RIGHTS

Detecting and Reproducing Error-Code Propagation
Bugs in MPI Implementations

Daniel DeFreez
University of California, Davis, USA
dcdefreez@ucdavis.edu

Ignacio Laguna
Lawrence Livermore National Laboratory

ilaguna@lInl.gov
Abstract

We present an approach to automatically detect and repro-
duce error code propagation bugs in MPI implementations.
Specifically, we combine static analysis and program repair
for bug detection, and apply fault injection to reproduce er-
ror propagation bugs found in MPI libraries written in C.
We demonstrate our approach on the MPICH library, one of
the most popular implementations of MPL, and the MPICH-
based implementation MVAPICH, uncovering 447 previously
unknown bugs. We discovered that 31 of these bugs result
in program crashes, and 60% of the MPICH test suite is sus-
ceptible to crashing due to failures to propagate error codes.
Moreover, 95 bugs produce undesirable behavior that has
been confirmed dynamically, causing tests to fail, hanging
processes, or simply dropping error codes before reaching
user applications.

« Software and its engineering — Automated static
analysis; Dynamic analysis; Error handling and recovery;
« Computing methodologies — Parallel programming
languages.

1 Introduction

Most large-scale parallel computing applications use the
Message-Passing Interface (MPI) to perform multi-node com-
munication. Implementations of the MPI Standard! are avail-
able as open-source libraries such as MPICH [1] (which is
used as base for the vast majority of implementations) and
Open MPI [3], as well as vendor-provided implementations.

!https://www.mpi-forum.org/mpi-31/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP °20, February 22-26, 2020, San Diego, California, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6818-6/20/02...$15.00
https://doi.org/10.1145/3332466.3374515

Ay

187

Antara Bhowmick
University of California, Davis, USA
abhowmick@ucdavis.edu

Cindy Rubio-Gonzalez
University of California, Davis, USA
crubio@ucdavis.edu

Given the wide use of MPI in high-performance comput-
ing (HPC) clusters to support large scientific applications,
the correctness and reliability of MPI implementations is
paramount for HPC centers and vendors.

Since large-scale production jobs can suffer from frequent
failures [29], an important correctness aspect of MPI pro-
grams is their ability to handle runtime errors. The MPI
Standard (as of the most recent version, 3.1) specifies two
error handling modes to allow programmers deal with run-
time errors. The default mechanism, errors are fatal, causes
the MPI program to abort automatically when an error is
detected. While this mode is practical for small and short-
running applications, it imposes limitations to long-running
programs that may need to perform a more graceful termina-
tion when an error is encountered; for example, the program
may need to save a checkpoint before aborting. To support
a less abrupt termination, the MPI Standard supports a sec-
ond mode of operation, errors return, which allows the MPI
library to return an error code to the application when an
error is detected. Depending on the returned error code, the
application can take appropriate actions, such as cleaning
up its state before the program is terminated.

The MPI Standard version 4.0, which is expected to be
released in 2020, will introduce a new call, MPI_ERR_IS_
CATASTROPHIC?, which will allow the application to check
whether an error in the library was catastrophic or not. An
error is defined as catastrophic if the library must abort due to
the error, and non-catastrophic otherwise. As a result of this
new feature, future applications may check more frequently
for non-catastrophic errors (which allow the application to
continue) by checking the return error codes.

While the errors return model for error handling is useful
to applications, implementing it correctly in an MPI library
is non-trivial. Error codes must propagate all the way to
the user application as reliably as possible and may traverse
long call stacks before they arrive to users. Current MPI
implementations provide more than 400 user calls (as speci-
fied by the standard) and must detect and propagate errors
through different software layers, including transport and
user-interface layers. More importantly, software defects on

Zhttps://github.com/mpi-forum/mpi-issues/issues/28

https://www.acm.org/publications/policies/artifact-review-badging/#functional

RIGHTS

PPoPP 20, February 22-26, 2020, San Diego, California, USA

the error propagation mechanism can lead to unexpected
behavior, from program crashes and hangs to silent failures
that can lead to data loss.

In this paper, we present an approach to automatically
detect and reproduce error code propagation bugs in MPI im-
plementations. Our framework detects error propagation
bugs found in MPI libraries. The type of error propagation
bugs we focus on this paper are unsaved error codes. Since
reproducing these bugs is critical for implementors to deter-
mine the consequence of failed propagation, we also present
a series of novel strategies for error code injection to effi-
ciently reproduce and isolate MPI error propagation bugs.

While our approach is generally applicable to MPI imple-
mentations written in C (the common case), we focus on
MPICH [1] and its derivations. MPICH is one of the most
popular implementations of MPI and is used as the base for
the vast majority of other MPI implementations, including
IBM MPI (for Blue Gene), Intel MPI, Cray MPI, Microsoft
MPI, Myricom MPI, OSU MVAPICH/MVAPICH?2, and others.
Because of the large influence of MPICH on several other
implementations, improving its correctness and isolating
error propagation bugs in it will likely have a significant
impact. Our evaluation confirms this—59% of the bugs that
we found in MVAPICH [2] were carried over from MPICH.

MPICH is written in C, a language that does not provide
support for exception handling, and uses the popular return-
code idiom to implement the errors return model. Macros
define integer error codes that are propagated from one
function to another through return values and/or pointer
parameters. Unfortunately, explicit propagation of integer
error codes is error prone; functions can fail to check and
propagate errors to the user. Prior work [8, 25] has developed
static analyses to track the propagation of error codes in
Linux, which differs significantly from MPI implementations
(see Section 3). In this paper, we combine static analysis
with program repair to detect error propagation bugs in MPI
implementations.

Once detected, a crucial step in understanding error propa-
gation bugs is to reproduce them. Reproduction of MPI error
propagation bugs presents several challenges: (1) finding
MPI programs that exercise the buggy library code, (2) forc-
ing error conditions so that error codes are generated and
propagated, and (3) observing the runtime behavior of the
buggy library when an error is detected. In this paper, we
propose an approach that addresses the above challenges.
First, we automatically identify relevant tests in the MPICH
regression test suite that cover each detected bug. Second,
we “simulate” the occurrence of errors by automatically in-
jecting error codes and memory failures in the library. Third,
we run the corresponding tests to observe the side effects of
the propagated bug (e.g., the program crashes, or the error
code is not returned to the user program).

We found a total of 447 previously unknown unique bugs
in MPICH and MVAPICH, all of which we have manually

i,

188

DeFreez, Bhowmick, Laguna, and Rubio-Gonzalez

examined. The MPICH bugs have been reported, and MPICH
developers have provided positive feedback on the valid-
ity of the bug reports. We find that, despite the existence
of hundreds of regression tests in MPICH, the test suite is
not sufficient to cover enough code to reproduce all of the
bugs. Using our fault injection framework we are able to
dynamically reproduce 95 bugs.
We make the following research contributions:

e We present a novel hybrid approach (Section 3.3) that,
relying on the unique characteristics of MPI imple-
mentations, combines static analysis (Section 3.1) and
program repair (Section 3.2) to find error propagation
bugs in widely used MPI libraries.

e We present a methodology for reproducing error prop-
agation bugs in MPI libraries (Section 3.4 - Section 3.5).

e We present an experimental evaluation of our tech-
nique on the popular MPI implementation MPICH and
one of its derivations, MVAPICH, revealing 276 previ-
ously unknown error propagation bugs in MPICH and
an additional 171 bugs in MVAPICH. Our reproduction
technique is able to reproduce 95 bugs (Section 4.1 -
Section 4.3).

e We present the first characterization of the conse-
quences of error code propagation bugs in MPI (Sec-
tion 4.2). We find that error code propagation bugs
have severe consequences, with 60% of the MPICH
regression tests and all three real MPI programs in our
experiments being susceptible to a segmentation fault
in the event of an error.

2 Background

This section describes error code checking in MPI, and gives
an example of an error propagation bug found in MPICH.

2.1 MPI Error Code Checking

Propagating errors via function return codes is a commonly
used mechanism followed by many HPC libraries and APIs:
upon return from a function call of a library API, the user
checks the return value to determine whether the routine
executed correctly. If an error code is returned, the user can
execute recovery code.

MPI supports this mode of error code checking. Program-
mers, however, must indicate to the MPI implementation that
they desire to receive error codes—this can be configured us-
ing the predefined MPI_ERRORS_RETURN error handler. When
this mode is set, it avoids the default error handler MPI_
ERRORS_ARE_FATAL, which terminates the application when
an error is found. Propagation is relevant to both modes;
either the error code must be propagated until it reaches the
user application, or it must be propagated until the imple-
mentation aborts execution.

