), σ ≤ 1, t0, and T , such that for any 
y(·) ∈ C1([t0, t0 + T ]) with ‖∂ty‖L∞ ≤ σ and any V e(t0) ∈ Xe

c,y(t0)
, we have

‖S(t, t0)V
e(t0)‖ST c[t0,t0+T ] +

∥∥∥∥∥∥
t∫

t0

S(t, s)f e(s)ds

∥∥∥∥∥∥
ST c[t0,t0+T ]

≤C(1 + T 4)eCσT ‖V e(t0)‖H 1 + C

t0+T∫
t0

(1 + (t0 + T − s)4)eCσ(t0+T −s)‖f e(s)‖H 1
x
ds,

(3.15)

‖S(t, t0)V
e(t0)‖H̃ 1

y(t)
+

∥∥∥∥∥∥
t∫

t0

S(t, s)f e(s)ds

∥∥∥∥∥∥
H̃ 1

y(t)

≤eCσ(t−t0)‖V e(t0)‖H̃ 1
y(t0)

+ C

t∫
t0

eCσ(t−s)‖f e(s)‖H 1
x
ds,

(3.16)

and
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‖S(t, t0)V
⊥(t0)‖H 1 +

∥∥∥∥∥∥
t∫

t0

S(t, s)f ⊥(s)ds

∥∥∥∥∥∥
H 1

x

≤ eCσ(t−t0)‖V ⊥(t0)‖H 1 +
t∫

t0

eCσ(t−s)‖f ⊥(s)‖H 1
x
ds.

(3.17)

It is crucial that the coefficient in front of eCσ(t−t0)‖V e(t0)‖H̃ 1 in (3.16) is 1, which makes an 
iteration argument possible based on this inequality.

Our proof is based on perturbative arguments. We split the proof of this proposition into 
several lemmas. The following technical lemma provides estimates which will be used repeatedly 
in non-homogeneous estimates throughout this paper.

Lemma 3.5. Assuming that f ∈ H 1(R) ∩ W 1,∞(R) and ρ(t) ∈ C1 ([t0, t0 + T ]) satisfying 
|ρ′(t)|C0([t0,t0+T ]) ≤ M for some constant M , then the following estimates hold

‖f (x − ρ(t))‖L2
xL∞[t0,t0+T ] ≤ MT ‖f ′(x)‖L2(R) + ‖f (x)‖L2(R); (3.18)

‖f (x − ρ(t))‖L∞
x L2[t0,t0+T ]

≤ MT 3/2‖f ′(x)‖L∞(R) + T 1/2‖f (x)‖L∞(R). (3.19)

Proof. Since

f (x − ρ(t)) = f (x − ρ(t0)) −
t∫

t0

f ′ (x − ρ(s)) ρ′(s)ds,

by the Minkowski’s integral inequality, we have

‖f (x − ρ(t))‖L2
xL∞[t0,t0+T ] ≤‖f (x)‖L2(R) + M

∥∥∥∥∥∥
t0+T∫
t0

∣∣f ′ (x − ρ(s))
∣∣ds

∥∥∥∥∥∥
L2

x(R)

≤‖f (x)‖L2(R) + M

t0+T∫
t0

∥∥f ′ (x − ρ(s))
∥∥

L2
x
ds

≤‖f (x)‖L2(R) + MT ‖f ′(x)‖L2(R).

(3.20)

The second inequality can be proved in a similar fashion and we omit the details. �
Lemma 3.6. Assume y(t) satisfies |∂ty(t)|L∞ ≤ σ ≤ 1. Let V e(t) = S(t, t0)V e(t0) and
Ṽ e(t, x) = V e(t, x − ct) with V e(t0) ∈ Xe

c,y(t0)
. Then there exists some constant C independent 

of y(·), σ , and T , such that

‖∂xxṼ
e‖L∞

x L2[t0,t0+T ]
≤ C(1 + T 3/2eCσT )‖V e(t0)‖H 1

x
. (3.21)

‖Ṽ e‖L2L∞ ≤ C(1 + T 4)eCσT ‖V e(t0)‖H 1 . (3.22)

x [t0,t0+T ] x
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‖∂xṼ
e‖L4[t0,t0+T ]L∞

x
≤ C(1 + T 3)eCσT ‖V e(t0)‖H 1

x
. (3.23)

Proof. Rewrite (3.2) with f = 0 as

∂tV
e = JLc,yV

e + �(t)V e,

where �(t)V = ∂tyF
(
c, y(t)

)
V − 
⊥

c,y(t)JLc,y(t)V . Clearly, Ṽ e(t) satisfies

∂t Ṽ
e = −∂3

x Ṽ e − ∂x

(
kQk−1

c (· + y(t) − ct)Ṽ e
)

+ �̃(t)Ṽ e (3.24)

where (
�̃(t)Ṽ e

)
(·) = (

�(t)V e
)
(· − ct) = (

�(t)Ṽ e(t, · + ct)
)
(· − ct).

Using the Duhamel’s principle, we write (3.24) as

Ṽ e(t) = W(t − t0)Ṽ
e(t0) +

t∫
t0

W(t − s)
[
�̃(s)Ṽ e(s)

− ∂x

(
kQk−1

c (· + y(s) − cs) Ṽ e(s)
) ]

ds.

(3.25)

• Proof of (3.21). By (3.8), (3.12), one immediately has

‖∂xxṼ
e(t)‖L∞

x L2[t0,t0+T ]
≤ C

∥∥∥∂x

(
Qk−1

c

( · +y(t) − ct
)
Ṽ e

)∥∥∥
L1

xL2[t0,t0+T ]

+ C

∥∥∥∥∥∥
t∫

t0

W(t − s)∂xx

(
�̃(s)Ṽ e(s)

)
ds

∥∥∥∥∥∥
L∞

x L2[t0,t0+T ]

+ C‖Ṽ e(t0)‖H 1 .

(3.26)

Using Lemma 3.5, one has∥∥∥∂x

(
Qk−1

c

( · +y(t) − ct
)
Ṽ e

)∥∥∥
L1

xL2[t0,t0+T ]

≤‖Qk−1
c (· + y(t) − ct)‖H 1

x L∞[t0,t0+T ]‖Ṽ
e‖H 1

x L2[t0,t0+T ]
≤ CT 1/2(1 + T )‖Ṽ e‖L∞[t0,t0+T ]H 1

x
.

From the spatial regularity and decay of functions in X⊥
c,y (of dimension 3) and the expression 

of 
⊥
c,y(t) given in Lemma 2.2, one can easily check that ‖�(t)‖L (L2,H l) ≤ C for any l ≥ 0. 

Therefore, we have

‖�̃(t)Ṽ e‖Hl
x
= ‖�(t)V e‖Hl

x
≤ C‖V e‖L2

x
= C‖Ṽ e‖L2

x
. (3.27)

From the above and Minkowski’s inequality, we obtain
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∥∥∥∥∥∥
t∫

t0

W(t − s)∂xx

(
�̃(s)Ṽ e(s)

)
ds

∥∥∥∥∥∥
L∞

x L2[t0,t0+T ]

≤C

∥∥∥∥∥∥
t∫

t0

∥∥W(t − s)∂xx

(
�̃(s)Ṽ e(s)

)∥∥
L∞

x
ds

∥∥∥∥∥∥
L2[t0,t0+T ]

≤C

∥∥∥∥∥∥
t∫

t0

‖�̃(s)Ṽ e(s)‖L∞[t0,t0+T ]H 3
x
ds

∥∥∥∥∥∥
L2[t0,t0+T ]

≤ CT 3/2‖Ṽ e‖L∞[t0,t0+T ]L2
x
.

Therefore, we obtain

‖∂xxṼ
e(t)‖L∞

x L2[t0,t0+T ]
≤ C‖Ṽ e(t0)‖H 1 + CT 1/2(1 + T )‖Ṽ e‖L∞[t0,t0+T ]H 1

x
.

Inequality (3.21) follows from the above inequality and Lemma 3.1.
• Proof of (3.22). Using (3.18), (3.21), and Lemma 3.1, we first obtain

t0+T∫
t0

∥∥∥∂x

(
kQk−1

c (· + y(s) − cs)Ṽ e(s)
)∥∥∥

H 1
x

ds ≤ C‖Ṽ e‖L1[t0,t0+T ]H 1
x

+ CT
1
2 ‖Qk−1

c (· + y(t) − ct)‖L2
xL∞[t0,t0+T ]‖∂xxṼ

e‖L∞
x L2[t0,t0+T ]

≤C(T 1/2 + T 3)eCσT ‖V e(t0)‖H 1 .

(3.28)

Along with (3.10) and Lemma 3.1, it implies

∥∥∥∥∥∥
t∫

t0

W(t − s)∂x

(
kQk−1

c (· + y(s) − cs)Ṽ e(s)
)

ds

∥∥∥∥∥∥
L2

xL∞[t0,t0+T ]

≤C

t0+T∫
t0

∥∥∥W(t − s)∂x

(
kQk−1

c (· + y(s) − cs)Ṽ e(s)
)∥∥∥

L2
xL∞

t∈[s,t0+T ]
ds

≤C(1 + T )

t0+T∫
t0

∥∥∥∂x

(
kQk−1

c (· + y(s) − cs)Ṽ e(s)
)∥∥∥

H 1
x

ds

≤C(1 + T 4)eCσT ‖V e(t0)‖H 1 .

Using (3.27), in a similar manner we may obtain
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∥∥∥∥∥∥
t∫

t0

W(t − s)�̃(s)Ṽ e(s)ds

∥∥∥∥∥∥
L2

xL∞[t0,t0+T ]

≤
t0+T∫
t0

‖W(t − s)�̃(s)Ṽ e(s)‖L2
xL∞

t∈[s,t0+T ]ds

≤C(1 + T )

t0+T∫
t0

‖Ṽ e(s)‖L2
x
ds ≤ C(1 + T 2)eCσT ‖V e(t0)‖H 1 .

Inequality (3.22) follows from (3.10), (3.25), and the above inequalities.
• Proof of (3.23): Using the Minkowski’s integral inequality, (3.9) and the fact that H 1(R) ⊂

Ḣ 3/4(R), one can verify∥∥∥∥∥∥∂x

t∫
t0

W(t − s)g(s)ds

∥∥∥∥∥∥
L4[t0,t0+T ]L∞

x

≤
t0+T∫
t0

‖∂xW(t − s)g(s)‖L4
t∈[s,t0+T ]L∞

x
ds ≤ C

t0+T∫
t0

‖g(s)‖H 1
x
ds.

(3.29)

Along with (3.25), (3.9), (3.29), and (3.28), it implies (3.23). �
With the above preparation, now we prove Proposition 3.4.

