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Abstract

This work is devoted to study the dynamics of the supercritical gKDV equations near solitary waves in
the energy space H 1 We construct smooth local center-stable, center-unstable and center manifolds near
the manifold of solitary waves and give a detailed description of the local dynamics near solitary waves. In
particular, the instability is characterized as follows: any forward flow not starting from the center-stable
manifold will leave a neighborhood of the manifold of solitary waves exponentially fast. Moreover, orbital
stability is proved on the center manifold, which implies the uniqueness of the center manifold and the
solutions on it exist globally and asymptotically approach the solitary waves.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

We consider the supercritical gKDV equation
U + (yy +u*)y =0, k>3, ue H' (R). (1.1)

The cases of the integer k < 5, k =5, and k > 5 are referred to as the subcritical, critical, and
supercritical cases, respectively. The well-posedness of (1.1) is classical (see [12] and [11]).
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The subcritical gKDV equation is globally well-posed in H', while the critical and supercritical
gKDV are locally well-posed.

Blow-up solutions have been obtained in the critical case by Martel and Merle [20] and the
slightly supercritical case of 5 <k <54 € withe <« 1 by Lan [17].

The gKDV equation has a Hamiltonian form u; = JE’(u), where J = 9, is the symplectic
operator and

1 1
E(M) = / Eu?‘ — mukde
R

is the conserved energy. Due to the translation invariance, the momentum

P()—I/Zd
14—2 u-ax
R

is also conserved. Moreover, the gKDV equation is invariant under the scaling
A =023
(T u)(t,x) = A=Tu(A’r, Ax). (1.2)

The linear dispersion and nonlinear effect interact to produce solitary waves, u.(x,t) =
Q.(x — ct), where

0c(0) = (7V°Q) (1) =71 0(Vex)

with

k+1 k—1 &
Q(x)=< + sechz( x))k "eH!
2 2
being the unique positive even solution to

Oux— Q0+ 0"=0, Q(£o0)=0. (1.3)

These solitary waves play a fundamental role in the dynamics of the gKDV equation. The
stability of the solitary waves has been studied extensively. For the subcritical gKDV equation,
solitary waves are orbitally stable, see [5—7,33]. Furthermore, for k = 2, 3 Pego and Weinstein
[30] proved asymptotic stability of the whole family of solitary waves for initial data with ex-
ponential spatial decay at co. Mizumachi[26] proved asymptotic stability of the whole family of
solitary waves for initial date with algebraic spatial decay at oo for k = 2, 3, 4. Martel and Merle
[19] proved asymptotic stability in weak topology for the subcritical gKDV equation for initial
datain H', that is for any § > 0, there exists «, such that for any ug satisfying |lug — Q. g <a,
there exists ¢(#), x(¢), such that (u(t, - + x(t)) — Qc() = 0in H' as t — oc.

For the critical case, in a series of works [23-25], Martel, Merle and Raphagl classified the
dynamics for a set of initial data
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o ={up=0+v: vy <oao, / 2192 (x)dx < 1}.

x>0

More specifically, the solutions with initial data in <7 are classified into three classes: (i) blow
up in finite time; (ii) exist globally in time and stay close to the orbits of solitary waves for
any ¢ > 0; (iii) exist globally and exit a neighborhood of the traveling wave manifold. Recently,
Martel, Merle, Nakanishi and Rapha¢l [22] constructed a co-dimension 1 threshold manifold
separating the initial data satisfying (i) and (iii), and showed that the solutions with initial data
on the threshold manifold belong to (ii).

For the supercritical gKDV equations, Bona, Souganidis and Strauss [7] proved the solitary
waves are orbitally unstable. Namely there exist solutions starting arbitrarily close to the traveling
wave manifold, but eventually go away. Combet [9] constructed special solutions converge to
solitary waves exponentially fast as  — +oo in H!.

Naturally, one may raise the question: whether there exist solutions starting near solitary
waves behaving differently than the above two types? Furthermore, how are all these different
type of solutions organized/located in the energy space H' near the traveling waves?

Define the soliton manifold consisting of translations of all solitary waves of (1.1) as

M={0.(+y):ceRT, yeR}. (1.4)

In this work, we give a detailed description of the local dynamics of the supercritical gKDV
equation near the soliton manifold .#. Our main results are the following:

(1) Existence (Section 4) and smoothness (Section 5) of local invariant manifolds of .# in H L

e There exist co-dimension 1 center-stable and center-unstable manifolds % (.#) and
W (M) of M ,respectively, such that .#Z C # " and for any m > 1, there exist neigh-
borhoods of .#Z where # 5:“*(_.#') are C™ submanifolds.

e Moreover, #*(.#) and W “(.#) intersect transversally along the center manifold
WM =W (M)W (M) which is a smooth co-dimension 2 submanifold.

o WESHCC(4) are invariant under spatial translation and rescaling (1.2).

e These manifolds # “-“-“(.#') are locally invariant under the flow of (1.1). Namely, an
orbit starting on # “*“*:“(_#') can leave them only through their boundaries.

(2) (Local dynamics near traveling waves)

o WS (M) (or W (M), or W (M), respectively) is the set of initial data whose orbits un-
der (1.1) stay close to . forall t > 0 (ort <0, or ¢ € R, respectively). (Propositions 6.9,
6.1, and 6.4)

e If the initial data is not on # (%) (or # “(.#)), then the forward (or backward) orbit
exits a neighborhood of .# exponentially fast. (Propositions 6.1 and 6.4)

o W (M) is exponentially stable on 7 (.#) as t — 400 and on # () as t — —o0.
(Propositions 6.7)

e ./ is orbitally stable on #“(.#) in the sense that, for any neighborhood % C # ¢ (.#)
of . , there exists a neighborhood #" C % such that orbits starting in #" stay in % for all
t € R. (Propositions 6.7)

Remark 1.1. In this paper we focus on the center-stable, center-unstable, and center manifolds
of the 2-dimensional traveling wave manifold .# . The stable and unstable manifold of the latter
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should follow from an easier (see Remark 6.14) construction and would be carried out in a
separate paper.

Let us briefly outline our proof. As a convention, we write the gKDV equation in the traveling
frame (¢, x — ct) with a fixed wave speed c and let u(¢, x) = U(¢, x — ct), where U (¢, x) satisfies

Uy — Uy + (Upy + UYy =0. (gKDV —Tr)

Clearly Q., the profile of the traveling wave, is an equilibrium of (gKDV-Tr). The linearization
of (gKDV-Tr) at Q. takes the Hamiltonian form of

U =JLU, where J=20;, Le=c—d—kQ .

Thanks to this Hamiltonian structure, the energy space H' can be decomposed into three invari-
ant subspaces (under the linearized flow e’ TLey

X=XT®X @®X, where XT =span{V*}, JL.VE==£ArVE, i.>0.

Here X¢ = XT @ X¢ is the center space, where X7 = span{d, Q.} =ker(JL,) and L, is uni-
formly positive definite on X¢. Furthermore, the following trichotomy holds

v
9

e/ e |y= ]| < e for F1>0

" (1.5)
et | xe| < M(141), forteR.

The linearized dynamic structure described by this trichotomy serves as the cornerstone of the
study on the nonlinear dynamics, with the bridge classically provided by the invariant manifold
theory for ODEs and PDEs (mainly for semilinear PDEs). Roughly, the linear trichotomy in
the phase space along with nonlinear terms being smooth mappings from the phase space to
itself imply that there exist nonlinearly locally invariant submanifolds very close to the invariant
subspaces. However, this classical theory does not apply to gKDV directly as its nonlinearity
contains a loss of derivative.

Fortunately, the linear flow e~/ has a smoothing effect, which may still allow the stable and
unstable manifolds of Q. to be constructed through a modification of the classical approaches.
Since the stable and unstable manifolds are unique for each Q.(- + y) and extend in transver-
sal directions of .Z, one can construct the stable and unstable manifolds for Q. first and then
translate them along .# to form the stable and unstable manifolds of the whole .Z .

Compared to stable and unstable manifolds, there is an additional difficulty in the construction
of invariant manifolds containing center directions. Unlike stable and unstable manifolds, center
manifolds usually are not unique and they extend in the direction of .#, therefore one can not
translate center manifolds of Q. to obtain the ones of .#. As .# should be contained in the
center manifolds, so it is reasonable to attempt to construct the center manifolds of the whole .#
directly. This brings up an issue how to set up a suitable coordinate system in a neighborhood
of .Z . A tempting choice is to use the translational parametrization to write any U in a tubular
neighborhood of .Z as

U=¢(y,at,a”,V)=(Qc+a VI +a VT +V)(-+y), VieX“
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However, this translational parametrization is not smooth in H 1 To see this, we take the
derivative of U with respect to y and a term 9, V¢(- + y) € L? appears, while the other terms
in d,U are regular enough. This was also the main difficulty in the work of Nakanishi and
Schlag[29], where the authors constructed the center-stable manifolds of the manifold of ground
states for the Klein-Gordon equation. They constructed a nonlinear “optimal mobile distance” to
overcome this difficulty. In this paper, we follow the approach as in [2,10] to utilize a smooth
bundle coordinate system. Namely, any U in a tubular neighborhood of .# is written as

U=vy(.a*,a" V)= (Qc+a VI +a V) +y)+ Ve, Ve eX:={u:u(-—y) eX).

Since Q. and V¥ are smooth functions, the corresponding projection H cH!' > Xe with
ker I1¢ = span{oy Q. (- + ), V*(- 4+ y)} is smooth in y. Consequently, X¢= {(y V)y: Ve Xe}
isa smooth bundle over y € R by Lemma 2.2. We rewrite (gKDV-Tr) using this smooth bundle
coordinate system . Even though some geometric notions are involved, we still manage to
obtain certain desired smoothing estimates (Proposition 3.4).

Then we are able to perform Lyapunov-Perron method to construct invariant manifolds of the
soliton manifold, which help to reveal a rather complete picture of the local dynamic structure
near the soliton manifold. In particular, the orbital stability of .# on the center manifold is ob-
tained from a Lyapunov functional argument based on the fact that Q. is a critical point of the
energy momentum functional E — ¢ P whose Hessian is uniformly positive definite in X¢. The or-
bital stability on center manifolds yields characterizations (Proposition 6.9) of the center-stable,
center-unstable, and center manifolds of ., which in turn lead to their local uniqueness.

Consequently, any solution u(¢, x) on the center-stable manifold close to .# satisfies the
assumption in Theorem 1 in [21] and thus there exist c¢o > 0 and functions c¢(¢) and p(¢), > 0,
such that

lu(®) = Qey = POl g1y =0, ast— oo

Similar results hold on the center-unstable manifold for # < 0 and center manifold for ¢ € R.

There are some previous results on the construction of invariant manifolds for semilinear
PDE:s. Bates and Jones [ 1] proved a general theorem for the existence of local invariant manifolds
of equilibria for semilinear PDEs by the graph transform, and then applied it to the Klein-Gordon
equation in the radial setting. In [32], Schlag constructed a co-dimension 1 center-stable man-
ifold of the manifold of ground states for 3D cubic NLS in wLL(R3) N WL2(R3) under an
assumption that the linearization of NLS at each ground state has no eigenvalue embedded in the
essential spectrum and proved scattering on the center-stable manifold. Later, this result was im-
proved by Beceanu [3,4] who constructed center-stable manifolds in W12(R3) (M x| ~'L?(R?)
and in critical space H'/2(R3). Similar results were obtained in Krieger and Schlag [16] for
the supercritical 1D NLS. Nakanishi and Schlag [27] constructed a center-stable manifold of
ground states for 3D cubic NLS in the energy space with a radial assumption by using the frame-
work in Bates and Jones [1]. Nakanishi and Schlag [29] constructed center-stable manifolds of
ground states for nonlinear Klein-Gordon equation without radial assumption. Also, see [13-15,
28] for related results. To the best of our knowledge, this current work is the first one constructing
invariant manifolds of a global soliton manifold for a dispersive PDE with derivative nonlinear-
ities. Our approach, involving using the bundle coordinates and deriving space-time estimates
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with small exponential growth, seems to be rather general and, with minimal essential modifica-
tions, applicable to unstable relative equilibria (including ground and excited states) of a class of
Hamiltonian PDEs with natural symmetries (see also [10]).

This paper is organized as follows. In Section 2, we establish bundle coordinates over the soli-
ton manifold and rewrite the equations. In Section 3, we derive smoothing space-time estimates
in the bundle coordinates and then prove several a priori estimates. In Section 4, we construct
Lipschitz invariant manifolds of the soliton manifold, whose smoothness is proved in Section 5.
In Section 6.1, we analyze the local dynamics near soliton manifold by invariant manifolds.

