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harbors. In this paper, we propose a high-order local discontinuous Galerkin method to
solve the improved Boussinesq equation, coupled with both explicit leap-frog and implicit
midpoint energy-conserving time discretization. The proposed full-discrete method can
be shown to conserve the discrete versions of both mass and energy of the continuous

Keywords:

Improved Boussinesq equation solution. The error estimate with optimal order of convergence is provided for the semi-
Local discontinuous Galerkin methods discrete method. Our numerical experiments confirm optimal rates of convergence as well
Energy conserving methods as the mass and energy conserving property, and show that the errors of the numerical
Error estimate solutions do not grow significantly in time due to the energy conserving property. A
Solitary waves series of numerical experiments are provided to show that the proposed method has the

capability to simulate the interaction between two solitary waves, single wave break-up
and blow-up behavior well.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Minimizing the wave disturbance is essential to the design of harbors. In coastal engineering, conducting experiments in
water tanks and numerically analyzing appropriate mathematical models are the two most effective methods. The advantage
of mathematical models is that various physical conditions can be simulated with ease while the assumptions of the models
can be verified. The Boussinesq-type equation, introduced in 1872 by Joseph Boussinesq [5], describes the propagation of
weakly non-linear fairly long waves in shallow waters and since then have found wide applications in modeling water waves
in shallow seas and harbors. The original equation proposed by Boussinesq is:

Uge = Uxx + Uxxxx + (uz)xx~ (11)

It is known as the “bad” Boussinesq equation since the solution exhibits unrealistic instability for short wavelengths [3]. The
presence of exponentially growing Fourier components renders linear instability [28]. When the coefficient of the fourth
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order derivative term is changed to —1, the equation is called the “good” Boussinesq equation as it is linearly stable.
Manoranjan et al. [28] showed the existence of soliton solutions for the “good” Boussinesq equation.
In this paper, we focus on the study of the so-called improved Boussinesq equation proposed by Bogolyubsky [2]:

Uge = Uxx + Uxxer + (uz)xxv (1.2)

which has some proven desired properties, such as mass conserving and energy conserving. No instabilities have been
observed by researchers for the improved Boussinesq equation. Iskandar et al. [20] first studied the improved Boussinesq
equation numerically. They proposed a three-level iterative scheme using finite difference approximations. In [18], El-Zoheiry
designed a three-level iterative scheme based on the compact implicit methods for the improved Boussinesq equation. Lin
et al. [27] developed a B-spline finite element method for the improved Boussinesq equation. In particular, by partitioning
the space into a set of elements and expressing the solution in terms of linear B-spline basis functions, they obtained a sys-
tem for which many standard numerical integration algorithms are applicable. Their method has the merit that it is simple
to implement and the nonlinearity can be taken care of easily. All the above methods, however, did not address the con-
servation properties that the theoretical analysis for improved Boussinesq equation has shown. Wang et al. [32] developed
an energy-conserving finite volume element method for the improved Boussinesq equation. They constructed the second
order accurate scheme using discrete variational derivative method. More recently, a class of high-order energy-conserving
schemes based on Fourier pseudospectral methods and Hamiltonian boundary value methods, is proposed for the improved
Boussinesq equation in [36].

Discontinuous Galerkin (DG) methods will be studied in this paper to solve the improved Boussinesq equation. DG meth-
ods were introduced in 1973 by Reed and Hill [29] to solve steady state linear hyperbolic equations. A major development
of DG methods was carried out by Cockburn and Shu in a series of papers [13-16]. DG methods have gained extensive
attentions and their applications include wave propagation problems, optimal control, compressible flows, incompressible
flows, semiconductor device simulation, Hamilton-Jacobi equations, Maxwell and Magnetohydrodynamics equations, elastic-
ity problem, KdV and other nonlinear dispersive equations, among many others. DG methods can be easily constructed to
be of high order accuracy, and can be used on arbitrary triangulation, thus very suitable for h — p refinement. Their local
nature enables parallel computing and therefore enhances the efficiency.

DG methods have been applied to solve partial differential equations (PDEs) with high order spatial derivatives. Such
DG methods include the interior penalty DG methods [1], local discontinuous Galerkin (LDG) methods [17], ultra-weak DG
methods [9], hybridizable DG methods [12], among many others. One successful group of such methods is the LDG methods,
proposed by Cockburn and Shu. The basic idea is to rewrite the original equation into a first order system and discretize it
in space with DG methods. They showed that the stability of the proposed methods can be achieved with a careful choice of
numerical fluxes. The LDG methods have been applied to an extensive list of PDEs with high order spatial derivatives and we
refer any interested reader to the review paper [35]. Recently, LDG method has been used to simulate problems that require
structure preserving property, such as mass, energy or Hamiltonian conservation. Energy conserving LDG methods have
been designed for the generalized KdV equation [4,21], the second order wave equation [33,11], Camassa-Holm equation
[26], the nonlinear Schrédinger equation [19,25], and the two-way wave equation [10], for which the schemes were shown
to preserve energy exactly in the discrete level, leading to small phase and shape errors in long time simulations.

In this work, we develop novel structure preserving LDG methods to solve the improved Boussinesq equation, which
can conserve both the mass and energy of the model in the discrete level. The equation is first decoupled into several
first order differential equations, and the LDG methods are designed based on the first order system. With the choice of
alternating numerical fluxes, we can show that the proposed methods conserve both mass and energy exactly. We have also
provided a family of energy conserving numerical fluxes and energy dissipative numerical fluxes. Optimal error estimate is
derived for the semi-discrete LDG methods. For the temporal discretization, both explicit leap-frog and implicit midpoint
time discretization, with special treatment of the nonlinear term, are proposed to maintain the mass and energy conserving
property of the full discrete schemes. Our numerical experiments demonstrate optimal rates of convergence as well as the
mass and energy conserving property, and show that the errors of the numerical solutions do not grow significantly in time
due to the energy conserving property. A series of numerical experiments are provided to show that the proposed method
has the capability to simulate the interaction between two solitary waves, single wave break-up and blow-up behavior well.

The organization of the paper is as follows. In Section 2, we introduce the LDG numerical method and prove the mass
and energy preserving property for the semi-discrete case. In Section 3, the error estimate of the proposed methods is
presented. Two different energy-conserving temporal discretizations are presented in Section 4. In Section 5, we perform
i the order of accuracy, the mass and energy conservation and long time simulation of our scheme,
ormance in various solitary wave examples. Conclusion remarks are presented in Section 6.

) pdfelement

alerkin discretization
The Trial Version

We consider the improved Boussinesq equation (1.2) on the domain I = [}, x;] in this paper. Since we are interested in
the energy conservation property of this model, it is more convenient to convert the equation into
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U = Vy,
o 5 (2.1)
Ve — Vaxe = (U + U%)y,

by introducing the variable v. This also appears in [32,36] to study the conservation property of this model. The system
(2.1) has the following conserved mass and energy defined by

V2 (Ut)z uZ u3
M= d E= — — 4+ — ) dx. 2.2
/ux, /<2+ 5 +2+3>x (2.2)
1

1

The initial conditions are given by

u(x,0) =up(x), ur(x,0)=g(x), forallxel[x,x], (23)
with periodic boundary conditions

Gl Gl

—u(x;,t) = —u(x,,t), forallte (0,00),i=0,1,2. (2.4)

a'x a'x

In addition, we also require

/ g(x) dx=0, (2.5)

I

and this initial condition, along with Eq. (1.2), implies mass conservation f, u dx = constant for t > 0.
2.2. Notations

We partition I = [x;, x;] into J subintervals: X, =X] <X3 < <XpL1 =X For each interval I; = (x;_; ,xi+%), 1<i</],

2
we define the midpoint x; = (xi_% +xi+%)/2 and h; =Xipl =X with h = max; h;. The piecewise polynomial space is

defined as Vk={v: vl € P¥(y),i=1,---, J}, where P¥(I;) denotes the space of polynomials of degree up to k on I;. For
any function uy, € V¥, u;(xH_%) and u;(xi+%) denote the limit values of uy at Xip1 from the right interval I;;1 and the left

interval I;, respectively. We use the usual notations [uh]i+% = u;{(xw%) - u;(x”%) and {uh}i+% = %(”;("H%) + ”E(XH%))

to represent the jump and the average of the function uj at the cell interfaces, respectively. For shorthand notation, the inner
product is denoted by (w, v), = f“ wvdx for the scalar variables w, v. The L? norm of v over the element I; is denoted by

Ivii;; = /(v, v)1,. The inner product over the domain I is denoted by (w, v) = (w, v);, the L2 norm |v| = +/(v, v) and the
L norm |[|v|loo = maxxe |V(X)].