Error-Code Propagation Bugs in MPI Implementations

Table 1. Some of the return error codes defined in MPICH.

Error Code Name Value Description

MPI_ERR_BUFFER
MPI_ERR_COUNT
MPI_ERR_TYPE
MPI_ERR_TAG
MPI_ERR_COMM

Invalid buffer pointer
Invalid count argument
Invalid datatype argument
Invalid tag argument
Invalid communicator

[I O R R

The MPI Standard specifies that all MPI routines (except
MPI_Wtime and MPI_Wtick) return an error value upon fail-
ure. Error codes are implementation-specific values that indi-
cate the reason the call completed unsuccessfully. Similarly,
the standard requires MPI operations that complete success-
fully to return MPI_SUCCESS as the returned value.

Table 1 shows some of the error codes defined in MPICH.
These error codes can then be mapped into standardized
error classes to allow portable handling of error scenarios.
The current version of the MPI Standard features 59 error
classes defined for categorizing error codes, and in many
cases this is sufficient to narrow down the reason for an
error. However, in more targeted cases, an application may
need to interpret and handle MPI implementation-dependent
error codes. More formally, error classes are part of the MPI
Standard, whereas error codes are implementation specific
and not part of the standard. However, for simplicity of
exposition, in the rest of the paper, we refer to both error
classes and codes simply as error codes.

While the MPI Standard could be implemented in several
ways, most (if not all) implementations are provided as a
library. We refer to applications that use an MPI library as
the user application or simply the application.

2.2 Example of an Error Propagation Bug

We present an illustrative example of an error propagation
bug. A common operation in MPI programs is duplicating
a communicator (groups of MPI process ranks in the MPI
library that intend to communicate). Application code to
duplicate a communicator usually involves the use of MPI_
Comm_dup as follows:

1 error = MPI_Comm_dup(oldComm, &newComm);

2 checkError(error);

3 ..

4 MPI_Comm_free(&newComm);

An example of an error propagation bug in MPICH that
could be triggered by MPI_Comm_dup is observed in function
MPII_Comm_copy shown in Figure 1a. MPII_Comm_copy is
executed in MPICH after the application calls MPI_Comm_dup.
In turn, MPII_Comm_copy calls MPIR_Comm_map_irregular,
which is shown in Figure 1b. MPIR_Comm_map_irregular

RIGHTS L

PPoPP 20, February 22-26, 2020, San Diego, California, USA

548 int MPII_Comm_copy (MPIR_Comm *ptr, ...) {
611 if (ptr->comm_kind==COMM_KIND__INTRACOMM)
612 MPIR_Comm_map_irregular (newcomm_ptr,..);
613 else

614

616 fn_fail:

617 fn_exit:

618 FUNC_TERSE_EXIT(MPID_STATE_MPIR_COMM_COPY);
619 return mpi_errno;

620 }

(a) Dropping site on Line 612 (src/mpi/comm/commutil.c).

224 int MPIR_Comm_map_irregular(...) {
225 int mpi_errno = MPI_SUCCESS;

247 MPIR_CHKPMEM_MALLOC (mapper, ...);
260 fn_exit:

263 return mpi_errno;

264 fn_fail:

265 MPIR_CHKPMEM_REAP () ;

266 goto fn_exit;

267 }

(b) Origin site on Line 247 (src/mpi/commutil.c).
Figure 1. The origin and the dropping sites of a bug.

might return an error code if, for example, MPTR_CHKPMEM_
MALLOC fails to allocate memory, but the return value of
MPIR_Comm_map_irregular is not checked in MPII_Comm_
copy. In this example the error propagation bug is that MPII_
Comm_copy fails to check and further propagate the error
to its callers, including the API function MPII_Comm_dup.

Consequences of Error Propagation Bugs. The conse-
quences of error propagation bugs can be serious. In this
example, the bug can result in communicator structures that
are silently corrupted during duplication. The result of de-
stroying such a corrupted communicator using MPI_Comm_
free is a null dereference leading to a segmentation fault.

Note that we refer to Line 247 in Figure 1b as the origin
site of the error. In general, an origin site is the source lo-
cation where the error code being propagated is first used.
In this case, MPIR_CHKPMEM_MALLOC is a macro that uses the
error-code macro MPI_ERR_OTHER, which is assigned to the
variable mpi_errno. We refer to Line 612 in Figure 1a as the
dropping site. This is the source location at which an error
code is dropped, and therefore lost.

Exposing the consequences of error propagation bugs re-
quires a user application that exercises both origin and drop-
ping sites, as well as a runtime injection technique to simu-
late the occurrence of an error in an MPI implementation.

2.3 Error Code Propagation Challenges

The error code propagation bugs discussed in this paper are
calls to functions that may return an error code, and where
the call site fails to save the returned error code. There are
two challenges to determining which call sites need to have
their return value saved.

RIGHTS

PPoPP 20, February 22-26, 2020, San Diego, California, USA

First, not all functions in an MPI implementation are falli-
ble. The MPI Standard asserts that all MPI routines return an
error, but MPI routines may contain calls to many interme-
diate, implementation-specific functions. Error code propa-
gation bugs are often manifested by the failure to propagate
error codes returned by one of these implementation-specific
functions, even if the MPI routine directly returns an error
code on some paths.

The second challenge is that some functions always suc-
ceed, and some functions abort on error instead of returning
an error code, as is allowed by the MPI Standard. In these
cases, calls that do not check the return value are not nec-
essarily defective. Furthermore, if a function is defective,
then it does not correctly represent the propagation of er-
ror constants in the MPI implementation, and thus fixing
the error-propagation bug might lead to the discovery of
additional buggy call sites as the propagation of error codes
is expanded. As described in Section 3.2, our approach ad-
dresses this by applying a propagation fix to the defective
function and then re-analyzing the MPI implementation.

An overly simplistic approach to finding error propagation
bugs would be to consider every function as fallible, and
to label as buggy every call site whose return value is not
saved. This approach has the advantage of being simple
to implement and fast to execute, but it results in a large
number of false positives. There are many infallible functions
in MPICH and every call to one of these functions would be
a false positive. One such infallible function is MPL_strncpy,
which copies characters from one string to another.

We implemented the above approach to determine if it
would be sufficient. In MPICH 3.3, there are 8,823 calls to
non-void functions where the return value is not saved. Of
these, 8,731 return an integer, and 92 return a pointer. The
vast majority of these call sites are correct, i.e., the function
being called cannot return an error code. In contrast, MPIER-
RORPROP (Section 3) reports 321 buggy call sites with a 6%
false positive rate (Section 4.1).

To generate the subset of call sites that must have their
return value saved, MPIERRORPROP tracks the propagation
of error codes using dataflow analysis. If an error code can
reach the return value of a function, then all calls to that
function are labeled as buggy if the return value is not saved.
Figure 2 shows an abstract, but representative, example. It
illustrates two general patterns and therefore the particular
functions represented by the nodes are unimportant. The
dashed red edges (10, 4), (4,3) and (4, 9) represent possible
error code propagation paths starting at the origin site in
function 10. These flows exist prior to the application of
any partial propagation fixes, and they will be detected by
MPIERRORPROP. The solid black edges represent calls. The
solid black edge (9, 4) indicates there exists at least one call in
the body of the function 9 to function 4. If any of these calls
do not save the return value, then they would be reported as
a bug by MPIERRORPROP.

i,

190

DeFreez, Bhowmick, Laguna, and Rubio-Gonzalez

Error Origin

®

fatal_error MPI_Abort
Figure 2. Propagation paths of an error code from an origin
site. Each node represents a function. The call graph of the
MPI implementation is represented by black solid edges (—).
Dashed black edges (->) are potential calls from the appli-
cation. Dashed red edges (- >) represent existing error code
propagation paths, and dotted blue edges (-~) represent error
code propagation paths that only exist after introduction a
fix. Edges labeled A are partial propagation fixes; unlabeled
dotted blue edge propagate the error code, but only after the
application of a fix.

Functions 3 and 9 contain defective calls to 4. The call sites
are defective because the error code originating in function
10 can reach them, as indicated by the - > edge, and each fails
to save the return value of 4 (individual call sites not shown).
These would be reported as error code propagation bugs by
MPIERRORPROP.

A single iteration of the application of partial propagation
fixes is represented by the -~ edges (9, 8) and (3, 2) labeled
with A. Only after the fixes are applied do the calls to function
4 within functions 9 and 3 propagate the error code. After
these fixes are applied, two distinct behaviors emerge:

1. Applying the (9, 8) fix leads to another buggy call in
the function represented by node 8. Subsequently ap-
plying the propagation (8, 7) is sufficient to allow the
user application to detect the original error.