A remark on notations. Throughout the paper, (-, -) denotes the dual pairing between elements
of a Banach space and its dual space. The generic upper bound C may depend on ¢ > 0, but not
other phase space variables or parameters, unless specified.

2. A bundle coordinate system near the soliton manifold

2.1. Linear decomposition and local coordinates near solitary waves

To study the dynamics near the travel waves with traveling speed ¢ > 0, we rewrite (1.1) in
the traveling frame by letting u (¢, x) = U (¢, x — ct) which satisfies

U, — cUy + (Uyy + U5, =0. 2.1

For any y e R, Q.(- + y) becomes an equilibrium of (2.1). Linearizing (2.1) at Q.(- + y), one
has

U, = JLc,yU, 2.2)
where
J=08, Ley=c—d—kQ ' (+y)=(P+E)(Qc(-+y)eLH H).

For convenience, we let L. := L. . Up to a scalar multiplication, JL. are conjugate to each
other for different ¢ > 0, through the rescaling

JLTYU =3 7 I0U, where (FU)(x) = AFTU (Ax), 2.3)
and L.,y is conjugate to L. through the translation
LeyU=(LUC=y)(+y). (2.4)
Lemma 2.1. For any c > 0, there exist closed subspaces XCT ¢ Such that
(1) H'=XT @ X¢ ® X} @ X associated with bounded projection TI1"*"";
@ X7 =kerLc = span{d; Oc);
(3) X* =span{VE}, with

JLVE =40 VE with b = C%M > 0. Moreover V¥ € C™ and, for any 1 >0, 3.V — 0
exponentially as |x| — oco;



J. Jin et al. / J. Differential Equations 267 (2019) 7213-7262 7219

(4) 3.0 € X¢ and there exists A; > 0 such that (L V°, V¢) > Ac||Ve||§1l(R) forany V¢ e X¢.
(5) In this decomposition, L. and J L. take the following forms

0O 0 0 O 0 Ar. O 0
0 LS 0 0 0 A, O 0

L, «~— o o o 1l JL, <~— 0 0 A 0 , (2.5)
0O 0 1 0 0o 0 0 -

¢
where
L¢=MO*LIE, A, =TILJL S, Ar.= I‘IZJLCHE.
Proof. In [31], it was shown that ker L. = span{d, Q.} and all spectra of JL. belong to iR

except one algebraically simple positive eigenvalue A, and one algebraically simple negative
eigenvalue —A. with corresponding eigenfunctions denoted by V. and V,”. Moreover

(LoVE V) =LV, V) =0, (2.6)
and (L.V.", V) =1 by a normalization of eigenfunctions.

Since span{V;", V"} is invariant under J L., it is easy to verify directly that its L.-orthogonal
complement

Yi={ve H :(L.V],v)=(L.V ,v) =0}

is also invariant under J L. Moreover, (2.6) implies (L., -) is non-degenerate on span{V;", V."}
and thus H' = span{V},V-} @Y. Clearly, XI C Y. Let

X, ={veY:(3:Qc v)=0}.
The block form (2.5) follows directly from the definition of the subspaces.

In the next we give the explicit forms of the associated projection operators. Any V € H'! can
be decomposed as

V=a"VI+a V. +a’8,0.+ V", (2.7)
where V¢ € X¢. Applying L.V, and L.V, to (2.7), respectively, we obtain
at=(L.V7,V), a =(L. V', V).
Applying 9, Q. to (2.7), we have
a” =1|9; chlzz2 ((0:Qc, V) =a™(8x Qc, V) —a™ (3: Qc, Vi) -
Clearly
n'v=a"s,0., Nfv=o*v: né=r7r-nl-mf-m;.

As 0, Q. € D(J*)=D(J), clearly A, = I'IZJLcl'Ii is bounded.
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Since, for any ¢ > 0, Q. satisfies

(CP + E)/(Qc) =0= JLcach = _JP/(QC) = _ax Qc’

we have
(LeVE 8:00) = AN LI LVE 8.00) =27 1L VE, 8,0,) =0

and thus 9. Q. € Y. Due to the evenness of Q., it is clear that (3, Q., 3. Q) = 0, which implies
0:0c € X¢.

To complete the proof of the lemma, we show that uniform positivity of (L¢-,-). As L. is a
relatively compact perturbation to the uniformly positive operator ¢ — d on H !, it is uniformly
positive except in possibly finite many directions. Since ker L. = span{d; O.} and 9, Q. changes
sign exactly once, L. has only 1-dim negative direction and 1-dim kernel. From (2.6), L. has
one negative and one positive directions in span{V,;", V."} and

H' =span{VF, V. )@ kerL. ® X¢
is a L.-orthogonal decomposition, therefore there exists A, > 0 such that

(LVEVE) 2 A VeI g

for any V¢ e X¢. This is a special and rather explicit case of the general framework studied in
[18]. O

Forany y e R and @ € {T, e, +, —}, define
Xey,={ve H'lv(- —y) e X%).
Clearly,
1 T -
H' =X, ®&X, &X &X_,.
Lemma 2.2.
(1) X7, =span{d, Qc(-+y)} =kerJL,.

() Xz, =span{VE(+y)}yand JLyVE(C+y) = AV + ).

3) 9.0:.(-+y) e Xg’y and (L V¢, V¢ > Ac||Ve||12L]1(R) forany V¢ e X¢ |.

(4) The associated bounded projection operators II¢ , are smooth in ¢,y fora =+, —, T, e.
(5) In the decomposition H!'= XcT,y ® Xﬁ’y ) Xj:y ® XC_!y, L.,y and J L.y take the form

0 0 00 0 Ar.(») 0 0
0 Lf, 0 0 0 A() 0 0
Leyv<=10 o o 1|0 P00 0o i o0 (2:8)
0 0 1 0 0 0 0 -
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where

Liy= (¢ LeyTey, Ae(y) =TIE I LeyTIE o Are(y) = T1{J LeyTIg .

e
ey’

(6) All above blocks are translation invariant in the sense of (2.4). Moreover, Lg’y + 0y €
LHYY and A1o(y), Ae(¥) + dxxx € L(H', L?) depend on ¢ > 0 and y € R smoothly.

Proof. All the statements in the lemma, except the smoothness of the operators in ¢ and y, follow
from the translation invariance (2.4) of J L. y. To show the smoothness of IT¢ y in ¢ and y, we

use their explicit forms. Any V € H! can be written as

V=atVI(+»+a Vo(+y) +a9:0.(+y) +V, (2.9)

where V(- — y) € X¢. One can calculate that

at =(LeyV(C4+y), V), a =(LcyVI(¢+y),V), (2.10)
and
a” =110, Qcll ;7 ((0x Qe - +3), V) —a™ (8 Q. V) —a™ (3, Qe Vi) - (2.11)
Therefore
n/,V=a"0,0.(+y). M5, V=a"Vi(+y) (2.12)

andI1¢ , =1—T17 — M, —TI . The above explicitly forms yield the smoothness of Hzf’y_’T’e

c,y c,y ) )
in ¢, y. Finally the smoothness of Lf.’y 4 Oxx> ATe(¥), Ae(¥) 4 0xxx follow from similar calcu-

lations based on the regularity of Q. and the eigenfunctions Vci. O
2.2. A local bundle coordinate system
In this section, we set up the bundle coordinates near .# precisely and discuss its smoothness.

This subsection is in the same spirit as Section 2.2 in [10].
Fixing ¢ > 0, denote the orbit of a single solitary wave by

Me={Qc(-+ »ly eR}.
Define a vector bundle 2 ¢ over R with fibers X¢ , as

2E={(. V)| yeR, VE e X¢ (2.13)

v

and balls on this bundle

2@ ={0. V) e ZLIVIn <8} (2.14)
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Let y, € R and 0 < § < 1, the map

(y*—é,y*+6)xX§’y* — 2
(y: V) — (yv Hf,yv)

gives a smooth local trivialization of Z.°, where the smoothness is due to the smoothness of
II¢. y With respect to ¢ and y. Thus it provides Zf with a local coordinate system.

With other subspaces like XZ: ’y+’_, we will often consider bundles R” @& Z.¢ over R with
fibers R” @ X¢ |, as well as their balls

cy
B"(31)® 25(62) ={(y.a, V) laeR", |a| <81, (y,V) € ZS ()} (2.15)
Define an embedding
Em:R*® 2¢— H!
as
Em(y,a’,at,a=, V)
=a’ 0 Qc(-+y)+a VI + ) +a VI +y)+ Ve (2.16)
=(a"0.0c +a TV +aTVT) C+ )+ Ve

The embedding Em* : R2@® 2,¢ — H' defined on the transversal (to the translational direc-
tion) bundle will be used in the rest of this paper,

EmL(y,a‘F,a_, V¢ =Em(y,0,at,a”, V). 2.17)

Clearly Em™" is translation invariant in the sense, for any j € R,

Eml(y +V,at,a",Ve(+ &)) =Em*(y,at,a”, V(- + 7). (2.18)

On the one hand, according to the above trivialization, given any Banach space Z, a mapping

f1Z — ZZ is said to be smooth near some zp € Z if y(z) and V°(z) € Xﬁ(zo) V(zo) AT€ smooth

in z near zg, where f(z) = (y (2), Hi(zw(z) Ve(z)). Due to the smoothness of Hﬁ,y, in fact this is
equivalent to the smoothness of y(z) and V (z) € H! where f(z) = (y(z), V(z)).
On the other hand, for any Banach space ¥, a mapping g : Z.¢ — Y is said to be smooth near

some (yy, V,) if
g, V)=gy g, V), yeR, VeXy |
is smooth in (y, V) € R x X{ y, near (yy, Vi). It is straightforward to verify

e g is smooth if and only if locally g(y, l'If.’yV), yeR,VeH! issmoothonR x H!;
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e g is smooth if and only if locally it is the restriction to Z¢ of a smooth mapping defined on
R x HY;

e g is smooth if and only if g o f is smooth for any smooth f:Z — 2 defined on any
Banach space Z;

e Em is smooth with respect to (y, V¢).

Near the 2-dim manifold .# of solitary waves, we will work through the mapping & defined
onR>@ Z¢

U=®(y,a, V)= 0q+y)+ Emt(y,a, VE). (2.19)

For any fixed ¢ > 0, ®(-) is diffeomorphic when a € R? and || V¢ | 1 are sufficiently small.

Remark 2.3. Since @ is a local diffeomorphism with properties uniform in y, locally the total
lal + |V¢|| g1 of the transversal components is equivalent to the H I distance from ®(y, a, V¢)
to M.

This is a smooth vector bundle coordinate system in a neighborhood of .# C H'. From (2.16)
and (2.17), ® can be naturally extended into a smooth mapping on R> @ H'!.

Remark 2.4. It is tempting to use the coordinate system
U=(%Q+a" Vi +a V7 +V9)) ¢+

where V¢ € X{ and y € R. However, such rescaling and translation parametrization is not
smooth in H'! because the differentiation in ¢ and y causes a loss of one order regularity in
Dy(yoﬁw)(- + y) and Dc(%ﬁvex. + y). This is one of the main issues in Nakanishi and
Schlag [29], where the authors constructed the center-stable manifolds of the manifold of ground
states for the Klein-Gordon equation. They introduced a nonlinear “mobile distance” to over-
come that difficulty. Instead, the above bundle coordinate system (2.19), where V¢ € X g y is not
directly parametrized by a translation in y and a rescaling in ¢, represents a different and general
framework based on the observation that, while the parametrization by the spatial translation of
y and rescaling of ¢ are not smooth in H'! with respect to y and ¢ respectively, the vector bun-
dles XZ ’ye’+’_ over .# are smooth in ¢ and y as given in Lemma 2.2. This geometric bundle
coordinate system has been used in [2,10], in the latter of which we constructed local invariant
manifolds near unstable traveling waves of the 3D Gross-Pitaevskii equation.

