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ABSTRACT

Error-handling code responds to the occurrence of runtime errors.
Failure to correctly handle errors can lead to security vulnerabilities
and data loss. This paper deals with error handling in software
written in C that uses the return-code idiom: the presence and type
of error is encoded in the return value of a function. This paper
describes EESI, a static analysis that infers the set of values that a
function can return on error. Such a function error-specification
can then be used to identify bugs related to incorrect error handling.
The key insight of EESI is to bootstrap the analysis with domain
knowledge related to error handling provided by a developer. EESI
uses a combination of intraprocedural, flow-sensitive analysis and
interprocedural, context-insensitive analysis to ensure precision
and scalability. We built a tool ECC to demonstrate how the function
error-specifications inferred by EESI can be used to automatically
find bugs related to incorrect error handling. ECC detected 246
bugs across 9 programs, of which 110 have been confirmed. ECC
detected 220 previously unknown bugs, of which 99 are confirmed.
Two patches have already been merged into OpenSSL.
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1 INTRODUCTION

Error-handling code responds to the occurrence of runtime errors
in software. For example, a function attempting to allocate memory
needs code to handle the case when there is no memory available,
and a device driver requires code to handle the situation when
the hardware device does not respond. Incorrect handling of such
errors can lead to serious problems such as security vulnerabilities
and data loss. Ignoring the error returned by a memory allocator
would lead to the code accessing invalid memory, and ignoring the
error returned by the hardware device might lead to data corruption.
Thus, correctly handling errors in code is paramount.

This paper deals with error handling in software written in the C
programming language. In the absence of exception-handling mech-
anisms, such C programs use the return-code idiom: the presence
and type of error is encoded in the value returned by a function.
Failure to correctly check for such error values at function call sites
can lead to error-handling bugs (Section 4).

This paper presents Effective Error-Specification Inference (EESI;
pronounced ee-see), a static analysis that infers function error-
specifications for programs using the return-code idiom. A function
error-specification is the set of values that the function can return
on error. For example, the function acpi_pci_link_allocate_irq
in the Linux kernel returns a negative integer on error, acpi_ec_
alloc returns 0 on error, and acpi_allocate_root_table returns
a nonnegative integer on error.

To understand the challenges in inferring error specifications,
consider the following (intentionally abstract) code:

int f1 0 {
if (f2() < 0) {
f30;
return 0;

}

return 1;

}

The function f1 has only two possible return values @ and 1. Look-
ing at the body of the function f1, we cannot infer whether f1
returns @ or 1 on error, or whether it is infallible (does not return
any error value). There is nothing inherent in the code that implies
that a particular value represents an error. Contrast this situation
with that in languages supporting exception handling: exceptions
are caught and handled in well-labeled catch blocks.

To tackle this challenge, EESI bootstraps the analysis by utilizing
developer-provided domain knowledge. Such domain knowledge
can include a list of functions that only occur along error paths
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(error-only functions), a list of error codes, or the error specifica-
tion for a few functions (Section 3.2). For example, if the domain
knowledge includes the fact that calls to function f3 only occur
along error paths, then EESI will infer that f1 returns @ on error; if
the domain knowledge provided includes the fact that 2 returns
a nonnegative value on error, then EESI will infer that f1 returns
1 on error. By expanding upon this initial knowledge, EESI infers
error specifications.

In practice, the domain knowledge required for EESIis very small,
typically consisting of only a single error-only function and a few
function error-specifications (Section 5.1). For example, OpenSSL
was analyzed using the single error-only function ERR_put_error
and the single initial error-specification that malloc returns 0 (null
pointer) on error. Error codes are used in prior work [21]. However,
the difference lies in the fact that EESI expands on this initial domain
knowledge, and is able to find function error-specifications that
are not restricted to such error codes. For example, EESI is able to
infer error specifications for functions that return zero, positive,
or nonnegative values on error even though the error codes in the
Linux kernel are negative integers.

Errors may propagate through long function-call chains, often
crossing subsystem boundaries. For example, a memory allocation
error starting at the Linux kernel slab allocator will be first returned
as a null pointer from slab_alloc before being converted to a neg-
ative error code in the IP routing function ip_route_input_mc,
before finally being converted to a positive error value in xfrm4_
rcv_encap_finish, seven function calls away from the original er-
ror. A developer might find it difficult to manually infer the function
error-specification. Documentation of function error-specifications,
if available, is often incorrect [22]. The function error-specifications
inferred by EESI can be used at development time to determine
what errors need to be handled. Consequently, EESI needs to be
scalable. It cannot rely on clients of the code to infer the error spec-
ifications, and needs to infer error specifications for all functions
in the program, not just public API functions.

EESI casts function error-specification inference as computing
the least fixpoint of a set of constraints. The constraints are con-
structed via a flow-sensitive analysis of the body of functions; the
inferred error specifications are context insensitive (Section 3). This
formulation enables EESI to scale to large programs, while still
maintaining precision. EESI takes 5 min 25 sec to analyze 320K
lines of Linux file-system code, and obtains an overall precision of
0.93 (Section 5.2).

This paper also presents ECC (Section 4), an automated tool
that uses the function error-specifications inferred by EESI to find
error-handling bugs, such as insufficient error checks. ECC detected
246 error-handling bugs across 9 programs, of which 110 have
been confirmed. ECC detected 220 previously unknown bugs, of
which 99 are confirmed, and we are in the process of confirming
107 potential bugs. Two patches have already been merged into
OpenSSL (Section 5.4).