Three types of projection operators considered in the paper are defined as follows. We use P to denote the standard L?
projection of a function w into space V¥ satisfying

(Pw,§)1; = (@, )1, Vo € P(Iy).

We use P~ to denote the projection of  into space V¥ with
(P~w,$)1; = (@, ¢);, Vo€ P1(I,
(PTw) =", At X1

Similarly, the projection PT of w is defined as:

(Prw,9);, = (@, ¢)1;, V¢ e P11y,

atx;_1.
2

) pdfelement

have the following approximation property [8]:

The Trial Version

2
((P*f - f)l.ﬁ%) < Ch?+2, (2.6)

i

where P* =P or P¥, and the constant C depends on f but is independent of h.
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2.3. LDG method for the improved Boussinesq equation

The LDG method will be presented in this section. The main idea of LDG methods is to suitably rewrite a higher order
PDE into a first order system, and then apply the DG method to the system. By introducing auxiliary variables w, r, s, the
model (2.1) becomes a first order system taking the form of

Ur=w,

W = Vy,

F=v—w, (2.7)
s=u+u?,

I't = Sx.

The LDG scheme for (2.7) can be formulated as follows: we look for up, vy, W, Sp, 7h € V¥, such that

/(uh)t¢ dx= / wh dx, (2.8)
I I
/Wmﬁ dx=Vpy " Ix,, — V¥ Ik, —fvwx dx, (2.9)
2 2
I; I
/rhfp dx:/vmp dx— | Wh@ I, — Wh@'lx,_, —/whgox dx |, (2.10)
2 2
Ii Ii I;
/Shé dX=/(un +UpE dx, (211)
Ii Ii
/(rh)tg“ Glx:SAh{’IxHl —5714“+|;<Fl —fshcx dx, (2.12)
2 2
I; Ii

hold for all test functions ¢, ¥, @, &, ¢ € VX,

The terms vy, Wy, S, are numerical fluxes resulting from integration by parts. As shown later in the proof of energy
conservation, as long as we choose alternating fluxes for the pair {V;, Wy}, and the pair {V}, 5}, the scheme will have the
desired mass and energy conserving properties. For example we can choose:

Vh=Vy,, Wh=w,, Spi=sy, (213)
or
Vh=vl, Wh=w,, Shi=s;. (2.14)

In the remainder of the paper we use the flux (2.13). All the results presented in this paper can be proved for both fluxes
(2.13) and (2.14) with similar proofs.

Remark 2.1. One can also define a family of numerical fluxes as:

~ — ~ 11
h={vh}+alvyl, wp={wp}—alwy]l, Sp={sp}—alspl, aé[—E, 5] (2.15)

ization of the alternating fluxes (2.13) (when o = —%) and (2.14) (when a = %). This family of numer-
jown to produce energy conserving LDG methods.
an energy dissipative method, it can be obtained with the following choice of numerical fluxes:

) pdfelement
The Trial Version . Wh={wp} —alwpl, Sp={sp}—alsp]l+Blvr], ae [—% %] ,B>0.

Remark 2.2. In the conventional LDG method, there is no need to introduce the extra auxiliary variable sy in Eq. (2.11),
which could be absorbed in Eq. (2.12). It was introduced here for the purpose of energy conservation.
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2.4. Conservation of mass and energy

As is well known, the important physical quantities, the mass and the energy (2.2), are conserved in Eq. (1.2). Here we
show that our numerical solution also preserves these quantities at the discrete level.

Proposition 2.1. Let u, and v, be the solutions of the LDG scheme (2.8) - (2.12) with flux (2.13). Then the mass

Mh(t):/uh dx (2.16)
1

is invariant in time t if periodic boundary condition is imposed for vy,.

Proof. To begin with, we show that the periodic boundary condition (2.4) and the requirement on the initial condition (2.5)
leads to v(x, t) = v(x:, t). Recall that by the definition of v in (2.7), (1.2) can be written into:
Ur = Vy, (217)
Ve = U+ Uy + (U (218)
Integrating (2.18) from 0 to t, we have
t
v(x, t) = v(x,0) +/ux + Uy + (U¥)x dt.
0
By the periodic boundary conditions (2.4),
t t
/ (X1, £) + Usee (31, £) + U?)x (1, £) dt = / x (X, £) + thxee (%, £) + @)x(xr, 1)
0 0
and from (2.5) we have
Xr Xr
v(xr,0) =v(x,0) + / vxdx =v(x;,0) + /g(x)dx =v(x,0).
X| X

Therefore,

v(x;, t) = v(xe, t).

This implies that in the numerical scheme, we also need to impose periodic boundary conditions for vp.
Setting ¢ = ¢ =1 in Eqs. (2.8)-(2.9), we obtain:

Xr

d d SR _ _ ~
M (©) = f undx= Y (Valx ) = a0 1)) = Vh(Xyy 1) — Fh(xy) =0,

b i=1

by applying the periodic boundary condition for vy, and this concludes the proof. O

Proposition 2.2. Let u, and vy, be the solutions of the scheme (2.8) - (2.12) with flux (2.13). The energy E,(t) defined as

2 2 2 3
En(t) =/ (ﬁ 4 (@O Uiy u—“) dx (2.19)

2 2 2 "3

) pdfelement

cheme (2.8) - (2.12) over all cells i =1, 2, ..., ], we get
The Trial Version

((un)r. @)1 = (Wh. $)1 =0, (2.20)
J
(Who 91+ (Vho Yr + ) Uhly g =0, (2.21)

i=1



6 X. Li et al. / Journal of Computational Physics 401 (2020) 109002

J
(s @)1 = (Vh @)1 = (Who @1 — ) Wil@]; 1 =0, (2.22)
i=1
(sn, &)1 — (up +up, &) =0, (2.23)
J
(e O1+ (n Gor + ) _Shlgliy 1 =0, (2.24)

i=1
by using the periodic boundary conditions. Taking the time derivative of Eq. (2.22), adding the resulting equation to
Eq. (2.21) and choosing the test functions ¥ = (wp);, ¢ = —vy, yield

J

0= (Wh, (W01 + (Vi (W1 + ) Val(Whel;, g
i=1

J
— (e, v+ (e, YL+ (Wh)es (VW1 + D (Wi)elval; g
i=1
= (W, (Wn)o1 — ((rn)e, Vi1 + ((Va)e, Vi1, (2.25)

where the last equality comes from the choice of the alternating flux (2.13). Next, setting ¢ = vy, in Eq. (2.24), ¥ =sp in
Eq. (2.21), ¢ =sp, in Eq. (2.20), and summing them up, we have

J J

0= ((Wn)e: Sw1 + (Vi (W1 + D Phlshliy g + (e Vi1 + (he (Vi1 + ) Shlvalie s
i=1 i=1

= ((Un)es sp1 + ((rne, Va1, (2.26)
where the last equality again follows from the choice of the alternating flux (2.13).
Summing up (2.25) and (2.26), we get
(p)e, smr + ((Whde, wp)p + ((Vp)e, vi)1 =0

which leads to

d . d Vi (upn)?  u? ug
aEh(f)—af(j-f-iz + = 5 dx
I
= ((vi)e, v 1 + (Wpee. (W) + (up)e, up +ud);
= ((Vr)t, vi)1 + (Wp)e, w1 + ((Un)e, Sh)1
=0.