Proof of Proposition 3.4. By Lemma 3.6 and the Minkowski’s integral inequality, one has

∥∥S(t, t0)V
e(t0)

∥∥
ST c[t0,t0+T ]

+
∥∥∥∥∥∥

t∫
t0

S(t, s)f e(s)ds

∥∥∥∥∥∥
ST c[t0,t0+T ]

≤∥∥S(t, t0)V
e(t0)

∥∥
ST c[t0,t0+T ]

+
t0+T∫
t0

∥∥S(t, s)f e(s)
∥∥

ST c
t∈[s,t0+T ]

ds

(3.30)

and thus (3.15) follows. The other two can be obtained directly from Lemma 3.1. �
To end this section, we estimate the difference between solutions to (3.1) along base paths 

yi(t) and with non-homogeneous terms fi(t, x), i = 1, 2. We have

Lemma 3.7. Assume yi(t) satisfies ‖∂tyi‖L∞[t0,t0+T ] ≤ σ ≤ 1, i = 1, 2. There exists a constant 
C > 0 independent of T > 0, yi(·), σ, t0, and the non-homogeneous terms fi(t, x) such that, 
for V01, V02 ∈ H 1, the solutions Vi(t) = Si(t, s)V0i of (3.1) along the paths yi(t) with non-
homogeneous terms fi(t, x) satisfy,



7234 J. Jin et al. / J. Differential Equations 267 (2019) 7213–7262
‖
e
c,y2

(V2 − V1)‖ST c[t0,t0+T ]

≤ CeCσT
(
(1 + T 4)

(‖
e
c,y2(t0)

(V02 − V01)‖H 1 + ‖
e
c,y2

(f2 − f1)‖L1
t H

1
x

)
+ T

1
2 (1 + T 5)‖y1 − y2‖C0,1

(‖V01‖H 1 + ‖f1(t)‖L1
t H

1
x

))
,

‖V2(t0 + T ) − V1(t0 + T )‖H̃ 1
y2(t0+T )

≤ eCσT
(‖V02 − V01‖H̃ 1

y2(t0)
+ C‖
e

c,y2
(f2 − f1)‖L1

t H
1
x

+ CT
1
2 (1 + T 5)‖y1 − y2‖C0,1

(‖V01‖H 1 + ‖f1(t)‖L1
t H

1
x

))
and for any l > 0

‖((I − 
e
c,y2

)(V2 − V1)
)
(t0 + T )‖Hl ≤ eCσT

(‖(I − 
e
c,y2(t0)

)(V02 − V01)‖H 1

+ ‖(I − 
e
c,y2

)(f2 − f1)‖L1
t H

1
x

+ CT ‖y1 − y2‖C0,1

(‖V01‖H 1 + ‖f1(t)‖L1
t H

1
x

))
where all the norms in t are taken on the interval [t0, t0 + T ].

Remark 3.8. For T < 0, the estimates in this section still hold with T replaced by |T |. In the 
case where estimates on 
e

c,y2
V2 − 
e

c,y1
V1 is required, it can be obtained by observing that


e
c,y2

V2 − 
e
c,y1

V1 = 
e
c,y2

(V2 − V1) + O(|y2 − y1|‖V1‖).

Proof. Equation (3.1) implies

∂t (V1 − V2) = 
e
c,y2

JLc,y2

e
c,y2

(V1 − V2) + ∂ty2F (c, y2)(V1 − V2) + �2
1 + f2 − f1, (3.31)

where

�2
1 =(


e
c,y1

JLc,y1

e
c,y1

− 
e
c,y2

JLc,y2

e
c,y2

+ ∂ty1F (c, y1) − ∂ty2F (c, y2)
)
V1

=
(

e

c,y1
JLc,y1(


e
c,y1

− 
e
c,y2

) + 
e
c,y1

(JLc,y1 − JLc,y2)

e
c,y2

+ (
e
c,y1

− 
e
c,y2

)JLc,y2

e
c,y2

+ (∂ty1 − ∂ty2)F (c, y1)

+ ∂ty2
(
F (c, y1) − F (c, y2)

))
V1.

(3.32)

By Lemma 3.1 and Proposition 3.4, we have

‖
e
c,y2

(V1 − V2)‖ST c[t0,t] ≤ Cζ(t − t0)‖
e
c,y2(t0)

(V01 − V02)‖H 1

+ C

t∫
t0

ζ(t − s)
(‖(
e

c,y2
�2

1)(s)‖H 1
x

+ ‖
e
c,y2(s)

(
f2(s) − f1(s)

)‖H 1
x

)
ds,

(3.33)

where ζ(s) = (1 + s4)eCσs and
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‖V1(t) − V2(t)‖H̃ 1
y2(t)

≤ eCσ(t−t0)‖V01 − V02‖H̃ 1
y2(t0)

+ C

t∫
t0

eCσ(t−s)
(‖(
e

c,y2
�2

1)(·)‖H 1
x

+ ‖
e
c,y2(s)

(
f2(s) − f1(s)

)‖H 1
x

)
ds.

(3.34)

Using the smoothness and boundedness of 
e
c,y and F (c, y) as well as the fact that X⊥

c,y are 
finite co-dimensional subspaces of smooth functions, we have

t∫
t0

‖
e
c,y2

�2
1 − 
e

c,y2
(JLc,y1 − JLc,y2)


e
c,y2

V1‖H 1
x
ds

≤C‖V1‖L∞[t0,t]H 1
x
‖y1 − y2‖W 1,1([t0,t])

(3.35)

Note that

(JLc,y1 − JLc,y2)

e
c,y2

V1 = ∂x

(
Q̃
e

c,y2
V1

)
, (3.36)

where

Q̃ = Q̃(x, y1, y2) = kQk−1
c (· + y2) − kQk−1

c (· + y1).

Clearly Q̃
y2−y1

and its derivatives in x decay exponentially as min{|x + y1|, |x + y2|} → ∞. As 
in the proof of (3.28), using (3.18), (3.21), (3.36), and Lemma 3.1, we obtain

t0+T∫
t0

∥∥∥(

e

c,y2
(JLc,y1 − JLc,y2)


e
c,y2

V1

)
(s)

∥∥∥
H 1

x

ds

≤C(T 1/2 + T 3/2)‖y1 − y2‖L∞[t0,t0+T ]‖V1‖ST c[t0,t0+T ] .

(3.37)

Moreover, Proposition 3.4 yields

‖V1‖ST c[t0,t0+T ] ≤ C
(
ζ(T )‖V01‖H 1 +

t0+T∫
t0

ζ(t0 + T − s)‖f1(s)‖H 1
x
ds

)
.

The above estimates imply the first two inequalities in the lemma. The last inequality in the 
lemma follows similarly by using (3.31), Proposition 3.4, and the fact that eigenfunctions of 
JLc,y corresponding to eigenvalues 0 and ±λc are smooth functions, which even allows one to 
avoid the space-time estimates. �
4. Construction of local invariant manifolds of M

With all the preparation in previous sections, we construct the center-stable manifold 
W cs(M ) of M , while the center-unstable manifold W cu(M ) can be constructed in a similar 
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manner. The center manifold W c(M ) of M is obtained as the intersection of the above center-
stable and center-unstable manifolds.

4.1. Outline of the construction of the center-stable manifold of M

We will first fix the traveling speed c and use the global coordinate system (2.19) to construct 
the center-stable manifold of the orbit of a single solitary wave

Mc = {Qc(· + y)|y ∈ R}.

Eventually we will show that these codim-1 center-stable manifolds Wcs(Mc) over the directions 
of TQc(·+y)Mc ⊕ Xe

c,y ⊕ X−
c,y along Mc, for nearby c’s intersect on open subset and thus they 

can be patched together to form the center-stable manifold of M . Here in the above, TQc(·+y)Mc

denotes the tangent space of Mc at Qc(· + y).
In the coordinate system (2.19) W cs(Mc) is represented as the graph of some map-

ping hcs :

W cs(Mc) = �
({

a+ = hcs(y, a−,V e) |
(y, a−,V e) ∈ B1(δ) ⊕ X e

c (δ)
}) (4.1)

where X e
c (δ) defined in (2.14).

Our construction follows the procedure in [10]. Though it has been carried out in details in 
[10], for the sake of completeness we briefly describe the procedure here.

To avoid geometric calculations involving bundles, we shall work with hcs(y, a−, V ) defined 
on R × (−δ, δ) ×H 1(δ), where H 1(δ) = {u|‖u‖H 1 < δ}. However, only the value of hcs on R ⊕
X e

c (δ) matters. By doing so, the projection operator 
e
c,y will be involved a lot in calculations. 

The following nonlinear projections will also be used often


̃excs = (y, a−,
e
c,yV ), where xcs = (y, a−,V ). (4.2)

Let

Xcs =R2 × H 1, Xcs(δ) = {(y, a−,V ) ∈ Xcs : ‖V ‖H 1 < δ},

and

Xcs[t0,t1] = L∞([t0, t1],R2) × ST c[t0,t1], Xcs[t0,t1](δ) = {(y, a−,V ) ∈ Xcs[t0,t1] : ‖V ‖ST c[t0,t1] < δ}.

As a standard technique in local analysis, we first cut-off the nonlinearities, as well as the 
off-diagonal linear terms in (2.25), to modify equations (2.25), (2.26) and (2.30) into a system 
defined on Xcs × R. Accordingly, we will work with hcs(y, a−, V ) defined on Xcs(δ). Take a 
cut-off function

γ ∈ C∞(R), s. t. γ (x) = 1, ∀|x| ≤ 1, γ (x) = 0, ∀|x| ≥ 3, |γ ′|C0(R) ≤ 1 (4.3)
0
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and for δ > 0, a+ ∈R, and xcs = (y, a−, V ) ∈ Xcs , let

γδ(x
cs, a+) = γ (δ−1a−)γ (δ−1a+)γ (δ−1‖V ‖H1).

and let

G̃±(xcs, a+) =γδ(x
cs, a+)G±(y, a+, a−,
e

c,yV ),

G̃T (xcs, a+) =γδ(x
cs, a+)

( − ‖∂xQc‖−2
L2 〈Lc,yJ ∂xQc(· + y),
e

c,yV 〉
+ GT (y, a+, a−,
e

c,yV )
)

G̃e(xcs, a+) =γδ(x
cs, a+)Ge(y, a+, a−,
e

c,yV )

where the definitions of GT,±,e are given in Section 2.3. The definitions of G̃±,T ,e imply that
they are independent of the extra component (I − 
̃e)V , which is artificially added to avoid the 
non-flat bundle R ⊕ X e .

Moreover, by the definitions of G±,T and the smoothness of the projection operator 
e
c,y , it 

holds that for any m, l ≥ 0, there exists some constant C such that,

sup
xcs ,a+

‖Dm
V Dl

c,yG̃
T (xcs, a+)‖ ≤ Cδ1−m,

sup
xcs ,a+

‖Dm
a+,a−Dl

c,yG̃
T (xcs, a+)‖ + sup

xcs ,a+
‖Dm

a+,a−,V
Dl

c,yG̃
±(xcs, a+)‖ ≤ Cδ2−m

(4.4)

where the above norms are evaluated in the space L ml (Xcs ×R,R) of (m + l)−linear forms 
on Xcs ×R. Denote

G̃cs(xcs, a+) = (G̃T , G̃−, G̃e)(xcs, a+),

Acs(y, ỹ) = diag
(
0,−λc,


e
c,yJLe

c,y

e
c,y + ỹF (c, y)

)
.