The contributions of this paper can be summarized as:

e We develop EESI, a static analysis to infer function error-
specifications using domain knowledge (Section 3).

o We develop ECC, a tool that uses function error-specifications
to find error-handling bugs (Section 4).
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1 static int ext4_dx_csum_verify(struct inode xinode,
2 struct ext4_dir_entry xdirent) {

3 struct dx_countlimit *c;

4 struct dx_tail =t;

5 int count_offset, limit, count;

6

7 if (!ext4_has_metadata_csum(inode->i_sb))

8 return 1;

9

c = get_dx_countlimit(inode,dirent,&count_offset);
if (te) {
EXT4_ERROR_INODE (inode,
e2fsck -D.");

"dir seems corrupt? Run

13 return 0;

14 3

15 limit = lel6_to_cpu(c->limit);
16 count = lel6_to_cpu(c->count);

if (count_offset+(limit*sizeof(struct dx_entry)) >
EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct

dx_tail)) {
18 warn_no_space_for_csum(inode);
19 return 0;
20 3
21 t = (struct dx_tailx) (((struct dx_entryx)c)+limit);
22
23 if (t->dt_csum != ext4_dx_csum(inode, dirent,
24 count_offset, count, t))
25 return 0;
26 return 1;

Figure 1: The function ext4_dx_csum_verify returns 1 for
success and 0 for error.

o We evaluate the precision of the error specifications inferred
by EESI on real-world C code (Section 5.2), and compare
EESI with the state of the art (Section 5.3).

o We evaluate the effectiveness of ECC at finding error-handling
bugs in real-world C code (Section 5.4).

2 OVERVIEW

Figure 1 shows the ext4_dx_csum_verify function from the ext4
Linux file system. Similar to the function f1 we discussed in Sec-
tion 1, it can return either @ or 1. EESI is bootstrapped with the
initial domain knowledge that the function EXT4_ERROR_INODE is
an error-only function: it is only called on error paths. Because ext4_
dx_csum_verify must return @ after the call to EXT4_ERROR_INODE
on Line 13, EESI infers that @ is an error value for ext4_dx_csum_
verify.

This example illustrates some of the challenges of inferring func-
tion error-specifications. One challenge is that the error specifica-
tion of a function cannot be inferred from its return type. Pointer-
returning functions often return a null pointer as an error value,
but not always. Identifying such a default error value is even more
difficult for integer-returning functions, such as ext4_dx_csum_
verify. Some programs recommend a specific convention for error
values, but these are not always strictly adhered to. For instance,
although many Linux functions return @ on success and a negative
error code on failure [21], the function ext4_dx_csum_verify is
one of many examples that do not follow this convention. The er-
ror specification of ext4_dx_csum_verify is undocumented, and
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1 static struct buffer_head *__ext4_read_dirblock(...) {
2 if (ext4_dx_csum_verify(inode, dirent))

3 set_buffer_verified(bh);

4 else {

5 ext4_error_inode(inode, func, line, block,

6 "Directory index failed csum");

7 brelse(bh);

8 return ERR_PTR(-EFSBADCRC);

9 3

0 3

Figure 2: Excerpt from the function __ext4_read_dirblock,
which has the only call to ext4_dx_csum_verify.

Domain
Knowledge

Inference
Engine

CallConstraints

ReturnedConstant

\/

LLVM Function Error
IR Specifications

ReturnedFunction

Figure 3: EESI Architecture

a developer must read the definition of the function to learn this
specification, often requiring following long call chains.

Prior work [13] deduces error specification of a function from its
usage and on empirical characteristics of error paths. However, such
an approach must necessarily resolve inconsistencies between call
sites through a voting mechanism, and does not work for functions
with only a few call sites. For example, the function ext4_dx_csum_
verify is called exactly once in the Linux kernel, from the function
__ext4_read_dirblock (Figure 2).

Bugs related to incorrect error handling can be subtle. When this
call to ext4_dx_csum_verify was introduced into __ext4_read_
dirblock in February 2013 [28], ext4_dx_csum_verify returned
1 in two failure cases, leading to undetected checksum failures
in ext4, the default file system of many Linux distributions. This
issue was fixed in 2016 [12], when ext4_dx_csum_verify was
patched to always return 0 on failure and 1 on success. This example
illustrates the need for an automated technique that infers function
error-specifications, and identifies bugs related to incorrect error
handling.

3 ERROR-SPECIFICATION INFERENCE

This section describes the static analysis used by EESI to infer
function error-specifications (Figure 3) starting with some basic
definitions.

Definition 1. An error value for a function f is a value returned
by f that indicates f encountered a runtime error. u

Example 3.1. The value 0 is an error value for function ext4_dx_
csum_verify in Figure 1; this function returns 0 when it encounters
a runtime error, for example, on Line 13.
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Figure 4: Extended-sign lattice £ with its concretization
function y: £ — P (Z) and abstraction function : Z — L

The set of error values for a function is its error specification.
Functions that have no error values, such as the C library function
strcmp, are called infallible functions. However, individual callers
of a function might treat certain return values as indicating an error
has occurred, but these return values are not error values for the
called function. For example, a caller of strcmp might treat the
result of a specific string comparison as an error, but this does not
mean that strcmp is encountering an error.

To make the problem of inferring the set of error values tractable,
we abstract sets of error values to elements in the extended-sign
lattice L. The lattice along with its concretization function y: £ —
P (Z) and abstraction function f: Z — L is shown in Figure 4. For
example, the element T concretizes to the set of all integers Z; L
concretizes to the empty set; f(—1) = <0; (1) = >0; f(0) = 0.
The elements of L represent the most common checks that develop-
ers perform on error values. This lattice captures null-dereference
checks because the null value for pointers is represented by 0.

Definition 2. Given the set of functions F in the program, the
error specification & : F — L maps each function f € Ftol € L
such that y(£) contains the set of error values for f. ]

Example 3.2. In Figure 1, E(ext4_dx_csum_verify) = 0 € L.
This function returns 0 on error and there are no other error values.

3.1 Intraprocedural Analyses

This section describes the flow-sensitive, intraprocedural analyses
used by EESIL We use F to denote the set of functions in the program,
Sf to denote the set of statements in function f € F, and callsites(f)
to denote the set of statements that contain a call to function f.

CallConstraints Analysis. CallConstraints analysis determines
the constraints on function return values necessary to execute a
statement.