2. Applying the (3, 2) fix connects the error code propa-
gation flow to an existing error handler that declares
the error as fatal and calls abort.

In the second case, the error code does not reach the user
application, but this is allowed by the MPI Standard. It is
important to track the propagation of error codes up until
the point that abort is called.

2.4 Overview of Our Approach

The high-level workflow of our approach is presented in
Figure 3. We use a novel combination of static and dynamic
analysis. We first identify potential error propagation bug
locations via static analysis and program repair. The analysis
proceeds in a loop, running the static analysis and fixing

RIGHTS

Error-Code Propagation Bugs in MPI Implementations

PPoPP 20, February 22-26, 2020, San Diego, California, USA

Static Analysis
Bug Reports

Partial
Propagation Fix

v

MPI
Implementation

Error Propagation

Fault
Injection

Provided by MPI
Implementation

MPI Regression
Tests

Analysis - Fixed .
< Implementation
\/\
Static Analysis

Fixed/Unfixed
Faulty
Implementations

Reproduced Bugs
with Consequences

Analyze
Results

Dynamic Analysis

Figure 3. Workflow for detecting and reproducing error code propagation bugs in MPI implementations.

bugs until no new bug reports are produced. Programmers
could manually look at these potential bug locations and fix
the bugs; however, usually the number of bug reports is large
and they may contain false positives. The second phase of
the method performs dynamic fault injection to (1) verify
the validity of the potential bug reports and (2) determine
the consequences of the bugs (if the bug is reproduced).

3 Technical Approach

This section describes each of the components of our ap-
proach: a hybrid technique to find error propagation bugs
(Section 3.1 - Section 3.3) and a fault injection technique (Sec-
tion 3.4) to reproduce error propagation bugs (Section 3.5).

3.1 Static Analysis for Error Propagation

This section describes MPIERRORPROP, an interprocedural,
flow- and context-sensitive static analysis to track the propa-
gation of error codes in MPI implementations. Given a set of
integer error constants, MPIERRORPROP finds the set of error
values that each variable may contain at each program point
in an MPI implementation. The analysis is formulated as a
forward dataflow problem where error codes are propagated
via variable assignments and function return values.

We define a set of constants C that consists of error codes
(as defined in each MPI implementation, see Table 1 for ex-
amples), the special MPI_SUCCESS value used in MPI imple-
mentations to signal success, and the special analysis values
OK to represent non-error values, and uninitialized to repre-
sent uninitialized variables. The analysis maps each variable
v to a set of elements from V U C — 2VYC, where V is
the set of program variables. In other words, the analysis
determines the set of possible values a variable may hold
after the execution of a given program statement.

MPIERRORPROP dataflow transfer functions define a stan-
dard forward dataflow analysis. The transfer functions en-
code direct assignments and function return values, but do
not strictly overapproximate possible error code propagation
paths. Deliberate trade-offs have been made to reduce false

i,

191

positives while maintaining scalability and precision, and
therefore MPIERRORPROP does not guarantee soundness.

Specifically, we define transfer functions for the various
statements in the program. Transfer functions denote how
program statements affect the values a variable may con-
tain. For example, consider an assignment of the form x = e,
where e € V U C. The transfer function for such an assign-
ment is Ident[v — {e}], i.e., after the assignment is executed,
v must have the value of e while the values for all other vari-
ables remain unchanged. For example, the transfer function
for the assignment on Line 225 in Figure 1b is Ident[mpi_
errno — {MPI_SUCCESS}]. In the case in whiche ¢ V U C,
we assume that the value of such expression is not a valid
error code, and thus Ident[v — {OK}].

MPIERRORPROP includes a limited form of path sensitivity
that reasons about simple conditional predicates and prunes
error values from variables on normal paths. Error codes
are exclusively negative integers, and thus MPIERRORPROP
can declare that a variable does not hold error codes if the
sign of the values is positive. Shown abstractly in Figure 4,
this pruning improves both the scalability and precision of
MPIERRORPROP.

We define the transfer function for function calls in a stan-
dard manner: the values passed to the callee as arguments
are copied from the caller to the callee’s formal parameters.
Similarly, the callee’s return value is copied back into the
caller’s receiver variable (if any). In addition to these stan-
dard transfer functions, we include MPI-specific transfer
functions to suppress the transformation of error codes to
error classes. These transfer functions are described in more
detail in Section 3.1.1.

As mentioned earlier, the goal of our analysis is to find
the set of error codes that each variable may contain at each
program point. To compute these sets, the transfer functions
are applied until fixpoint, i.e., they are applied iteratively
until no changes are observed in the sets of errors codes.
The computed sets are used to identify dropped sites for
functions that can return errors. The analysis operates on a
program abstraction that captures control flow and encodes

RIGHTS

PPoPP 20, February 22-26, 2020, San Diego, California, USA

int err = foo();
if (err < 0) {
} else {
// err cannot hold error codes

}

return err;

Figure 4. MPIERRORPROP performs a limited sign analysis
to prune error codes from variables when the sign of the
variable is positive.

* src/mpi/comm/commutil.c:247:
"MPI_ERR_OTHER" error is passed as argument
* src/mpi/errhan/errutil.c:861:

an unchecked error may be returned

* src/mpi/comm/commutil.c:247:

"mpi_errno" receives error from
function "MPIR_Err_create_code"

* src/mpi/comm/commutil.c:263:

an unchecked error may be returned

* src/mpi/comm/commutil.c:612:

receives an error MPIR_Comm_map_irregular
* src/mpi/comm/commutil.c:612:

error is not saved in function MPII_Comm_copy

Figure 5. MPIERRORPROP trace for the bug in Figure 1.

transfer functions, which is constructed using LLVM. We
use an existing library to compute the fixpoint.

Our LLVM frontend of MPIERRORPROP takes as input a bit-
code file of an MPI implementation and constructs the trans-
fer functions. These transfer functions capture control flow,
model some MPI-specific transformations (Section 3.1.1), and
capture variable assignments. Individual error codes are pro-
vided as domain knowledge and rewritten to large negative
values for the purpose of distinguishing them from other
non-error constants used in the library.

After the transfer functions have been created by the
LLVM frontend, MPIERRORPROP uses the WALi WPDS li-
brary [11] as a backend to compute the analysis fixpoint,
and produce bug reports. The WPDS dataflow framework
is well-suited to the task at hand because it has the capa-
bility of producing a witness for a dataflow fact. The two
ends of this witness trace (Definition 1) are used for the fault
injection phase (Section 3.4) to study the consequences of
MPIERRORPROP bugs. These witness traces form the basis
of MPIERRORPROP bug reports. Each bug report trace repre-
sents a sample path originating where an MPI error code is
first used, and ending where the error code is dropped.

Definition 1 (Trace). An MPIERRORPROP trace r consists
of a sequence of source locations [T, 7, ..., I}.

i,

192

DeFreez, Bhowmick, Laguna, and Rubio-Gonzalez

An MPIERRORPROP trace taken from the analysis of MPICH
is shown in Figure 5.

Definition 2 (Origin Site). The origin site of an MPIERROR-
Prop trace 7 is O, £ I7. This is the location where the error
code is first used in the trace. In Figure 1b on Line 247 a
macro that wraps malloc is the origin site.

Definition 3 (Dropping Site). The dropping site of an MPIER-
RORPROP trace 7 of length nis D, £ I7. This is the call site of
the last function to propagate an error. In Figure 1a, Line 612

is a dropping site for the error returned by MPIR_Comm_map_

irregular because its returned value is not saved.

While we primarily study MPIERRORPROP in this paper,
the rest of the steps in the pipeline can be run with any source
of bug reports, where each bug report is a pair of source
locations with the semantics of origin site and dropping site
defined above.

3.1.1 Issues Specific to MPI Implementations

There are three key characteristics that distinguish our work
from previous analyses that track error codes in Linux (e.g.,
[8, 25]). First, our analysis does not require error-handling
domain knowledge. All non-fatal errors must propagate in
MPI implementations (with MPI_ERRORS_RETURN), while in
Linux only unhandled errors are propagated to the user appli-
cation. In this regard, error-handling in MPI implementations
is more straightforward than in the Linux kernel because of
the stronger propagation requirements. Second, reporting
the first instance in which an error code fails to propagate is
often insufficient to expose all error code propagation bugs
in MPI applications, as discussed in Section 2.3. Third, the
dataflow analysis defines transfer functions that are specific
to MPI implementation functions. This section details these
MPI-specific transfer functions.