We shall consider the following system of xcs and a+,

∂tx
cs = Acs

(
y, G̃T (xcs, a+)

)
xcs + G̃cs(xcs, a+) (4.5a)

∂ta
+ = λca

+ + G̃+(xcs, a+), (4.5b)

which coincides with the system consisting of equations (2.25), (2.26) and (2.30) if |a+,−| ≤ δ, 
‖V ‖H 1 ≤ δ, and V ∈ Xe

c,y .
The presence of the term 〈Lc,yJ ∂xQc(· + y), 
e

c,yV 〉 in G̃T causes that G̃T does not have 
small Lipschitz constants, which is mostly necessary in constructing local invariant manifolds. 
This technical issue will be handled by introducing the following metric involving a scale con-
stant A > 1
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‖(y, a−,V )‖H 1,A � |y| + |a−| + A‖V ‖H 1,

‖(y, a−,V )‖H̃ 1
y′ ,A � |y| + |a−| + A〈Lc,y′
e

c,y′V,
e
c,y′V 〉 1

2 = |y| + |a−| + A‖V ‖H̃ 1
y′

‖(y, a−,V )‖ST c[t0,t1],A � ‖(y, a−)‖L∞[t0,t1] + A‖V ‖ST c[t0,t1]

(4.6)

where ‖ · ‖H̃ 1
y′ was denied in (3.5).

After modifying the nonlinearity, we shall construct the local center-stable manifold 
W cs(Mc) as the graph {a+ = hcs(W)} of some hcs : Xcs(δ) → R. In our construction, we 
fix constants A, δ, μ such that

δ < 1, A > 1, μ <
1

2
, (4.7)

with additional assumptions which will be given later. Define

�μ,δ = {h : Xcs(δ) →R | h(y,0,0) = 0, ‖h‖C0 ≤ δ,Lip(h)‖·‖
H1,A

≤ μ}. (4.8)

Here h(y, 0, 0) = 0 is required since W cs(Mc) should contain Mc. It is clear that �μ,δ equipped 
with ‖ · ‖C0 is a complete metric space.

We will perform a type of Lyapunov-Perron method to construct center-stable manifolds. That 
is, for any h ∈ �μ,δ and x̄cs ∈ Xcs(δ), let xcs(t) = (y, a−, V e)(t) ∈ Xcs be the solution to

∂tx
cs = Acs

(
y, G̃T (xcs, h(xcs)

))
xcs + G̃cs

(
xcs, h(xcs)

)
, xcs(0) = x̄cs . (4.9)

Then we define ̃h(x̄cs) as

h̃(x̄cs) = ā+ = −
∞∫

0

e−λcsG̃+(
xcs(s), h(xcs(s))

)
ds. (4.10)

Remark 4.1. Even though h is defined only on Xcs(δ), due to the cut-off function γδ , for any 
h ∈ �μ,δ , α ∈ {T , ±, e}, it holds G̃α

(
xcs, h(xcs)

) = 0 whenever xcs ∈ Xcs\Xcs(δ). Thus, the 
right side of (4.9) is well-defined for all xcs ∈ Xcs .

Denote the transformation h → h̃ as

T (h) = h̃.

The aim is to show that, under suitable assumptions on A, δ and μ , ̃h ∈ �μ,δ is well-defined 
and T is a contraction on �μ,δ . The graph of the unique fixed point, restricted to the set

B1(δ) ⊕ X e(δ)

would be the desired center-stable manifold W cs(Mc).
The framework described above allows us to work in a flat space Xcs instead of non-flat 

bundle R ⊕X e, which will bring us convenience in the proof of the smoothness of local invariant 
manifolds. In fact, those extensions and modifications of (2.25), (2.26) and (2.30) to cooperate 
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with our framework does not change the local invariant manifolds. More precisely, we have the 
following lemma.

Lemma 4.2. The following statements hold.

(1) Suppose

xcs(t) = (y(t), a−(t),V (t))

satisfies (4.5a) on [t1, t2] for some a+ ∈ C0([t1, t2], R) and 
̃excs(t0) = xcs(t0) for some 
t0 ∈ [t1, t2], then 
̃excs(t) = xcs(t) for all t ∈ [t1, t2].

(2) Assume hj ∈ �μ,δ , j = 1, 2, satisfy h1(x
cs) = h2(x

cs) for all xcs ∈ R ⊕ X e
c (δ). Then h̃j , 

j = 1, 2, defined in (4.10) are also identical in R ⊕ X e
c (δ).

Proof. Since 
e
c,yG̃

e = 0, this lemma is just an easy application of Lemma 3.1. �
4.2. A priori estimates

In this subsection, we utilize the smoothing space-time estimates established in Section 3 to 
obtain a priori estimates. The strategy is to derive small time period estimates with small expo-
nential growth, then by iteration we obtain global in time estimates with the same exponential 
growth. The Hamiltonian structure plays a crucial role in our iteration step. In particular, the pos-
itivity of the bilinear form 〈Lc,y ·, ·〉 in Xe

c,y guarantees the coefficient in front of the exponential 
term is 1, so iteration will not generate large exponential growth.

We start the subsection with several estimates that will be used frequently throughout this 
paper.

Lemma 4.3. If u, v ∈ ST c[t0,t0+T ], the following bilinear estimate holds

‖∂x(uv)‖L1[t0,t0+T ]H 1
x

≤ C(T
1
2 + T )‖u‖ST c[t0,t0+T ]‖v‖ST c[t0,t0+T ] .

Proof. Let ũ(t, x) = u(t, x − ct) and ṽ(t, x) = v(t, x − ct). Since ‖∂x(uv)‖L1[t0,t0+T ]L2
x

=
‖∂x(ũṽ)‖L1[t0,t0+T ]L2

x
, we may estimate the latter in terms of the ST ′[t0,t0+T ] norm of ũ and ṽ. 

Firstly, since H 1 ⊂ L∞, one can estimate

‖(∂xũ)ṽ + (∂x ṽ)ũ‖L1[t0,t0+T ]L2
x
≤ CT ‖ũ‖L∞[t0,t0+T ]H 1

x
‖ṽ‖L∞[t0,t0+T ]H 1

x
.

Moreover, by straightforward calculations, one has

‖∂xũ∂x ṽ‖L1[t0,t0+T ]L2
x
≤‖∂xũ‖L4[t0,t0+T ]L∞

x
‖∂xṽ‖

L
4/3
[t0,t0+T ]L2

x

≤T 3/4‖∂xũ‖L4[t0,t0+T ]L∞
x

‖∂xṽ‖L∞[t0,t0+T ]L2
x
,

and
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‖ũ∂xx ṽ‖L1[t0,t0+T ]L2
x
≤ T 1/2‖ũ∂xx ṽ‖L2

xL2[t0,t0+T ]

≤ T 1/2‖ũ‖L2
xL∞[t0,t0+T ]‖∂xx ṽ‖L∞

x L2[t0,t0+T ]
.

The term ‖ṽ∂xxũ‖L1[t0,t0+T ]L2
x

can be estimated similarly, which completes the proof. �
Next technical lemma will be used frequently to estimate the difference between two solutions 

to (4.9).

Lemma 4.4. Let V ∈ L∞[t0,t0+T ]L2
x and y(t) ∈ C1([t0, t0 + T ], R). For any m ≥ 0 it holds

‖(∂m
y 
e

c,y)|y=y(t)V ‖ST c[t0,t0+T ] ≤ C(1 + T
1
2 )

(
1 + (c + ‖∂ty(t)‖C0)T

)‖V ‖L∞[t0,t0+T ]L2
x
.

Proof. Since ∂m
y 
e

c,y = −∂m
y 
⊥

c,y , it is equivalent to estimate ‖∂m
y 
⊥

c,yV ‖ST c[t0,t0+T ] . On the one 
hand, by Lemma 3.5, we have

‖∂m
x V ±

c (· + y(t))‖ST c[t0,t0+T ] + ‖∂m
x Qc(· + y(t))‖ST c[t0,t0+T ]

≤C(1 + T
1
2 )

(
1 + (c + ‖∂ty(t)‖C0)T

)
,

On the other hand, using the high regularity of V ±
c and Qc, one has

|〈∂m
x V ±

c (· + y(t),V 〉| + |〈∂m
x Qc(· + y(t)),V 〉| ≤ C‖V ‖L2

x
.

By the explicit expressions of 
±,T
c,y given in Lemma 2.2, the desired estimate follows right 

away. �
An immediate consequence of the above two lemmas along with Lemma 3.5 is the following:

Lemma 4.5. For any xcs ∈ Xcs
[t0,t0+T ](a) and mj ≥ 0, j = 1, . . . , 5, with m4 + m5 > 0, it holds 

that

‖Dm1
V ∂

m2
a± ∂m3

y G̃e(xcs, a+)‖L m1 (ST c[t0,t0+T ],L1[t0,t0+t]H 1
x ) ≤ CT

1
2 (1 + T 2)(a + δ)2−m1−m2,

‖Dm4
V ∂

m5
a±,y

(
Acs(y, G̃T (xcs, a+))

)‖L m4
(
L∞[t0,t0+T ]H 1

x ,L (Xcs[t0,t0+T ],L1[t0,t0+t]H 1
x )

) ≤ CT
1
2 (1 + T ).

Here L l
(
Z1, Z2

)
denotes the space of l−multilinear transformations from space Z1 ⊗ Z1...

⊗ Z1 to space Z2. In the above differentiations, ∂m2
a± ∂

m3
y G̃e and ∂m5

a±,y
Acs are point-wise partial 

derivatives and the multi-linear operators resulted in the differentiations are of V only.

Proof. We first consider G̃e. For convenience, we let

G̃(xcs, a+) = γδ(x
cs, a+)G(y, a+, a−,V e),
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and

R̃e(xcs, a+) = G̃(xcs, a+) − G̃e(xcs, a+) = γδ(x
cs, a+)

(
G(xcs, a+) − Ge(xcs, a+)

)
.

Recalling the definitions of G and Ge in (2.22) and (2.27), respectively, the difference between 
Ge and G consists of terms of high spatial regularity smoothly depending on c, y, a± ∈ R and 
V ∈ L2, and it is straightforward to verify

‖Dm1
V ∂

m2
a± ∂m3

y R̃e(xcs, a+)‖L m1 (H 1
x ,H 1

x ) ≤ Cδ2−m1−m2,

which implies

‖Dm1
V ∂

m2
a± ∂m3

y R̃e(xcs, a+)‖L m1
(
ST c[t0,t0+T ],L1[t0,t0+t]H 1

x

) ≤ CT δ2−m1−m2 .

Since G is a polynomial of a± and V , using the fact that H 1(R) ⊂ L∞(R), Lemma 3.5, and 
Lemma 4.3, one has

‖Dm1
V ∂

m2
a± ∂m3

y G̃(xcs, a+)‖L m1 (Sc[t0,t0+T ],L1[t0,t0+t]H 1
x ) ≤ CT

1
2 (1 + T 2)(δ + a)2−m1−m2 .

To estimate Dm4
V ∂

m5
a±,y

Acs
(
y, ̃GT (xcs, a+)

)
for m4 + m5 > 0, we first consider

∂l
y(JLc,y)V = k∂x

(
∂l
x(Q

k−1
c )(· + y)V

)
.