Definition 3. Given a function f € F, Constrainty (s, f') = € £
if the statement s € Sy may be executed when any call to function
f’ € Fin f returns a value in y (¢). ]

Example 3.3. Constraintf(s3, ext4_dx_csum_verify) = #0 €
L in Figure 2, because the statement on Line 3 (s3) is executed
when the call to the function ext4_dx_csum_verify in function
f = __ext4_read_dirblock returns a non-zero value.
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f € Finis f €& Finit s E€Sf RetConstr(s) = ¢ c€eEC
———— INITSPEC ——— In1TBot ERRORCODE
E(f) < Einit(f) E(f) « L E(f) « &(f)uplo)

s €Sy RetConsty(s) = ¢ s € callsites(f") f’ € Feo
ERRORONLYCALL
E(f) < &(f)uple)
s €Sp RetConsty(s) = ¢ Constraintf(s,f') =¢ tnE(f)# L C+T
ERRORCONSTANT
&E(f) « &(f)u p(e)
s €Sy RetFuncy(s) = ¢ Constraintf(s,f') ={ tnE(f)# L
CALLPROPAGATION

&E(f) < &(f)uélg)

Figure 5: EESI Inference Rules

ReturnedConstant Analysis. ReturnedConstant analysis deter-
mines the constant, if any, that must be returned if a statement
executes.

Definition 4. Given a function f € F, RetConsts(s) = c € Zif f
must return the constant c if the statement s € Sf is executed. W

Example 3.4. RetConsty(s5) = RetConsty(s7) = RetConstr(ss) =
-EFSBADCRC in Figure 2, where ss, s7, and sg are statements on Lines
5,7, and 8, respectively, in function f = __ext4_read_dirblock,
and the macro EFSBADCRC defines a constant.

ReturnedFunction Analysis. ReturnedFunction analysis deter-
mines the call return value, if any, that must be returned by a
function if a statement executes.

Definition 5. Given a function f € F, RetFuncy(s) = f' € Fif f
must return the value returned by a call to function f” in f if the
statement s € S¢ is executed. |

Example 3.5. RetFuncy(ss) = hid_quirks_init in Figure 8(c),
where s5 is the statement on Line 5, and f = hid_init, because
if Line 5 is executed then the function hid_init must return the
value returned by a call to hid_quirks_init.

3.2 Domain Knowledge

EESI utilizes three types of domain knowledge to bootstrap the
error-specification inference:

(i) Error codes EC C Z are specific constants that are used to
denote an error value by convention. Consequently, if a function
f returns an error code ¢ € EC then c is an error value for f. For
example, macros such as ENOMEM and EFSBADCRC are used to denote
error codes in the Linux kernel.

(ii) Error-only functions F,, C F are functions that are only
called when an error has occurred. Consequently, a path in function
g has to return an error value if a call to a function fe, € Fe( occurs
along that path. For example, ext4_error_inode in Figure 2 is an
error-only function. Consequently, ~EFSBADCRC is an error value
for the function __ext4_read_dirblock.

(iii) Initial error-specification E;n;;: Finir — L specifies func-
tion error-specifications for the functions Fjpi; C F. For example,
Finit = {malloc} and &;pir(malloc) = 0 € L for OpenSSL, which
states that malloc returns 0 (null pointer) on error.
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3.3 Interprocedural Inference Engine

Figure 5 shows the inference rules that EESI uses to infer the func-
tion error-specification &: F — L (Definition 2) using the results
of the prior intraprocedural analyses (Section 3.1) as well as the
domain knowledge (Section 3.2).

The INITSPEC rule initializes &(f) using the initial error speci-
fication E;pir (f) when f € Finjt, and the INITBOT rule initializes
&(f) to L when f ¢ Finis.

A constant c is returned by a function f € F if there exists a
statement s € Sy and RetConstf(s) = c. The ERRORCODE, ERRO-
RONLYCALL, and ERRORCONSTANT rules all determine whether a
constant c that can be returned by a function f is an error value
for f.If c is determined to be an error value for f, then the error-
specification of f is updated using the abstraction of c; that is,
&(f) — &(F) U B0).

The ERRORCODE rule states that if the function f can return
an error code ¢ € EC, then c is an error value for f.

The ERRORONLYCALL rule states that if statement s in function
f is a call to an error-only function fe, and the function f returns
the constant ¢ when s is executed, then c is an error value for f.

The ERRORCONSTANT rule states that if function f returns
the constant ¢ when a call to function f” returns an error value,
then c is an error value for f. If the condition Constraint (s, )
EAEME(f’) # Listrue then s in f could be executed when the f’
returns an error value. The restriction £ # T is added to this rule to
limit the detrimental impact of missed error checks, or otherwise
incorrect code, on specification inference.

The CALLPROPAGATION rule states that if function f returns
the return value of function g when a call to function f” returns an
error value, then the error values of g are also error values for f.
Hence, the error specification &(f) can be updated to include the
error specification &(g).

After initializing the analysis using the INITSPEC and INITBOT
rules, the remaining rules are applied until fixpoint, following a stan-
dard Kleene iteration sequence. The analysis terminates because
the height of the lattice £ is finite. The soundness of the inference
rules follows from the soundness of the underlying intraprocedural
analyses and the correctness of the domain knowledge.
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4 ERROR-HANDLING BUG DETECTION

This section describes a static analysis that finds error-handling
bugs using the function error-specification &: F — L inferred by
EESL. Specifically, we describe Error-Check Checker (ECC) that finds
bugs related to insufficient or incorrect error checks.

Definition 6. An error check is a conditional branch statement that
tests if the value returned by a function call is an error value. W

ECC finds inconsistencies between the error-specification of a
function (Definition 2) and the error checks (Definition 6) associated
with calls to that function. These inconsistencies are manifested in
three different bug patterns.

(a) Insufficient error checks. Insufficient error checks occur
when the error checks associated with a call to a function f fail
to cover all of the error values that f may return. This can occur
when the return value of a function is not saved at all, saved but
not checked, or when the return value of a function is checked for
a range of values that is a proper subset of the error values that a
function may return.