In particular, the MPI Standard distinguishes between er-
ror classes and error codes, where error codes are imple-
mentation specific and error classes are defined by the MPI
Standard for the purpose of making it possible for the error
to be interpreted by the application.? Because of this, MPICH
and MVAPICH provide helper functions for manipulating
error codes, error classes, and the messages that go with each.
These functions contain elaborate, implementation-specific
rules for mapping error codes to error classes. One such
function in MPICH is MPIR_Err_create_code, a function
that creates MPI error codes.

Handling these transformations is a challenge for MPIER-
RORPROP, which uses dataflow analysis to track the propaga-
tion of error codes, because the helper functions create a new

Shttps://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node222.htm

Error-Code Propagation Bugs in MPI Implementations

Transformed Origin

(@) (b)

Approximation

Figure 6. Figure 6a shows the impact of the transformation
from error codes to error classes on error propagation wit-
ness traces. The red dashed arrows (- >) show the flow of an
error code. Function 2 calls a helper function 3 that trans-
forms the error code into either an error class or another
error code. The flow of this transformed value is marked by
dashed green arrows (->). This transformation causes the ori-
gin of the witness trace to start inside function 3, rather than
the true origin of the error in function 1. Figure 6b shows
the flow of an error code with error code transformations
suppressed. The helper function is called, but the error code
remains unmodified, allowing MPIERRORPROP to identify
the true origin of the error.

error code. This causes the origin site of many bug reports
to be inside the helper function that created the error code.
To deal with this challenge, MPIERRORPROP uses a model of
the helper function that allows the actual origin site to be
connected with the dropping site in the witness trace that
defines a bug report. This function model is an approxima-
tion that suppresses transformations of error codes. Using
the model has the possibility of introducing false positives
on paths that check for a specific error code, but in practice
we have not encountered any. None of the false positives de-
scribed in our experimental evaluation (Table 2) are a result
of this approximation.

The impact of the error code and error class transforma-
tion is illustrated in Figure 6. Figure 6a shows what an error
propagation witness trace might look like without suppress-
ing these transformations. The origin site of the actual value
that is dropped is reported as a line inside function 3. While
this is accurate from the perspective that the value being
dropped was manufactured inside function 3, we are inter-
ested in the original source of the error, not merely where
the transformed value was created. This is important be-
cause the origin site is used for fault injection (Section 3.4).
Figure 6b shows the error propagation witness that MPIERr-
RORPROP reports by assuming that function 3 does not alter
the error code. This allows function 1 to be identified as the
true source of the error.

3.2 Synthesis of Partial Propagation Fixes

MPIERRORPROP only reports unsaved error codes at the most
immediate call site. Unfortunately, this is not sufficient for

RIGHTS L

PPoPP 20, February 22-26, 2020, San Diego, California, USA

1501 static int FreeNewVC(MPIDI_VC_t *new_vc) {
1502 int mpi_errno = MPI_SUCCESS;
1523 - MPIDI_CH3_VC_Destroy(new_vc);

1523 + int ret = MPIDI_CH3_VC_Destroy(new_vc);
1524+ if (ret != MPI_SUCCESS) return ret;
1525 MPL_free(new_vc);

1526 fn_fail:

1527 return mpi_errno;

1528 }

Figure 7. MPIDI_CH3_VC_Destroy may return an error that
is dropped. Diff shows synthesized partial fix.

MPI implementations. Fixing a dropping site may still not
result in the error propagating to the application; other drop-
ping sites may surface as the error propagates further within
the MPI library. MPIERRORPROP automatically synthesizes
error propagation fixes to either verify that the error reaches
the application after the bug is fixed, or to identify new drop-
ping sites that also require fixing.

The dropping site (Definition 3) of an MPIERRORPROP
trace is the location of the actual bug in the code. To fix the
bug, the error code reaching that source location needs to be
propagated to callers of the enclosing function. The fix strat-
egy used in this work (shown as PartialFix in Algorithm 1)
is to immediately return the error code at the dropping site
if it is not MPI_SUCCESS. Figure 7 shows an example of an
error propagation bug and its corresponding fix. Specifically,
we declare a local variable to store the dropped error code,
and return it immediately if it is not MPI_SUCCESS. These
are partial fixes because we simply attempt to propagate the
error; we do not synthesize other code that may be needed
along propagation such as cleanup.

This is just one implementation of PartialFix, and there
are cases where it does not succeed. Some functions in MPI
implementations pass error codes via out parameters, in
addition to or instead of return values. In the future, addi-
tional repair strategies could be added to handle different
scenarios.

3.3 Hybrid Analysis for Error Propagation

Our approach combines static analysis and program repair to
find error propagation bugs in MPI implementations. To the
best of our knowledge, this is the first approach to integrate
program repair as a central step in bug finding.

Figure 8 shows how multiple dataflow iterations with in-
tegrated repair are required to expose additional error code
propagation bugs in MVAPICH. The function iba_get (Fig-
ure 8a) calls Post_Get_Put_Get_List on Line 2257 without
saving the return value. This is reported as an unsaved error
code by MPIERRORPROP when run on the unmodified MVA-
PICH code. A partial fix for this bug is shown, which simply
saves the value returned from Post_Get_Put_Get_List and

193

RIGHTS

PPoPP 20, February 22-26, 2020, San Diego, California, USA

2211 int iba_get(...) {

2256 if(...) {

2257 - Post_Get_Put_Get_List(...);

2257 + mpi_errno = Post_Get_Put_Get_List(...);
2266 3}

2268 return mpi_errno;

2269 %

(a) Partial fix for the error code propagation bug on Line 2257
of rdma_iba_1sc.c in MVAPICH.

883
1017
1038

int MPIDI_CH3I_RDMA_try_rma(...) {
case MPIDI_CH3_PKT_GET:
iba_get(curr_ptr,

win_ptr, size);

1039 MPIDI_CH3I_RMA_Ops_free_elem(win_ptr,...);
1040 curr_ptr = next_ptr;
1051 break;

1088}

(b) The second iteration of MPIERRORPROP reports an additional
error propagation bug on Line 1038. Function iba_get now
returns an error code that is not saved.

Figure 8. Example of a bug (Figure 8b) that is only exposed
when another bug (Figure 8a) is fixed.

propagates it. However, the call to iba_get on Line 1038 (Fig-
ure 8b) also neglects to save the return value. This is not
reported by MPIERRORPROP in the first iteration because,
without the fix, iba_get cannot return an error code other
than MPI_SUCCESS. Our hybrid analysis automatically syn-
thesizes and applies the bug fix, and invokes MPIERRORPROP
to uncover new dropping sites on the modified library.
Algorithm 1 describes our hybrid approach. Each itera-
tion runs MPIERRORPROP, then applies the propagation fixes
for the new bugs reported. The PartialFix function is de-
scribed in Section 3.2. It takes an MPI implementation and a
set of bug reports, applies a fix for each bug, and returns a
patched MPI implementation. MPIERRORPROP is then run on
the implementation returned by PartialFix to expand the
propagation frontier and discover new bugs. This process
continues until there are no new bug reports. The variable
Fixes collects all of the fixes that led to new bug reports
and applies them to the next iteration. Thus L’ is a version
of the library that has fixes applied from each previous itera-
tion that led to additional bug reports. Within an iteration,
MPIERRORPROP is run on a version of the library that fixes a
single bug (in addition to fixes from previous iterations). This
is done so that MPIERRORPROP can precisely report which
individual bug fixes led to additional bug reports.

3.4 Fault Injection

A fault injection strategy is defined by what faults will be
injected, where the faults will be injected, and when the
injections will be triggered [24]. We use two strategies to

i,

194

DeFreez, Bhowmick, Laguna, and Rubio-Gonzalez

Algorithm 1: Hybrid Analysis for Error Propagation:
MPIERRORPROP combined with program repair.

Input: L > An MPI implementation
Output: Bugs > A set of bug reports
1 Function MPIErrorPropWithRepair(L):

2 AllBugs « Bugs[0] <~ MPIERRORPROP(L)

3 i « 0, Fixes[0] « @

4 while True do

5 i « i+ 1,Fixes[i] « Fixes[i — 1]

6 for b € Bugs[i — 1] do

7 L’ « PartialFix(L,Fixes[i — 1] U b)

8 Bugs;, < MPIERRORPROP(L’)

9 if Bugs, \ AllBugs # 0 then

10 | Fixes[i] « Fixes[i] U b > New bugs
1 Bugs[i] < Bugs[i] U Bugs,

12 Bugsli] < Bugs[i] \ AllBugs

13 AllBugs < AllBugs U Bugs|[i]

14 if Bugs[i] = 0 then

15 | return AllBugs > No new bugs

study the failures of an MPI implementation. The Error Code
Injection (ECI) strategy injects error codes directly at the
origin site of a bug report, and the Memory Failure Injection
(MFI) strategy injects memory allocation faults at the inter-
face between the MPI implementation and 1ibc memory
allocation routines.