This concludes the proof. O
3. Error estimate

In this section, we derive an optimal error estimate for the energy conserving LDG method proposed in Section 2. We
define the following errors associated with a function f by

ef=f-fa=n'+cl. wl=f-Pf =P

Wthl‘l from left to right, respectively denote the error between the exact solution f and the numerical solution f}, the
een f and a particular projection P* of f, and the error between the numerical solution and the
H be each of these functions u, v, w, r, s. The standard L? projection, i.e., P* = P, is used for
the Radau projection P* = P~ is used for the function v. Below we list the main error estimate

B pdfelement
The Trial Version

w, s, 1 be the exact solutions of the Egs. (2.7), and up, vy, Wy, Sy, ' be the numerical solutions of the

ot (2.8) - (2.12), with the numerical fluxes defined in (2.13) and the initial conditions defined as

up(x,0) = Pu(x,0), vu(x,0)=P v(x,0). (3.1)
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When the exact solution is sufficiently smooth, there holds the following error estimates:
2 2 2.1
(e I7+ e ]* + e |52 < cn**T, (3.2)
where the constant C depends on k, u and the final time T, but is independent of h.

Before we present the detailed proof of this proposition, some useful lemmas and remarks are provided below.

Remark 3.1. For the initial projection defined in (3.1), one can follow the proof in [33] to show the following estimate:

" @] =0. [¢*@]=0. [¢¥(©)] <ch. (3.3)

Remark 3.2. To deal with the nonlinear term, we would like to make an a priori error estimate assumption that

lu —upll <h,

following the setup in [34,23], where the same technique was used to treat the nonlinearity in the KdV and Keller-Segel
models. This assumption can be easily verified, and we refer to [34,23] for the explanation and proof. This assumption
implies that

lu—uplloo <C. "], =C.
The following lemma is one of the key ideas to derive the optimal error estimate.

Lemma 3.1. Suppose (vi, wy) € Vlrf X V,’l‘ satisfies the equation (2.9) with the flux v, = vy, the L2 projections P is used for the
variable w and the Radau projection P~ is used for v, then there exists a positive constant C, which is independent of h, such that

g I+ =210 < Cliev I, (3.4)
Remark 3.3. This Lemma provides an important relationship between the error of the auxiliary variable and the primary

variable, and was proven in [24, Lemma 2.4]. Similar result on the variable (instead of the error)

1/2

IV xll +h=""“Ilvall < Cllwl,

appeared first in [31]. This provides a direct link between the DG polynomial wj, and the derivative, jump of vp,.
With these, we can now present the proof of our main result.

Proof. By subtracting the LDG methods (2.20)-(2.24) from the corresponding weak formulation satisfied by the exact solu-
tions, we can derive the error equations

(ef.¢)—(e".$)=0, (3.5)

™, )+ (", ¥ + iev’—[w]% =0, (3.6)
. J

€9 =€ )= € 90— " lgl, ) =0, (37)

€,8) — u+u?—up—ul, g)l_:lo, (3.8)

(et, &)+ (€%, &) + X]:es*+[;]i+% =0. (3.9)

i=1

(3.9), taking the test functions ¢ = =¢° and ¢ = ¢V, and summing them up leads to
) pdfelement

J J
The Trial Version -, ) — ZTIV'_[CS]H_% -V ) - Z?V’_[fs],q_%

i=1 i=1

J J
T30 I DA (4 NI (SN SO R S lan 38 W
i=1

i=1
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J J
= =" 6 = Y "Iy — % 5 = YT ) (3.10)

Next, by taking the time derivative of Eq. (3.7), adding the resulting equation to Eq. (3.6) and choosing the test functions
9 =" ¢=—{", one obtains

€. =", = )+ m ,cx)+Zm e Ny + & ,§X)+Z§IW*[<; Jist

i=1 i=1

J J
F @ G+ T e + @ gD+ D eI

i=1 i=1

J J
=/ N+ @ e+ i + @Y G + )6 T g (311)
i=1 i=1
Combine (3.10) and (3.11), we have

J I
e+ €. ") + e ¢ = =" ) = Y 0" I Ny — 0 g = Y I
i=1 i=1
-5 ZmW*[; liy — (1" zxt)—Zn 1My (3.12)

By the choice of the projections of u, v, w, s, r, we have

J J
€. )+ g™+ ¢ == T s = oI N
i=1 i=1
which leads to

&' ¢ >+§dt(||;W|| e 1P ==t e = gy — il ¢ >—Zn”[§ Jisd —Zn!”*[c Jisy

i=1 i=1
=—(.¢ )—Zn”[; Ji1 —Zn:” 1 1 (313)
i=1

where the last equality comes from the L2 projection property: (%, f) = (%, f) =0 for any f € V¥. Note that
@ =@ =1 g =@, &) = W+ u? —up —uj, &)
=@ 0 g+ W —up g = @ D + WP —up, g, (3.14)

the error equation (3.13) becomes

J J
1d
QE(WHZ e P+ P = - =k g — Y g — Z;ns’+[iv],~+% - Z;nt”"’+[§“],~+%. (3.15)
1= 1=
We now focus on the terms on the right hand side. One can show that

J
< ChZ(n”) +Ch™ 12([; 1) <Ch** 2 4|7 |?, (3.16)
i=1
B pdfelement o . o
(2.6) and the approximation (3.4) in Lemma 3.1. Similarly, we have
The Trial Version
) < Ch?42 o). (317)

i=1

Using the fact that
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¢ =Pur — (up)e = Pw —wp =¢",

the first term —(u? —u2, ¢!") can be estimated by:

—@—u gy =—?—up. ¢") = —Quu —up) — (u—up)*,¢")
=—Qu¢" +2un" — ¢ = 20"t — (M%)
=—Qu¢", ¢") — Qun. ™)+ (€% ™) + 2@ " ¢ + (2 )
= Cluloo(l | + [ 6™ [+ € 1e" |oo A" 12+ 0¥ 1% + € In" | I I g™ | + 0"
<Clle)P +c e |+ cn+2, (318)

where the last equality comes from the assumption in Remark 3.2. Combining the results in Egs. (3.13) - (3.18), we have

d
a(”fu”z + ||§-v||2 + ”CWHZ) < C(HCHHZ + ||§_v||2 + ”é_wHZ +h2k+2),

By using Gronwall’s inequality and recalling the property of initial conditions in Remark 3.1, we obtain that
e P+ v + |2 ]»? < crk+,

The optimal error estimate (3.2) follows from this and the optimal projection error shown in (2.6). This concludes the
proof. O

4. Temporal discretization

Energy conserving spatial discretization was presented in Section 2. In this section, we develop fully discrete methods
which maintain the mass and energy conserving property, by presenting two different energy-conserving temporal dis-
cretizations. Both the explicit leap-frog and the implicit midpoint methods, with special attention paid to the discretization
of the nonlinear term, will be considered.

Let 0=tg <t1 <.. <ty =T be a partition of the interval [0, T] with time step Atp, = ty+1 — ty. A uniform time step
Atp = T is considered in this paper, and for the implicit temporal discretization in section 4.2, nonuniform time step can
also be used. The following notations

1 n+1 _ . n—1 n+1 _ . n
= %(ug“ +uly,  sup =" Ztuh R i M - &

are introduced to ease the presentation.

up=up(-,ty), U

4.1. Explicit leap-frog method

The second order explicit leap-frog method is known to conserve the discrete energy. When coupled with the LDG

method (2.8)—(2.11), the fully discrete explicit leap-frog local discontinuous Galerkin (ELF-LDG) scheme takes the following

form: we are looking for the solutions uﬂ“, vZ“, Wﬂ“, 52“, and rZ“ eVk forn=1,2,..,N —1, such that

un+1 _ unfl
/&uﬁqﬁ dx:/%d; dx=/WZ¢ dx, (41)
I Ii I;
/WZW dx=v21ﬁ_|xi+% _VZW'HXF% —/vﬁwxdx, (4.2)
I; P
(de_ V’\;Tl‘]l(pihi_*_l —V’\Z;(/’ﬂxi_l _/W2¢X dx s (43)
2 2
1
) pdfelement :
n,y _ n+1,2 n+1, n—1 n—1,2
The Trial Version ht 3 ((uh ) +up Uy +(uh ) ))éd}(, (4.4)
rn+l _ rn—l R N
/&rﬁé dx:/ué“ dx=spc"lx , —Spctlx —/sZcx dx, (4.5)
2T i+5 i3

I Ii Ii
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hold for all test functions ¢, ¥, @, &, ¢ € V¥, It is easy to verify that the explicit leap-frog method with this nonlinear term
treatment is second order accurate in time.