(b) Inverted error checks. An inverted error check is an error
check that gets the direction of the error path wrong. A common
cause of inverted error checks is the use of error values that do not
conform to the idiomatic error handling conventions used to signal
errors in C, such as returning 0 on error. The bug involving the
original version of ext4_dx_csum_verify described in Section 2
is an instance of an inverted error check. In this case, the bug was
fixed by modifying ext4_dx_csum_verify to return 1 on error.

(¢) Incomplete error-specifications. Another type of inconsis-
tency arises when the error check for a function call is correct, but
the implementation of the function does not return the correct set
of error values. This arises when there are error checks for values
that a function cannot return, resulting in dead code. An example of
a previously unknown bug of this type that we found in the Linux
kernel is shown in Figure 8(b).

5 EXPERIMENTAL EVALUATION

The experiments described in this section were designed to answer
the following research questions:

RQ1
RQ2
RQ3

How accurately does EESI infer function error-specifications?
How does EESI compare with the state of the art?

How effective is ECC at finding error-handling bugs when
using the function error-specifications inferred by EESI?

5.1 Experimental Setup

Benchmarks. Table 1 lists the programs used in the evaluation of
EESI and their size. These programs were chosen to be a representa-
tive cross section of important software written in C ranging from
operating systems to cryptographic libraries. “Linux FS” stands for
Linux File System, which includes the virtual file system (VFS), the
Linux memory manager, and four file systems: ext2, ext4, btrf's,
and FAT. “Linux NFC” is the near-field communication subsystem
of the Linux kernel. “Full Linux kernel” refers to a runnable Linux
kernel including all components in the default configuration.

Domain Knowledge. We used the following types of domain
knowledge (see Section 3.2 and Table 2) when running EESI:
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(i) Error codes (EC). 34 error codes were used when running EESI on
Linux FS, Linux NFC, and Full Linux kernel. No error codes were
used for the rest of the programs.

(ii) Error-only functions. EESI required the use of few error-only
functions. Finding these error-only functions was easy, because
they mostly contained error in their name. For example, OpenSSL
was analyzed using the single error-only function ERR_put_error.
(iii) Initial error-specification. EESI required the use of few initial
error-specifications. The error specification for allocation functions,
such as malloc, calloc, and __slab_alloc, was used as initial
error-specification when running EESI on the programs, as listed in
Table 2. Error specifications for 13 pthread library functions was
used as initial error-specification when analyzing netdata.

The error specifications for the following functions was also used
when analyzing Linux FS: sync_inode_metadata, ext4_inode_
loc and jbd2_journal_metadata. These functions were identi-
fied by looking at the position of their corresponding vertices in
the return propagation graph generated for Linux file systems. A
return propagation graph is a directed graph where every vertex
represents a program function and there is an edge from u to v if
the function corresponding to v propagates the return value of the
function corresponding to u. If many vertices are reachable from a
source vertex u in the return propagation graph, then EESI is more
likely to infer error specifications for new functions when the error
specification for the function corresponding to u is provided as an
initial error-specification.

Analysis and Bug Checking Performance. EESI and ECC are
implemented using LLVM [14], and are available at https://github.
com/ucd-plse/eesi. The full Linux kernel analysis was run on an
Amazon EC2 r4.2xlarge instance, while the rest were run on a 3.60
GHz i7-4790 CPU with 32 GB of RAM. Table 1 shows the runtime
performance of EESI and ECC. For 6 out of 9 programs, EESI takes
less than one minute to run. The analyses of OpenSSL, Linux FS,
and Full Linux kernel take 1 min 33 sec, 5 min 25 sec, and 12 min
47 sec, respectively. ECC is also efficient, with Full Linux kernel
taking the most time, 11 min 34 sec.

5.2 RQ1: Accuracy of EESI

EESI identifies error specifications for 18,919 functions among all
programs analyzed. Table 2 provides an overview of the types of

Table 1: Size of programs in KLOC (thousands of lines of
code), and runtime performance of EESI and ECC (times are
minutes:seconds of elapsed wall clock time).

KLOC EESI ECC

OpenSSL 231 1:33 2:48

Pidgin OTRv4 7 0:05 0:04
mbedTLS 192 0:32 0:38
netdata 60  0:36  0:59

Linux FS 320 5:25 3:35

Linux NFC 32 0:37 0:35

Full Linux kernel 1,295 12:47 11:34
LittleFS 2 0:03 0:02

zlib 1 0:09 0:08
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Table 2: Domain knowledge used by EESI and the total number of specification per type inferred by EESI

Error-Only Functions

Initial Error-Specifications

Specifications Inferred by EESI

Program EC # Funcs Example #Specs Example <0 0 <0 >0 #0 >0
OpenSSL 0 1 ERR_put_error 1 malloc(= 0) 268 2,931 259 72 10 173
Pidgin OTRv4 0 0 NA 4 malloc (= 0) 0 12 0 3 0 0
mbedTLS 0 1 mbedtls_strerror 2 calloc (= 0) 231 23 22 2 1 0
netdata 0 1 perror 16 malloc (= 0) 11 24 1 4 0 14

Linux FS 34 12 ext4_error 7 ext4_inode_loc (<0) 2,374 668 625 34 7 21
Linux NFC 34 0 NA 4 __slab_alloc (= 0) 838 141 26 18 0 7
Full Linux kernel 34 0 NA 4 __slab_alloc (= 0) 5,861 2,981 578 394 13 163
LittleFS 0 0 NA 1 NA 14 2 28 0 0 0

zlib 0 0 NA 1 malloc (= 0) 53 12 0 0 0 0

Total 15 35 9,650 6,794 1,539 527 31 378

inferred specifications. The two most common types are <0 and
0 with a total of 16,444 specifications. We observe that integer-
returning functions commonly return a negative number on error,
which is a strong convention in the Linux kernel, and that pointer-
returning functions commonly return 0 (null pointer) on error.
However, these conventions are not always adhered to: EESI also
infers 2,475 error specifications of the types <0, >0, #0, and >0.
OpenSSL, Linux FS and Full Linux kernel include specifications
from all types. For example, EESI infers that the Linux FS function
__ext4_read_dirblock (Figure 2) has the error specification <0.