Much as in the proof of (3.28), we obtain,

‖∂l
y(JLc,y)(ȳ1, . . . , ȳl)V ‖L1[t0,t0+T ]H 1

x
≤ CT

1
2 (1 + T )‖V ‖ST c[t0,t0+T ] .

Due to high regularity of the eigenfunctions of JLc,y , the smoothness of 
⊥
c,y and F with 

respect to y, and the smoothness of G̃T with respect to xcs ∈ Xcs and a+ ∈R. The inequality on 
D

m4
V ∂

m5
a±,y

Acs follows immediately and this completes the proof. �
In the rest of this subsection, we shall solve and estimate solutions to (4.5a) with a given 

a+(t). One first observes that the V equation in (4.5a) has to be solved along a path y(t) and 
the multiplier in front of F has to be its ∂ty in order to maintain the commutativity (obtained in 
Lemma 3.1) between its homogeneous evolution operator S(t, t0) and 
e

c,y . Therefore we split 
the iteration procedure of (4.5a) into

∂ty = G̃T (ỹ, ã−, Ṽ , ã+) (4.11a)

∂ta
− = −λca

− + G̃−(ỹ, ã−, Ṽ , ã+) (4.11b)

∂tV = (

e

c,yJLe
c,y


e
c,y + ∂tyF (c, y)

)
V + G̃e(ỹ, ã−, Ṽ , ã+) (4.11c)

where

x̃cs = (ỹ, ã−, Ṽ ) ∈ Xcs (a), a ∈ (0,1), ã+ ∈ L∞ (4.12)
[t0,t0+T ] [t0,t0+T ]



7242 J. Jin et al. / J. Differential Equations 267 (2019) 7213–7262
are given. In particular, ones first solves the ODEs (4.11a) and (4.11b) for y(t) and ã−(t) and 
then substitutes the solution y(t) into the homogeneous part of equation (4.11c) and solves for 
V (t).

Lemma 4.6. Let x̃cs
i (t) and ã+

i (t) satisfy (4.12), i = 1, 2, and xcs
i (t) = (

yi(t), a
−
i (t), Vi(t)

)
be the solutions to (4.11) for t ∈ [t0, t0 + T ], then there exists a constant C not depending on 
t0, T , xcs(t0), and ̃xcs such that, if initial value

xcs
i (t0) = xcs

i0 = (
yi0, a

−
i0,Vi0

) ∈ Xcs(Cδ),

then we have ‖∂tyi‖L∞ ≤ Cδ and

|yi(t0 + T )| ≤ |yi0| + CδT , |a−
i (t0 + T )| ≤ e−λcT |a−

i0| + Cδ,

‖Vi‖ST c[t0,t0+T ] ≤ C(1 + T 6)eCδT
(‖Vi0‖H 1 + T

1
2 (a2 + δ2)

)
,

|(y2 − y1)(t0 + T )| ≤|y20 − y10| + CT (δ + A−1)(‖x̃cs
2 − x̃cs

1 ‖ST c[t0,t0+T ],A + ‖̃a+
2 − ã+

1 ‖L∞
t

),

|(a−
2 − a−

1 )(t0 + T )| ≤e−λc(t−t0)|a−
20 − a−

10| + Cδ

t0+T∫
t0

e−λc(t−τ)(|̃y2 − ỹ1|

+ |̃a−
2 − ã−

1 | + |Ṽ2 − Ṽ1|H 1 + |̃a+
2 − ã+

1 |)(τ )dτ,

‖V2−V1‖ST c[t0,t0+T ] ≤ C(1 + T 9)eCδT
(
‖V20 − V10‖H 1 + T

1
2
(
a + δ

+ T
1
2 (a2 + δ2)

)
(|y20 − y10| + ‖x̃cs

2 − x̃cs
1 ‖ST[t0,t0+T ],A + ‖̃a+

2 − ã+
1 ‖L∞

t
)
)
,

‖V2(t0 + T ) − V1(t0 + T )‖H̃ 1
y2(t0+T )

≤ eCδT
(‖V20 − V10‖H̃ 1

y2(t0)
+ CT

1
2 (1 + T 9)

× (
a + δ + T

1
2 (a2 + δ2)

)
(|y20 − y10| + ‖x̃cs

2 − x̃cs
1 ‖ST[t0,t0+T ],A + ‖̃a+

2 − ã+
1 ‖L∞

t
)
)
,

and for any l > 0

‖((I − 
e
c,y2

)(V2 − V1)
)
(t0 + T )‖Hl ≤ eCδT

(‖(I − 
e
c,y2(t0)

)(V02 − V01)‖H 1

+ CT
1
2 (1 + T 4)

(
a + δ + T

1
2 (a2 + δ2)

)
(|y20 − y10|

+ ‖x̃cs
2 − x̃cs

1 ‖ST[t0,t0+T ],A + ‖̃a+
2 − ã+

1 ‖L∞
t

)
)
.

Proof. From (4.11), (4.4), Proposition 3.4, and Lemma 4.5, it is straightforward to obtain the 
estimates on ̃xcs

i and compute

|(y2 − y1)(t)| ≤ |y20 − y10| + C

t∫
t0

(δ|̃y2 − ỹ1| + δ|̃a−
2 − ã−

1 |

+ |Ṽ2 − Ṽ1|H 1 + δ|̃a+
2 − ã+

1 |)(τ )dτ.
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Therefore the estimate on y2 − y1 follows immediately from the definition of ‖ · ‖ST c[t0,t0+T ],A. 

The inequality on a−
2 − a−

1 is also derived from (4.11) and (4.4). To estimate the difference in 
Vi(t), we first obtain from Lemma 4.5

|∂tyi |L∞
t

≤ Cδ, ‖G̃e(̃xcs
i , ã+

i )‖L1
t H

1
x

≤ CT
1
2 (1 + T 2)(a2 + δ2),

for i = 1, 2 where the norms in t are taken on [t0, t0 + T ] throughout the lemma. Using 
Lemma 3.7, we have

‖V2 − V1‖ST c[t0,t0+T ] ≤ C(1 + T 7)eCδT
(
‖V02 − V01‖H 1

+ ‖G̃e(̃xcs
2 , ã+

2 ) − G̃e(̃xcs
1 , ã+

1 )‖L1
t H

1
x

+ T
1
2
(
δ + T

1
2 (a2 + δ2)

)‖y2 − y1‖C0,1

)
.

Again from Lemma 4.5, (4.11), (4.4) and the inequality on y2 − y1, we have

‖G̃e(̃xcs
2 , ã+

2 ) − G̃e(̃xcs
1 , ã+

1 )‖L1
t H

1
x

≤ CT
1
2 (1 + T 2)(a + δ)(‖x̃cs

2 − x̃cs
1 ‖Xcs[t0,t0+T ] + ‖̃a+

2 − ã+
1 ‖L∞

t
),

‖y2 − y1‖C0,1

≤ |y20 − y10| + C(1 + T )(δ + A−1)(‖x̃cs
2 − x̃cs

1 ‖ST c[t0,t0+T ],A + ‖̃a+
2 − ã+

1 ‖L∞
t

).

The last inequality follows similarly and the proof is complete. �
Remark 4.7. Clearly (4.11) is well-posed and xcs = (y0, 0, 0) if x̃cs ≡ x̃cs(t0) = (y0, 0, 0) and 
ã+ = 0.

With the above lemma, we are ready to prove the well-posedness of (4.5a).

Lemma 4.8. Given any C0 > 1, there exists C > 1 such that if A and δ satisfy (4.7) and

Cη < 1, where η = Aδ + A−1, (4.13)

then

(1) For any a+ ∈ L∞
loc and xcs

0 = (y0, a
−
0 , V0) ∈ Xcs(C0δ), there exists a unique solution 

xcs = (y, a−, V ) ∈ C0
([0, ∞), Xcs(Cδ)

)
of (4.5a) such that xcs(0) = xcs

0 and xcs ∈
Xcs

[t0,t0+T ]
(
C(1 + T )δ

)
for any t0, T ≥ 0.

(2) Let xcs
i = (yi, a

−
i , Vi) be the solutions of (4.5a) with initial values xcs

i0 = (yi0, a
−
i0, Vi0) ∈

Xcs(Cδ) corresponding to a+
i ∈ L∞

loc , i = 1, 2. Suppose

|a+
1 − a+

2 | ≤ κ0 + κ1‖xcs
1 − xcs

2 ‖H 1,A, (4.14)

for κ0 > 0 and κ1 ∈ [0, 1], then
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‖xcs
1 (t) − xcs

2 (t)‖H 1,A ≤ CeCηt
(‖xcs

10 − xcs
20‖H 1,A + min{1, (1 + t)η)}κ0

)
,

‖xcs
2 − xcs

1 ‖ST c[t0,t0+T ],A ≤ C(1 + T )eCηT
(‖xcs

2 (t0) − xcs
1 (t0)‖H 1,A + κ0

)
.

Proof. In the proof of this lemma, we will use C ′ to denote the generic upper bounds appearing 
in previous estimates and C the newer (and greater) bound emerging in the proof of this lemma. 
For any ̃xcs ∈ Xcs

[0,1](CC0δ), let xcs = (y, a−, V ) be the solution to (4.11) with ̃a+ = a+ and the 
initial value xcs

0 . From Lemma 4.6 and (4.7), we have

‖V ‖ST c[0,1] ≤ C′(C0δ + C2C2
0δ2)

) ≤ CC0δ.

Therefore xcs ∈ Xcs
[0,1](CC0δ). Moreover, the mapping ̃xcs → xcs has the Lipschitz constant 

C′η < 1 in the ‖ · ‖ST c[0,1],A norm due to (4.13). The Contraction Mapping Principle implies the 
local well-posedness of (4.5a) for t ∈ [0, 1].

Note that when ‖V ‖H 1 > 3δ, we have ∂ty = 0 and G̃e = 0 in (4.5a). Consequently, by (3.2)
and (3.3),

∂t 〈Lc,yV
e,V e〉 = 0, ∂tV

⊥ = 0,

where V e = 
e
c,yV and V ⊥ = 
⊥

c,yV . This along with the positivity of Lc,y on Xe
c,y implies

‖V ‖H 1 ≤ Cδ, (4.15)

for any t ∈ [0, 1]. Therefore, a standard continuation argument yields the global in time well-
posedness of (4.5a) with xcs ∈ Xcs[t0,t0+T ]

(
C(1 + T )δ

)
for any t0, T ≥ 0.

To prove the second part of the lemma, we first notice that Lemma 4.6 implies that

‖xcs
2 − xcs

1 ‖ST c[t0,t0+1],A ≤ C′(‖xcs
2 (t0) − xcs

1 (t0)‖H 1,A

+ (CC0Aδ + A−1)
(‖xcs

2 − xcs
1 ‖ST c[t0,t0+1],A + κ0

))
,

where xcs
i ∈ Xcs

[t0,t0+1](CC0δ) is used. From (4.7), we obtain

‖xcs
2 − xcs

1 ‖ST c[t0,t0+1],A ≤ C
(‖xcs

2 (t0) − xcs
1 (t0)‖H 1,A + ηκ0

)
. (4.16)

Let

l(t) =
(
|y2 − y1| + |a−

2 − a−
1 | + A‖V2 − V1‖H̃ 1

y2
+ A‖((I − 
e

c,y2
)(V2 − V1)

)‖H 1

)∣∣∣
t
,

which satisfies

(1/C′)l(t) ≤ ‖xcs
2 (t) − xcs

1 (t)‖H 1,A ≤ C′l(t).