The leap-frog method is a multi-step method, which requires numerical initial conditions for the first two time steps.
Below we briefly mention how these two numerical initial conditions are provided in our numerical experiments. At the
first time step to = 0, the exact initial conditions of u(x,0) and u;(x,0) are given in (2.3). The equation u; = v, leads to
v(x,0) = v(x;,0) + f;“ ug(s, 0)ds = v(x;,0) + fx’: g(s)ds. Since the constant term v(x;,0) won't affect the computation, we
assume

X

v(x,0) = / g(s)ds,

X

and define our numerical initial conditions of uy and vy as

ud = Pu(x,0),  v)="P*v(x,0), (4.6)

where P is the standard L? projection and P* could be either the L2 projection P or the Radau projection P*. In the
numerical section, we will analyze the effect of different choice of P* towards the accuracy. At the second time step t; =T,
we consider the Taylor expansion of u(x, 7) and v(x, ) at t =0 via

2

T

u(x, 7) =u(x,0) + Tu(x, 0) + —-ure (x,0) + 0(t?),
72

VT = V06 0) + TV, 0) + —vee(x, 0) + O(T),

which leads to the following choice of numerical initial conditions
1 0 0 % 1 0 0 %
Up =Up+ Tyt —Upe Vi =Vp T TV T 5 Vi (4.7)

where ug o ug o vg p» and vg . are all computed via the numerical methods (2.8)-(2.12) with the initial condition (4.6).
Next, we provide some details related to the implementation of the ELF-LDG method (4.1)-(4.5). Note that uﬁ“ appears

on the right hand side of Eq. (4.4), but this won't affect the explicit property of the ELF-LDG scheme, as illustrated below.
Let Uy be the vectors containing the degree of freedom for the piecewise polynomial solution up, and denote U} =
Un(tn). Similarly, we can define Vi, W, R and Sj. The ELF-LDG method (4.1)~(4.5) can be rewritten in the matrix form as
n+1 __ n n—1
U, =2twW,+U, ",
W,’; =M, V,’;,
Rjy = Vi = Mw Wy, (4.8)
St = fouit up, upth,
RITT =2t M,S| + R,

where My, M,, and M; are matrices depending on the polynomial basis functions and the choices of the numerical fluxes
Vh, Wp, Sp, respectively. The nonlinear function fs; comes from the discretization of the nonlinear term. The combination of
the second and third equations leads to the following relation between R} and V'

R} =Ky V), VII=K,'R], (4.9)

where Ky, =1 — M, M,. Therefore, the system (4.8) can be reduced to

n+1 — + Uz—l,

L fsup L up urth v (4.10)
) pdfelement

te U,?'H first, and then compute V}':‘H, in an explicit way. The matrices K, and M, are both sparse

The Trial Version eir multiplication with coefficient vectors can be implemented efficiently. The evaluation of V}’;H
ith the matrix K,,, and one can perform an LU decomposition of K,, at the initial time to save
computational cost. The existence of the solution sequences {U} ;’1V=o and {Vp rI:J:O can be easily observed.

The conservation of continuous mass and energy of the semi-discrete LDG methods was shown in Section 2.4. Below, we

prove that the fully discrete ELF-LDG methods can conserve the discrete mass and energy exactly.
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Proposition 4.1. Let u}, viy and w} be the solutions of the fully discrete ELF-LDG methods (4.1)-(4.5). The discrete mass and energy
defined as

unun-H vnvn+1 Wan+1 un+1 3+ un 3
Mg:/ugdx, Eg:/<hh +-hh L hh +(“) (up) dx, (411)

2 2 2 6
I I

are invariant for all n.

Proof. We start with the conservation of the discrete mass M. Choose ¢ =1 and ¢ =1 in (4.1) and (4.2), and sum up over
all cells. With periodic boundary condition, this leads to MZH = M,';‘1. From the evaluation of u,11 and v,l1 in (4.7), we can
easily conclude that ME = M,ll, therefore, the conservation of the discrete mass

0
M= MY,

can be observed.
Next, we consider the conservation of the discrete energy Ej. Apply the operator & on the equation (4.3), choose the
test function ¢ = v}, and sum up over all cells to obtain

J
(Berys ViDL = (e Vi, ViDL + Gewq Vi )1+ ) SWiIV 1 (412)

i=1

Choosing the test function y = 8w} in the equation (4.2) yields

J
(Wh SeWi)r + (Vi 8wl )1 + ) Vilsewiliy 1 =0. (413)
i=1
By subtracting (4.13) from (4.12), we obtain
J J J
(Berys ViDL = (e Vi, ViDL + (Wi 8w = D IVRSWRT+ D VRISWRL 1 + D SewiIvh] s (414)
i=1 i=1 i=1

Setting ¥ = ¢ =s}, in the equations (4.2) and (4.1) leads to

J J J
(Seuft, spr+ (Vi sp )1 + 21: VhIshli 1 = Geuf i1 — (Sh Vi )1 — _X]:[SZVZ]H% + Xl: Vilshlies =0, (4.15)
1= 1= 1=
and choosing ¢ = v} in the equation (4.5) gives
] -~
ety ViDL + (53 Vi D1+ D shIvR] 1 =0. (4.16)
i=1
Sum up (4.15) and (4.16) to get
J I I
ety S+ Gerfyo Vi1 = D ISVl + D VRISt + D sivili s =0. (417)
i=1 i=1 i=1

Combining the equations (4.14) and (4.17), we have

J
BV VDI + (Wi, 8wy + @i s+ D (—Visewh] + vilawi] + 8rWZ[VZL-+%)i+1
i=1 2

] - 3 _
m pdfelement Vilshlisy +SH0VR). =0

The Trial Versi . .
id by 'the choil erical fluxes (2.13) or (2.14), this becomes

(e, ViDL + (Wi, 8w + (8eup, sp) =0. (418)

It is easy to observe that
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n+1 n n,n—1
(Scvp, Vi) = /(v — Vv, )dx,
n+1 n n,n—1
(W] Wi = / (VI — vy,

((Stuﬂ,SZ),:((Stuﬁ,uZ)[—i—(Sfuh, ((un+1)2+(un+1)(uzf1)+(uzfl)z>>
I

/(un+1 ul — ™ ])dx+[ ((u”+1)3 + U3 B h?+ (ug—1)3) "

67 67
I

therefore, the equation (4.18) reduces to
n+1 _ rn
E," =Ey,

which completes the proof. O

Remark 4.1. The nonlinear term u? is approximated by ((u"“)2 + (u"“ (u"_1) + (u”_l)z) /3 in the equation (4.4), which

is crucial in the proof of energy conservation. One may also approximate it by u (u”+1 +uf + uz_l)/3, which will leads to
an energy conservation method with the newly defined energy

. unun-H vnvn+1 w Wn+1 n n+1(un+1+un)
Eﬁ:/(h”+h“+h"+ h) dx.

2 2 2 6
1

We have tried both approaches numerically, and no obvious difference has been observed in their numerical performance.
4.2. Implicit midpoint method
In this subsection, we present an energy conserving implicit midpoint rule temporal discretization. The fully discrete

scheme implicit midpoint rule local discontinuous Galerkin (IMR-LDG) scheme takes the following form: we are looking for
the solutions ul ™!, vi*', wit! i1 and rf*! € V¥, forn=1,2,..,N -1, such that

un+1 —u el
/3jug¢dx=/u¢ dx_/wh 2 dx, (419)
Ii I
1 Tarl 1
/wﬁ*zwdx:vzﬂwwm — v} 2¢+|X ) /vﬁ*zl/fx dx, (4.20)
I; Ii
n+3d +1 /n+\% _ Tl ot n+1
r, ‘edx= vh (pdx—wh |X +wh |X | wy, fexdx, (4.21)
2
I; I I
1
/sz+2§ dx:/( ) + = ((u"“) +(u"+1)(ug)+(ug)2)>g dx, (4.22)
i I
- ) Tl nt}
/S;Frﬁg“ dx=/7t cdx=s; ¢ S 2 +|xﬁ —/ 2y dx, (4.23)
I; I : ’ I;
hold for all test functions ¢, ¥, @, &, ¢ € VK. Recall that W7 = (@" + ™1 /2, where @ = uy, vy, - - -. Easy to verify that

e method with this nonlinear term treatment is second order accurate in time.
ails related to the implementation of the IMR-LDG method (4.19)-(4.23). One can define U}, V},