2.3. An equivalent form of the gKDV equation near .4

Fix ¢ > 0. Let U(t, x) be any solution to (2.1). If U (¢, x) stays in a small neighborhood of
{Qc(-+y) | y € R}, we can use the coordinate system (2.19) to write it as

U =@(y(1),a™(1),a” (1), V@), (2.20)

where (y(t),a™(t),a™(t), V(1)) € B>(8) ® ZL(5).
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Plugging (2.20), (2.19) into (2.1), we obtain

3 Qc(- 4+ )0y + BaD)VEC+y) +aF0, VEC+y)d,y + 8, V¢

+y+ (2.21)
=(EA)aTVEC+3) + T Ley Ve +Gly.aT.a”, Ve,
where
L k
Gy.a*.a™,V) = =3[ (Qcl-+ ) + Em* (e, y,a*a”, V)
— 0" +y) —kQ (- + ) Em* (c,y,at,a, Ve)] (2.22)

=0 (Gi(c,y,at,a", V).

Throughout the paper, we often omit the dependence of G and other quantities on ¢ which is
mostly fixed. As a convention of notations, a* V¥ always means summation of the terms corre-
sponding to ‘+’ and ‘—’ signs.

We shall apply projections HZ yi "¢, by using (2.10) and (2.11), to (2.21) to obtain equations
of each components y, a™, V¢. Firstly applying L¢y V. (- +y) to (2.21), we obtain

dat =rcat +AT(c.y.at.a” V) y+ Gt (y.at.am, V), (2.23)
where
AT(v.ata” V) =—aF(Ley V., 0, VE)
+(@yLe )V C+ )+ Loy Vo (), VE),
and

Gt (y,at,a”, V) =—(d:LcyV. (- +),Gi(c,y,at,a™, Vo).

Similarly, applying L , V(- + y) to (2.21), we obtain

da- =—rca +A(c,y,at,a”,V)yy+G (y,aT,a", V), (2.24)
where
A~ (v,at,a", V) =—a* (L., VS, 8, VE)
@y Le, WV G4 + Loy 0V +3), V),
and

G (y,at,a”, V) =—(d:LcyVI(+),Gi(c,y,at,a™, Vo).

Taking the L? inner product of (2.21) with 3, Q.(- + y), then plugging in (2.23) and (2.24),
we obtain
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AT(y,a*,a™, V) y =—(LeyJ0: Qc(- + ), VE)
+(0:Qc(-+ ). G(y.at.a”, V) = (0:Qc, V)G (y,a™,a™, V).
where

AT(y.at.a™, V) = [0 Qcll72 + a™ (05 Qc. 0, V5
— (V970 (+ ) + (0 Qc. VYA (v.a™a™, VO).

It is clear that AT (y,a*t,a™, V) > 0 when |a®|, ||V¢| ;1 < 1, therefore

0y =(AT) [ = (LeyJ0: Q-+ ). V) + (0 Qe (- + ), G) — (0 Qc, V)G™, |
=Gl (y,at,a", V) (2.25)
== 10, Qcll 3 (Ley J3: Qe+ ). V) + G (v.aT.a™. V),

where in the last line we separated terms which are linear and of higher order in a® and V.
Substituting (2.25) into (2.23) and (2.24), we obtain

dat =xrat+GE(y,at,a, Vo), (2.26)
where
GE(y,at,a”, V) =(AEGT + GF)(y,at,a™, VO).

Using the higher order regularity of V*, 3, Q. and 3.Q., one can check that Gt —T are
well-defined and smooth in the energy space and at least quadratic in a* and V.
Applying TI7 |, to (2.21), we have

M, 0,Ve=T¢ JLcyVe+G(y,a™,a”, V), (2.27)
where
G*=I¢ ,G—a*G'I¢, (0 VEC+y), (I—-TI )G =0.

An equivalent form of the V¢ equation. To avoid estimating the geometric equation (2.27)
involving bundles, we first transform it to an equivalent form which may be posed in the whole
space H!. Let

My, =I-T¢, and X, =T H" (2.28)

Since I+

() Ve(t) = 0 for all ¢, differentiating this identity with respect to ¢ yields

M ,0,VE = d,yd,TI¢ Ve
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The term 9, IT¢, y V¢ actually serves as the second fundamental form of the bundle Z¢. In order to
make the V¢ equation posed in the whole space H', we define a bounded linear map .Z (c, y) €

ZL(HYH

F(c,y)V =0,11¢ (¢ V=T V) ==, T (I — 2 )V. (2.29)
The above form of .#, which is a modification of the second fundamental form of Z.¢, would
bring us certain convenience to carry out some calculations in later sections.
Accordingly, we consider the following extension of (2.27)

WV =TS JLeyTIEV + 8,y F (e, p)V + G°. (2.30)

In the below, we demonstrate that, if V (s) € X ¢ ey(s) for some s, then V(1) € X? ¢ ) for any ¢,
and consequently (2.27) and (2.30) are identical accordlng to the definition of % (c y). In fact,
let V (¢) be the solution to

OV =TI JLey ISV + 8,y F (c. )V + f(1),  f4() € XE,,. 2.31)

Since IT¢ ,TI¢ | = TI¢ |, differentiating this identity in y we have

0y l'[f,’y I'If.,y + Hf_’y dy I'If.,y =0y Hi’y. (2.32)
Using this identity, we calculate

(T, V) = 9y yT- 0TI (TTE V=TI, V) + 8, ydy T, V

. (2.33)
= —8,y0,[TL (M1, V).

Observe that the above equation of HJ- V is a well-posed homogeneous linear equation in a

ie. T+ V(s)=0,then I+ V(1)=0

finite dimensional space, therefore if V (s) € X¢ oy (®

for all 7.

We will work with (2.30) since it is more convenient to obtain estimates compared to (2.27).
In summary, in a small neighborhood of solitary waves, we will write the gKDV equation in the
bundle coordinates (2.20) as a system consisting of (2.25), (2.26) and (2.30).

c,y(s)’ c.y(s)

3. Linear analysis

The aim of this section is to establish linear estimates to be utilized for equation (2.30). The
unknown of (2.30) is in .2°¢, however, with our definition of .Z it is also well-posed in H'. As
one will see later, the following more general form of (2.30) with the unknown V € H' (not
necessarily in 2 ¢) will be more convenient for us to use

OV =TIg (JLc yTIC \V + 8y F (¢, )V + f(t, %), (3.1
where y = y(¢) is a given Lipschitz function.

With our definition of .7, the equations of V¢ =TT, yV and vi= HéyV are decoupled. In
fact, similar to (2.33), one can calculate
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Ve =TI¢ JLey Ve + 0y F (e, )V + f* (3.2)
wVE=0yZ (@, )Vt + . (3.3)
where f¢=TI{ , f and ft= l'IL yJf- We will work with (3.2), (3.3), and estimate V¢ and vt

separately. In partlcular we note that (2.29) and (2.32) imply

F(e, X, C Xy Fle,y)Xi, C X,

S . (3.4)

Energy estimates of homogeneous equations. Starting with energy estimates, we analyze (3.1)
with f =0. Fix ¢ > 0. According to Lemma 2.2, there exists A, > 0 such that (L., V¢, V¢) >
AcllVE| g forany V¢ € X¢ y» therefore (Le,y Ve, ve)l/2 is equivalent to the H' norm on Xﬁyy.
Forany Ve H I define a semi-norm

IVl 7y o= ALey TE VL TTE V)2~ ITTE Vg, (3.5)
which depends on ¢ and y.

Lemma 3.1. Assume that f =0 and y(t) satisfies ||0;y| Lo~ < o, then (3.1) generates a bounded
evolution operator

St,s)e L(H', HY, Vs, t € [to, to+ T
satisfying

S(t, s)e.f(X”(s), cy(t)) and S(t, s)ef(X”(s),ch(t))

Moreover, there exists a constant C independent of vy, o, such that for any V¢(s) € X¢
Vi) e Xt

e y(s) and

oy(sy e have

IS VS, <NVl
and
IS, )VES) g1 < eSSV S)

Proof. Due to the high regularity of Q. and X cLy, I¢  J Le,y TG |V is a bounded perturbation
t0 J L¢.0o = 8y (¢ — dyx). Moreover, .7 (c,y) € £ (H! ), therefore (3.1) is well-posed in H! and
S(t,s) € L(H') is well-defined.

The invariance of S(z, s) in the bundles .2°¢ and (c, y, X gjy) is an immediate consequence of
the decoupled form of the equations (3.2) and (3.3) of V¢ and V.

It remains to prove the two inequalities. We have

(LeyVE V) =2(LeyVE, 0 V) + 3 y{(dyLey)VE, V). (3.6)
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On the one hand, clearly from (3.2), (3.4), and the fact that H'= X,f’y &) ngy isa L., y-orthogonal
decomposition, we have

(Ley Ve V) = (LeyVE, T (T Loy V) = (Ley Ve, JLey V) =0.

On the other hand, using the high regularity of O, it is easy to check that there exist constants
C’ and C such that

10: 9@y Ley)VE, VO < Cla || VO3, < Co(Le,VE, VE).

It follows that

(Lc,yvev V€>t = C0<Lc,yves Ve),

which implies the first inequality.
Taking the H'! inner product of (3.3) with V-, one immediately obtains the second inequal-
ity, O

Remark 3.2. It is worth mentioning that in the above lemma the coefficient in front of ¢’ is 1,
which is crucial in future iteration steps.

Smoothing space-time estimates of homogeneous equations. In the rest of the section, we
establish smoothing space-time estimates for (3.2) based on the space-time estimates established

in [12] for the Airy equation u; + uy,x = 0.

Lemma 3.3. ([12]) Let W (t) be the group generated by

Uy + tyxx =0. 3.7
The following estimates hold:
(1) Ifug € L*(R), then
19 W(uoll o 2 < Clluoll 12, (3.8)
and
1D W (uoll 300 < Clluoll 2. (3.9)

2) Ifug € H*(R) with s > 3/4, then for any p > 3/4,

IW©uoll2rss, < CU+T) ugll . (3.10)
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Q) Ifgt,x)e L}CLZ, then for any T > 0 (can be 00),

t
o [Wa=swds|  =Clelyg,, G
0 Ls L2
and
t
s [ W= )(5)ds < Clgllyza (3.12)
0 L?"L[ZO.TJ

Motivated by the above estimates, define norms || - || ST opy 8
0-10

IVilsz, =max{[[Vligee  pts [10xxVilpeor2

!
10,10+T1 ltg-to+T11 x lto.10+T1"
00 (3.13)
\% 0
Il ||L§L[°%,/0+TJ’ I xvllLﬁ().t0+T]L)?O}’
and || - s . as
Ve Dlsrg = IV Ex =Dl (3.14)

Proposition 3.4. There exists C > 0 independent of y(-), o <1, ty, and T, such that for any

y(-) € Cl([to, to + T1) with ||3;y|| .~ < o and any V() € Xﬁ,y(to)’ we have

t

+ /S(t, $) fe(s)ds

1o ST[(tl(),t()JrT] (3 15)

e .
IS@. 10)V=t)lsTe
to+T
<C(1 + THeCoT IV (to)ll 1 + C / (14 (tg + T — s)HeCotorT—9) ||f€(s)||Hx1ds,
1o

t
IIS(t,to)Ve(to)IIgvl([) + /S(I,S)f"(S)ds
. ) ﬁ]
() (316)

t
<OV Wl + [T O lgas

fo

and
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t
I1S(t, to) VL (o)l 1 + /S(I,S)fl(S)dS
10 H| (3.17)

t
< oY)l + [ I s,

4]

It is crucial that the coefficient in front of e€7=0)||V¢(1y)| 71 in (3.16) is 1, which makes an
iteration argument possible based on this inequality.

Our proof is based on perturbative arguments. We split the proof of this proposition into
several lemmas. The following technical lemma provides estimates which will be used repeatedly
in non-homogeneous estimates throughout this paper.

Lemma 3.5. Assuming that f € H'(R) N WL-°(R) and p(t) € C ([to, to + T) satisfying
lo'(2) lcO 110,10+ < M for some constant M, then the following estimates hold

If @ =p@llizree < MTIF @2y + 10 2w); (3.18)
If = p@llpgerz < MTVI Ol + T2l ). (3.19)

Proof. Since
t
Fx—p) =1 (x - plin)) — / F (= p(s) 0 ()ds.
0]

by the Minkowski’s integral inequality, we have

to+T
I f(x— p(t))IILgLﬁ%JOm <Iflew)y+M / |f’ (x — p(s))\ ds
fo L2(R)
t0+T (3.20)

<If Ol 2w + M f [/ =) 2 ds

fo

SIfF @@y +MTI Ol 2 w)-

The second inequality can be proved in a similar fashion and we omit the details. O

Lemma 3.6. Assume y(t) satisfies |0;y(t)|po < o < 1. Let V¢(t) = S(t,t9)V°(ty) and

Ve(t, x) = Ve(t,x — ct) with V°(ty) € X°¢ Then th;re exists some constant C independent

c.y(to)’
of y(-), o, and T, such that
1Vl = CA+T 2TV (3.21)
IVellizige = CA+THETIVEGO) .- (3.22)
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1:VellLs e = CA+THETIV W)y (323)

+T1
Proof. Rewrite (3.2) with f =0 as
9 Ve=JL.,V*+0O@)V°,

where O()V = 8ty35(c, y(t))V JL¢ yoV. Clearly, Ve () satisfies

I y(t)
0.7 = -037 — 0, (kO -+ y(0) = enV¢) + B P* (3.24)
where

(OO V) ()= (O)VE) (- —ct) = (O V@, -+ ct)) (- —ct).