We compared the output of EESI with the ground truth for 395
functions to evaluate the accuracy of the specifications inferred by
EESI. Ground truth was obtained via manual review of the source
code. These 395 specifications included a random sample of 100
(93 correct) specifications from the projects in Table 2, a random
sample of 50 (47 correct) OpenSSL functions, all 95 (92 correct)
functions defined by the zlib library, and an additional 150 (137
correct) randomly sampled specifications in OpenSSL that overlap
between EESI and APEx (Section 5.3.2). In total, 369 of the 395
function error-specifications inferred by EESI exactly matched the
ground truth. Thus the estimated precision of EESI is 0.93.

One of the primary sources of inaccuracy in EESI is when a func-
tion uses an out parameter instead of a return value to signal errors.
Figure 6 shows one such case where the value 0 is incorrectly in-
ferred as an error value for tcp_fastopen_defer_connect, when
actually the pointer argument *err is set to ~-ENOBUFS. Pointer

bool tcp_fastopen_defer_connect(struct sock xsk,

1

2 int xerr) {

3

4 if (tp->fastopen_req)

5 tp->fastopen_req->cookie = cookie;
6 else

7 *err = -ENOBUFS;

8 return false; // false is defined as 0
9 3

Figure 6: EESI incorrectly infers that 0 is an error value for
tcp_fastopen_defer_connect due to the use of an out param-
eter err to signal errors.
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operands behave similarly to return values in that the caller needs
to check *err instead of the return value. We plan to address this
in future versions of the EESI implementation.

From manual inspection of 395 functions, we conclude that
EESI infers error specifications with a precision of 0.93,
answering RQ1.

5.3 RQ2: Comparison with State-of-the-Art

This section presents a qualitative (Table 3) and quantitative (Ta-
ble 4) comparison of EESI with the error-specification inference
tool APEx [13].

5.3.1 Qualitative Comparison. We compare the tools in terms of
the following four characteristics:

(1) EESI analyzes implementations directly. EESI infers func-
tion error-specifications directly from the program. APEx relies on
clients of the program to infer function error-specifications. Ob-
taining and building individual clients adds a significant amount of
manual effort to the specification inference task.

(2) EESI infers specifications for internal and API functions.
EESI infers specifications for internal and API functions, while
APEXx is limited to frequently used API functions. An API function

Table 3: Qualitative comparison of EESI with APEx. (1) EESI
analyzes programs directly instead of requiring their clients.
(2) EESI infers function error specifications for both internal
and API functions. (3) EESI incorporates domain knowledge,
instead of relying on the path-length heuristic used by APEx.
(4) EESI scales to large programs, while APEx does not due
to its use of path-sensitive symbolic execution.

EESI APEx
(1) Direct Analysis v X
(2a) API Functions v v
(2b) Internal Functions v/ X
(3) Domain Knowledge v X
(4) Scalable v X




Effective Error-Specification Inference ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 4: Quantitative comparison of EESI with APEx. AllFns is the total number of non-void functions defined by the library.
APIFns is the number of non-void functions defined by the library that are called from one of the clients listed in Section 5.3.2.
Time compares the time each tool requires to perform its analysis (mm:ss). Total Specs is the intersection of the tool output
with AllFns. API Specs is the intersection of the tool output with APIFns. Precision is the ratio of correct specifications reported
by the tool to the total number of API specs reported by the tool. Recall is the ratio of the total number of API specs reported
by the tool to the total number of API specs that can return an error. The OpenSSL results were calculated for a random sample
of 50 API functions.

Time Total Specs API Specs Precision Recall

AllFns APIFns EESI  APEx EESI APEx EESI APEx EESI APEx EESI APEx

2lib 147 25 0:15 121:15 65 8 17 8 10 075 071 033

OpenSSL 7,031 644 1:19 9320 3713 313 339 313 08 076 068 045
is a function that is defined in a library, and called by clients of 5.3.2  Quantitative Comparison. We provide a quantitative compar-
the library. Internal functions are functions that are not available ison of EESI with APEx for the libraries OpenSSL and zlib. We used
to clients. Internal functions are often refactored into small func- the clients listed in [13, Table 5] to infer specifications for OpenSSL
tions which are only called from a few locations. Therefore, relying and zlib with APEx: clamav-0.101.2, curl-7.64.1, gnutls-3.6.7, httpd-
on patterns among a large number of calls to these functions to 1.4.53, lighttpd-1.4.53, lynx-2.8.9, nginx-1.15.12, openssh-8.0p1 tor-
determine the error specification of a function is not a viable option. 0.3.5.8, and mutt-1.12.1. We compared APEx results to the results

obtained when running EESI on OpenSSL and zlib directly (without
the need to analyze their clients).

Note that APEx can treat an application as a client of itself, how-
ever this requires the application to include a large number of calls
to its functions. We attempted to use APEx to infer specifications in
the Linux kernel when treating it as a client of itself. APEx crashed
when run on the Linux kernel; the symbolic execution phase pro-
duced constraints that the APEx analysis scripts were unable to
process. APEx also crashed when using OpenSSL as a client of itself,
thus we did not include it when running APEx for OpenSSL. We
did not consider running APEx on the rest of our programs because
either they are not libraries, or they do not include a large number
of function calls for APEx to be effective. To gather run-time perfor-
mance, the tools were run on an Amazon EC2 c5.9xlarge instance

(3) EESI incorporates domain knowledge. EESI is bootstrapped
with small amounts of developer-provided knowledge. This input
provides a firm foundation on which additional function error speci-
fications can be inferred. In contrast, APEx relies on the assumption
that error paths are shorter than non-error paths. This assumption
frequently does not hold. The function sidtab_reverse_lookup
is one example that illustrates the problem with this approach. An
excerpt from this function, simplified for the purpose of presenta-
tion, is shown in Figure 7. At the top of the function, a cache lookup
is performed to check if the entry can be returned. When the cache
lookup is successful, the function returns @ along the shortest path
through the function. The error code ~ENOMEM is returned on failure;
this error path is considerably longer than the success path.