1
e. Denote wz+2 = %( il +a)h) for w=U, V, W, R or S. The IMR-LDG method (4.19)-(4.19) can
The Trial Version ix form as

B pdfelement
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n+% n+%

R, : =V, 2 —-MyW, ?, (4.24)
sp = gy,

R = %MSSZJF% +RY,

where the nonlinear function fy comes from the discretization of the nonlinear term, and the matrices M,, My, and M

were discussed in Section 4.1. Again, the combination of the second and third equations leads to

n
h

n+%

+1 -1
2 =K, 'R, 7. (4.25)

n+% n

41
R, 2=KyV, °. V,

Therefore, the system (4.24) can be reduced to

1 T 1
T EMVV,':*2 +Ul, (4.26)
+3 T +3
V2 = Ky Mg fy (U, UL ?) + VI (4.27)

2

L . . L . +1 . .
We can plug the first equation into the second one to derive one nonlinear equation involving V}? 2. To solve this nonlinear
equation, one could use Newton’s method or fixed point iteration. Since iterative method is used, a stopping criterion of
+3 +3 . . N . . .
”(V;: 2y _ (V;1 2y(k=1)|| < ¢ is used in the numerical implementation, where ¢ is the control error and is taken as 10~1°

in our tests. The existence of the solution sequences {UZ},’;’:O and {V}T},’;’:O can be established via the fixed point theorem.
The next proposition show that the fully discrete IMR-LDG methods can conserve the discrete mass and energy exactly.

Proposition 4.2. Let up, v and wy, be the solutions of the fully discrete IMR-LDG methods (4.19)-(4.23). The discrete mass and energy
defined as

n_ n zn _ (UZ)Z (vp)? (Wﬁ)z (UZ)3
M_/uhdx, E—/<2+2~|— 5 —|—3 dx, (4.28)

I I

are invariant for all n.

The proof of this proposition is similar to that of Proposition 4.1, and is omitted here to save space.
4.3. Fourth order temporal discretization via extrapolation

Both temporal discretizations presented in the previous subsections are second order accurate. The Richardson extrap-
olation technique [39] is a practical method to achieve higher order numerical accuracy using lower order methods. The
main idea is to combine the numerical solutions with various time step sizes in a particular way to obtain higher order ac-
curate resolution. One advantage of this extrapolation technique is the preservation of the numerical stability of underlying
lower-order methods.

In this paper, we use the extrapolation technique to derive fourth order accurate temporal discretization using the for-
mula

4 T 1
u’;: = 511%’” (5) — §ug(f),

where uj(7) stands for the solution uj(x, ty) = up(x, n* t) evaluated with the time step size 7, and uﬁ”(t/Z) stands for the
solution up(x, tz;) = up(x, n* v) evaluated with the time step size 7/2. Both the explicit and implicit fourth order temporal
discretizations can be derived based on the explicit leap-frog and implicit midpoint rule methods.

) pdfelement

ide some numerical results of the proposed LDG methods with both implicit and explicit temporal
The Trial Version erform the accuracy tests on the methods with different initial projections and observe how that
hcy. Errors of mass and energy are calculated to verify the mass and energy conservation property
of our scheme, and we also studied the long time behavior of these methods. Examples of two solitary waves moving on
a collision course, a solitary wave breaking up and solution blow-up are simulated to demonstrate the performance of our
methods.
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5.1. Accuracy test

The single solitary wave can be described by a special solution [3] of the improved Boussinesq equation (1.2):

_ 5 gx—ﬂt—xo
u(x,t) = o sech (\/E—ﬂ ) , (5.1)

where « is the amplitude of the solitary wave, 8 is the velocity, xo is the initial wave center and 8 =,/1+ 27"‘ To test the
accuracy of our algorithm, we calculate the initial conditions by setting t = 0 in Eq. (5.1) and its derivative with respect to

t:
U(X,O)zasechz(\/gx_x()),
6 B
ug(x, 0) =20l\/§5ech2 (\/g—x_x())tanh (\/QX—X()).
6 6 B 6 B

We perform two sets of simulations using the ELF-LDG and IMR-LDG (both with 4th order temporal discretization via
extrapolation) schemes with the choice of numerical fluxes (2.13). In the first simulation we use L? initial projection for
both u and v, and in the second simulation, we use L2 initial projection for u and P~ initial projection for v (to match the
fluxes (2.13), see (4.6) for details). In both simulations, we set:

a=0.5, x=0, —-100<x<100, te[0,1].

One could use the exact solution as the boundary conditions; however, in practice, periodic boundary conditions turn out to
be a good approximation and therefore is used in the simulations because the solution almost vanishes at the boundaries.

Errors in L2 and L*™ norms are calculated. Tables 5.1 and 5.2 present the numerical order of accuracy for the ELF-LDG
scheme with P9, P!, P2 and P2 basis for u and v with different choices of projections in evaluating the numerical initial
conditions. Numerical results of the IMR-LDG scheme are given in Tables 5.3 and 5.4. As seen in these tables, when L2
projections are applied to obtain the initial conditions of both uy and vy, only k-th order accuracy in uj is obtained with
basis functions in P¥ for k =1, 2, 3. In contrast, optimal order of accuracy can be obtained for all four cases when the initial
projection of v is changed to P~.

Based on these tables and other numerical tests we have done, we find that the effects of initial projection on the order
of convergence are closely related to the choice of fluxes. When the fluxes (2.13) are chosen, if we use L2 initial projection
for u and P initial projection for v, only suboptimal order of u can be obtained for P!, P2 and P> basis. When the fluxes
(2.14) are chosen, the optimal order of accuracy can be obtained with P initial projection for v while suboptimal order
of accuracy is obtained with P~ initial projection for v. The same phenomena was also observed by us in [33,11], where
energy conserving LDG methods were developed and studied for the second order linear wave equations. The improved
Boussinesq equation studied here can be viewed as a generalization of the second order wave equation with the additional
nonlinear term and fourth order derivative term, therefore our proposed methods are the extension of the energy conserving
LDG methods studied in [33,11], with additional techniques introduced to numerically approximate the nonlinear term and
fourth order derivative term, while keeping the energy conservation property.

5.2. Mass, energy conservation and long time behavior

In this test, we consider the single solitary wave problem, with the same setup as in section 5.1. The parameters o = 0.5,
X0 =0, —40 < x <40, h =0.5, T =0.05 are used in this example. The test is run until the final stopping time T = 250.

First, we plot the time history of the error of mass and energy (i.e., M,’;’ — M,? and E}’:’ - Eg) of our methods in Fig. 5.1,
where we can observe that the mass and energy are both exactly preserved by our methods up to the machine error at the

e history of the numerical error in L2 and L% norms to check the long time behavior of our
es the time history of the error e, of both ELF-LDG and IMR-LDG methods, with P, P! and P?
3 presents the time history of the errors ey, e, and e,, when P3 polynomial basis is used. From
The Trial Version bserve that the errors of ELF-LDG and IMR-LDG methods are similar when the same time step is
H like to comment that, by design, IMR-LDG method allows larger time step. The error of ELF-LDG
method tends to be more oscillating than that of IMR-LDG method. For all cases except the P° one, numerical errors do
not grow significantly in time, which is consistent with our observations of energy conserving methods for other wave
equations.