Using the Duhamel’s principle, we write (3.24) as

Ve@r) =Wt — 1) Ve(to) + /W(t —)[O)Ve(s)

(3.25)
—a, (kQ’;—l (-4 y(s) — ¢s) Ve(s)) lds
e Proof of (3.21). By (3.8), (3.12), one immediately has
dex VD)l o <Cla (@ (- +y@) —er)VE
00 VO lerz =€ o (@7 (- 4y0) = e)°) i
o _ (3.26)
+C /W(t—s)axx (G)(s)Ve(s))ds + ClIVe(to) |l gi-
LOOL[ZIO to+7T]

Using Lemma 3.5, one has

BX(Q’C"l( (1) —ct) \76)

2
Lx L[t SJo+T1

<Ny —eDllgipe IVl g2 <CTY2(1 4+ 1)V 1

I.
[19.10+T1] X 19,10+ T] tt+T]H

From the spatial regularity and decay of functions in X ﬁjy (of dimension 3) and the expression

of Hi‘y(t) given in Lemma 2.2, one can easily check that |© ()| &2 g1y < C for any I > 0.
Therefore, we have

OOV Il = 10V ]l < CIVEll 2 = ClIVl 2. (3.27)

From the above and Minkowski’s inequality, we obtain
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t
/ W(t — $)dex (B(5)VE(s5)) ds
]

12

L [10:10+T1

X

t
<C / |W(t — 5)dex (B(s)VE(s)) ||L$o ds
10

2
L[To,to+T]
t
- ~ o, < T2 e '
<c| [1BOV Ol mds =CTP Vel i
1 2
0 Litgt9+T1

Therefore, we obtain

190V Ol = CIVE@) g +CT A+ DIV

1.
1 ,[O+T]Hx

+T

Inequality (3.21) follows from the above inequality and Lemma 3.1.
e Proof of (3.22). Using (3.18), (3.21), and Lemma 3.1, we first obtain

to+T

/

fo

0 (kO 43 —eo) V)| ds=cIlly

[t9.10+T1

1 (3.28)
+CT2Q A+ y®) —eDllpares 196 VEllper2

[19.10+T1 [19.10+T]

<C(T"2 4+ 13TVt | 1.

Along with (3.10) and Lemma 3.1, it implies

t
/ Wt — 5)d, (kQ’;—‘ (4 y(s) — cs)Ve(s)> ds
10

2L o
to+T
<C f HW(t—s)Bx (kQ’;—l(-+y(s)—cs)x7€(s)) L. ds
b xbrels, i +T1
to+T
<C(+T) / d (kglcc—l(, () — cs)fie(s)) HHI ds

fo

<CU+THeC T VE(t) |l g1

Using (3.27), in a similar manner we may obtain
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t
/W(t — $)O(s)Ve(s)ds
to

LILE 1411
to+T
< [ e80T Oz, ds
fo

to+T
<C(1+7) / IVE(s)ll2ds < C(1+T?e 7T |V (t0) |1
fo
Inequality (3.22) follows from (3.10), (3.25), and the above inequalities.

__e Proof of (3.23): Using the Minkowski’s integral inequality, (3.9) and the fact that H 'R) c
H3/4(R), one can verify

t
BX/W(t —s5)g(s)ds
! it o (3.29)
to+T to+T

< [ 1awa-sgol, eds=C [ lgelmds
0] fo

to+7T]

Along with (3.25), (3.9), (3.29), and (3.28), it implies (3.23). O
With the above preparation, now we prove Proposition 3.4.

Proof of Proposition 3.4. By Lemma 3.6 and the Minkowski’s integral inequality, one has

t

HS(LIO)Ve(to)”ST[C S+ f S(t,s) f€(s)ds
to,[0+T

In) c
ST[tO,10+TJ (3.30)
to+T

<[st.oveo|g .+ / s ) |gpe  ds
fo

1€ls,ig+T1

and thus (3.15) follows. The other two can be obtained directly from Lemma 3.1. O

To end this section, we estimate the difference between solutions to (3.1) along base paths
vi () and with non-homogeneous terms f; (¢, x), i = 1,2. We have

Lemma 3.7. Assume y;(t) satisfies ||8’yi||Lﬁ° e =0 = 1, i = 1,2. There exists a constant
0-10

C > 0 independent of T > 0, y;(-), 0, to, and the non-homogeneous terms fi(t,x) such that,
for Vo1, Voo € H', the solutions Vi(t) = Si(t,s)Voi of (3.1) along the paths y;(t) with non-
homogeneous terms f;(t, x) satisfy,
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ITIg ,, (V2 — Vollste

< Ce T ((1+ T“)(nn‘ 1oty (V02 = VoDl gt + IT1E y, (2 = fDll 1)
+ T2+ Ty = yalleor (Vo + 1A O 1)),
IValto +T) = Vito+ Dl = e (Vo = Vorll gt +CITIE (2= f)llpm
+CTE(+ Ty = yallcor (IVorll g + 1A Ol 1))

and for any | > 0

(T = T0¢,,) (Vo = VD)) (to + T) | gt < 7T (1T =TI, o)) (Vo2 = Vo) [l
+ U =TI, = fOll s + CT vt = wallcor (Votll o + 11O 1 )

where all the norms in t are taken on the interval [to, to + T].

Remark 3.8. For T < 0, the estimates in this section still hold with T replaced by |T|. In the

case where estimates on I1¢ V) — V| is required, it can be obtained by observing that
c,y2 L s V1 q y g

g, Vo =g, Vi=TIg |, (V2= Vi) + O(ly2 = yilllViD).

c,y2

Proof. Equation (3.1) implies

(Vi = Vo) = J Ly, TIE (Vi = Vo) + 902 F (¢, y2) (Vi — Vo) + AT+ fr— fi, 33D

CYZ

where

A% ( cyl‘]LC}l ey C)ZJLC)’Z +aty1 (val)_atylg(cv)ﬁ))v]

( ¢ Loy, (T cy2)+1'[f ULy = Ly )TIS )
(3.32)
+ (Tg ), — C}Z)JLC v ey, + @yt — 3 y2)F (e, y1)
+ 2 (Z(coy) - F e, yz))) Vi
By Lemma 3.1 and Proposition 3.4, we have
Iy, (Vi = V)llsze = € =10 ITIE 3, ) (Vor = Vo)l
(3.33)

e / £ =) (I AD@ 1 + 1T (£208) = 1)1 ds

where ¢(s) = (1 +5%)e€?* and
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IVi(r) — Vz(t)Hﬁl < €U0 Vo — Vi |l
210 V2 (tg)

3.34
+C/ Co(t— S)(”(Hc . 1)()“H1+”Hcyz(Y)(fZ(s)_fl(s))”H)g)ds ( )

fo

Using the smoothness and boundedness of Hﬁ’y and % (c, y) as well as the fact that X ify are
finite co-dimensional subspaces of smooth functions, we have

1
./ ITT¢ )zAz N¢ (T Ly = T Ley)TE Vil grds
fo

(3.35)
<C|Vi ”LEEJ]HXI Iyt = y2llwii(ro.00)
Note that
(L, = T L) TS, Vi = 0y (Qng,yzvl), (3.36)
where
5_ A _ k=1 k—1
Q=00 y1,y2)=kQc (+y2)—kQ: (- +y1).
Clearly } and its derivatives in x decay exponentially as min{|x + y1[, |x + y2|} = o0. As
in the proof of (3.28), using (3.18), (3.21), (3.36), and Lemma 3.1, we obtain
to+T
M, Ly, — T Ley)TIE L 1) H d
/ H( e (T Le e/, V1) 5) m (3.37)
1/2 3/2
=" P+ T = yallege L IVillsze
Moreover, Proposition 3.4 yields
to+T

IVillsze  ory =

< CEMVorll g1 + / Lo+ T =) fi(s)ll grds).

Io
The above estimates imply the first two inequalities in the lemma. The last inequality in the
lemma follows similarly by using (3.31), Proposition 3.4, and the fact that eigenfunctions of

J L.,y corresponding to eigenvalues 0 and &=A. are smooth functions, which even allows one to
avoid the space-time estimates. 0O

4. Construction of local invariant manifolds of .7

With all the preparation in previous sections, we construct the center-stable manifold
WS (M) of A, while the center-unstable manifold # ““(.#') can be constructed in a similar
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manner. The center manifold #“(.#) of .# is obtained as the intersection of the above center-
stable and center-unstable manifolds.

4.1. Outline of the construction of the center-stable manifold of 4

We will first fix the traveling speed ¢ and use the global coordinate system (2.19) to construct
the center-stable manifold of the orbit of a single solitary wave

%c = {Qc( +y)|y € R}

Eventually we will show that these codim-1 center-stable manifolds W (.#,) over the directions
of Tg,(+y) e ® X¢ , ® X, along 4, for nearby c’s intersect on open subset and thus they
can be patched together to form the center-stable manifold of .# . Here in the above, To, ().,
denotes the tangent space of .Z, at Q.(- + y).

In the coordinate system (2.19) #“(.#,) is represented as the graph of some map-
ping h¢S:

WCS(%C) — @({a-‘r — hCS(yva—’ VE) |
“.1)
(v.a”, V) eB'©®) @ 2©)})

where Z.f(8) defined in (2.14).

Our construction follows the procedure in [10]. Though it has been carried out in details in
[10], for the sake of completeness we briefly describe the procedure here.

To avoid geometric calculations involving bundles, we shall work with 2 (y,a~, V) defined
onR x (—=8,8) x H'(8), where H!(8) = {u| lull 1 < &}. However, only the value of 2 on R @
Z £ (8) matters. By doing so, the projection operator I1¢ , will be involved a lot in calculations.
The following nonlinear projections will also be used often

Mx = (y,a", T, V),  wherex® = (y,a", V). 4.2)
Let
XS =R2x H!, X“©@)={(y,a”,V)e X |V|; <8},
and

Xy = L0, 0L R?) x ST, e XGn @) ={(a™ V)€ X 2 IV Ilsze < ).
As a standard technique in local analysis, we first cut-off the nonlinearities, as well as the
off-diagonal linear terms in (2.25), to modify equations (2.25), (2.26) and (2.30) into a system
defined on X x R. Accordingly, we will work with A°(y,a™, V) defined on X“*(§). Take a
cut-off function

y €CPR), s.t.y(x)=1,V[x| <1, y(x)=0, V|x| =3, [y'|cow) < | (4.3)
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and for § > 0,a™ e R, and x* = (y,a~, V) € X, let

v, a) =y a )y laHy ¢ IV Im).

and let

GE(,at) =ys(x*,aN)G*(y,a" a" TIE V),
Gl (x,a™) =ys(x,a™)(— |0, Qc”Zzz(Lc,yJax Oc(-+y), Mg, V)
+GT(y,a",a", Hf,,yV))
G (x.a™) =ys(x*,aN )G (y.a",a” 1L, V)
where the definitions of GT-*¢ are given in Section 2.3. The definitions of GETe imply that
they are independent of the extra component (I — I1¢)V, which is artificially added to avoid the
non-flat bundle R @ 2°¢.

Moreover, by the definitions of G*7 and the smoothness of the projection operator I¢ . it
holds that for any m, [ > 0, there exists some constant C such that,

sup ||DY DL, GT (x,ah)l| < €8,

x”,a‘*’ 44
4.4)
D" Dl C~;T( cs +) D" Dl 5:!:( cs +) <C82_m
sup | D}y - D, x,a")|+ sup | DI _ D xS, aty| <
) y a, y
x(‘s’a+ xcs’a+

where the above norms are evaluated in the space £ (X x R, R) of (m + [)—linear forms
on X x R. Denote
écs (xcs, a+) — (éT, éf’ 66)()‘.6‘5’ a+)’

A®(y,3) =diag(0, —re, TIE JLE JTIE 4+ 5.F (¢, ).