Definition 3.1 (Fault Injection Strategy). A fault injection
strategy is a 3-tuple (v, L, trigger), where v represents the
literal value that will be returned on error, L is a set of source
locations at which the injection will occur, and trigger is a
boolean trigger function.

Definition 3.2 (Call Stack Trace). A call stack trace ¥ =
C1, €z, ..., Cy is @ sequence of call sites in a program execution
where ¢y is the first function call in the execution, and for
all 1 < i < n, the function called at c;,; is executed before
the function called at c; returns. A call stack trace captures
the nesting of function calls during program execution.

Both injection strategies utilize the same trigger function.
Let D be a dropping site, and ¥ represent the current call
stack trace at the time that the trigger function is called.

Definition 3.3 (Trigger Function). trigger(ID, ¥) isaboolean
function that is true if and only if D € ¥.

Algorithm 2 shows the fault injection process for both the
ECI and MFI strategies. The input is a single MPIERRORPROP

RIGHTS

Error-Code Propagation Bugs in MPI Implementations

bug report, and the output is a modified version of the MPI
implementation designed to reproduce the bug.

3.4.1 Error Code Injection

Our implementation of the ECI strategy prepends a return
instruction that is only executed when the trigger is acti-
vated. The ECI strategy is designed to exercise the recovery
code that would execute after the MPI implementation en-
counters an error. In terms of the fault injection strategy
3-tuple (Definition 3.1), ECI can be defined as follows.

Definition 3.4 (Error Code Injection (ECI)). Given an error-
propagation trace 7, the ECI fault injection strategy is

(MPI_ERR_OTHER, {O.}, trigger(D., ¥))

Intuitively, the error code MPI_ERR_OTHER is injected at
the origin site of an MPIERRORPROP trace by inserting a re-
turn instruction that is executed when the dropping site is on
the call stack. Concretely, the injection is done by applying a
patch to the implementation of the MPI library (Algorithm 2).
Note that any error code can be injected, however we choose
to inject MPI_ERR_OTHER because it is generic, and because
it is commonly used to signal out of memory errors in the
MPI implementations.

3.4.2 Memory Failure Injection

The ECI strategy is a general approach that works regardless
of the type of error. It does, however, require the origin site to
be covered by the program that is being executed. To handle
additional bugs, we also inject at the more traditional loca-
tion of the interface between the application and the library.
This strategy is not as general, and is more restrictive in the
locations where faults can be injected, but it has a higher
level of fidelity as there is no possibility of executing infea-
sible paths. We target memory failures because we observe
these to be a common error source in MPI implementations,
and because such failures frequently lead to segmentation
faults in C programs.

Definition 3.5 (Allocations). Allocations is the set of all call
sites to any function in {malloc, calloc, realloc}.

Definition 3.6 (Memory Failure Injection (MFI)). Given an
error propagation trace 7, the MFI fault injection strategy is

(0, Allocations, trigger(D,, ¥))

Intuitively, the MFI strategy injects a null pointer when
the dropping site is on the call stack and any of the three
memory allocator functions is called. Faults are injected by
overriding the weak symbols malloc, calloc, and realloc

i,

195

PPoPP 20, February 22-26, 2020, San Diego, California, USA

Algorithm 2: Fault Injection

input :An MPIERRORPROP bug report 7
output:Modified MPI implementation
1 Define variable t = 9;

2 Insert instruction t = 1; immediately before D,

3 Insert instruction t = @; immediately after D,

4 if ECI Strategy then
5 R« if (t) return MPI_ERR_OTHER;

6 | Insertinstruction R immediately before O,
7 else if MFI Strategy then
8 for f € {malloc, calloc, realloc}do

Let f’ be the original functionality of f
Redefine fas if (t) return 0; else f’();

9
10

directly. The same trigger (Definition 3.3) is used for the ECI
strategy and the memory failure strategy.

3.5 Reproducing Error Propagation Bugs

Our motivation for reproducing error propagation bugs is
twofold: (1) verify the validity of bug reports, and (2) deter-
mine the consequences of such bugs. This effort is driven
using the regression tests that accompany the targeted MPI
implementations. This is a common method [32] of achiev-
ing high coverage without resorting to random API test-
ing. MPI regression tests use either the MPI_ERRORS_RETURN
or the MPI_ERRORS_ARE_FATAL modes. When MPI_ERRORS_
RETURN is used we rely on the test checking the return values
of function calls. We found that the regression tests aggres-
sively check function return values, even of infallible func-
tions. Infallible functions never fail, and therefore always
return MPI_SUCCESS. When MPI_ERRORS_ARE_FATAL is set,
the MPICH library is guaranteed to notify when an error
code is detected by aborting execution.

Given a regression test suite, we calculate its coverage of
MPIERRORPROP bug reports. That is, we identify bug reports
for which at least one test triggers fault injection. In order
for fault injection to be triggered, the test must execute the
origin site of the bug while the dropping site is on the call
stack. We refer to these bugs as candidate bugs.

We run the full regression test suite for each combination
of candidate bug, fault injection strategy, and fix strategy,
with the aim of exposing unexpected behavior. Unexpected
behavior is any behavior other than propagating the error
code to the user application or aborting execution. More
specifically, unexpected behavior includes program crashes,
test hangs, test failure, assertion failure, and silent failure.
A bug is reproduced if at least one test exposes unexpected
behavior. On the other hand, the injected fault is detected by
the MPI library if at least one test propagates the error code
to the application, or produces a fatal error. Note that a single

RIGHTS

PPoPP 20, February 22-26, 2020, San Diego, California, USA

Table 2. Summary of bug reports. FP: false positives.

Library = Confirmed Potential FP Total
MPICH 276 25 20 321
MVAPICH 416 17 23 456
Total 692 42 43 777

Total Unique 447 28 23 498

bug report may expose different behavior in different tests,
and thus can fall into both categories. Finally, we repeat our
methodology after applying fixes to identify discrepancies in
behavior and verify that the cause of the unexpected behavior
is actually the source location of the bug report.

4 Experimental Evaluation

This experimental evaluation is designed to answer the fol-
lowing research questions:

RQ1 Are error code propagation bugs prevalent in MPI
implementations? (Section 4.1.)

RQ2 What are the consequences of error code propagation
bugs in MPI implementations? (Section 4.2.)

RQ3 How effective is fault injection at reproducing error
propagation bugs in MPI implementations? (Section 4.3)

We analyze MPICH 3.3 and MVAPICH 2.3.1. The MPIER-
RORPROP frontend uses LLVM [16] to translate source code
into an intermediate XML representation first introduced in
[25] to capture control flow and encode transfer functions.
We use the WALi WPDS library [11] as a backend to compute
the analysis fixpoint, and produce bug reports.

All experiments were run on Amazon Web Services EC2
instances. MPIERRORPROP takes on average six minutes of
wall clock time to analyze MPICH and 10 minutes for MVA-
PICH on an AWS c5.9xlarge instance with 12GB of RAM. For
each MPIERRORPROP bug report, we performed fault injec-
tion using both the ECI and the MFI fault models (with and
without partial fixes). Each experiment involved running the
full regression test suite accompanying the implementation.
Fault injection experiments take 20-30 minutes each, as that
is how long the regression test suites take to run.

4.1 Error Propagation Bugs Found

Table 2 shows the results of our inspection of the bug reports
generated by the MPIERRORPROP hybrid approach. A total of
321 bug reports were generated for MPICH, containing 276
previously unknown bugs, all of which we have manually ex-
amined and confirmed. To date, 242 bugs have been reported
to MPICH developers, who provided positive feedback on
the validity of the bug reports. In MVAPICH we confirmed a

i,

196

129
368
371
372
373
374
375 3}
396}

DeFreez, Bhowmick, Laguna, and Rubio-Gonzalez

int MPIR_Comm_split_impl(...) {
MPIR_Comm_map_irregular (..., &mapper);
for (i = 0; i++) {
mapper ->src_mapping[i] = keytable[i].color;
if (keytable[il].color == comm_ptr->rank)
(*newcomm_ptr)->rank =

i < new_size;

i;

Figure 9. Failure to check the return value of MPIR_Comm_
map_irregular in MPI_Comm_split_impl, called by the
commonly used function MPT_Comm_split.

total of 416 bugs. Because MVAPICH is derived from MPICH,
there is some overlap in the bug reports. 171 out of the 416
bugs are unique to MVAPICH, and we are in the process of
reporting them. In total 447 unique confirmed bugs were
found between the two libraries.