Substituting (4.16) into Lemma 4.6 yields, for t ∈ [0, 1],

l(t0 + t) ≤ eC′δt(l(t0) + Cηt
1
2 (l(t0) + κ0)

)
. (4.17)
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In particular, it implies

l(n + 1) ≤ eCη
(
l(n) + Cηκ0

)
.

From a simple induction argument we obtain

l(n) ≤ eCηn
(
l(0) + C min{1, nη}κ0

)
,

which along with (4.17) implies, for t ≥ 0,

l(t) ≤ 2eCηt
(
l(0) + C min{1, (1 + t)η}κ0

)
.

Therefore, we obtain the desired estimate on ‖xcs
1 − xcs

2 ‖H 1,A. Finally, substituting this into 
(4.16), we obtain

‖xcs
1 − xcs

2 ‖ST c[n,n+1],A ≤ CeCηn(‖xcs
10 − xcs

20‖H 1,A + κ0),

the summation of which implies the estimates ‖xcs
1 − xcs

2 ‖ST c[t1,t2],A. �
4.3. Construction of local center-stable manifolds

In this section, we follow the procedure described in Section 4.1 to construct center-stable 
manifolds of Mc. The goal is to show the transformation h → h̃ is a contraction on γμ,δ , where 
h̃ and γμ,δ are defined in (4.10) and (4.8), respectively. We first give the global well-posedness 
of (4.9) in the below.

Lemma 4.9. There exists C > 1 such that if A, μ, and δ satisfy (4.7) and (4.13), then, for any 
xcs

0 = (y0, a
−
0 , V0) ∈ Xcs(δ), there exists a unique solution

xcs = (y, a−,V ) ∈ C0([0,∞),Xcs(Cδ)
)

of (4.9) such that xcs(0) = xcs
0 and xcs ∈ Xcs

[t0,t0+T ] for any t0, T ≥ 0.

Remark 4.10. The global well-posedness of (4.9) can be proved by the same arguments as in 
the proof Lemma 4.8 and we omit it. The estimate in part (2) of Lemma 4.8 obviously holds for 
solutions to (4.9).

Since (4.9) is global well-posed, the definition (4.10) of h̃ is valid. Next, we show that the 
mapping T (h) = h̃ is a contraction on γμ,δ .

Proposition 4.11. There exists C > 1 such that if δ, μ, and A satisfy (4.7), (4.13), and

C(λc − Cη)−1δ ≤ μ, (4.18)

then T is a contraction mapping on �μ,δ .
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Proof. By (4.4) and the definition (4.10) of h̃, ‖h̃‖C0 ≤ Cλ−1
c δ2 ≤ δ. Since G−,e(y, 0, 0, 0) =

h(c, y, 0, 0) = 0, when the initial data x̄cs = (ȳ, 0, 0), the solution to (4.9) is of the form 
(c, y, 0, 0), which implies ̃h(y, 0, 0) = 0.

For hi ∈ �μ,δ , let xcs
i be the solutions to (4.9) with h = hi and the initial data x̄cs

i ∈ Xcs(δ), 
i = 1, 2, respectively. Since

‖h1(x
cs
1 ) − h2(x

cs
2 )‖ ≤ μ‖xcs

1 − xcs
2 ‖H 1,A + ‖h1 − h2‖C0,

applying Lemma 4.8, we have

‖xcs
1 (t) − xcs

2 (t)‖H 1,A ≤ CeCηt (‖x̄cs
1 − x̄cs

2 ‖H 1,A + ‖h1 − h2‖C0). (4.19)

In (4.19), letting h1 = h2 = h, we have

‖xcs
1 (t) − xcs

2 (t)‖H 1,A ≤ Ceηt‖x̄cs
1 − x̄cs

2 ‖H 1,A.

It follows from (4.10) and (4.5) that∣∣̃h(x̄cs
1 ) − h̃(x̄cs

2 )
∣∣ ≤ C

(
λc − Cη

)−1
δ‖x̄cs

1 − x̄cs
2 ‖H 1,A, (4.20)

which implies that Lip(̃h)‖·‖
H1,A

≤ μ due to (4.18).
Applying (4.5) and (4.19) with x̄cs

1 = x̄cs
2 in (4.10), we have

‖h̃1 − h̃2‖C0 ≤ C
(
λc − Cη

)−1
δ‖h1 − h2‖C0, (4.21)

which along with (4.13) completes the proof. �
Therefore, there exists hcs ∈ �μ,δ such that T hcs = hcs . Let x̃cs(t) be the solution to (4.9)

with h = hcs and let ̃a+(t) = hcs (̃xcs(t)). Using the definition of hcs , one has

ã+(t) = −
∞∫

0

e−λcsG̃+ (̃
xcs(t + s), ã+(t + s)

)
ds

= −
∞∫
t

e−λc(s−t)G̃+ (̃
xcs(s), ã+(s)

)
ds

= − eλct

∞∫
0

e−λcsG̃+ (̃
xcs(s), ã+(s)

)
ds +

t∫
0

eλc(t−s)G̃+ (̃
xcs(s), ã+(s)

)
ds

=eλct ã+(0) +
t∫

0

eλc(t−s)G̃+ (̃
xcs(s), ã+(s)

)
ds,

(4.22)

which implies that (̃xcs(t), hcs (̃xcs(t)) is a solution to (4.5). As mentioned in Section 4.1, the 
graph of a+ = hcs(xcs) over Xcs(δ) is the center-stable manifold, i.e.,
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W cs(Mc) = {�(
xcs, a+ = hcs(xcs)

) | xcs ∈ B1(δ) ⊕ X e
c (δ)}. (4.23)

Together with Lemma 4.2 and Remark 4.1, we have the local invariance of W cs(Mc) under 
(2.1). Recall the coordinate mapping � defined in (2.19).

Theorem 4.12. If the solution U(t) = �
(
y(t), a+(t), a−(t), V e(t)

)
to (2.1) satisfies |a±(t)| ≤ δ

and V e(t) ∈ X e(δ) for t ∈ [0, T ] with T > 0 and U(0) ∈ W cs(Mc), then U(t) ∈ W cs(Mc) for 
t ∈ [0, T ].

Remark 4.13. In section 6, we will prove the orbital stability of solitary waves on the center-
stable manifold, which yields the local uniqueness of the center-stable manifold. Therefore, we 
can patch the center-stable manifolds of all the solitary waves together to form the center-stable 
manifold of M .

4.4. Construction of local center-unstable manifolds and center manifolds

Denote

Xcu(δ) = {(y, a+,V ) : ‖V ‖H 1 ≤ δ}, xcu = (y, a+,V ),

G̃cu(xcu, a−) = (G̃T , G̃−, G̃e)(xcu, a−),

Acu(y, ỹ) = diag
(
0,−λc,


e
c,yJLe

c,y

e
c,y + ỹF (c, y)

)
.

We shall consider the following system of xcs and a+,

∂tx
cu = Acu

(
y, G̃T (xcu, a−)

)
xcu + G̃cu(xcu, a−), (4.24a)

∂ta
− = −λca

− + G̃−(xcu, a−). (4.24b)

Define

�μ,δ = {h : Xcu(δ) →R | h(y,0,0) = 0, ‖h‖C0 ≤ δ,Lip(h)‖·‖
H1,A

≤ μ}. (4.25)

For any h ∈ �μ,δ and x̄cu ∈ Xcu(δ), let xcu(t) = (y, a+, V )(t) ∈ Xcu be the backward solution 
to

∂tx
cu = Acu

(
y, G̃T (xcu,h(xcu)

))
xcu + G̃cu

(
xcu,h(xcu)

)
, xcu(0) = x̄cu. (4.26)

Then we define ̃h(x̄cu) as

h̃(x̄cu) = ā− =
0∫

−∞
e−λ−

c sG̃−(
xcu(s), h(xcu(s))

)
ds. (4.27)

Under suitable assumptions on A, δ and μ , h̃ ∈ �μ,δ is well-defined and the transformation 
h → h̃ is a contraction on �μ,δ . The graph of the unique fixed point, restricted to the set B1(δ) ⊕
X e

c (δ) would be the desired center-unstable manifold W cu(Mc). Similar to the center-stable 
case, we have the following theorem.
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Theorem 4.14. If the solution U(t) = �
(
y(t), a+(t), a−(t), V e(t)

)
to (2.1) satisfies |a±(t)| ≤ δ

and V e(t) ∈ X e(δ) for t ∈ [−T , 0] with T > 0 and U(0) ∈ W cu(Mc), then U(t) ∈ W cu(Mc)

for t ∈ [−T , 0].

We obtain the local center manifold W c(Mc) as the intersection of the center-stable and 
center-unstable manifolds. In fact a point U = �(y, a+, a−, V e) ∈ W c(Mc) if and only if{

a+ = hcs
(
y, a−,V

)
a− = hcu

(
y, a+,V

)
.

(4.28)

Since the Lipschtiz constants of both hcs and hcu are μ < 1
2 , fixing y and V ∈ H 1 with 

‖V ‖H 1 ≤ δ, (hcu, hcs) is a contraction with Lipschitz the constant μ on R2, and consequently, 
it has a fixed point (a+, a−) = hc (y,V ). Clearly hc (y,V ) has a Lipschitz constant μ

1−μ
in the 

‖ · ‖H 1,A norm. The graph of (a+, a−) = hc(y, V ) restricted to X e
c (δ) is the desired center 

manifold.

Theorem 4.15. If the solution U(t) = �
(
y(t), a+(t), a−(t), V e(t)

)
to (2.1) satisfies |a±(t)| ≤ δ

and V e(t) ∈ X e(δ) for t ∈ [−T , T ] with T > 0 and U(0) ∈ W c(Mc), then U(t) ∈ W c(Mc) for 
t ∈ [−T , T ].

5. Smoothness of center-stable manifolds

In this section, assuming (4.7), (4.13), (4.18), and

Cδ(λc − Cη)−1 < η. (5.1)

we prove the smoothness of the center-stable manifold W cs(Mc) with respect to (y, a−, V ). 
The smoothness of the center-unstable manifold can be proved similarly. Then one automatically 
obtains the smoothness of the center manifold since it is the intersection of the center-stable and 
center-unstable manifolds. The smoothness of the local invariant manifolds with respect to c will 
be discussed in Section 6.3.

Despite the substantial difference in estimates, the proof of the smoothness fits in the frame-
work in [10], where smooth local invariant manifolds of traveling waves of the Gross-Pitaevskii 
equation were constructed. With all the estimates established in Section 3 and Section 4, actually 
the proof is quite similar to the one in [10]. We will sketch the main steps of proving the C1

smoothness. Following the approach in [10], one may prove higher order smoothness. Our proof 
of C1 smoothness here illustrates how to adapt the estimates for gKDV to fit in the framework in 
[10].