We shall consider the following system of x“* and a™,

3 = A% (y, GT (6, a™))x + G (x,a™) (4.52)

dat =rat +GH(x,ah), (4.5b)

which coincides with the system consisting of equations (2.25), (2.26) and (2.30) if |a™ ™| < 8,
VIt <8,and V € X7 |.

The presence of the term (L. yJ 0, Qc(- + y), I‘[ﬁ)yV) in GT causes that GT does not have
small Lipschitz constants, which is mostly necessary in constructing local invariant manifolds.
This technical issue will be handled by introducing the following metric involving a scale con-
stant A > 1
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Iva™ V)l a = 191+ la” |+ Al Vg,
1
I a™ s Vol o = 191+ la™ |+ ALy T VLI V)2 =yl +la” |+ AV, (4.6)
y : y

- s - :
10va™ Vllsze a2 00a ) g, +ANVIsze

where || - ||g1/ was denied in (3.5).

After modifying the nonlinearity, we shall construct the local center-stable manifold
WS (M) as the graph {a™ = h (W)} of some h® : X°(§) — R. In our construction, we
fix constants A, §, u such that

1
<1, A>1, ,u,<§, “4.7)

with additional assumptions which will be given later. Define

Fps={h:X"@) = R[h(y,0,00=0, [hllco <8, Lip(W)y.y,, , <1} (4.8)
Here h(y, 0, 0) = 0 is required since # * (.#.) should contain .#,. It is clear that I", 5 equipped
with || - || co is a complete metric space.

We will perform a type of Lyapunov-Perron method to construct center-stable manifolds. That
is, forany h € I s and X € X°(8), let x** (t) = (y,a—, V¢)(t) € X** be the solution to

8txcs — A (y’ GT(xcs’ h(xcs)))xcs + 5()& (XCS, h(chY))7 xcs(o) — 56 (4.9)

Then we define }Nz(i” ) as
o0
h(x®) =at =— / ¢S G (X (5), h(x () )ds. (4.10)
0

Remark 4.1. Even though £ is defined only on X“*(8), due to the cut-off function ys, for any
heTl,s, ae{T, L, e}, it holds G“(x”, h(x”)) = 0 whenever x° € X\ X“*(8). Thus, the
right side of (4.9) is well-defined for all x“* € X5,

Denote the transformation & — 7 as
T (h) =h.

The aim is to show that, under suitable assumptions on A, § and u , he I"ys is well-defined
and .7 is a contraction on I', 5. The graph of the unique fixed point, restricted to the set

B (%) @ 2°°(5)

would be the desired center-stable manifold # (. #,).

The framework described above allows us to work in a flat space X instead of non-flat
bundle R & 2°¢, which will bring us convenience in the proof of the smoothness of local invariant
manifolds. In fact, those extensions and modifications of (2.25), (2.26) and (2.30) to cooperate
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with our framework does not change the local invariant manifolds. More precisely, we have the
following lemma.

Lemma 4.2. The following statements hold.

(1) Suppose

xP () =@),a @), V(1)

satisfies (4.52) on [t1, 2] for some at € CO([t1, ], R) and ﬁ“’x”(to) = x(ty) for some
to € [t1, 12), then TIx* (t) = x5 (t) for all t € [t1, 12].

(2) Assume hj € Ty s, j=1,2, satisfy hy(x*) = ha(x*) for all x** e R ® Z(8). Then /;j,
Jj =1,2, defined in (4.10) are also identical in R @& Z £ (8).

Proof. Since IT¢ ),5e =0, this lemma is just an easy application of Lemma 3.1. O

4.2. A priori estimates

In this subsection, we utilize the smoothing space-time estimates established in Section 3 to
obtain a priori estimates. The strategy is to derive small time period estimates with small expo-
nential growth, then by iteration we obtain global in time estimates with the same exponential
growth. The Hamiltonian structure plays a crucial role in our iteration step. In particular, the pos-
itivity of the bilinear form (L. y-, ) in X¢ y guarantees the coefficient in front of the exponential
term is 1, so iteration will not generate large exponential growth.

We start the subsection with several estimates that will be used frequently throughout this

paper.

Lemma 4.3. Ifu,v € STS

[0.t0-+T " the following bilinear estimate holds

lolsze

1
2 c
10:Gu)ly g < T2+ Dllullsry,

to+T]

Proof. Let ii(t,x) = u(t,x — ct) and v(¢,x) = v(t,x — ct). Since ||8x(uv)||L[1 i T
10.10 x

e . . , z -
||3x(’w)||L[1,0 L2 We may estimate the latter in terms of the ST[IMH_T] norm of &# and v.

J10+T]
Firstly, since H ' L*°, one can estimate

- N »
2 =<CTlillge om0l oay-

1(3xi)v + (3x17)12|IL[1,0.

10+T1

Moreover, by straightforward calculations, one has

||axuaxv||LEt0v L2 §||axu||Lé0,zo+T]L§O||axv”L4/3 12

to+T] [19.tg+T1 "%

3/4)q ~ ~
<T Oyl 0y ¥
= || X ||Lﬁ0,10+TJL§O|| X “L‘[’t?)_tOJrT]L%:

and
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2= <T1'? ||“axxv||L2L2

Uy D
|| XX ”LEr i o071

+71]

12y~
<
<T ”M”L)%L[O,O ||axxv||LooL[2t0 o+T1’

The term || 00, i | L[lto ool can be estimated similarly, which completes the proof. O

Next technical lemma will be used frequently to estimate the difference between two solutions
to (4.9).

Lemma 4.4. Let V € L° L and y(t) € C'([to, to + T1, R). For any m > 0 it holds

[t0,00+T]

<CU+TH(1+ 4 19yOllcn)T) |Vl o0

m
1@ TIE D=y Vst ) = S
Proof. Since Bc’l'li = —8”’ Hﬁ-y, it is equivalent to estimate ||8’" V||5Tc " On the one
y ey 10

hand, by Lemma 3.5, we have

193" V(- + y ) sz 1187 Qe+ y0) st

[ IO+T

<CA+TH(1+ €+ 10yDlc0)T),

[19,10+T1

On the other hand, using the high regularity of Vci and Q., one has
[ VEC+ (@), VI + {7 Qe (- + y(1))., V) < C| Viga.

By the explicit expressions of Hf’yT given in Lemma 2.2, the desired estimate follows right
away. O

An immediate consequence of the above two lemmas along with Lemma 3.5 is the following:

Lemma 4.5. For any x“° € X{®

[f0.104+T] (a) andm; >0, j=1,...,5, with msg +ms > 0, it holds
that

DY 87202 G (. a ™) gm s S CTI+ @+ 5)m

Ll

[tg.t0+T1> = [t.t9+1]

1Dy (A% (y, GT (x, a™ ) gpma (o0 L

[10,10+T1 Hy,

1
| poxes iy SCTIA+T),

[t9.t0+T 1" =19, 10 +11

Here £/ (Z 1, Z2) denotes the space of [ —multilinear transformations from space Z1 ® Zj...
® Z to space Z;. In the above differentiations, 8m28m3G" and 8 A“* are point-wise partial
derivatives and the multi-linear operators resulted in the dlfferentlatlons are of V only.

Proof. We first consider G¢. For convenience, we let

G(x®,at) = ys(x*,aN)G(y,at,a", V),
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and
R’Z’e(xcs’ a+) — é(xcs’ a-i—) _ 5e(xcs’a+) — y(s(xcs’ a+)(G(x”, a+) _ Ge(xcs’a—i-)).

Recalling the definitions of G and G° in (2.22) and (2.27), respectively, the difference between
G° and G consists of terms of high spatial regularity smoothly depending on ¢, y,a* € R and
V € L?, and it is straightforward to verify

”D”‘;'l 8:1:&28;'13 ﬁé‘(_xcs’ a+)||$m1 (H/\!,Hxl) < CSZ*W!l*mZ,
which implies

1Dy 020y RS (x, a D)l gom (57 Loy S CTE M,

[x ao+T 1 Flig,1g+1117x

Since G is a polynomial of a* and V, using the fact that H!(R) ¢ L>(R), Lemma 3.5, and
Lemma 4.3, one has

1D RO G a D) g e iy SCTEHTHE +a) ™",

l1g:10+T 1> Fl1g,10+11"7x

To estimate Dm48m5 JAC (v, GT (x¢s, a™)) for my +ms > 0, we first consider

3, (JLey)V =kd (3L(QE N+ V).

Much as in the proof of (3.28), we obtain,

_ — L
10, (TLe)G1s s IOV g SCTIA+T)|Vs7e
[t t0+T1""x

[t0:10 +T]

Due to high regularity of the eigenfunctions of JL. y, the smoothness of ngy and .# with

respect to y, and the smoothness of GT with respect to x € X and a* € R. The inequality on
D'(,” 8::;5 yACS follows immediately and this completes the proof. O

In the rest of this subsection, we shall solve and estimate solutions to (4.5a) with a given
a™(t). One first observes that the V equation in (4.5a) has to be solved along a path y(z) and
the multiplier in front of .% has to be its d;y in order to maintain the commutativity (obtained in
Lemma 3.1) between its homogeneous evolution operator S(t, fo) and IT7 ;. Therefore we split
the iteration procedure of (4.5a) into

dy=G' 3, a,vV,ahH (4.11a)
da~ =-ra +G 5, a,V,ahH (4.11b)
OV = (Mg JLE TG+ 3y T (e, )V + GG,a-,V,ah 4.11c)

where

¥ =F.a V) eXS im@, ac©), ateLy, (4.12)
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are given. In particular, ones first solves the ODEs (4.11a) and (4.11b) for y(¢) and @~ (¢) and
then substitutes the solution y(¢) into the homogeneous part of equation (4.11c) and solves for
V).

Lemma 4.6. Let X{*(t) and a+(t) satisfy (4.12), i = 1,2, and x{*(t) = (y, ®),a; 1),V (t))
be the solutions to (4.11) for t € [ty, to + T, then there exists a constant C not dependmg on
to, T, x“ (t9), and X such that, if initial value

x{* (to) = x{g = (yio, @, Vio) € X (C9),
then we have ||9;yill L < C§ and

lyi (to + T)| < lyiol + C8T,  la; (to + T)| < e *Tjay| + C8,

IVillstg , ypy < CAATOLT (I Violl 1 + T3 (@ +82),

|52 = y)(to + T)| <ly20 = yiol + CTE + AU = Flsze - oa + 135 =G i),
to+T

(a5 —ap) (g + )] <e 0= |ay —ap| +C3 / e D (52 = Tl
0]

+|az _al |+|V2_ V1|H| +|02 _al |)(77)d777

IVa—=Villste

oy SCA+THET (Vo = Vigll g + T (a+8
T2 (a2 +62)) (120 = y1ol + 188" = F* 571, 004 + 135 — 51+||L?c)),

1
IVato +T) = Vitto + Tl <e“T (v — Violl gy +CT2(1+ 7°)
2 (10

(to+T) —

1 ~ ~
x (a+8+T2 (@ +8%) Iy — yiol + 175’ — x?nsn,o wirnA @ =4 ||Loo>)
and for any l > 0
(7 =108 ) (Vo = Vi) (o + Tl g < T (1T = TTE, 100) (Vo2 = Vo)l g
1 4 ) 2
+CT2(1+ T (a+8+T2(a”+8%)(ly20 — yiol
I = B s a3 =G 120) ).

Proof. From (4.11), (4.4), Proposition 3.4, and Lemma 4.5, it is straightforward to obtain the
estimates on X;* and compute

I(yz—yl)(t)lSIyzo—y10|+C/(5|§2—§1|+8|52_—Efl
fo

+ |V2 — V1|H1 —}-5|a2 —a1 |)(‘L’)dl’
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Therefore the estimate on y, — y; follows immediately from the definition of || - || STE o1
0-10

The inequality on a, — a; is also derived from (4.11) and (4.4). To estimate the difference in
Vi (t), we first obtain from Lemma 4.5

A-

Byilee <C8, IGCES, G0Ny = CT2( + T +62),

i

for i = 1,2 where the norms in ¢ are taken on [fp, 7o + 7] throughout the lemma. Using
Lemma 3.7, we have

1V2=Villsze < CA+TNeT (Vo = Vol

[tg.10+T1 —
e ~cs ~ e ~cs ~ 1 1
+ GG @) = GG TNl gy + T30+ T2@ +89)l1y2 = wllcon ).
Again from Lemma 4.5, (4.11), (4.4) and the inequality on y, — y;, we have
G s*, ) — G*GF, a0y gy
1 ~ce  ~opc ~ ~
SCT2(1+ )@+ —Flxg ) +113 =),

ly2 — yill o
<Ily20 — yiol + CA+T)(E + AT — 3 || e

e
o Al =G ).