Potential bugs are cases where we could not conclusively
determine that the bug is real, and it is not an obvious false
positive either. A total of 28 unique bugs fall into this cate-
gory. The MPICH potential bugs have been reported, but not
yet confirmed by developers. In total there were 23 unique
false positives between the two libraries. The false positives
arise from cases where MPIERRORPROP is unable to reason
about infeasible paths or functions that propagate error codes
both through return values and pointer parameters.

The classes of errors encountered include errors in re-
sponse to acquiring or releasing locks, sending messages,
low-level TCP operations, connection initialization, config-
uration errors, and input sanitization. Many of the bugs
reported by MPIERRORPROP are in commonly used MPICH
functions, such as MPI_Comm_split, the most commonly
used function for creating new communicators. For exam-
ple, MPI_Comm_split calls MPI_Comm_split_impl, shown
in Figure 9. MPI_Comm_split_impl calls MPIR_Comm_map_
irregular on Line 368, but fails to check the return value.
MPIR_Comm_map_irregular uses MPIR_CHKPMEM_MALLOC (see
Section 2), returning the error code MPI_ERR_OTHER if malloc
fails to allocate memory, which is dropped on Line 368.
The call to MPIR_Comm_map_irregular allocates memory
for mapper->src_mapping, and if it fails, then the subse-
quent index into mapper->src_mapping on Line 372 will
cause a segmentation fault. MPIR_Comm_map_irregular is
a commonly misused function in MPICH. It is directly called
in eight locations but the return value is never checked.

Answer to RQ1: Error propagation bugs are prevalent
in MPICH-based MPI implementations. We found a to-
tal of 447 unique, previously unknown bugs in MPICH
and MVAPICH. Since MPICH is used as the base for
many MPI implementations, we expect that other im-
plementations are also impacted by these bugs.

RIGHTS

Error-Code Propagation Bugs in MPI Implementations

Table 3. Consequences of Bugs. Each cell lists the number
of unique MPIERRORPROP bug reports that triggered the
behavior under fault injection strategies ECI and MFL

Bug Consequences

Library Inj. Bugs Crash Hang Fail Silent
MPICH ECI 83 24 3 35 25
MPICH MFI 66 26 4 23 21
MVAPICH ECI 61 24 3 38 17
MVAPICH MFI 70 23 4 28 2

4.2 Consequences of Propagation Bugs in MPI

To better understand the significance of the bugs discovered
in Section 4.1, we used fault injection to study the behavior of
the MPICH and MVAPICH implementations (see Section 3.4).

Table 3 shows the behavior of the MPICH and MVAPICH
regression tests (1,137 tests for MPICH and 753 for MVA-
PICH) after fault injection. Column "Bugs" gives the total
number of bugs (per library) eligible for each fault injection
strategy. We identified four main consequences of these bugs:
program crashes, program hangs, test failures, and silent fail-
ures. The table counts the number of unique MPIERRORPROP
bug reports that produced the indicated behavior in any test.
A crash is either a segmentation fault (most common) or a
floating point exception. A hang indicates that the regression
suite timed out after 1 hour. A test failure indicates that the
injected fault caused the test to fail in any other way, e.g.,
computing incorrect results. A silent failure indicates that
despite having a fault injected, the test passed. Note that a
single bug may manifest distinct behaviors across tests.

For example, in MPICH, 24 out of 83 of the error code
injections, and 26 out of 66 memory failure injections, caused
crashes. In total 31 unique bugs led to crashes. All 24 of the
crashes caused by error code injection were reproduced in
MVAPICH as well. The higher ratio of crashes for memory
failure injections can be explained by the fact that most
crashes are segmentation faults, and error code injections
target a wider variety of runtime errors.

An example of a bug that causes a crash is shown in Fig-
ure la. This bug is triggered by calling the commonly used
function MPI_Comm_dup. The bug results in a malformed
communicator and a segmentation fault upon the use of
MPI_Comm_free. Another example, a silent failure, is shown
in Figure 7. On Line 1523 a call to MPIDI_CH3_VC_Destroy is
made without saving the return value. When an error code is
injected here, there is no observable failure in the regression
tests. Other calls to MPIDI_CH3_VC_Destroy in the MPICH
library do propagate the error code. The partial propagation
fix that we synthesized is also shown in Figure 7. After the
fix is applied, injected error codes are successfully detected,
i.e,, the error codes reach the application.

i,

197

PPoPP 20, February 22-26, 2020, San Diego, California, USA

337
446
447
448
463
501}

int MPIR_Comm_commit (MPIR_Comm * comm) {
mpi_errno MPIR_Comm_create(...)
if (mpi_errno)
MPIR_ERR_POP (mpi_errno);
MPIR_Comm_map_irregular(...);

Figure 10. The error propagation bug on line 463 will only
be triggered if the call to MPIR_Comm_create on line 446 suc-
ceeds. Thus fault injection is necessary to reliably reproduce
this bug by causing a memory failure only under the calling
context of MPIR_Comm_map_irregular.

In MPICH, 683 out of 1,137 tests crashed due to a segmenta-
tion fault in response to an injected error code. That is, 60.1%
of the MPICH 3.3 tests are susceptible to a segmenta-
tion fault caused by neglecting to save an error code.
Thus we conclude that these are not merely code smells;
the consequences of failing to propagate error codes are
severe and impact the core of MPICH. We observe that func-
tions which impact a large number of tests in the regression
test suite, such as MPI_Comm_split and MPI_Comm_dup (Fig-
ure 1), are also important to production code.

Consequences for Real MPI Programs. We further inves-
tigated the consequences of error propagation bugs in MPI
by studying three real-world MPI programs: Kripke [12],
miniAMR [19], and miniFE [20]. Kripke is a scalable 3D de-
terministic particle transport code, miniAMR is an adaptive
mesh refinement mini-application, and MiniFE is a proxy
application for unstructured implicit finite element codes.
These codes are widely used in the procurement of HPC
systems and are part of the US DOE Exascale Computing
Project (ECP) Proxy Apps Suite?.

We found that all three programs are susceptible to seg-
mentation faults in response to memory allocation failures
when using the MPICH library and default inputs. The two
MPICH bugs responsible for these crashes belong to the set
of confirmed bugs summarized in Table 2. The first bug is
triggered by calls to MPI_Comm_split, as described in Fig-
ure 9. The second resides in MPI_Comm_commit (Figure 10),
causing crashes during finalization with MPI_Finalize (not
shown).

The results of the fault injection experiments are sum-
marized in Table 4. Kripke and miniAMR each call MPI_
Comm_split during initialization. A null pointer returned
by malloc caused the applications to crash with a segmen-
tation fault. There is nothing that the applications could
do to prevent this, as the segmentation fault occurs inside

4https://proxyapps.exascaleproject.org/

RIGHTS

PPoPP 20, February 22-26, 2020, San Diego, California, USA

Table 4. Behavior of MPI programs under fault injection.
Crash indicates the application encountered a segmentation
fault. Fatal Err indicates that MPICH returned a fatal error.
Propagated means that an error code reached the application.

Unfixed bug Fixed bug
Application Fatal Return Fatal Return
Kripke Crash Crash Fatal Err Propagated
miniAMR Crash Crash Fatal Err Propagated
miniFE Crash Crash Fatal Err Fatal Err

MPICH before MPI_Comm_split returns. The miniFE pro-
gram generates a segmentation fault in response to a mem-
ory allocation failure in MPI_Finalize. MPI_Finalize calls
MPIR_Comm_commit, activating the bug in Figure 10. The
miniFE crash is potentially more harmful because it occurs
after time has been spent computing a result. Again, the bug
is inside MPICH and is triggered through normal API use.

In all three programs, applying synthesized error code
propagation fixes resulted in more graceful recovery. These
programs run in fatal error mode by default. In this mode,
for Kripke and miniAMR, MPICH is able to provide the er-
ror message “probably out of memory” and a partial stack
trace showing the location of the error. When Kripke and
miniAMR are modified to run in error returns mode, with
fixes applied, an error code successfully propagates to the
application where it could be handled. In the case of miniFE,
MPICH encounters a fatal error when the partial propagation
fix is applied irrespective of the error mode. With the fix, the
fatal error not only provides more information than a seg-
mentation fault, but is also detected earlier, before spending
time computing the answer to the problem.