(4) EESI scales to large programs. Even for large programs such with 36 CPU cores and 72GB of memory.

as the Linux kernel, EESI is able to infer error specifications for thou- All 25 non-void zlib API functions were used for evaluation. Due
sands of functions (Table 2) in only a few minutes (Table 1). APEx to the size of the OpenSSL library, a random sample of 50 non-void
can take hours to infer specifications for only the API functions OpenSSL API functions were used for evaluation. Precision and
in smaller user-space libraries [13]. APEx relies on path-sensitive recall are defined in terms of the expected number of API functions;
symbolic execution provided by clang static analyzer, which has the number of API functions that are called from any of the clients
already been extensively optimized for performance. considered by APEx that can return an error value according to

ground truth. Ground truth was established by manually reviewing
the zlib and OpenSSL source code. Of the 25 zlib API functions,
24 could return an error. Of the 50 randomly sampled OpenSSL

1 static int sidtab_reverse_lookup(struct sidtab xs, functions, 37 could return an error.

2 struct context xcontext, u32 *index) {

3 . Definition 7. Precision and Recall are defined as:

4 rc = sidtab_rcache_search(s, context, index);

5 if (rc == @) .. ar |Correct| st |Total N Ground|
Precision = ——— Recall = ————

6 return o; |Total| |Ground)|

7 rc = -ENOMEM;

8 // 35 statements omitted where Total is the set of specifications reported by the tool, Correct

9 re = . o; . is the set of specifications reported by the tool that match the ground

10 out_unlock: . . .

u return re- truth, and Ground is the ground truth set of non-void functions

23 ' that can return an error. |

Table 4 lists the total number of functions and the total num-

Figure 7: Example of a short non-error path from Linux ber of API functions for each library. The table also summarizes
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Table 5: Summary of bugs reported by ECC.

TBR: total bug reports, CT: confidence threshold, IBR: in-
spected bug reports, CB: confirmed bugs, PB: potential bugs,
BB: benign bugs, FP: false positives.

IBR Breakdown
TBR CT IBR CB PB BB FP
OpenSSL 2,014 0.8 112 15 48 2 47
Pidgin OTRv4 43 0 43 31 7 0 5
mbedTLS 6 0 6 1 0 1 4
netdata 58 0 58 35 15 0 8
Linux FS 1,470 0.8 49 7 12 5 25
Linux NFC 242 0.8 29 2 9 11 7
Full Linux kernel 2,873 0.9 53 19 13 4 17
LittleFS 2 0 2 0 0 0 2
zlib 15 0 15 0 3 6 6
Total 6,723 367 110 107 29 121

the results. Because APEx relies on clients to infer function error-
specifications, it only infers specifications for API functions and not
internal functions. This is reflected in the difference in the total num-
ber of specifications inferred by each tool (the Total Specs column
in Table 4). In particular, EESI finds 8x and 11X more specifications
than APEx in zlib and OpenSSL, respectively. When restricting the
comparison to API functions, EESI also finds more specifications
than APEx while exhibiting higher precision and recall for both
libraries in considerably less time. EESI took 15 sec to analyze zlib,
and 1 min 19 sec to analyze OpenSSL. APEx took 2 hours and 1.5
hours to analyze the clients of zlib and OpenSSL, respectively.

In addition to the 50 randomly sampled OpenSSL API functions,
we also randomly sampled 150 OpenSSL specifications for functions
where both EESI and APEx provided a specification. Of these, 137
EESI specifications and 118 APEx specifications were correct.

EESI infers specifications for internal and API functions, is
not dependent on the path-length heuristic, is more scalable,
is more precise, and infers more API function specifications
than the state of the art. This answers RQ2.

5.4 RQ3: Usefulness of EESI Specifications in
Bug Finding

In this section, we evaluate the bug-finding effectiveness of ECC
(Section 4), which uses the function error-specifications inferred
by EESI (Section 3). Table 5 summarizes the bug reports produced
by ECC. The total bug reports (TBR) per program varied from 2 to
2,873. The IBR column lists the number of bug reports we manually
inspected. We inspected all bug reports for the 5 programs for
which ECC generated less than 100 bug reports. For the remaining
4 programs, we computed a confidence for each bug report, and
only inspected bug reports whose confidence was greater than or
equal to the confidence threshold (CT). The confidence threshold
was chosen so as to limit the number of inspected bug reports to
around 100 per program. The confidence of a bug report involving
the return value of a function f is defined as the number of calls
to f that have correct error-checks divided by the total number of
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calls to f. The rest of the section describes the breakdown of the
inspected bug reports (IBR Breakdown).

Confirmed and potential bugs. In total, we found 110 confirmed
bugs (CB) and 107 potential bugs (PB). Confirmed bugs include the
following: bugs that we reported and were confirmed by developers
(2), bugs that were independently found by others (11), and bugs
that we confirmed ourselves (97). Potential bugs are instances in
which the report is not an obvious false positive, but the complexity
of the code prevents us from confirming the bug without additional
input from developers. Of the 110 confirmed bugs, 99 bugs were
previously unknown; all of the 107 potential bugs were previously
unknown. Here previously unknown means that, to our knowledge,
no one knew about them. All bugs were previously unknown to
us. Note that confirmed bugs have been found in all programs
except for LittleFS and zlib. We are in the process of reporting all
confirmed and potential bugs to developers. Patches we provided
for two of the OpenSSL bugs were merged into OpenSSL for the
1.1.1b release [5, 6].