The last inequality follows similarly and the proof is complete. O

Remark 4.7. Clearly (4.11) is well-posed and x = (yg, 0, 0) if X = X“*(t9) = (y0, 0, 0) and
at=0.

With the above lemma, we are ready to prove the well-posedness of (4.5a).
Lemma 4.8. Given any Cy > 1, there exists C > 1 such that if A and § satisfy (4.7) and
Cn<1, where n=A8+A71, 4.13)
then

(1) For any a* € Ly, and x§° = (yo,aq , Vo) € X“(Cod), there exists a unique solution
x¢ = (y,a",V) € CO([O, oo),X“(CS)) of (4.5a) such that x“(0) = x;* and x“ €
X[czf),toJrT](C(l + T)8) forany to, T > 0.

(2) Let x{* = (yi,a; ,V;) be the solutions of (4.5a) with initial values x;§ = (yio, a,y, Vio) €
X (C$) corresponding to al.+ e Ly, i=1,2. Suppose

la — af| < ko +Killxf® = x5 g1 4 (4.14)

for kg > 0 and k1 € [0, 1], then
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1% (1) = x5 Ol g1, < Ce (1155 = x59ll 1 _a + min{1L, (14 1)m)}io)

68 = P llsze o < CAA T (113" (f0) = X (W0) l 1 4 + Ko)-

Proof. In the proof of this lemma, we will use C’ to denote the generic upper bounds appearing
in previous estimates and C the newer (and greater) bound emerging in the proof of this lemma.
For any X € ng 11(CCoé), let x% =(y,a, V) be the solution to (4.11) with @™ =a™ and the
initial value xg* From Lemma 4.6 and (4.7), we have

IVliszs,, < C'(Cod + C2C38%) < CCos.

Therefore x* € X e 17(CCoé). Moreover, the mapping X — x has the Lipschitz constant
C'n<linthe | -| ST[‘ ;-A horm due to (4.13). The Contraction Mapping Principle implies the
local well-posedness of (4.5a) for ¢ € [0, 1].

Note that when ||V || g1 > 35, we have 9,y =0 and G°=0in (4.5a). Consequently, by (3.2)
and (3.3),

d(LeyVe, Ve =0, V=0,
where V¢ =TI¢ |V and V+ =TI V. This along with the positivity of L., on X¢  implies
VI <C8, (4.15)

for any ¢ € [0, 1]. Therefore, a standard continuation argument yields the global in time well-

posedness of (4.5a) with x* € X t0+T](C(1 + T)8) for any 19, T > 0.

To prove the second part of the lemma, we first notice that Lemma 4.6 implies that

I = lsge 4 = €' (135" o) = x5 (10) 11,
+(CCoAd + ATH(IIx5" — sz .4+ K0)).
where x* € X["IB ro+1](CC06) is used. From (4.7), we obtain
3" — xi* sz 4 < C(I1x5° (10) = x{° (€0) | 1,4 + 1k0). (4.16)

[tg.t0+11"

Let

1) = (Iy2 = 1l +1ay —a; |+ AlV2 = Vill gy + AN =118, ) (V2 = VD) 1) |

which satisfies
(1/CHI) < I1x5° () = x{° (D)l g1 4 < C'1Q@).
Substituting (4.16) into Lemma 4.6 yields, for ¢ € [0, 1],

to + 1) < e (1(10) + Cnt 3 (L (10) + x0)). @.17)
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In particular, it implies

I(n+1) < e“(I(n) + Crio).

From a simple induction argument we obtain
I(n) < ™ (1(0) + € min{1, nn}ko),

which along with (4.17) implies, for r > 0,

1(1) < 267 (1(0) + C min{1, (1 + )n}io).

Therefore, we obtain the desired estimate on ||x{* — x5°|| 1 4. Finally, substituting this into
(4.16), we obtain

c
lxi* —x3* sre - a < Ce"M(|lxfy — x50l g1 4 + K0),

[n,n+1]

the summation of which implies the estimates [|x{* — x5*|| ST A" O

4.3. Construction of local center-stable manifolds

In this section, we follow the procedure described in Section 4.1 to construct center-stable
@anifolds of .. The goal is to show the transformation & — h is a contraction on Y5> Where
h and y,, 5 are defined in (4.10) and (4.8), respectively. We first give the global well-posedness
of (4.9) in the below.

Lemma 4.9. There exists C > 1 such that if A, u, and § satisfy (4.7) and (4.13), then, for any
x5° = (Yo, ag » Vo) € X¥(8), there exists a unique solution

X = (y,a”, V) e ([0, 00), X (C¥))

of (4.9) such that x*(0) = x§* and x* € X,

[to.to+T1 foranyty, T > 0.

Remark 4.10. The global well-posedness of (4.9) can be proved by the same arguments as in
the proof Lemma 4.8 and we omit it. The estimate in part (2) of Lemma 4.8 obviously holds for

solutions to (4.9).

Since (4.9) is global well-posed, the definition (4.10) of 7 is valid. Next, we show that the
mapping .7 (h) = h is a contraction on y, s.

Proposition 4.11. There exists C > 1 such that if §, u, and A satisfy (4.7), (4.13), and
COe—Cm~'s<p, (4.18)

then 7 is a contraction mapping on Ty 5.
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Proof. By (4.4) and the definition (4.10) of /, ||k]lco < CAZ'6% < 8. Since G™¢(y, 0,0,0) =
h(c,y,0,0) = 0, when the initial data x“* = (¥, 0, 0), the solution to (4.9) is of the form
(¢, y,0,0), which implies % (y, 0, 0) = 0.

For h; € 'y 5, let x{° be the solutions to (4.9) with & = h; and the initial data x{* € X (),
i =1, 2, respectively. Since

A1 (1) = ha G5 < pllxy® — x5 1 g1 a + 11 — Rzl co,
applying Lemma 4.8, we have
155 (1) = 55 ()| g1 g < CeC" (IS = Z5° 1 g1 4 + 111 — hall co). (4.19)
In (4.19), letting h| = hy = h, we have
I (1) — x5 Ol g1 4 < Ce™ X7 — %5 14
It follows from (4.10) and (4.5) that
RE) = RG] < C(he = Cn) T SIES = 751 g1 (4.20)

which implies that Lip(lNz) i, S M due to (4.18).
Applying (4.5) and (4.19) with X{* = X5* in (4.10), we have

~ o~ -1
k1 = hallco < C(he — Cn) ™ 8llh1 — hal|co, (4.21)
which along with (4.13) completes the proof. O

Therefore, there exists h°° € I'y, 5 such that Th® = h. Let X“*(t) be the solution to (4.9)
with h = h¢S and let a*(t) = h“ (X (¢)). Using the definition of ~¢*, one has

[e¢]

ate) =— /e_)‘fséJr (fcs(t +s),aT@¢+ s)) ds

0
o
=— / e UTDGT (X (), at (s)) ds
t
. t (4.22)
= — ¢! / e MGt (55” (s), Zi+(s)) ds + / =Gt ()7” (s), 5+(s)) ds
0 0

t
—e*1Et(0) + f UG (7). a7 (5) ds,
0

graph of a™ = h* (x¢*) over X (8) is the center-stable manifold, i.e.,
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W (M) = {D(x, a" = h (x%)) | x € B'(8) @ 25 (9)). (4.23)

Together with Lemma 4.2 and Remark 4.1, we have the local invariance of #“* (.#.) under
(2.1). Recall the coordinate mapping ® defined in (2.19).

Theorem 4.12. [f the solution U (t) = dD(y(t), at(@),a (), V¢ (t)) to (2.1) satisfies |a®(1)| <8
and Ve(t) € Z'¢(8) fort €0, Tl with T > 0 and U(0) € W S (M), then U(t) € W (M) for
tel0,T].

Remark 4.13. In section 6, we will prove the orbital stability of solitary waves on the center-
stable manifold, which yields the local uniqueness of the center-stable manifold. Therefore, we
can patch the center-stable manifolds of all the solitary waves together to form the center-stable
manifold of .Z .

4.4. Construction of local center-unstable manifolds and center manifolds

Denote

XUB) ={(y,at, V) VIl <8}, x“=(y,a*, V),
G (x",a7)=(GT,G™,G)(x",a"),
AM(y,y) = diag(O, —he, TG J L JTIE | + 3F (c, y)).

We shall consider the following system of x¢* and a™,

Bxct = A (y, GT (", a7))x" + G M, a”), (4.242)
da =—ra +G (xU a). (4.24b)

Define
FWg ={h:X"“6)—> R|h(y,0,00)=0, ||h||C0 <4, LiP(h)IHIHLA < u}. 4.25)

For any h € I’ 5 and x* € X““(8), let x““(¢) = (y,a™, V)(t) € X" be the backward solution
to

8txcu — AcH (y’ 5T(xcu’ h(xcu)))xcu + acu (xcu’ h(xcu))’ € 0) = e (426)

Then we define 7{()2“”) as
0
RE™y=a— = f e S G (x(5), h(x(5)))ds. (4.27)
—0oQ

Un~der suitable assumptions on A, § and u , hel s 18 well-defined and the transformation
h — h is a contraction on I', s. The graph of the unique fixed point, restricted to the set Bl(§)®
Z£(8) would be the desired center-unstable manifold %' (.#.). Similar to the center-stable
case, we have the following theorem.
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Theorem 4.14. If the solution U (t) = @(y(t), at(t),a (@), V¢ (t)) to (2.1) satisfies laT(t)| <8
and V¢(t) € Z°¢(8) fort € [-T,0] with T > 0 and U(0) € W (M), then U(t) € W (M)
fort e [—T,0].

We obtain the local center manifold #¢(.#.) as the intersection of the center-stable and
center-unstable manifolds. In fact a point U = ®(y,at,a™, V¢) € #°(.#,) if and only if

at=h"(y.a",V) (4.28)

a” =h“ (y, a’, V).
Since the Lipschtiz constants of both 72 and h“* are pu < %, fixing y and V € H! with
IV IIg <8, (h*, h%) is a contraction with Lipschitz the constant 1 on R?2, and consequently,
it has a fixed point (a™,a™) = h(y, V). Clearly h¢ (y, V) has a Lipschitz constant ﬁ in the
Il - Il g1, 4 norm. The graph of (at,a™) =h(y, V) restricted to Z.°(8) is the desired center
manifold.

Theorem 4.15. If the solution U (t) = CD(y(t), at(t),a= (@), Ve (t)) to (2.1) satisfies la* ()| <8
and Vé(t) € Z¢@) fort e [T, T]withT > 0and U(0) € W (M,), then U(t) € W°(M,) for
te[-T,T]

5. Smoothness of center-stable manifolds

In this section, assuming (4.7), (4.13), (4.18), and

Cs(he —Cn)~ ! <. (5.1

we prove the smoothness of the center-stable manifold #“*(..) with respect to (y,a™, V).
The smoothness of the center-unstable manifold can be proved similarly. Then one automatically
obtains the smoothness of the center manifold since it is the intersection of the center-stable and
center-unstable manifolds. The smoothness of the local invariant manifolds with respect to ¢ will
be discussed in Section 6.3.

Despite the substantial difference in estimates, the proof of the smoothness fits in the frame-
work in [10], where smooth local invariant manifolds of traveling waves of the Gross-Pitaevskii
equation were constructed. With all the estimates established in Section 3 and Section 4, actually
the proof is quite similar to the one in [10]. We will sketch the main steps of proving the C!
smoothness. Following the approach in [10], one may prove higher order smoothness. Our proof
of C! smoothness here illustrates how to adapt the estimates for gKDV to fit in the framework in
[10].

To simplify the presentations, we first introduce some notations. For ¢ > 0, let

U, x) = (y(@),a” 1), V(), x“eX(@),
be the solution to (4.9) with & = h“® and initial value x“*. By Lemma 4.2, we have

eW(t, x) = W(t, x), V>0 if [1°x% =x. (5.2)
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Moreover, assuming (4.7), (4.13), and (4.18), Lemma 4.6 and 4.8 imply, for all ¢ > 0,
Lipy,, Y, ) < CeCM | W(t, x%) € X (C8), Vx € X (8). 5.3)
We first outline our approach of proving the C! smoothness briefly. As the fixed point of the

transformation .7, h satisfies

RS (x5) = — / e*kctéJr(\p(t, x), hes (\IJ(I, xCS))>dl. (5.4)

0
Since (4.9) is autonomous, a time translation of (5.4) implies, for # > 0,

e ¢]

K (W(e, ) = — / DG (Wi, X, h (Wi, x) )d. (5.5)

t

Differentiating (5.4) formally, we obtain, for any Wex o)

D (x*) W = — / e (D GH (Wt x°%), 1 (W(r, 4))) DR (Wt x)
0

+ Daes GF (W0, 2), (W1, x))) ) DG, x°) Wadr.