Answer to RQ2: Error propagation bugs cause severe

consequences. In MPICH, 31 unique bugs caused crashes,
24 of which exist in MVAPICH. 60% of the tests in

MPICH are susceptible to crashes, including tests for

commonly used functions such as MPI_Comm_dup and

MPI_Comm_split. We also demonstrate that three real-
world programs are susceptible to crashes.

4.3 Error Propagation Bugs Reproduced

For each bug report covered by a test, we determined whether
injecting a fault into the library exposed unexpected behav-
ior (see Section 3.5). More specifically, each bug report is
marked as “reproduced” or “detected”. A bug is "reproduced”
if at least one test case exposes unexpected behavior, and
a report is "detected" if at least one test detects the error.
Individual tests may select either the MPI_ERRORS_RETURN
error-handling mode or the MPI_ERRORS_ARE_FATAL mode.
In the case of MPI_ERRORS_RETURN, tests that detect error

i,

198

DeFreez, Bhowmick, Laguna, and Rubio-Gonzalez

Table 5. Bug Reproduction Results. Column Bugs lists the
number of bug reports considered for each injection strategy.
Columns under Before Fix show the number of unique bugs
reproduced (Rep.) and detected (Det.). Columns under After
Fix give the corresponding numbers after the bug was fixed.

Before Fix After Fix
Library Inj. Bugs Rep. Det. Rep. Det.
MPICH ECI 83 82 20 57 43
MPICH MFI 66 42 29 29 52
MVAPICH ECI 61 58 11 32 22
MVAPICH MFI 70 33 26 26 32

codes are expected to fail with an error message after check-
ing the return value of a function call (an assumption which
we have validated by inspecting the test suite). In the case
of MPI_ERRORS_ARE_FATAL, tests that detect the error codes
will abort with a distinct error message. Any other undesired
behavior means that the bug has been reproduced. Note that
a single bug report may expose different behavior in different
tests, therefore a bug report can fall into both categories.

For a bug to be reproduced means that an error code passes
through its origin and dropping sites producing undesirable
behavior, but it does not confirm that the dropping site is
indeed a defective source location. We also perform fault
injection after fixing the bug. If the error introduced by fault
injection is not detected before the fix, but it is detected after
the fix, then there is indeed a bug at the dropping site.

Table 5 shows the number of MPIERRORPROP reports that
the test suite covered. For ECI at least one test must cover
the origin site, and for MFI at least one test must trigger
memory failure injection. There is room for improvement in
the MPICH and MVAPICH regression tests. The table also
shows the number of unique bugs reproduced and detected
for each library per injection strategy. For example, before
fixing, 20 MPICH reports had at least one test detect an error
code injected via ECI, while there were 43 bugs detected
after the fix. This shows that for 23 bug reports, dynamic
analysis has confirmed that not only is the bug report valid,
but that the suggested fix leads to correct behavior. In con-
trast, there is a decrease in bugs reproduced by ECI from 82
to 57, indicating that for 25 bug reports the fix has caused
all tests that previously produced unexpected behavior to
now detect the presence of an error code.

Answer to RQ3: In total 95 unique MPICH bugs were
reproduced, of which 74 were reproduced in MVAPICH.
As expected, applying fixes increased the number of
detected bugs and decreased the reproduced bugs.

Error-Code Propagation Bugs in MPI Implementations

4.4 Threats to Validity

ECI injects one specific error code: MPI_ERR_OTHER. The rea-
son why we fail to reproduce some bugs could be that other
specific error codes may need to be injected. Our fault in-
jection techniques require user applications. We consider
the test suites of two MPICH-based implementations of MPI
and three real MPI programs. A threat to validity is that
we rely on the results reported by the tests when injecting
faults. It is possible that tests may report success without
checking whether the return value is indeed MPI_SUCCESS.
We are aware of only one test in which this occurs. Another
threat is that we rely on the MPICH environment variable
MPITEST_THREADLEVEL_DEFAULT to set the thread level for
the regression test suite. This sets the default thread level, but
it may be overridden by individual tests. Regression tests that
explicitly run in multi-threaded mode by calling MPITest_
Init_thread with MPI_THREAD_MULTIPLE as a parameter
may distort our fault model. Finally, we only report results
for two MPI implementations, but we believe that error prop-
agation bugs exist in other libraries, and that our approach
could be instantiated to analyze them.

5 Related work

Bug Detection for Error Handling in C Programs. Gu-
nawi et al. [8] present an error detection flow insensitive
static analysis (EDP) to find dropped errors in Linux file
systems and drivers. Later work [25, 26, 35] describe flow-
and context-sensitive static analysis to track the propagation
of error codes, also in Linux, finding a variety of dropped
errors. None of the above analyses have been applied to MPI
libraries, which differ from Linux in how error codes are
transformed and handled. Other work [5, 6, 10, 27, 36] mines
error-related specifications that can be used for bug detec-
tion in Linux and C libraries, but none of these have been
used to find bugs in MP1I libraries.

Bug Detection in MPI Programs. Previous work has pro-
posed tools and techniques to detect bugs in MPI programs [13].
These approaches can be roughly grouped into three cat-
egories: correctness checking tools, statistical dynamic ap-
proaches, and MPI library bug detection. Correctness checking
tools perform static and dynamic checks in an MPI program
to detect incorrect use of MPI, which can lead to failures,
such as deadlocks [9, 33] and message races [28]. Checks can
be performed via online profiling or via the use of formal
methods [31, 34]. Statistical methods such as [7, 14, 15, 23]
detect bugs by first developing a model of the application’s
normal behavior. These use dynamic information to look
for deviations from the normal behavior model. MPI bug de-
tection approaches detect bugs in MPI implementations [4].
Most of these methods focus on detecting communication
bugs, while our approach targets detecting error code propa-
gation bugs within the MPI libraries.

199
RIGHTS L

PPoPP 20, February 22-26, 2020, San Diego, California, USA

Program Repair for Error Handling. Lawall et al. [17]
detect and fix incorrect error checks in OpenSSL libraries.
ErrDoc [30] detects and repairs error-handling bugs in C
programs, including error code propagation bugs. ErrDoc
patches are complementary to our work and could be added
to our fix strategies. ErrDoc does not examine the severity
of the bugs or make any attempt at dynamic reproduction.
MemFix [18] fixes memory deallocation bugs, which could
also be categorized as error-handling bugs in some cases.
MemFix does not fix error propagation bugs.

Reproduction of Error-Handling Bugs. Library Fault In-
jection (LFI) [21, 22] tests error recovery code by injecting
error codes at the interface between a binary and shared
libraries. We inject at the source code level, easing developer
comprehension of the injected faults. In addition, we inject
error codes inside the target MPI implementation to discover
internal error code propagation bugs.

6 Conclusion

Ensuring the correctness and reliability of MPI implemen-
tations is crucial for large-scale parallel applications. Error
propagation bugs in MPI implementations can lead to er-
rors being ignored and not reported to applications, and
even to unexpected behavior, such as crashes. In the course
of our work with MPICH and MVAPICH, we found that
these bugs can elude even experienced programmers. We
present a novel approach to automatically detect and repro-
duce error code propagation bugs in MPI implementations.
Our technique combines static analysis with program re-
pair and dynamic fault injection methods. Our evaluation
uncovered 447 previously unknown bugs in MPICH and
MVAPICH, many of which have serious consequences. Our
study of MVAPICH, which is based on MPICH, shows that
error propagation bugs in MPICH have spread to other MPI
implementations. Our approach provides a practical method
to detect, fix and reproduce such bugs.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 1750983, the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 (LLNL-CONF-771758),
and AWS Cloud Credits for Research.

References

[1] 2019. MPICH - A high performance and widely portable imple-
mentation of the Message Passing Interface (MPI) standard. https:
//www.mpich.org/. (2019).

[2] 2019. MVAPICH - MPI over InfiniBand, Omni-Path, Ethernet/iWARP,
and RoCE. http://mvapich.cse.ohio-state.edu/. (2019).

[3] 2019. Open MPI: Open Source High Performance Computing. https:
//www.open-mpi.org/. (2019).

PPoPP 20, February 22-26, 2020, San Diego, California, USA

(4]

(10]

[11

—

[12]

[13

[t}

(14

=

[15

—

(16]

RIGHTS

Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin. 2010.
FlowChecker: Detecting bugs in MPI libraries via message flow check-
ing. In SC’10: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1-11.