To simplify the presentations, we first introduce some notations. For t ≥ 0, let

�(t, xcs) = (y(t), a−(t),V (t)), xcs ∈ Xcs(δ),

be the solution to (4.9) with h = hcs and initial value xcs . By Lemma 4.2, we have


̃e�(t, xcs) = �(t, xcs), ∀t ≥ 0 if 
̃excs = xcs . (5.2)



J. Jin et al. / J. Differential Equations 267 (2019) 7213–7262 7249
Moreover, assuming (4.7), (4.13), and (4.18), Lemma 4.6 and 4.8 imply, for all t ≥ 0,

Lip‖·‖
H1,A

�(t, ·) ≤ CeCηt , �(t, xcs) ∈ Xcs(Cδ), ∀xcs ∈ Xcs(δ). (5.3)

We first outline our approach of proving the C1 smoothness briefly. As the fixed point of the 
transformation T , hcs satisfies

hcs(xcs) = −
∞∫

0

e−λct G̃+(
�(t, xcs), hcs

(
�(t, xcs)

))
dt. (5.4)

Since (4.9) is autonomous, a time translation of (5.4) implies, for t ≥ 0,

hcs
(
�(t, xcs)

) = −
∞∫
t

eλc(t−τ)G̃+(
�(τ, xcs), hcs

(
�(τ, xcs)

))
dτ. (5.5)

Differentiating (5.4) formally, we obtain, for any W̃ ∈ Xcs ,

Dhcs(xcs)W̃ = −
∞∫

0

e−λct
(
Da+G̃+(

�(t, xcs), hcs
(
�(t, xcs)

))
Dhcs

(
�(t, xcs)

)
+ Dxcs G̃+(

�(t, xcs), hcs
(
�(t, xcs)

)))
D�(t, xcs)W̃dt.

Here D� also depends on Dhcs as it solves the following system of equation derived by differ-
entiating (4.9)

∂tD� = Acs
(
y(t), G̃T

)
D� + G1(�)D� + G̃1(�)DhcsD�, (5.6)

where � and D� are evaluated at (t, xcs), G̃cs at (�, hcs), hcs and Dhcs at �. In the above, 
G1 ∈ Cm

(
Xcs, L (Xcs)

)
and G̃1 ∈ Cm(Xcs, Xcs) are given by

G̃1(x
cs) =Da+

(
Acs

(
y,GT (xcs, a+)

))
xcs + Da+G̃cs

=(
0,0, (Da+G̃T )F (c, y)V

) + Da+G̃cs,
(5.7)

G1(x
cs)W̃ =Dxcs

(
Acs

(
y,GT (xcs, a+)

))
(W̃ )xcs + Dxcs G̃cs(W̃ )

=
(

0,0, ỹ
(
DyA

e(y)
)
V + (

Dxcs G̃T (W̃ )
)
F

(
c, y

)
V

+ ỹG̃T DyF (c, y)V
)

+ Dxcs G̃cs(W̃ ),

(5.8)

where xcs = (y, a−, V ), W̃ = (ỹ, ̃a−, ̃V ) ∈ Xcs , a+ is evaluated at hcs(xcs), and G̃cs is evaluated 
at 

(
xcs, hcs(xcs)

)
.

Denote

Y1 = C0(Xcs(δ),L (Xcs,R)
)
.
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Inspired by the above formal derivation, we define a linear transformation T1 on

Y1(μ) = {H ∈ Y1,‖H ‖Y1 ≤ μ
)

as follows: for any H ∈ Y1(μ), xcs ∈ Xcs(δ), and W̃ ∈ Xcs ,

(T1H )(xcs)W̃ = −
∞∫

0

e−tλc

(
Dxcs G̃+(

�,hcs(�)
)

+ Da+G̃+(
�,hcs(�)

)
H

(
�

))
�1(t)W̃dt

(5.9)

where � is evaluated at (t, xcs). The operator �1(t) ∈ L (Xcs) is defined by

{
∂t�1 = Acs

(
y(t), G̃T

)
�1 + G1(�)�1 + (

H (�)�1(·)
)
G̃1(�),

�1(0) = I,
(5.10)

where G and G1 are given in (5.8), G̃cu is evaluated at 
(
�, hcs(�)

)
, and H at �(t, xcs). Note 

that hcs ∈ �μ,δ , it is natural to require the ‖Dhcs‖Y1 ≤ μ. Just as in Remark 4.1, the right side 
of (5.10) and the integrand in (5.9) are well-defined. Since (4.9) is autonomous, when xcs is 
shifted to �(t0, xcs), the principle fundamental solution to the associated (5.10) becomes �1(t +
t0)�1(t0)

−1. Therefore we obtain

(T1H )
(
�(t0, x

cs)
)
�1(t0)W̃ = −

∞∫
t0

e(t0−t)λ+
c

(
Dxcs G̃+(

�,hcs(�)
)

+ Da+G̃+(
�,hcs(�)

)
H

(
�

))
�1(t)W̃dt,

(5.11)

where � is still evaluated at (t, xcs) and �1 defined for xcs .
If hcs ∈ C1, then Dhcs must be the fixed point of T1. Therefore, our strategy to prove hcs ∈ C1

is to show

(1) T1 is a well-defined contraction on Y1(μ),
(2) the fixed point of T1 is indeed Dhcu.

Throughout the procedure, (4.7), (4.13), and (4.18) are assumed.
Step 1: show T1H ∈ Y1(μ). Analogous to Lemma 4.8, we have that for any xcs ∈ Xcs(δ),

‖�1(t, x
cs)W̃‖H 1,A ≤ CeCηt‖W̃‖H 1,A, (5.12)

which along with (4.18) implies

|(T1H )(xcs)W̃ | ≤ Cδ(λc − Cη)‖W̃‖H 1,A ≤ μ‖W̃‖H 1,A. (5.13)



J. Jin et al. / J. Differential Equations 267 (2019) 7213–7262 7251
Much as (5.13), it also holds that T (n)
1 (H ) → T1(H ) uniformly in xcs , where

(
T (n)

1 (H )
)
(xcs)W̃ = −

n∫
0

e−λct
(
Dxcs G̃+(

�,hcs(�)
)

+ Da+G̃+(
�,hcs(�)

)
H

(
�

))
�1(t)W̃dt.

From the continuity of DG̃cs,+, it is easy to verify that 
(
T (n)

1 (H )
)
(xcs) is C0 in xcs . Therefore 

T1(H ) is also continuous and thus T1(H ) ∈ Y1(μ).
Step 2: estimate the Lipschtiz constant of T1. Let Hj ∈ Y1(μ) and �1,j (t) be defined in (5.10)

for Hj , j = 1, 2, which satisfy

∂t (�1,2 − �1,1) =(
Acs(c, y,GT ) − G1(�) − G̃1(�)H1

)
(�1,2 − �1,1)

+ (
(H2 − H1)(�)�1,2

)
G̃1(�)

and (�1,2 − �1,1)(0) = 0.
From estimate (5.12) on homogeneous solutions to (5.10) and the variation of constant for-

mula, we obtain

‖(�1,2(t, x
cs) − �1,1(t, x

cs))W̃‖H 1,A ≤ CδteCηt‖H2 − H1‖Y1‖W̃‖H 1,A

where we also used ‖G̃1‖H 1,A ≤ Cδ which is obvious from its definition. According to the defi-
nition of T1, we have, for any xcs ∈ Xcs(δ),

(
T1(H1) − T1(H2)

)
(xcs) = −

∞∫
0

e−λct
(
Da+G̃+(H2 − H1)�1,2(t)

+ (Dxcs G̃+ + Da+G+H1)(�1,2 − �1,1)(t)
)
dt,

where DG̃+ is evaluated at 
(
�, hcs(�)

)
, Hj at �, and � at (t, xcs). Using (5.12), and the above 

estimates on �1,2 − �1,1, it follows that

‖T1(H1) − T1(H2)‖Y1 ≤ Cδ(λ − Cη)−2‖H2 − H1‖Y1 .

Assume

Cδ(λ − Cη)−2 < 1, (5.14)

then T1 is a contraction mapping on Y1(μ). Let H cs ∈ Y1(μ) be the unique fixed point of T1.
Step 3: Show Dhcs = H cs . Since H cs(xcs) is continuous in xcs , it suffices to show 

Dhcs(xcs
0 )W̃ = H cs(xcs

0 )W̃ at any fixed xcs
0 ∈ Xcs(δ) and W̃ ∈ X̃cs\{0}. Let �1(t) be defined 

as in (5.10) associated to H cs and xcs and
0
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R�(t) = �(t, xcs
0 + W̃ ) − �(t, xcs

0 ) − �1(t)W̃ ,

Rh(t) = hcs
(
�(t, xcs

0 + W̃ )
) − hcs

(
�(t, xcs

0 )
) − H cs

(
�(t, xcs

0 )
)
�1(t)W̃ .

Denote

W(s, t) = (1 − s)�(t, xcs
0 ) + s�(t, xcs

0 + W̃ ),

a+(s, t) = (1 − s)hcs
(
�(t, xcs

0 )
) + shcs

(
�(t, xcs

0 + W̃ )
)
,

and for α = cs, +

Rα(t) =G̃α
(
W(1, t), a+(1, t)

) − [
G̃α + Dxcs G̃α

(
W(1, t) − W(0, t)

)
+ Da+G̃α

(
a+(1, t) − a+(0, t)

)]
,

where G̃cs and DG̃cs in the brackets [. . .] are evaluated at 
(
W(0, t), a+(0, t)

) =
(
�(t, xcs

0 ),

hcu
(
�(t, xcs

0 )
))

. From (5.4) and T1(H cs) = H cs , we have

Rh(0) = −
∞∫

0

e−λct
(
R+(t) + Dxcs G̃+R�(t) + Da+G̃+Rh(t)

)
dt.

Moreover, using (5.4) and (5.11), we also obtain

Rh(t) = −
∞∫

0

e−λcτ (R+ + Dxcs G̃+R� + Da+G̃+Rh)(t + τ)dτ, t ≥ 0, (5.15)

where again the above DG̃+ are evaluated at 
(
�(t + τ, xcs

0 ), hcs
(
�(t + τ, xcs

0 )
))

.

From (4.9) and (5.10), R�(t) satisfies R�(0) = 0 and

∂tR� = Ãcs
0 (t)R� + Ã+

0 (t)Rh + Rcs + Dxcs G̃csR� + Da+G̃csRh +
1∫

0

(Ãcs
s

− Ãcs
0 )(t)

(
W(1, t) − W(0, t)

) + (Ã+
s − Ã+

0 )(t)
(
a+(1, t) − a+(0, t)

)
ds,

where DG̃cs is evaluated at 
(
W(0, t), a+(0, t)

)
, Ã+

s (t) ∈ Xcs and the operator Ãcs
s (t) ∈ L(Xcs)

are given by

Ãcs
s (t)W̃ =Dxcs

(
Acs

(
y,GT (xcs, a+)

)
xcs

)
|(W(s,t),a+(s,t)

)(W̃ )

=Acs
(
y(s, t),GT

(
W(s, t), a+(s, t)

))
W̃

+ Dxcs

(
Acs

(
y,GT (xcs, a+)

))|(W(s,t),a+(s,t)
)(W̃ )W(s, t),
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Ã+
s (t) =Da+

(
Acs

(
y,GT (xcs, a+)

))|(W(s,t),a+(s,t)
)W(s, t),

with W(s, t) and a+(s, t) defined in the above and y(s, t) being the y component of W(s, t) (so 
the Dxcs also acts on the y component in Acs ).