Here DW also depends on DA as it solves the following system of equation derived by differ-
entiating (4.9)

3DV = A (y(t), GT) DW + & (W) DV + % (¥) Dh* D, (5.6)

where W and DV are evaluatgd at (t, x“%), G at (W, h¢%), h*S and Dh® at W. In the above,
G € C™(X, L(X)) and 9 € C™ (X, X*) are given by

gfl(xcs) =D+ (Acs (y, GT()CCS, a-}—)))xcs + Da+5”

9 5 (5.7)
=(0,0, (Dy+G")F (c, y)V) + D+ G,
2 (xCS) =D,e (Acs(y’G (xS, +)))(W)xcs +Dx”écs0}"[})
( 0, 5(DyA () V + (D GT (W)).Z (c, y)V (5.8)

+3GT D, Z (e, y)V) + Dyes G5 (W),
where x = (y,a™, V), W= (y,a—, V) e X, at is evaluated at 1 (x¢), and G** is evaluated
at ()CCS, hes (XCS))'

Denote

Y1 =C%(X(5), £(X,R)).
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Inspired by the above formal derivation, we define a linear transformation .77 on
Yi(u) ={H €Y1, || |ly, < 1)

as follows: for any 7 € Y1 (u), x* € X (), and W e X,

(FA) ()W = — / e (Dye G (W (W)
0 5.9)

+ D G (W, h”(\y))%(w))qfl(r)ﬁ/dt

where W is evaluated at (z, x°*). The operator Wy (¢) € £ (X) is defined by

v (0)=1,

where ¢ and ¥, are given in (5.8), G is evaluated at (W, h (W), and A at W(t, x*). Note
that 2 € I'; 5, it is natural to require the | DA |y, < u. Just as in Remark 4.1, the right side
of (5.10) and the integrand in (5.9) are well-defined. Since (4.9) is autonomous, when x* is
shifted to W(#p, x*), the principle fundamental solution to the associated (5.10) becomes W1 (¢ +
o)W (to)~!. Therefore we obtain

e ¢]

(F1.70)(W(19, X)) W1 (1)) W = — / el0=DA (Dxu5+(\ll, he (W)
A (5.11)

+ Doy GH (W, A (W) (%) )W (0 W,

where W is still evaluated at (¢, x“*) and W defined for x*.
If 1 € C!, then Dh must be the fixed point of .7] . Therefore, our strategy to prove 2 € C'!
is to show

(1) 7 is a well-defined contraction on Y (i),
(2) the fixed point of 7] is indeed Dh".

Throughout the procedure, (4.7), (4.13), and (4.18) are assumed.
Step 1: show 917 € Y1(u). Analogous to Lemma 4.8, we have that for any x* € X (8),

11 (X)Wl g1 4 < CeM [ Wilgp1 4 (5.12)
which along with (4.18) implies

(AW | < CEe — CMIW 14 < I 114 (5.13)
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Much as (5.13), it also holds that 7" (/) — () uniformly in x5, where

((71(11) (%)) (xCS)W — / ef)»ct (Dx” 5+ (\IJ, hes (\I/))
0

+ D G (W, h”(\y))%ﬂ(w))wl(wﬁdr.

From the continuity of DGF, it is easy to verify that (Z(n)(jf ))(x°%) is C? in x°. Therefore
() is also continuous and thus .77 (%) € Y1 ().

Step 2: estimate the Lipschtiz constant of 7. Let 7¢; € Y1(u) and W ;(¢) be defined in (5.10)
for 55, j = 1,2, which satisfy

O (Wi 2 — Wy 1) =(A%c,y,GT) — 4 (W) — G (W) ) (V12— V1))
+ (A — ) (9) W1 2) G (V)

and (\1’1’2 — ‘1/1,1)(0) =0.
From estimate (5.12) on homogeneous solutions to (5.10) and the variation of constant for-
mula, we obtain

(W1 208, x) = Wy 1 (1, xS )Wl 1 g < C8e7 |56 — Ay, |W g1 o

where we also used ||§€~1 | g1 4 < Cd which is obvious from its definition. According to the defi-
nition of .77, we have, for any x* € X(3),

(Z1(AA) — T (B)) () = — f e (Dg+ G (B — A7) W1 2(1)
0
+ (Dyes Gt 4 Dyt GTHA) (W12 — W1 1)(1))dr,

where DG is evaluated at (‘-IJ, h”(\IJ)), ¢ at W, and W at (¢, x). Using (5.12), and the above
estimates on W » — W i, it follows that

|71 (A4) — Ti(H5) |y, < CS(\ — Cn) 2|66 — Hly,.

Assume

Cs(L—Cn) 2 <1, (5.14)

then 7] is a contraction mapping on Y (u). Let 5 € Y1 () be the unique fixed point of 7.

Step 3: Show Dh® = . Since 7 (x®) is continuous in x“, it suffices to show
Dh (x* )W = 2 (x")W at any fixed x5° € X“*(8) and W € f”\{O}. Let Wy (¢) be defined
as in (5.10) associated to 7" and x§° and
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Ry(1) = W(t, x§° + W) — W(t, x§°) — W1 (OW,

Ri (1) = he (W(t, x§ + W)) — he (W(r, x&%)) — 5 (W(t, x§)) W1 () W.
Denote

W(s, 1) = (1 —)W(t, x5 + sW(t, x5 + W),
at (s, 1) = (1 — )h (W(, x5%)) + sh (W(t, x§ + W)),

and for o =cs, +

R%(1) =(~}°‘(W(1, n,at(1,0) - [6“ + Dyes (~;“(W(1, 1 —W(,1)
+ D+ G*(at(1,0) —a™(0,0)],

where G and DG in the brackets [...] are evaluated at (W(O,t),a“'(O,t)) = (‘I’(t,xgs),
het (W(r, x§° )) From (5.4) and Z; (S5 = S, we have

o
Ry (0) = — / e (R (t) + Dys GT Ry (1) + Do+ G Ry (1)) dt.
0
Moreover, using (5.4) and (5.11), we also obtain

o0
Ry(t) = — / e ™ (R + Dys Gt Ry + D+ G Ry (t + T)dT, 1>0, (5.15)
0

where again the above DG are evaluated at (\I/(t + 7, x5, hS (W@ + T, x{f))).
From (4.9) and (5.10), Ry(¢) satisfies Ry(0) =0 and

1
3 Ry = AS (1) Ry + AS (1) Ry + R + Dys G Ry + Do+ G Ry, + / (AG
0
— A (WL, 1) = WO,0) + (AF — AN (at (1, 1) —at (0, 1))ds,

where DG is evaluated at (W(,1),a™(0,1)), A (t) € X and the operator A% (1) € L(X)
are given by

A (1YW =Dyes (A” (y,GT(x, a*))X”> W i.at 6.0) (W)
:Acs (y(S, t), GT(W(ss t)? a+(S, t)))W

+ Dyes (A“ (v, GT (x“, a+))> I(W(s,t),aﬂs,t))(VT’)W(S, 1),
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Z;i_ (t) =Dg+ (ACS (y’ GT(xCS’ a+))) |(W(s,t),a+(s,t))W(s’ 1),

with W (s, t) and a* (s, t) defined in the above and y(s, t) being the y component of W (s, t) (so
the Dyes also acts on the y component in A®).
For W = (y,a—, V), we have

ATW=(0,0,V"), (A — A% |wisn.at )W = (0,0, V),
and from Lemma 4.5,

l ~
ap SCT2(L+T)[[W]ixes Vi

[19.10+T]

||VCS,+||L[1,O. H!- (516)

o0
t0+T] [to.t0+T1

We first consider 7, € (t1,#1 + 1) in the following estimates, where we can use W €

X [Cfl ’ZZ](CS) due to Lemma 4.8 which also yields

WD = WO Dllsze 4 <CIWA, 1) = WO, M)l 4 < Ce [ Wl (5.17)
A similar argument would imply

11O W sz 4 < Ce2 Wiy 4. (5.18)

]

Inequality (5.17) along with (4.4) and Lemma 4.5 implies
IREOlly oo +IRT@ICIWAD = WO Dl < Ce™ W0 (5.19)

forany 0 <t <.
The integral terms in d; Ry can be estimated by Lemma 4.5, which along with inequalities
(5.17) and (5.19) implies

19 Re = AG (O Ry = AJ ()Ry = Dyes G Ry = Dyr GO Rully s
1

SCIW(LD = WOl = Ce W, 4.

Again we apply Lemma 4.5 and inequalities (4.4) and (5.16) to estimate other remainder terms
linear in Ry and Rj, and obtain

10Rw = A (300, GT(WO.0.a*©.0)) Rylly  t.a

<Cn(IRylIst, .4+ Rleg )+ CeTM WG, .

Nz [11.12]

With the above estimates, following the same arguments in the proof of Lemma 4.8, we have

|Rw®lln.a < C(1€ ™ Rally + MW, 4) < CeS" (17 Rysoo + W13, 4)-
’ (5.20)
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where Ry (0) =0 was used and
L ,—Cnt
Rico = lle ™" Ru@llLe, -

Here R¢ oo < 0o for some C > 0 is due to (5.3) and (5.12). Substituting this into (5.15), using
(4.4), and noting that the estimate on R (7) in (5.19) is independent of #;, we can compute
o0
Rpoo <Ce™ M / e T (MTDNW 13, 4 + 8(RA| + | Rwllxes) (2 + 1)) dT
0

<Ce M e_)“recn(t+r)(||w||%11,A + (Sn_th*OO)dr

o —

<COe—C) AW, 4+ 607" Rioo)-

Therefore assumption (5.1) implies
Rpoo < Clhe = C) M W3y, 4

By letting t = 0, we have |R,(0)| < C(A. — Cn)~! ||VAI7||%II’A which completes the proof of C!
smoothness of the center-stable manifold.
Finally, we prove the center-stable manifold is tangent to the center-stable subspace along

M.

Lemma 5.1. There exists C > 0 such that if A and § satisfy (4.7), (4.13), (4.18), (5.14), and (5.1),
we have Dh“*(y,0,0,0) =0

Proof. Observe that (4.9) and the definition of G implies ‘Il(t, (y,0, O)) = (y,0,0) for all
t > 0. For any ¢ € Y1, (4.10), the fact Dé*(y, 0,0, 0) = 0, and the above observation imply
N(H)(y,0,0,0) =0. Therefore, DA (y,0,0,0) =0 at any y € R, which implies that at any
solitary wave on .Z,, the center-stable manifold is tangent to the center-stable subspace. [

6. Local dynamics near solitary waves

In this section, we study the local dynamics near solitary waves based on local invariant man-
ifolds. We will prove: (i) the center-stable manifold repels nearby orbits in positive time and
attracts nearby orbits in negative time; (ii) on the center-stable manifold, center manifold attracts
nearby orbits in positive time; and (iii) the orbital stability on center manifolds. Various norms
in the below are defined in Sections 3 and 4. Even though we are still working with the modified
system (4.5a) and (4.5b), by taking § > O much smaller than the one in the cut-off, all the results
valid in a C§-neighborhood in this section hold for the original gKDV equation.
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6.1. Dynamics near the center-stable and center-unstable manifolds
In this subsection, we study the local dynamics for initial data near the center-stable manifold.

Proposition 6.1. Let U(t) = ®(x°*(t),a™ (1)) € ® (B'(8) ® B (8) ® Z,2(8)) be a solution to
(2.1) for t € [0, T with the initial data U (0) = ®(x*,a™). We have

lat(t) = h (x* ()] = PP @t —h x| Vel T].

The above inequality indicates that the center-stable manifold repels nearby orbits forward in
time and, as (2.1) is autonomous, it also attracts nearby orbits backward in time.