) pdfelement
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Table 5.1
Numerical error and convergence orders of u and w of ELF-LDG scheme in the single solitary wave example. L? projection for both u® and v0.
J N u v
llell2 G lle¥lloo Coo lle* 112 G lle”lloo Coo
po 200 100 9.3230E—-02 * 6.3510E—02 * 1.0936E—-01 * 8.3849E—-02 *
400 200 4.7135E—-02 0.9840 3.4033E—-02 0.9001 5.4858E—02 0.9953 41718E—02 1.0071
800 400 2.3658E—02 0.9945 1.7407E—02 0.9673 2.7428E—-02 1.0001 2.0590E—-02 1.0187
1600 800 1.1846E—02 0.9979 8.8129E—-03 0.9820 1.3708E—02 1.0006 1.0235E—-02 1.0084
p! 200 100 2.3293E-02 * 2.3803E—-02 * 7.2707E—-03 * 1.0541E—-02 *
400 200 1.2475E-02 0.9008 1.2039E—-02 0.9835 1.7859E—-03 2.0255 2.6515E—-03 1.9911
800 400 6.4414E—03 0.9537 6.0270E—03 0.9982 4.4008E—04 2.0208 6.5169E—04 2.0246
1600 800 3.2697E—03 0.9782 3.0116E—03 1.0009 1.0909E—04 20123 1.6170E—04 2.0109
p? 200 100 1.6790E—-03 * 1.4164E—-03 * 3.4423E-04 * 4.8748E—04 *
400 200 4.0062E—04 2.0673 3.2527E-04 21225 4.2580E—05 3.0151 5.9007E—05 3.0464
800 400 9.8736E—05 2.0206 8.0494E—05 2.0147 5.2808E—06 3.0113 7.3468E—06 3.0057
1600 800 2.4593E-05 2.0053 2.0076E—-05 2.0034 6.5712E-07 3.0065 9.0978E—-07 3.0135
p3 200 100 1.4156E—-04 * 2.0905E—04 * 1.6208E—05 * 2.6062E—05 *
400 200 1.8608E—05 2.9274 2.8671E-05 2.8662 1.0092E—-06 4.0054 1.6892E—-06 3.9475
800 400 2.3676E—06 2.9745 3.6732E—-06 2.9645 6.2806E—08 4.0062 1.0402E—07 4,0214
1600 800 2.9792E-07 2.9904 4.6234E—07 2.9900 3.9149E—-09 4.0039 6.4758E—09 4.0057

Table 5.2
Numerical error and convergence orders of u and w of ELF-LDG scheme in the single solitary wave example. L2 projection for u® and P~ projection for v°.
J N u v
llet|I2 G el Coo lle” 2 G lle"lloo Coo

po 200 100 7.4327E—02 * 4.5375E—02 * 1.7425E-01 * 1.0903E—-01 *
400 200 3.7242E-02 0.9970 2.2867E—02 0.9886 8.6718E—02 1.0068 5.4373E—02 1.0038
800 400 1.8631E—02 0.9992 1.1442E-02 0.9989 4.3211E-02 1.0049 2.7141E-02 1.0024
1600 800 9.3165E—03 0.9998 5.7186E—03 1.0007 2.1563E—02 1.0028 1.3566E—02 1.0005

p! 200 100 4.9784E—-03 * 6.6124E—03 * 8.2028E—03 * 1.0899E—02 *
400 200 1.2552E—-03 1.9877 1.7168E—03 1.9455 1.9907E—03 2.0429 2.7786E—03 19717
800 400 3.1448E—-04 1.9970 4.3265E—04 1.9885 4.8881E—04 2.0259 6.8834E—04 2.0132
1600 800 7.8660E—05 1.9992 1.0837E—04 1.9972 1.2102E-04 2.0140 1.7078E—04 2.0110

p? 200 100 2.4070E—04 * 2.9805E—04 * 3.7750E—04 * 5.1371E—-04 *
400 200 3.0407E—05 2.9847 3.7439E—05 2.9929 4.6416E—05 3.0238 6.2733E—05 3.0336
800 400 3.8111E-06 2.9961 4.7477E—-06 2.9792 5.7447E—06 3.0143 7.7004E—06 3.0262
1600 800 4.7671E—07 2.9990 5.9413E-07 2.9984 7.1428E—-07 3.0077 9.5320E—07 3.0141

p3 200 100 1.1264E—05 * 1.5191E-05 * 1.7196E—05 * 2.6429E—05 *
400 200 7.1039E—-07 3.9870 1.0075E—06 3.9144 1.0666E—06 4.0110 1.7418E—06 3.9235
800 400 4.4502E—-08 3.9967 6.3418E—08 3.9897 6.6283E—08 4.0082 1.0824E—-07 4.0082
1600 800 2.7833E—09 3.9990 3.9577E—09 4.0021 4.1292E—-09 4,0047 6.7114E—09 4,0115

5.3. Two solitary waves

In this example, we consider the case when two solitary waves move towards each other and collide. The initial condi-
tions are given by

a1 X—Xq 2 a2 X—X2
ux,0)=o sech? — + a3 sech — ,
! V6 V6 f

and
BN ) o [E12 20
1 6 B
a pdfelement -\, [ [ar—x
The Trial Version 6 A 6 A ’

moves to the right with speed Bi. The other one is initially located at x = x with the amplitude «,, and moves to the left
with speed |83].
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Table 5.3
Numerical error and convergence orders of u and w of IMR-LDG scheme in the single solitary wave example. L2 projection for both u® and vO.
] N u v
llevIl2 G lle¥lloo Coo lle"ll2 G lle"lloo Coo
po 200 100 9.3230E-02 * 6.3510E—02 * 1.0936E—01 * 8.3849E—-02 *
400 200 4.7135E-02 0.9840 3.4033E-02 0.9001 5.4858E—02 0.9953 4.1718E—-02 1.0071
800 400 2.3658E—02 0.9945 1.7407E—02 0.9673 2.7428E—-02 1.0001 2.0590E—-02 1.0187
1600 800 1.1846E—02 0.9979 8.8129E—-03 0.9820 1.3708E—02 1.0006 1.0235E-02 1.0084
p! 200 100 2.3293E-02 * 2.3803E—-02 * 7.2707E—-03 * 1.0541E—-02 *
400 200 1.2475E—-02 0.9008 1.2039E-02 0.9835 1.7859E—-03 2.0255 2.6515E-03 1.9911
800 400 6.4414E—-03 0.9537 6.0270E—-03 0.9982 4.4008E—04 2.0208 6.5169E—04 2.0246
1600 800 3.2697E—-03 0.9782 3.0116E—-03 1.0009 1.0909E—-04 2.0123 1.6170E—04 2.0109
p? 200 100 1.6790E—-03 * 1.4164E—-03 * 3.4423E-04 * 4.8748E—04 *
400 200 4.0062E—04 2.0673 3.2527E-04 21225 4.2580E—05 3.0151 5.9007E—05 3.0464
800 400 9.8736E—05 2.0206 8.0494E—-05 2.0147 5.2808E—06 3.0113 7.3467E—06 3.0057
1600 800 2.4593E-05 2.0053 2.0076E—-05 2.0034 6.5712E—-07 3.0065 9.0977E—-07 3.0135
p3 200 100 1.4156E—04 * 2.0907E—04 * 1.6208E—05 * 2.6065E—05 *
400 200 1.8608E—05 2.9274 2.8674E—-05 2.8662 1.0092E—-06 4.0054 1.6896E—06 3.9474
800 400 2.3676E—06 2.9745 3.6735E—06 2.9645 6.2806E—08 4.0062 1.0407E—07 4,0211

1600 800 2.9792E-07 2.9904 4.6237E—07 2.9900 3.9149E-09 4.0039 6.4817E—09 4.0050

Table 5.4
Numerical error and convergence orders of u and w of IMR-LDG scheme in the single solitary wave example. L? projection for u® and P~ projection for v°.
J N u v
llet|l2 G llelloo Coo lle” 12 G e lloo Coo

po 200 100 7.4327E—02 * 4.5375E—02 * 1.7425E-01 * 1.0903E-01 *
400 200 3.7242E-02 0.9970 2.2867E—02 0.9886 8.6718E—02 1.0068 5.4373E—02 1.0038
800 400 1.8631E—02 0.9992 1.1442E-02 0.9989 4.3211E-02 1.0049 2.7141E-02 1.0024
1600 800 9.3165E—03 0.9998 5.7186E—03 1.0007 2.1563E—02 1.0028 1.3566E—02 1.0005

p! 200 100 4.9784E—-03 * 6.6124E—03 * 8.2028E—03 * 1.0899E—02 *
400 200 1.2552E—-03 1.9877 1.7168E—03 1.9455 1.9907E—-03 2.0429 2.7786E—03 19717
800 400 3.1448E—-04 1.9970 4.3265E—04 1.9885 4.8881E—04 2.0259 6.8834E—04 2.0132
1600 800 7.8660E—05 1.9992 1.0837E—04 1.9972 1.2102E—04 2.0140 1.7078E—04 2.0110

p? 200 100 2.4070E—04 * 2.9804E—04 * 3.7750E—04 * 5.1370E—04 *
400 200 3.0407E—05 2.9847 3.7438E—05 2.9929 4.6416E—05 3.0238 6.2733E—05 3.0336
800 400 3.8111E-06 2.9961 4.7476E—06 2.9792 5.7447E—06 3.0143 7.7003E—-06 3.0262
1600 800 4.7671E—07 2.9990 5.9412E—-07 2.9984 7.1428E—-07 3.0077 9.5320E—07 3.0141

p3 200 100 1.1264E—05 * 1.5200E—05 * 1.7196E—05 * 2.6432E—05 *
400 200 7.1038E—07 3.9870 1.0086E—06 3.9137 1.0666E—06 4.0110 1.7421E—-06 3.9233
800 400 4.4500E—08 3.9967 6.3554E—08 3.9882 6.6283E—08 4.0082 1.0829E—-07 4.0079
1600 800 2.7828E—09 3.9992 3.9779E—-09 3.9979 4.1292E—-09 4.0047 6.7173E—09 4.0108

In this example, we have chosen P3 as the space of basis functions and set

te[0,80], xe[-60,100], h=1, 7=0.1, x1=-20, x»=60.