For W̃ = (ỹ, ̃a−, ̃V ), we have

Ã+
s W̃ = (0,0,V +), (Ãcs

s − Acs |(W(s,t),a+(s,t)))W̃ = (
0,0,V cs),

and from Lemma 4.5,

‖V cs,+‖L1[t0,t0+T ]H 1 ≤ CT
1
2 (1 + T )‖W‖Xcs[t0,t0+T ]‖Ṽ ‖L∞[t0,t0+T ]H 1 . (5.16)

We first consider t2 ∈ (t1, t1 + 1) in the following estimates, where we can use W ∈
Xcs[t1,t2](Cδ) due to Lemma 4.8 which also yields

‖W(1, t) − W(0, t)‖ST c[t1,t2],A ≤C‖W(1, t1) − W(0, t1)‖H 1,A ≤ CeCηt2‖W̃‖H 1,A. (5.17)

A similar argument would imply

‖�1(t)W̃‖ST c[t1,t2],A ≤ CeCηt2‖W̃‖H 1,A. (5.18)

Inequality (5.17) along with (4.4) and Lemma 4.5 implies

‖Rcs(t)‖L1[t1,t2]Xcs + |R+(t2)| ≤C‖W(1, t) − W(0, t)‖2
Xcs[t1,t2]

≤ CeCηt2‖W̃‖2
H1,A

, (5.19)

for any 0 ≤ t1 < t2.
The integral terms in ∂tR� can be estimated by Lemma 4.5, which along with inequalities 

(5.17) and (5.19) implies

‖∂tR� − Ãcs
0 (t)Rψ − Ã+

0 (t)Rh − Dxcs G̃csR� − Da+G̃csRh‖L1[t1,t2]Xcs

≤C‖W(1, t) − W(0, t)‖2
Xcs[t1,t2]

≤ CeCηt2‖W̃‖2
H1,A

.

Again we apply Lemma 4.5 and inequalities (4.4) and (5.16) to estimate other remainder terms 
linear in R� and Rh and obtain

‖∂tR� − Acs
(
y(0, t),GT (W(0, t), a+(0, t))

)
Rψ‖L1[t1,t2](H 1,A)

≤Cη(‖Rψ‖ST c[t1,t2],A + |Rh|L∞[t1,t2]) + CeCηt2‖W̃‖2
H 1,A

.

With the above estimates, following the same arguments in the proof of Lemma 4.8, we have

‖R�(t)‖H1,A ≤ C
(‖eCη(t−·)Rh‖L1[0,t]

+ eCηt‖W̃‖2
H1,A

) ≤ CeCηt (η−1Rh,∞ + ‖W̃‖2
H1,A

)
,

(5.20)
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where Rψ(0) = 0 was used and

Rh,∞ � ‖e−CηtRh(t)‖L∞
R+ .

Here RC,∞ < ∞ for some C > 0 is due to (5.3) and (5.12). Substituting this into (5.15), using 
(4.4), and noting that the estimate on R+(t2) in (5.19) is independent of t1, we can compute

Rh,∞ ≤Ce−Cηt

∞∫
0

e−λcτ
(
eCη(t+τ)‖W̃‖2

H1,A
+ δ(|Rh| + ‖R�‖Xcs )(t + τ)

)
dτ

≤Ce−Cηt

∞∫
0

e−λcτ eCη(t+τ)(‖W̃‖2
H1,A

+ δη−1Rh,∞)dτ

≤C(λc − Cη)−1(‖W̃‖2
H1,A

+ δη−1Rh,∞).

Therefore assumption (5.1) implies

Rh,∞ ≤ C(λc − Cη)−1‖W̃‖2
H1,A

.

By letting t = 0, we have |Rh(0)| ≤ C(λc − Cη)−1‖W̃‖2
H1,A

which completes the proof of C1

smoothness of the center-stable manifold.
Finally, we prove the center-stable manifold is tangent to the center-stable subspace along 

Mc .

Lemma 5.1. There exists C > 0 such that if A and δ satisfy (4.7), (4.13), (4.18), (5.14), and (5.1), 
we have Dhcs(y, 0, 0, 0) = 0.

Proof. Observe that (4.9) and the definition of G̃cs implies �
(
t, (y, 0, 0)

) = (y, 0, 0) for all 
t ≥ 0. For any H ∈ Y1, (4.10), the fact DG̃+(y, 0, 0, 0) = 0, and the above observation imply 
T1(H )(y, 0, 0, 0) = 0. Therefore, Dhcs(y, 0, 0, 0) = 0 at any y ∈ R, which implies that at any 
solitary wave on Mc, the center-stable manifold is tangent to the center-stable subspace. �
6. Local dynamics near solitary waves

In this section, we study the local dynamics near solitary waves based on local invariant man-
ifolds. We will prove: (i) the center-stable manifold repels nearby orbits in positive time and 
attracts nearby orbits in negative time; (ii) on the center-stable manifold, center manifold attracts 
nearby orbits in positive time; and (iii) the orbital stability on center manifolds. Various norms 
in the below are defined in Sections 3 and 4. Even though we are still working with the modified 
system (4.5a) and (4.5b), by taking δ > 0 much smaller than the one in the cut-off, all the results 
valid in a Cδ-neighborhood in this section hold for the original gKDV equation.
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6.1. Dynamics near the center-stable and center-unstable manifolds

In this subsection, we study the local dynamics for initial data near the center-stable manifold.

Proposition 6.1. Let U(t) = �
(
xcs(t), a+(t)

) ∈ � 
(
B1(δ) ⊕ B1(δ) ⊕ X e

c (δ)
)

be a solution to 
(2.1) for t ∈ [0, T ] with the initial data U(0) = �(x̄cs, ā+). We have∣∣a+(t) − hcs

(
xcs(t)

)∣∣ ≥ e(λc−Cδ)t
∣∣ā+ − hcs(x̄cs)

∣∣ ∀t ∈ [0, T ].

The above inequality indicates that the center-stable manifold repels nearby orbits forward in 
time and, as (2.1) is autonomous, it also attracts nearby orbits backward in time.

Proof. Without loss of generality, we may assume ā+ �= hcs(x̄cs). Let x̃cs(t) be the solution 
to (4.9) with h = hcs and x̃cs(t0) = xcs(t0), and let ã+ = hcs (̃xcs). By the invariance of the 
center-stable manifold, we have

∂t

(
a+ − ã+) = λc

(
a+ − ã+) + G̃+(xcs, a+) − G̃+(̃xcs , ã+). (6.1)

Since (4.4) yields∣∣G̃+(xcs, a+) − G̃+(̃xcs, ã+)
∣∣ ≤ Cδ

(‖xcs − x̃cs‖H 1,A + |a+ − ã+|) , (6.2)

and xcs(t0) − x̃cs(t0) = 0, (6.1) and (6.2) yield ∂t |a+ − ã+|t=t0 > 0. Let

T1 := sup
{
t ∈ [0,1] : ∂t |a+ − ã+| > 0 in [t0, t0 + t)

}
.

We show T1 = 1 in the below. Suppose otherwise T1 < 1, by its definition, one has

∂t |a+ − ã+|t=t0+T1 = 0, ‖a+ − ã+‖L∞[t0,t0+T1] = |a+(t0 + T1) − ã+(t0 + T1)|.

By Lemma 4.8, we have

‖xcs(t0 + T1) − x̃cs(t0 + T1)‖H 1,A ≤ Cη|a+(t0 + T1) − ã+(t0 + T1)|.
It follows from (6.1) and (6.2)

∂t |a+ − ã+|t=t0+T1 > 0,

which is a contradiction to the definition of T1 and T1 < 1. Therefore, T1 = 1 and for t ∈ [0, 1], 
‖a+ − ã+‖L∞[t0,t0+t] is always achieved at t0 + t . Again from Lemma 4.8, we have that, for any 
t ∈ [0, 1],

‖xcs(t0 + t) − x̃cs(t0 + t)‖H 1,A ≤ Cη|a+(t0 + t) − ã+(t0 + t)|. (6.3)

By applying (6.2) and the above inequality to (6.1), we have

|∂t (a
+ − ã+) − λc(a

+ − ã+)| ≤ Cδ|a+ − ã+|, t ∈ [0,1].
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Then by the Gronwall inequality, we obtain

|a+(t0 + t) − ã+(t0 + t)| ≥ e(λc−Cδ)t |a+(t0) − ã+(t0)|, t ∈ [0,1]. (6.4)

Since Lemma 5.1 yields

Dhcs ≤ Cδ in B1(δ) ⊕ B1(δ) ⊕ X e
c (δ), (6.5)

along with (6.3) and (6.4), the inequality implies, for t ∈ [0, 1],
∣∣a+(t0 + t) − hcs

(
xcs(t0 + t)

)∣∣ ≥ (1 − Cδη)|a+(t0 + t) − ã+(t0 + t)|
≥(1 − Cδη)e(λc−Cδ)t |a+(t0) − ã+(t0)| ≥ eλc−3Cδ

∣∣a+(t0) − hcs(xcs(t0))
∣∣ (6.6)

Iterating the above estimate, we complete the proof. �
Remark 6.2. The exponential type estimate in Proposition 6.1 can also be obtained by a more 
direct approach through considering ∂t

(
a+ − hcs(xcs)

)
and using the invariance of hcs . Since 

∂tx
cs ∈ H−2 and Dhcs acts only on H 1, this procedure may be carried out for xcs ∈ H 4 and the 

estimate for xcs ∈ H 1 follows from the continuous dependence in H 1 of the solutions on their 
initial data and the continuity of hcs . However, due to the lack of O(T ) estimate on DG̃cs in 
Lemma 4.5, one would only obtain a lower bound in the form of (1 − Cδ)e(λc−Cδ)t and it is not 
easy to get rid of the factor 1 − Cδ.

For any point U = �(y, a+, a−, V e) in a small neighborhood of Mc, the total of the norms 
|a+| + |a−| + ‖V e‖H 1 of its transversal components is equivalent to its distance dist (U, Mc) to 
Mc , where

dist (U,K) = inf
Ũ∈K

‖U − Ũ‖H 1 (6.7)

for any subset K ⊂ H 1. See Remark 2.3. The above Proposition yields the nonlinear instability 
of the traveling waves with an exit time estimate.

Corollary 6.3. For any U(0) /∈ W cs(Mc), ∃T ∗ > 0 such that

dist
(
U(T ∗),Mc

) ≥ δ.

Parallel to the center-stable case, the center-unstable manifold attracts nearby orbits exponen-
tially as t → +∞.

Proposition 6.4. Let U(t) = �
(
xcu(t), a−(t)

) ∈ � 
(
B1(δ) ⊕ B1(δ) ⊕ X e

c (δ)
)

be a solution to 
(2.1) for t ∈ [0, T ] with the initial data U(0) = �(x̄cu, ā−). We have

∣∣a−(t) − hcu
(
xcu(t)

)∣∣ ≤ e−(λc−Cδ)t
∣∣ā− − hcu(x̄cu)

∣∣ ∀t ∈ [0, T ].
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Moreover, for any U(0) /∈ W cu(Mc), ∃T ∗ < 0 such that

dist (U(T ∗),Mc) ≥ δ.