Proof. Without loss of generality, we may assume at # h¢ (). Let ¥°°(¢) be the solution

to (4.9) with & = A and X (t9) = x*(fp), and let a* = h*(X“*). By the invariance of the
center-stable manifold, we have

O (@ —a")=rc(at =)+ GT ¥, at) - GTE,a). (6.1)
Since (4.4) yields
|GT(x,at) = GTES,ah)| < C8 (I1x% =N yg1 4 +la™ —at)), (6.2)
and x“* (t9) — X (tp) = 0, (6.1) and (6.2) yield d|a™ —a*|,—, > 0. Let
Ty :=sup{t €[0,1]:0la® —a*| > 0in[to, 10+ 1)}.
We show 71 =1 in the below. Suppose otherwise 77 < 1, by its definition, one has

tlat =@ imgrn =0, lla® =@ N =lat 0 +T) =@ (o + 7).

By Lemma 4.8, we have
X (10 + T1) = X (to + T) |l g1 4 < Cla™ (to + T1) —a™ (10 + T1)|.
It follows from (6.1) and (6.2)
dlat — a4, >0,

which is a contradiction to the definition of 77 and 7| < 1. Therefore, T = 1 and for ¢ € [0, 1],
la® —a™| Ly, is always achieved at f9 + 7. Again from Lemma 4.8, we have that, for any
010

tel0,1],

+1

X (t0 + 1) = X (1o + Dl g1 4 < Cla™ (to +1) =@ (10 +1)]. (6.3)
By applying (6.2) and the above inequality to (6.1), we have

10(a™ —a") —rca™ =GN < C8lat —GT|, rel0,1].
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Then by the Gronwall inequality, we obtain

lat(to+1) —aT(tg + 1) = e* =D aT(19) —aT(t0)], 1[0, 1]. (6.4)

Since Lemma 5.1 yields

Dhe <Cs in B'(8)®B'(8) ® Z(8), (6.5)

along with (6.3) and (6.4), the inequality implies, for ¢ € [0, 1],

lat(to+1) — h (x“ (to +1))| = (1 = Cdp)la™ (1o + 1) —a™ (19 + 1)
(6.6)
> (1 — Come = gt (10) =TT (t9)| = €73 |aT (t9) — h (x°* (19))|

Iterating the above estimate, we complete the proof. O

Remark 6.2. The exponential type estimate in Proposition 6.1 can also be obtained by a more
direct approach through considering 9, (a+ — hS (xS )) and using the invariance of 4°°. Since
3 x° € H~? and Dh®* acts only on H', this procedure may be carried out for x°* € H* and the
estimate for x* € H' follows from the continuous dependence in H' of the solutions on their
initial data and the continuity of 42“°. However, due to the lack of O(T') estimate on DG in
Lemma 4.5, one would only obtain a lower bound in the form of (1 — C 8)e*<=Cd1 and it is not
easy to get rid of the factor 1 — C§.

For any point U = ®(y,a™,a™, V¢) in a small neighborhood of .#,, the total of the norms

lat|+|a~| + | V€| 1 of its transversal components is equivalent to its distance dist (U, .4 to
M, where

dist(U,K) = inf |U — U]l (6.7)
Uek

for any subset K C H'. See Remark 2.3. The above Proposition yields the nonlinear instability
of the traveling waves with an exit time estimate.

Corollary 6.3. For any U (0) ¢ W S (M), AT* > 0 such that

dist(U(T*), M) = 3.

Parallel to the center-stable case, the center-unstable manifold attracts nearby orbits exponen-
tially as t — +o00.

Proposition 6.4. Let U (1) = ®(x““(t),a™ (1)) € ® (B'(8) ® B'(8) ® Z,2(8)) be a solution to
(2.1) for t € [0, T] with the initial data U (0) = ®(x“,a~). We have

la= @) — R (x (1)) | < e D" |a= — B (x| vt € [0, T].
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Moreover, for any U(0) ¢ W (M,), AT* < 0 such that

dist(U(T*), #,) > 6.

Since the center manifold is the intersection of the center-stable and center-unstable mani-
folds, the above theorems imply

Corollary 6.5. For any U (0) ¢ W °(M.), AT* € R such that

dist(U(t), M) = 8.

Remark 6.6. Corollary 6.5 along with the above exponential estimates indicates that the nonlin-
ear instability of the solitary waves for the supercritical gKDV equations is generic in the sense
that if initial data is not on the co-dim 2 center manifold, then the flow will leave a neighborhood
of the soliton manifold exponentially fast at least in one time direction. This result is stronger
than the classical nonlinear instability result, which only shows the existence of special initial
data in any neighborhood of the solitary waves whose orbit leaves a neighborhood of the soliton
manifold.

6.2. Dynamics inside the center-stable and center-unstable manifolds and the orbital stability
inside center-manifolds

Based on the exponential estimates in the directions transversal to the center-stable and center-
unstable manifolds obtained in Subsection 6.1 and the energy conservation, we shall prove
the exponential stability of the center manifold inside the center-stable manifold and the or-
bital stability of the traveling waves inside the center manifold. Recall that the center manifold
(M) =P({at =hT(y, V) :(y, V) e Z.2(8)}) is the graph of h¢ = (h*, h™). Clearly,

Wt =h"(y,h=, V%,  h™=h"(y,h", V) (6.8)
W (y,0)=0, Dh*(y,0)=0. (6.9)

Proposition 6.7. There exists Co > 1 such that the following hold.
(1) Let U(t) = ®(y,at,a=, VO () for t >0 be a solution to (2.1) with the initial data

UO)=o(y,a*,a", V) eW (M), VeX:;,

4 = -1
@™, IVl <Cy 8,
then we have

la= —h=(y, V)| < 1+ C8H)e ™ *=D = —p= (5, V)|,  Vt=0

and

Ve, <CUIVe, +la~ —h™ G, VOP).

2) Let U(t) = ®(y,at,a=, Vé) () for t <0 be a solution to (2.1) with the initial data

UO) = (5.a*.a . V)eW (M), V°eX; @t IVilm <Cy's.
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then we have

at —ht(y, V| = (1 + C8He P gt —nt (5, V), Vi >0

and

VeI, < CAVeNd, +lat —nt G, Vo).

Proof. We will consider the center-stable case, while the other one can be proved similarly. Since
U(t) € W (M., (6.8) and (6.5) imply that, if [aT|, ||V¢| ;1 < 8 on [0, T], then for ¢ € [0, T],

I (p, V) —at | = [h (v, h ™, V) = h (y,a=, V)| < C8lh™(y, V) —a|,
and
(A~ (. V) —a”) = (k" (y,a® . V) —a”) | < [h"“(y. kT, V) = h™ (y,a", V)]
<C8Ih*(y, V) —a*| < COh™ (v, V) —a.
Applying this inequality at ¢ € [0, T'] and then along with Proposition 6.4, we have
A~ (., V) —a”| <(L+C8)la™ —h"(y,a*, V)|

<(14 C8%)e~P=Cg= — pu(5,a*, V)| (6.10)
<(14C8%)e *=Ca= —h=(5, Vo).

To estimate the bound on || V¢|| 41 on [0, T, let
E(y, V) =(E+cP)(®(y,at,a™, V).

On the one hand, clearly for any y € R, it holds that

(E+cP) (Qc(-+¥)=0, (E+cP)" (Qc(-+y)=Le,y,
h(y,0,00=0, Dh(y,0,0).

Therefore, due to the smoothness of 2°*, from Lemma 2.2 one has the following expansion for
[0, 71,

(v.at,a=, V) = E(»,0,0,0)

(Ley(VE4+a V), VE+a V) +0(IVEOI, +la 1)

= N =

=—(Ley Ve V) +O(IVEOI3, +la )
>(1/O)VEIZ, = CUVES, +laI).

On the other hand, by the conservation and the translation invariance of the energy-momentum
functional, we have



J. Jin et al. / J. Differential Equations 267 (2019) 7213-7262 7259

E((y,a*,a=,vO)(®) - E(y(1),0,0,0) = E(F,a*,a", V¢) — E(7,0,0,0)
<CUVeIZ, +1a P,

These inequalities imply

IVel3, < CAVeN, +la 1P +la ).

It is straightforward to obtain from (6.10) and (6.9)

IVelz <CUAVEN +la —h™ (3. V), tel0, Tl

By choosing Cy appropriately, the above inequality implies || V¢|| ;1 < §, then T may be extended
to +00 and we obtain the desired estimates on #“*(.Z,). 0O

Remark 6.8. The same proof as above actually implies that the estimates in Propositions 6.1 6.4,
and 6.7 hold for any h, h®* € T, s N C* if ®(graph(h®-<*)) are locally invariant under (2.1),
without modification by cut-off.

This proposition implies the orbital stability of .Z, inside # “°(.#;) and the exponential
stability of # ¢ () inside # “*(.#,) as t — +o00. Parallel results hold for the center-unstable
manifold # " (.#.) as t — co. Moreover, ., is orbitally stable inside #“(.#_) as t — *o00.
The estimates in Propositions 6.1, 6.4, and 6.7 yield the following characterizations.

Proposition 6.9. There exists § > 0 and C > 1, such that, for any Uy € H' satisfying
dist(Uy, M;) <6

(1) Uy € WS (M) if and only if the solution U(t) to (2.1) with U(0) = Uy satisfies
dist(U(t), M) < C8 forall t > 0.

Q) Uy € W (M) if and only if the solution U(t) to (2.1) with U(0) = Uy satisfies
dist(U(t), #.) < CS forall t <0.

(3) Uy € #°(M,) if and only if the solution U (¢) to (2.1) with U (0) = Uy satisfies dist(U(t),
M) < Cé forallt € R.

Remark 6.10. Usually, 7 (#;), W " (M), and #  (.#_) may not be unique due to the cut-off

modification in their constructions. However, the above characterization implies the uniqueness
of the local center-stable, center-unstable, and the center manifolds of ., under (2.1).

Remark 6.11. By Theorem 1 in [21], if Uy € #'°°(.#,), then there exists c(t) and p(¢), such
that, for ¢ > 0, the solution U (¢) satisfies

1U@) = Qety . = POy x> g1y = 0, ast— o0.

Moreover, c(t) — ¢T for some ¢t as t — oo. Similar results hold on the center-unstable for
t < 0 and center manifolds for t € R.
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6.3. Local invariant manifolds of .#

So far we have constructed local invariant manifolds for ., with a fixed ¢ > 0. Recall the
scaling transformation .7* defined in (1.2). From Proposition 6.9, it is clear that the local invari-
ant manifold #%(.#.), a € {cs, cu, ¢} for different ¢ differ only by a rescaling, namely, for any
c>0,

WL (M) ={TVU | U € WS (). (6.11)

The following lemma indicates that local invariant manifolds of .Z. for nearby ¢ patch per-
fectly. Let ®. denote the embedding defined in (2.19) for c.

Lemma 6.12. For any ¢ > 0, there exists ¢ = £(c) > 0 such that if |c; — c| < ¢, j = 1,2, then for
o € {cs,cu,c},

W (M) N 0y (B (2) @ B (2) @ 25 (e)) W™ ().

Proof. Q.,(x — c2t) is a solution to (1.1). In the traveling frame (f,x — c1t), it becomes
Qc, (x — (c2 — c1)t). Since

1Qc, (x = (c2—c)t) = Qcy (x — (c2 —c)t) | g1 < Clea — i

and Q., (x — (c2 — c1)t) € M, , we have
inf ||Qc, (- — (c2 —c)t) = Q¢ g1 < Clea —cyl.
yeR

Then the desired result follows by Proposition 6.9. O

Consequently, we can patch % "¢ (_#,) with different ¢ to form the center-stable manifold
of ./ . In fact, let

Wcs,cu,C(%) — U WCS’CM’C(//). (612)

c>0
The above lemma implies that #¢-¢“-¢(.#) is a smooth codim-1 submanifold in H'.

Remark 6.13. In fact, due to the scaling invariance (6.11), # “:“*-¢(_#) are invariant under the
rescaling (1.2).

Remark 6.14. The stable and unstable manifolds can be constructed through a simpler proce-
dure. Thanks to their uniqueness, one may construct stable and unstable manifolds of a single
solitary wave Q., and then those of Q.(- + y) can be obtained simply by translation. In this
procedure, since y =0 € R is fixed in the construction, the only obstacle preventing the clas-
sical invariant manifold theory to be applicable straightforwardly is the derivative loss in the
nonlinearity, which can be overcome by the smoothing estimates in Section 3. Actually, with the
smoothing estimates, one may carry out the construction following the approach in [8].
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Remark 6.15. In [9], Combet constructed solutions converging to solitary waves. From the point
of view of dynamical systems theory, the solutions constructed by Combet must locate in the
stable manifolds of solitary waves.
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