The numerical results of both ELF-LDG and IMR-LDG methods with the same set of parameters are similar for this test, and
hence we only present the results of ELF-LDG methods with P3 basis to save space.

We are interested in the interaction between two waves of various parameters. As shown in [18,20,32,7,6,22], secondary
small solitary waves may appear numerically after the collision of two waves for a certain range of wave amplitudes, and
when such phenomenon appears, the interaction is named inelastic. Experience from these literatures suggested that, when
max(a1, o) < 0.4, there are no visible secondary soliton waves in the interior of the region between the principal solitons,
and the collision is elastic. And when max (o, a2) > 0.4, the interaction is inelastic and noticeable secondary soliton waves

ision.

bllision of two solitary waves with the same amplitude. Fig. 5.4 presents the propagation of two
oy = 0.2. We can observe that both solitary waves preserve their original amplitudes and no
. There is no visible secondary solitary waves and this collision is elastic. Fig. 5.5 presents the
The Trial Version ary waves with oy = oy = 1.2, where some secondary solitary waves can be observed after the
P in good agreement with those reported in the literatures.

Next, we present some results when solitary waves of different amplitudes interact. Fig. 5.6 includes the interaction of
two solitary waves with o1 = 0.1, 3 = 0.3, and we can observe that the collision is elastic with no secondary solitary
waves. Figs. 5.7, 5.8 and 5.9 present the interaction of two solitary waves with a1 = 0.1, ap = 0.5, with o1 = 0.1, 2 = 1.2

) pdfelement
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Fig. 5.1. Errors of mass (left) and energy (right) in the single solitary wave example. Top: results of the ELF-LDG scheme with P! basis; Bottom: results of
the IMR-LDG scheme with P! basis.

and with a1 = 1.2, oy = 1.5, respectively. Secondary solitary waves appear after the interaction (although some of them are
relatively small) and the collisions are inelastic.

Following the definition in [32,6], the inelasticity coefficient K, is defined as follows
Om

Ky =—",
max(a1, a2)

where oy, is the maximum joint amplitude at the collision time. Table 5.5 shows the maximum joint amplitudes of our

methods at the collision time, compared with those in [30] and [7]. For comparison, the parameters to generate these data
in Table 5.5 are set as

x1=-20, x,=30, x=-80, x=120,

which is the same as those in [30,7]. We notice that o, is always smaller than the average of two wave amplitudes
gafficient K, will decrease when «; increase while keeping o1 invariant. The numerical results of our
ose in the literatures, but with a much larger spatial and temporal step size.
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nsider the wave break-up phenomenon. The initial conditions are given in the following:

u(x, 0) = 2o sech? \/gx—ﬁxo . u(x,00=0,
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Fig. 5.4. The propagation of two solitary waves (left) and the contour line (right) with oy =0.2, o =0.2.

Fig. 5.5. The propagation of two solitary waves (left) and the contour line (right) with o1 =1.2, o =1.2.
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Fig. 5.6. The propagation of two solitary waves (left) and the contour line (right) with oy =0.1, o =0.3.
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Fig. 5.7. The propagation of two solitary waves (left) and the contour line (right) with @y =0.1, @z =0.5.

Fig. 5.8. The propagation of two solitary waves (left) and the contour line (right) with o1 =0.1, o =1.2.
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Fig. 5.9. The propagation of two solitary waves (left) and the contour line (right) with o1 =1.2, o =1.5.
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Table 5.5
The maximum joint amplitudes at the collision of ELF-LDG methods with P3 basis and various o, a;. Parameters: h = 0.5, T = 0.01, x; = —20, xo = 30,
X = —80, x =120 and T = 30.
aq o Our an, o in [30] o in [7] Our Ky
h=0.5 t=0.01 h=0.1, T =0.001 h=0.1, T =0.001
0.4 0.4 0.72243 0.72243 0.71642 1.80607
2 2 3.31617 3.31620 3.25880 1.65809
0.4 0.5 0.80846 0.80843 0.79614 1.61692
0.4 15 1.71761 1.71760 1.62530 1.14507
0.4 25 2.66881 2.66880 2.56680 1.06752

Fig. 5.10. A solitary wave breaks up (left) and the contour line (right) test with o =1.

where g =,/1+ ZT"‘ In the numerical experiment, we have chosen P3 as the space of basis functions, and set

X0 =20, xe€[-60,100], te[0,60], h=1, t7=0.1.

Again, the numerical results are based on the ELF-LDG methods.

Fig. 5.10 shows an initial solitary wave with amplitude o = 1 breaking into two smaller diverging solitary waves. Note
that the two solitary waves are symmetric and move in opposite directions with oscillating tails between them. In Fig. 5.11,
we observe an initial wave with amplitude o = 0.1 breaks into two smaller solitary waves, symmetric and moving in op-
posite directions, while no visible oscillating tails between them. The wave break-up can be viewed as two same amplitude
waves collision by setting the initial time as the time of two waves collision. Therefore the observation of with or without
oscillating tails in Figs. 5.10 and 5.11 is consistent with the conclusions in Section 5.3.

5.5. Finite time blow-up

In this example, we simulate the finite time blow-up of the numerical solution, which was discussed in [27,37,38]. The
equation is considered on x € [0, 1] with the initial conditions

u(x,0) = —3sin(wx), u(x,0)=—sin(wx).

Under this setup, it is known from the discussion in [37] that there exists a finite time TC such that a unique local solution
u e C2([0, T°); H?(0, 1) H,(0, 1) exists and satisfies

00, as t— TO,

) pdfelement

The Trial Version n(rx)dx — —oo, as t— TO.

We use ELF-LDG scheme with P3 basis and h = 0.005, T = 0.001 to simulate this example. The numerical solution up
at various times (before the blow-up) is shown in Fig. 5.12, where we can observe that the solution tends to blow up at
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Fig. 5.12. The numerical solution uj, of the blow-up test at different times.

x=0.5 and reaches the value of —3 x 10* when t = 2.18. The time history of the quantity I(t) and the 3D plot of the
numerical solution up(x,t) are shown in Fig. 5.13.

6. Concluding remarks

In this paper, we have developed and analyzed energy conserving LDG methods for solving improved Boussinesq equa-
tion. We proved that the proposed semi-discrete scheme has the desired property of preserving mass and energy exactly. An
optimal error estimate is provided for the semi-discrete methods if the flux and initial projection are chosen carefully, and
numerical tests confirm that optimal convergence rate can be obtained. Both explicit and implicit temporal discretizations

@ two kinds of fully discrete methods, which are shown to conserve the discrete mass and energy

methods have the advantage of high order accuracy and easily extended to arbitrary order, mass
.- pdfe|ement and optimgl error estimate. They also inherit other ad\{antages of the DG methods, including the
arallel efficiency. Numerous examples of wave propagation showed the proposed LDG scheme has

ne traveling solitary wave, two solitary waves interaction, single wave break-up and blow-up phe-
bsed methods and the analysis to investigate the energy conservation and error estimate would
be very useful for other types of wave equations involving nonlinear high order and mixed derivatives terms. Study on the

error estimate of the fully discrete methods, and generalization to other wave equations will be the subject of our future
investigation.