Daniel DeFreez, Haaken Martinson Baldwin, Cindy Rubio-Gonzalez,
and Aditya V. Thakur. 2019. Effective error-specification inference via
domain-knowledge expansion. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel,
and Alessandra Russo (Eds.). ACM, 466-476. https://doi.org/10.1145/
3338906.3338960

Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-Gonzalez. 2018.
Path-based function embedding and its application to error-handling
specification mining. In Proceedings of the 2018 ACM Joint Meet-
ing on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens,
Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 423-433.
https://doi.org/10.1145/3236024.3236059

Qi Gao, Feng Qin, and Dhabaleswar K Panda. 2007. DMTracker: find-
ing bugs in large-scale parallel programs by detecting anomaly in
data movements. In Proceedings of the 2007 ACM/IEEE conference on
Supercomputing. ACM, 15.

Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Ben Liblit. 2008. EIO: Error Handling
is Occasionally Correct. In 6th USENIX Conference on File and Storage
Technologies, FAST 2008, February 26-29, 2008, San Jose, CA, USA, Mary
Baker and Erik Riedel (Eds.). USENIX, 207-222. http://www.usenix.
org/events/fast08/tech/gunawi.html

Tobias Hilbrich, Martin Schulz, Bronis R de Supinski, and Matthias S
Miiller. 2010. MUST: A scalable approach to runtime error detection in
MPI programs. In Tools for high performance computing 2009. Springer,
53-66.

Yuan Jochen Kang, Baishakhi Ray, and Suman Jana. 2016. APEx:
automated inference of error specifications for C APIs. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, David Lo, Sven
Apel, and Sarfraz Khurshid (Eds.). ACM, 472-482. https://doi.org/10.
1145/2970276.2970354

Nicholas Kidd, Thomas Reps, and Akash Lal. 2008. WALi: A C++
Library for Weighted Pushdown Systems. http://www.cs.wisc.edu/
wpis/wpds/download.php. (2008).

Adam J. Kunen, Peter N. Brown, Teresa S. Bailey, and Peter G. Maginot.
2018. Kripke. https://github.com/LLNL/Kripke. (2018).

Ignacio Laguna, Dong H Ahn, and R Bronis. 2015. de Supinski, Todd
Gamblin, Gregory L. Lee, Martin Schulz, Saurabh Bagchi, Milind
Kulkarni, Bowen Zhou, Zhezhe Chen, Feng Qin, Debugging high-
performance computing applications at massive scales. Commun.
ACM 58, 9 (2015).

Ignacio Laguna, Dong H Ahn, Bronis R De Supinski, Saurabh Bagchi,
and Todd Gamblin. 2012. Probabilistic diagnosis of performance faults
in large-scale parallel applications. In Proceedings of the 21st interna-
tional conference on Parallel architectures and compilation techniques.
ACM, 213-222.

Ignacio Laguna, Todd Gamblin, Bronis R. de Supinski, Saurabh Bagchi,
Greg Bronevetsky, Dong H. Anh, Martin Schulz, and Barry Rountree.
2011. Large Scale Debugging of Parallel Tasks with AutomaDeD.
In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’11). ACM, New York,
NY, USA, Article 50, 10 pages. https://doi.org/10.1145/2063384.2063451
Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation. In 2nd

1T ‘f

200

DeFreez, Bhowmick, Laguna, and Rubio-Gonzalez

IEEE / ACM International Symposium on Code Generation and Opti-
mization (CGO 2004), 20-24 March 2004, San Jose, CA, USA. 75-88.
https://doi.org/10.1109/CG0.2004.1281665

[17] Julia L. Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix, and

Gilles Muller. 2010. Finding Error Handling Bugs in OpenSSL Using
Coccinelle. In EDCC. IEEE Computer Society, 191-196.

[18] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. MemFix: static

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

analysis-based repair of memory deallocation errors for C. In ESEC/SIG-
SOFT FSE. ACM, 95-106.

Mantevo. 2015. miniAMR reference proxy application. https://github.
com/arm-hpc/miniAMR. (2015).

Mantevo. 2017. MiniFE Finite Element Mini-Application. https://
github.com/arm-hpc/miniFE. (2017).

Paul Dan Marinescu and George Candea. 2009. LFI: A practical and
general library-level fault injector. In Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN
2009, Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE Computer
Society, 379-388. https://doi.org/10.1109/DSN.2009.5270313

Paul Dan Marinescu and George Candea. 2011. Efficient Testing of
Recovery Code Using Fault Injection. ACM Trans. Comput. Syst. 29, 4
(2011), 11:1-11:38. https://doi.org/10.1145/2063509.2063511
Alexander V Mirgorodskiy, Naoya Maruyama, and Barton P Miller.
2006. Problem diagnosis in large-scale computing environments. In
Proceedings of the 2006 ACM/IEEE conference on Supercomputing. ACM,
88.

Roberto Natella, Domenico Cotroneo, and Henrique Madeira. 2016.
Assessing Dependability with Software Fault Injection: A Survey. ACM
Comput. Surv. 48, 3 (2016), 44:1-44:55. https://doi.org/10.1145/2841425
Cindy Rubio-Gonzalez, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-
Dusseau, and Andrea C. Arpaci-Dusseau. 2009. Error propagation
analysis for file systems. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2009, Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan
(Eds.). ACM, 270-280. https://doi.org/10.1145/1542476.1542506
Cindy Rubio-Gonzalez and Ben Liblit. 2011. Defective error/pointer
interactions in the Linux kernel. In Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON,
Canada, July 17-21, 2011, Matthew B. Dwyer and Frank Tip (Eds.).
ACM, 111-121. https://doi.org/10.1145/2001420.2001434

Suman Saha, Jean-Pierre Lozi, Gaél Thomas, Julia L. Lawall, and Gilles
Muller. 2013. Hector: Detecting Resource-Release Omission Faults
in error-handling code for systems software. In DSN. IEEE Computer
Society, 1-12.

Kento Sato, Dong H Ahn, Ignacio Laguna, Gregory L Lee, Martin
Schulz, and Christopher M Chambreau. 2017. Noise injection tech-
niques to expose subtle and unintended message races. In ACM SIG-
PLAN Notices, Vol. 52. ACM, 89-101.

Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve,
Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello,
Bill Carlson, et al. 2014. Addressing failures in exascale computing.
The International Journal of High Performance Computing Applications
28, 2 (2014), 129-173.

Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and
repairing error handling bugs in c. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 752-762.
Sarvani S Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and
Robert M Kirby. 2008. ISP: a tool for model checking MPI programs..
In PPoPP. 285-286.

Erik van der Kouwe, Cristiano Giuffrida, and Andrew S. Tanenbaum.
2014. Evaluating Distortion in Fault Injection Experiments. In 15th
International IEEE Symposium on High-Assurance Systems Engineering,
HASE 2014, Miami Beach, FL, USA, January 9-11, 2014. IEEE Computer
Society, 25-32. https://doi.org/10.1109/HASE.2014.13

Error-Code Propagation Bugs in MPI Implementations

[33] Jeffrey S Vetter and Bronis R De Supinski. 2000. Dynamic software

(34]

RIGHTS

testing of MPI applications with Umpire. In Proceedings of the 2000
ACM/IEEE conference on Supercomputing. IEEE Computer Society, 51.
Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis
R de Supinski, Martin Schulz, and Greg Bronevetsky. 2010. A scal-
able and distributed dynamic formal verifier for MPI programs. In
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Com-
puter Society, 1-10.

201

[35]

[36]

PPoPP 20, February 22-26, 2020, San Diego, California, USA

Cathrin Weiss, Cindy Rubio-Gonzalez, and Ben Liblit. 2015. Database-
Backed Program Analysis for Scalable Error Propagation. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1, Antonia Bertolino, Gerardo
Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society, 586
597. https://doi.org/10.1 109/1CSE.2015.75

Baijun Wu, John Peter Campora III, Yi He, Alexander Schlecht, and
Sheng Chen. 2019. Generating precise error specifications for C: a
zero shot learning approach. PACMPL 3, OOPSLA (2019), 160:1-160:30.
https://doi.org/10.1145/3360586

	Abstract
	1 Introduction
	2 Background
	2.1 MPI Error Code Checking
	2.2 Example of an Error Propagation Bug
	2.3 Error Code Propagation Challenges
	2.4 Overview of Our Approach

	3 Technical Approach
	3.1 Static Analysis for Error Propagation
	3.2 Synthesis of Partial Propagation Fixes
	3.3 Hybrid Analysis for Error Propagation
	3.4 Fault Injection
	3.5 Reproducing Error Propagation Bugs

	4 Experimental Evaluation
	4.1 Error Propagation Bugs Found
	4.2 Consequences of Propagation Bugs in MPI
	4.3 Error Propagation Bugs Reproduced
	4.4 Threats to Validity

	5 Related work
	6 Conclusion
	Acknowledgments
	References