Since the center manifold is the intersection of the center-stable and center-unstable mani-
folds, the above theorems imply

Corollary 6.5. For any U(0) /∈ W c(Mc), ∃T ∗ ∈R such that

dist
(
U(t),Mc

) ≥ δ.

Remark 6.6. Corollary 6.5 along with the above exponential estimates indicates that the nonlin-
ear instability of the solitary waves for the supercritical gKDV equations is generic in the sense 
that if initial data is not on the co-dim 2 center manifold, then the flow will leave a neighborhood 
of the soliton manifold exponentially fast at least in one time direction. This result is stronger 
than the classical nonlinear instability result, which only shows the existence of special initial 
data in any neighborhood of the solitary waves whose orbit leaves a neighborhood of the soliton 
manifold.

6.2. Dynamics inside the center-stable and center-unstable manifolds and the orbital stability 
inside center-manifolds

Based on the exponential estimates in the directions transversal to the center-stable and center-
unstable manifolds obtained in Subsection 6.1 and the energy conservation, we shall prove 
the exponential stability of the center manifold inside the center-stable manifold and the or-
bital stability of the traveling waves inside the center manifold. Recall that the center manifold 
W c(Mc) = �({a± = h±(y, V e) : (y, V e) ∈ X e

c (δ)}) is the graph of hc = (h+, h−). Clearly,

h+ = hcs(y,h−,V e), h− = hcu(y,h+,V e) (6.8)

h±(y,0) = 0, Dh±(y,0) = 0. (6.9)

Proposition 6.7. There exists C0 ≥ 1 such that the following hold.

(1) Let U(t) = �(y, a+, a−, V e)(t) for t ≥ 0 be a solution to (2.1) with the initial data

U(0) = �
(
ȳ, ā+, ā−, V̄ e

) ∈ W cs(Mc), V̄ e ∈ Xe
c,ȳ , |ā±|,‖V̄ e‖H 1 ≤ C−1

0 δ,

then we have∣∣a− − h−(y,V e)
∣∣ ≤ (1 + Cδ2)e−(λc−Cδ)t

∣∣ā− − h−(ȳ, V̄ e)
∣∣ , ∀t ≥ 0

and

‖V e‖2
H 1 ≤ C(‖V̄ e‖2

H 1 + |ā− − h−(ȳ, V̄ e)|3).

(2) Let U(t) = �(y, a+, a−, V e)(t) for t ≤ 0 be a solution to (2.1) with the initial data

U(0) = �
(
ȳ, ā+, ā−, V̄ e

) ∈ W cu(Mc), V̄ e ∈ Xe , |ā±|,‖V̄ e‖H 1 ≤ C−1δ,
c,ȳ 0
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then we have∣∣a+ − h+(y,V e)
∣∣ ≤ (1 + Cδ2)e−(λc−Cδ)t

∣∣ā+ − h+(ȳ, V̄ e)
∣∣ , ∀t ≥ 0

and

‖V e‖2
H 1 ≤ C(‖V̄ e‖2

H 1 + |ā+ − h+(ȳ, V̄ e)|3).

Proof. We will consider the center-stable case, while the other one can be proved similarly. Since 
U(t) ∈ W cs(Mc), (6.8) and (6.5) imply that, if |a±|, ‖V e‖H 1 < δ on [0, T ], then for t ∈ [0, T ],

|h+(y,V e) − a+| = |hcs(y,h−,V e) − hcs(y, a−,V e)| ≤ Cδ|h−(y,V e) − a−|,
and

|(h−(y,V e) − a−) − (
hcu(y, a+,V e) − a−)| ≤ |hcu(y,h+,V e) − hcu(y, a+,V e)|

≤Cδ|h+(y,V e) − a+| ≤ Cδ2|h−(y,V e) − a−|.
Applying this inequality at t ∈ [0, T ] and then along with Proposition 6.4, we have

|h−(y,V e) − a−| ≤(1 + Cδ2)|a− − hcu(y, a+,V e)|
≤(1 + Cδ2)e−(λc−Cδ)t |ā− − hcu(ȳ, ā+, V̄ e)|
≤(1 + Cδ2)e−(λc−Cδ)t |ā− − h−(ȳ, V̄ e)|.

(6.10)

To estimate the bound on ‖V e‖H 1 on [0, T ], let

Ẽ(y,V e) = (E + cP )
(
�(y,a+, a−,V e)

)
.

On the one hand, clearly for any y ∈ R, it holds that

(E + cP )′ (Qc(· + y)) = 0, (E + cP )′′ (Qc(· + y)) = Lc,y,

hcs(y,0,0) = 0, Dhcs(y,0,0).

Therefore, due to the smoothness of hcs , from Lemma 2.2 one has the following expansion for 
[0, T ],

Ẽ
(
y, a+, a−,V e

) − Ẽ(y,0,0,0)

=1

2
〈Lc,y(V

e + a−V −
c ),V e + a−V −

c 〉 + O(‖V e(t)‖3
H 1 + |a−|3)

=1

2
〈Lc,yV

e,V e〉 + O
(‖V e(t)‖3

H 1 + |a−|3)
≥(1/C)‖V e‖2

H 1 − C(‖V e‖3
H 1 + |a−|3).

On the other hand, by the conservation and the translation invariance of the energy-momentum 
functional, we have
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Ẽ
(
(y, a+, a−,V e)(t)

) − Ẽ
(
y(t),0,0,0

) = Ẽ(ȳ, ā+, ā−, V̄ e
) − Ẽ(ȳ,0,0,0)

≤ C(‖V̄ e‖2
H 1 + |ā−|3).

These inequalities imply

‖V e‖2
H 1 ≤ C(‖V̄ e‖2

H 1 + |ā−|3 + |a−|3).

It is straightforward to obtain from (6.10) and (6.9)

‖V e‖2
H 1 ≤ C(‖V̄ e‖2

H 1 + |ā− − h−(ȳ, V̄ e)|3), t ∈ [0, T ].

By choosing C0 appropriately, the above inequality implies ‖V e‖H 1 < δ, then T may be extended 
to +∞ and we obtain the desired estimates on W cs(Mc). �
Remark 6.8. The same proof as above actually implies that the estimates in Propositions 6.1 6.4, 
and 6.7 hold for any ̃hcs, ̃hcu ∈ �μ,δ ∩ C2 if �

(
graph(hcs,cu)

)
are locally invariant under (2.1), 

without modification by cut-off.

This proposition implies the orbital stability of Mc inside W cs(Mc) and the exponential 
stability of W c(Mc) inside W cs(Mc) as t → +∞. Parallel results hold for the center-unstable 
manifold W cu(Mc) as t → ∞. Moreover, Mc is orbitally stable inside W c(Mc) as t → ±∞. 
The estimates in Propositions 6.1, 6.4, and 6.7 yield the following characterizations.

Proposition 6.9. There exists δ > 0 and C > 1, such that, for any U0 ∈ H 1 satisfying 
dist (U0, Mc) ≤ δ

(1) U0 ∈ W cs(Mc) if and only if the solution U(t) to (2.1) with U(0) = U0 satisfies 
dist

(
U(t), Mc

) ≤ Cδ for all t ≥ 0.
(2) U0 ∈ W cu(Mc) if and only if the solution U(t) to (2.1) with U(0) = U0 satisfies 

dist
(
U(t), Mc

) ≤ Cδ for all t ≤ 0.
(3) U0 ∈ W c(Mc) if and only if the solution U(t) to (2.1) with U(0) = U0 satisfies dist

(
U(t),

Mc

) ≤ Cδ for all t ∈R.

Remark 6.10. Usually, W cs(Mc), W cu(Mc), and W c(Mc) may not be unique due to the cut-off 
modification in their constructions. However, the above characterization implies the uniqueness 
of the local center-stable, center-unstable, and the center manifolds of Mc under (2.1).

Remark 6.11. By Theorem 1 in [21], if U0 ∈ W cs(Mc), then there exists c(t) and ρ(t), such 
that, for t > 0, the solution U(t) satisfies

‖U(t) − Qc(t)(· − ρ(t)‖H 1
x (x> c

10 t) → 0, as t → ∞.

Moreover, c(t) → c+ for some c+ as t → ∞. Similar results hold on the center-unstable for 
t < 0 and center manifolds for t ∈ R.
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6.3. Local invariant manifolds of M

So far we have constructed local invariant manifolds for Mc with a fixed c > 0. Recall the 
scaling transformation T λ defined in (1.2). From Proposition 6.9, it is clear that the local invari-
ant manifold W α(Mc), α ∈ {cs, cu, c} for different c differ only by a rescaling, namely, for any 
c > 0,

W cs,cu,c(Mc) = {T
√

cU | U ∈ W cs,cu,c(M1)}. (6.11)

The following lemma indicates that local invariant manifolds of Mc for nearby c patch per-
fectly. Let �c denote the embedding defined in (2.19) for c.

Lemma 6.12. For any c > 0, there exists ε = ε(c) > 0 such that if |cj − c| ≤ ε, j = 1, 2, then for 
α ∈ {cs, cu, c},

W α(Mc2) ∩ �c2

(
B1(ε) ⊕ B1(ε) ⊕ X e

c2
(ε)

)
⊂ W α(Mc1).

Proof. Qc2(x − c2t) is a solution to (1.1). In the traveling frame (t, x − c1t), it becomes 
Qc2 (x − (c2 − c1)t). Since

‖Qc2 (x − (c2 − c1)t) − Qc1 (x − (c2 − c1)t)‖H 1 ≤ C|c2 − c1|
and Qc1 (x − (c2 − c1)t) ∈ Mc1 , we have

inf
y∈R

‖Qc2 (· − (c2 − c1)t) − Qc1‖H 1 ≤ C|c2 − c1|.

Then the desired result follows by Proposition 6.9. �
Consequently, we can patch W cs,cu,c(Mc) with different c to form the center-stable manifold 

of M . In fact, let

W cs,cu,c(M ) =
⋃
c>0

W cs,cu,c(M ). (6.12)

The above lemma implies that W cs,cu,c(M ) is a smooth codim-1 submanifold in H 1.

Remark 6.13. In fact, due to the scaling invariance (6.11), W cs,cu,c(Mc) are invariant under the 
rescaling (1.2).

Remark 6.14. The stable and unstable manifolds can be constructed through a simpler proce-
dure. Thanks to their uniqueness, one may construct stable and unstable manifolds of a single 
solitary wave Qc, and then those of Qc(· + y) can be obtained simply by translation. In this 
procedure, since y = 0 ∈ R is fixed in the construction, the only obstacle preventing the clas-
sical invariant manifold theory to be applicable straightforwardly is the derivative loss in the 
nonlinearity, which can be overcome by the smoothing estimates in Section 3. Actually, with the 
smoothing estimates, one may carry out the construction following the approach in [8].
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Remark 6.15. In [9], Combet constructed solutions converging to solitary waves. From the point 
of view of dynamical systems theory, the solutions constructed by Combet must locate in the 
stable manifolds of solitary waves.
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