The Trial Version
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Fig. 5.13. Numerical results of the blow-up test. Left: time history of the quantity I(t); Right: 3D plot of the time history of the numerical solution uj,.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982) 742-760.
[2] LL. Bogolubsky, Modified equation of a nonlinear string and inelastic interaction of solitons, J. Exp. Theor. Phys. 24 (1976) 184-186.
[3] LL. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun. 13 (1977) 149-155.
[4] J.L. Bona, H. Chen, O.A. Karakashian, Y. Xing, Conservative discontinuous Galerkin methods for the Generalized Korteweg-de Vries equation, Math.
Comput. 82 (2013) 1401-1432.
[5] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu
dans ce canal des vitesses sensiblement pareilles de la surface au fond, ]. Math. Pures Appl., Deux. Sér. 17 (1872) 55-108.
[6] A.G. Bratsos, A second order numerical scheme for the improved Boussinesq equation, Phys. Lett. A 370 (2) (2007) 145-147.
[7] A.G. Bratsos, A predictor-corrector scheme for the improved Boussinesq equation, Chaos Solitons Fractals 40 (2009) 2083-2094.
[8] P. Ciarlet, The Finite Element Method for Elliptic Problem, North-Holland, 1975.
[9] Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives,
Math. Comput. 77 (2008) 699-730.
[10] Y. Cheng, C.-S. Chou, F. Li, Y. Xing, L2 stable discontinuous Galerkin methods for one-dimensional two-way wave equations, Math. Comput. 86 (2017)
121-155.
[11] C.-S. Chou, C.-W. Shu, Y. Xing, Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous
media, J. Comput. Phys. 272 (2014) 88-107.
[12] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order
elliptic problems, SIAM ]. Numer. Anal. 42 (2009) 1319-1365.
[13] B. Cockburn, S.-Y. Hou, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The
multidimensional case, ]. Comput. Phys. 141 (1998) 199-224.
[14] B. Cockburn, S.-Y. Lin, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimen-
sional systems, ]. Comput. Phys. 84 (1989) 90-113.
[15] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general frame-
work, Math. Comput. 52 (1989) 411-435.
[16] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: multidimen-
sional systems, Math. Comput. 52 (1989) 411-435.
[17] B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998)
2440-2463.
[18] H. El-Zoheiry, Numerical study of the improved Boussinesq equation, Chaos Solitons Fractals 14 (2002) 377-384.
[19] L. Guo, Y. Xu, Energy conserving local discontinuous Galerkin methods for the nonlinear Schrodinger equation with wave operator, J. Sci. Comput. 65
(2015) 622-647.

erical solutions of the improved Boussinesq equation, Proc. Indian Acad. Sci. Math. Sci. 89 (1980) 171-181.

A posteriori error estimates for conservative local discontinuous Galerkin methods for the Generalized Korteweg-de Vries
[ ut. Phys. 20 (2016) 250-278.

| pdfelement S. Lai, Linear B-spline finite element method for the improved Boussinesq equation, ]. Comput. Appl. Math. 224 (2) (2009)

The Trial Version , Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput. 73 (2017) 943-967.
Optimal energy conserving and energy dissipative local discontinuous Galerkin methods for the Benjamin-Bona-Mahony

[25] X. Liang, A.Q.M. Khaliq, Y. Xing, Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled
nonlinear Schrodinger equations, Commun. Comput. Phys. 17 (2015) 510-541.
[26] H. Liu, Y. Xing, An invariant preserving discontinuous Galerkin method for the Camassa-Holm equation, SIAM ]. Sci. Comput. 38 (2016) A1919-A1934.


http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4131393832s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4231393736s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4231393737s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib42434B5832303133s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib42434B5832303133s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4231383732s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4231383732s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib77616E6735s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib62726174736F73s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4331393735s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib435332303038s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib435332303038s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43434C5832303137s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43434C5832303137s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43535832303134s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43535832303134s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43474C32303039s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43474C32303039s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43485331393938s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43485331393938s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib434C5331393839s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib434C5331393839s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4353383932s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4353383932s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4353383935s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4353383935s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43533139393832s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib43533139393832s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4532303032s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib475832303135s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib475832303135s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib494A31393830s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4B5832303136s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4B5832303136s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib77616E673130s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib77616E673130s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4C535932303137s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4C4B5832303135s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4C4B5832303135s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4C583230313662s1

X. Liet al. / Journal of Computational Physics 401 (2020) 109002 25

[27] Q. Lin, Y.H. Wu, R. Loxton, S. Lai, Linear B-spline finite element method for the improved Boussinesq equation, ]. Comput. Appl. Math. 224 (2009)
658-667.

[28] V.S. Manoranjan, A.R. Mitchell, J. Li Morris, Numerical solutions of the good Boussinesq equation, SIAM J. Sci. Stat. Comput. 5 (1984) 946-957.

[29] W.H. Reed, T.R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los
Alamos, NM, 1973.

[30] A. Shokri, M. Dehghan, A not-a-knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of im-
proved Boussinesq equation, Comput. Phys. Commun. 181 (2010) 1990-2000.

[31] H.J. Wang, C.-W. Shu, Q. Zhang, Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time-marching for advection-
diffusion problems, SIAM ]. Numer. Anal. 53 (2015) 206-227.

[32] Q. Wang, Z. Zhang, X. Zhang, Q. Zhu, Energy-preserving finite volume element method for the improved Boussinesq equation, ]. Comput. Phys. 270
(2014) 58-69.

[33] Y. Xing, C.-S. Chou, C.-W. Shu, Energy conserving local discontinuous Galerkin methods for wave propagation problems, Inverse Probl. Imaging 7 (2013)
967-986.

[34] Y. Xu, C.-W. Shu, Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection diffusion and KdV equations,
Comput. Methods Appl. Mech. Eng. 196 (2007) 3805-3822.

[35] Y. Xu, C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Commun. Comput. Phys. 7 (2010)
1-46.

[36] J. Yan, Z. Zhang, T. Zhao, D. Liang, High-order energy-preserving schemes for the improved Boussinesq equation, Numer. Methods Partial Differ. Equ.
34 (2018) 1145-1165.

[37] Z. Yang, Existence and non-existence of global solutions to a generalized modification of the improved Boussinesq equation, Math. Methods Appl. Sci.
21 (1998) 1467-1477.

[38] Z. Yang, X. Wang, Blow up of solutions for improved Boussinesq-type equation, J. Math. Anal. Appl. 278 (2003) 335-353.

[39] Z. Zlatev, 1. Dimov, I. Farago, A. Havasi, Richardson Extrapolation: Practical Aspects and Applications, De Gruyter Series in Applied and Numerical
Mathematics, vol. 2, De Gruyter, 2017.

) pdfelement

The Trial Version



http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4C574C32303039s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4C574C32303039s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib4D4D4D31393834s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib524831393733s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib524831393733s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib616C69s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib616C69s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib57535A32303135s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib57535A32303135s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib575A5A5A32303134s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib575A5A5A32303134s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib58435332303133s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib58435332303133s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib585332303037s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib585332303037s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib585332303130s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib585332303130s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib595A5A4C32303138s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib595A5A4C32303138s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib6C696E3139s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib6C696E3139s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib6C696E3230s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib5A6C6174657632303138s1
http://refhub.elsevier.com/S0021-9991(19)30707-7/bib5A6C6174657632303138s1

	Energy conserving local discontinuous Galerkin methods for the improved Boussinesq equation
	1 Introduction
	2 Local discontinuous Galerkin discretization
	2.1 Model problem
	2.2 Notations
	2.3 LDG method for the improved Boussinesq equation
	2.4 Conservation of mass and energy

	3 Error estimate
	4 Temporal discretization
	4.1 Explicit leap-frog method
	4.2 Implicit midpoint method
	4.3 Fourth order temporal discretization via extrapolation

	5 Numerical experiments
	5.1 Accuracy test
	5.2 Mass, energy conservation and long time behavior
	5.3 Two solitary waves
	5.4 Wave break-up
	5.5 Finite time blow-up

	6 Concluding remarks
	References