Confirmed bugs in Linux. ECC found 24 previously-unknown,
confirmed bugs in version 5.0-rc3 of the Linux kernel using error
specifications generated by EESI. Figure 8 shows one such bug.
In Figure 8(a), the function hid_modify_dquirk returns the error
code ~ENOMEM on Line 6 if kzalloc is unable to allocate memory.
The function hid_quirks_init in Figure 8(b) correctly checks
the return value of hid_modify_dquirk on Line 5, but fails to
propagate the error value. Consequently, EESI infers that the error
specification for hid_quirks_init is L. Not all errors need to be
propagated, but in this case we observe an inconsistency between
the error specification for hid_quirks_init and the error check
on Line 4 in Figure 8(c). The error check on Line 4 results in dead
code.

Confirmed bugs in OpenSSL. ECC found 8 previously-unknown,
confirmed bugs in version 1.1.1a of OpenSSL. Patches sent by us
for two of these bugs have been merged [5, 6], and we are in the
process of reporting the remaining.

Figure 9 shows a previously unknown bug that ECC found in
OpenSSL. On Line 6, the call to M_ASN1_new_of can return a null
pointer on memory-allocation failure. On Line 9, this pointer is
dereferenced, resulting in a segmentation fault if rek is null. We
generated a patch for this bug, which was accepted by the OpenSSL
developers and merged into OpenSSL 1.1.1b [6].

It is not immediately obvious that M_ASN1_new_of can return
a null pointer at all, and even less obvious that it returns a null
pointer in response to memory-allocation failure. M_ASN1_new_of
is a macro wrapping the function ASN1_item_new. ASN1_item_
new returns null when ASN1_item_ex_new returns null, which in
turn propagates the error from asn1_item_embed_new, which re-
turns null when the OPENSSL_zalloc macro wrapping CRYPTO_
zalloc fails, which propagates errors from CRYPTO_malloc. Finally,
CRYPTO_malloc fails when malloc returns a null pointer, allowing
EESI to infer that on Line 6, rek will be null when malloc fails.
Tracking down such long error-propagation chains makes it difficult
for a developer to manually infer function error specifications.

Because of its importance [18], OpenSSL has been reviewed
extensively. In January 2019, Quarkslab performed a security as-
sessment of the OpenSSL code, spending 60 man-days to audit four
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1 static int hid_modify_dquirk(...) { 1 int hid_quirks_init(...) { 1 static int __init hid_init(void) {
2 2 2 int retval = -ENOMEM;

3 int ret = 0; 3 for (;n<count && gparam[n]; n++) { 3 retval = hid_quirks_init(...);
4 hdev = kzalloc(sizeof (xhdev),...); 4 4 if (retval)

5 if (!hdev) 5 if (hid_modify_dquirk(...) != @){ 5 goto usbhid_quirks_init_fail;
6 return -ENOMEM; 6 pr_warn("Could not parse HID 6

7 quirk module param"); 7 return 0;

8 out: 7 } 8

9 kfree(hdev); 8 } 9 usbhid_quirks_init_fail:

10 return ret; 9 return 0; 10 return retval;

11 } 10 } 11 }

(a) hid_modify_dquirk returns zero on success (b) hid_quirks_init checks for hid_modify_ (c)hid_init expects error to propagate, result-

and a negative error on failure.

dquirk’s error, but fails to propagate it.

ing in dead code.

Figure 8: Bug found by ECC in Linux 5.0-rc3 resulting from an incomplete error specification. The error originating in (a) is
not propagated by the function shown in (b). The missing propagation results in dead code in (c).

1 int cms_RecipientInfo_kari_init(...) {

2 ri->d.kari=M_ASN1_new_of (CMS_KeyAgreeRecipientInfo);
3 if (!ri->d.kari)

4 return 0;

5

6 rek = M_ASN1_new_of (CMS_RecipientEncryptedKey);
7

8 if (flags & CMS_USE_KEYID) {

9 rek->rid->type = CMS_REK_KEYIDENTIFIER;

10 }

1}

Figure 9: Null pointer dereference found by ECC in OpenSSL,
which was previously unknown to the OpenSSL developers.
We provided a patch that was merged into OpenSSL 1.1.1b.

components of OpenSSL [1]. In the code-quality section of their
report on the Secure Remote Password (SRP) protocol, they find
eight cases where the return value of a function is not checked for
errors. Seven of these eight bugs are reported by ECC.

Confirmed bugs in Pidgin OTRv4. ECC found 31 previously-
unknown, confirmed error-handling bugs in the Pidgin plugin that
supports the upcoming v4 standard of Off-the-record messaging
(OTR). OTR provides deniability for instant messaging conversa-
tions [3], making it useful for journalists and other actors in sit-
uations where it might be important to deny that a conversation
occurred. This OTR plugin was chosen because of its global impor-
tance, and because the developers had identified error-handling
bugs as a high priority. The defects identified by ECC would lead
to crashes or other undefined behavior in the plugin.

Benign bugs. Table 5 also reports 29 benign bugs (BB). These
are instances in which checks are indeed missing (ECC correctly
reports them), but the missing checks do not result in a serious
enough problem to warrant a fix. An example of this would be an
unchecked output-error during logging; even though the specifica-
tion is correct, the error is considered benign in our evaluation.

False positives. Table 5 shows the number of false positives (FP)
reported by ECC. Table 6 shows a breakdown of the types of false
positives we encountered while inspecting the bug reports for the
three programs with the most false positives. “Incorrect Spec” false
positives occur in ECC when EESI has inferred the incorrect error

Table 6: Breakdown of false positives in ECC bug reports for
a subset of programs.

Linux FS OpenSSL  Full Linux Total

Incorrect Spec 1 0 0 1
Missed Checks 21 29 14 64
Interprocedural 1 8 2 11
Out Parameter 1 10 0 11

nofail 1 0 1 2
Total 25 47 17 89

specification for a function. Only one of the false positives in ECC
was due to inaccuracies in error specifications inferred by EESI.

The largest number of false positives are due to “Missed Checks”,
where the implementation of ECC failed to identify an error check.
For example, the Linux kernel defines assertion functions that crash
the kernel on certain conditions. ECC is not aware of these functions
and, therefore, reports the return value as unchecked. Improving
ECC to remove such false positives is part of future work.

“Interprocedural” false positives occur when the error value is
passed as an argument to callee function that contains the error
check. “Out Parameter” false positives occur when the error value
is assigned to an out parameter and the caller function contains
the error check. Finally, the “nofail” false positives are peculiar
to Linux, where memory allocations can be requested that will not
fail (the memory allocator will loop indefinitely).

ECC detected 246 error-handling bugs across 9 programs,
of which 110 have been confirmed. ECC detected 220 pre-
viously unknown bugs, of which 99 are confirmed, and
we are in the process of confirming 107 potential bugs. Two
patches have already been merged into OpenSSL. Finally, ECC
identified 29 benign bugs. This answers RQ3.

5.5 Threats to Validity

The function error-specifications inferred by EESI are, of course,
dependent upon the domain knowledge provided. As seen in Table 2,
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the total number of inputs is small, and it would be easy for project
developers to provide more domain knowledge with little effort.
EESI was evaluated on the programs in Table 2. Our results may
not generalize to software that exhibits significantly different error-
handling behavior. However, these programs were chosen to be a
representative cross section of important software written in C.

6 RELATED WORK

Error-handling specifications. Acharya and Xie [2] use data
mining techniques on static traces to mine error-handling specifi-
cations for relevant APIs used in software packages. The approach
follows a restricted classification of error-handling code and limits
to identifying error checks and cleanup code in client code. Kang
et al. [13] introduce APEX, a tool for finding error specifications
for API C functions. Section 5.3 presents a detailed qualitative and
quantitative comparison between EESI and APEx.

Fault-injection techniques have also been used to extract error-
handling specifications [8, 19, 20, 25]. Fetzer et al. [8] introduce
the notion of failure atomicity in the context of exceptions and
propose techniques to automatically detect and mask non-atomic
exception handling in C++ and Java applications. Sifkraut and
Fetzer [25] detect and patch incorrect C error-handling client code.
Incorrect error-handling code is identified when the system crashes.
Patching transforms unhandled errors into errors the application
can handle. Prabhakaran et al. [19, 20] build models of how jour-
naling file systems must behave under different journaling modes,
and use these to find error-handling specifications related to disk
write failures. Marinescu and Candea [16] describe a framework
for testing recovery code through error-code injection.

EESI is a static analysis tool and, therefore, better suited to han-
dling systems software such as the Linux kernel. The Linux kernel
comes equipped with a fault injection framework, but injecting
errors into software that interacts with devices is difficult as it
requires the hardware to be present. For user-space code, EESI is
complementary to dynamic fault injection.

Function error-specifications to find error-handling bugs. A
number of tools require function error-specifications to detect bugs
or infer how errors should be handled. EPex [11] takes as input the
error values that a function can return and reports as potential bugs
error paths that do not handle the error, where error handling is
defined as returning an error value, logging, or exiting. ErrDoc [27]
is an improvement over EPex, which takes as input specifications
inferred using APEx. Because APEx cannot be used to infer specifi-
cations for functions in the Linux kernel, ErrDoc cannot be used to
find or fix error-handling bugs in the Linux kernel. DeFreez et al. [7]
created Func2vec to embed functions in a vector space such that
functions that fulfill the same role or purpose are in close proximity,
and used this embedding to improve the quality of error-handling
specifications. Their specification miner takes as input function
error-specifications. EESI is scalable and capable of inferring more
function specifications than the state of the art. Therefore, all these
tools could benefit from EESI.

Other approaches to finding error-handling bugs. Static anal-
ysis techniques [9, 21, 23, 31] have been proposed to track the
propagation of error codes in systems software to find a wide range
of error-handling bugs such as dropped error codes. Saha et al. [24]
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present a static analysis to find resource-release omission faults
in C code. JUXTA [17] is a symbolic-execution based approach to
find semantic bugs (including error-handling bugs) across Linux
file systems. Henkel et al. [10] use code embeddings to detect in-
correct returned error codes in Linux code. By using the expressive
error-specifications inferred by EESI, ECC is able to find subtle
error-handling bugs that do not necessarily involve error codes
(see Section 2 and Section 4), which is beyond the capability of the
above techniques. Finally, a large body of work (e.g., [4, 26, 29, 30])
has proposed static analysis to find error-handling bugs in Java
programs, which are outside the scope of this paper.

7 CONCLUSION

This paper presented EESI, a static analysis to infer function error-
specifications for programs written in C that use the return-code
idiom. EESI bootstraps the analysis by using three types of do-
main knowledge: error codes, error-only functions, and initial
error-specifications. The inference rules used by EESI expand on
this initial domain knowledge to infer additional function error-
specifications. Our evaluation of EESI on real-world programs, such
as OpenSSL and the Linux kernel, show that EESI can accurately
infer function error-specifications while scaling to large programs.

We demonstrated how the function error-specifications inferred
by EESI can be used to automatically find bugs related to incorrect
error handling by building a tool named ECC to find three types
of error-handling bugs: insufficient error checks, inverted error
checks, and incomplete error specifications. ECC detected 246 bugs
across 9 programs, of which 110 have been confirmed as actual
bugs. ECC detected 220 previously unknown bugs, of which 99 are
confirmed, and we are in the process of confirming 107 potential
bugs. Two patches have already been merged into OpenSSL.

The careful orchestration of intraprocedural flow-sensitive anal-
yses and interprocedural context-insensitive analysis allows EESI
to be scalable and precise. As shown in our evaluation, EESI takes
only minutes to run on even very large programs such as the Linux
kernel. EESI outperforms the state of the art [13] in precision, recall,
and performance. Furthermore, by not relying on heuristics based
on usage of functions or empirical properties of error paths, EESI
is more generally applicable.

The scalability of EESI makes it a good fit for continuous inte-
gration and delivery pipelines that run tools on every commit. EESI
could be used to notify developers when the error specification of
a function has changed. Given the long error-propagation chains
that occur in large programs, this can be particularly useful, as
changing the error specification of a function can have unintended
consequences that result in defective error-handling code.
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