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Abstract
Clustering is a challenging problem in unsupervised learning. In lieu of a gold stan-
dard, stability has become a valuable surrogate to performance and robustness. In this
work, we propose a non-parametric bootstrapping approach to estimating the stabil-
ity of a clustering method, which also captures stability of the individual clusters and
observations. This flexible framework enables different types of comparisons between
clusterings and can be used in connection with two possible bootstrap approaches for
stability. The first approach, scheme 1, can be used to assess confidence (stability)
around clustering from the original dataset based on bootstrap replications. A second
approach, scheme 2, searches over the bootstrap clusterings for an optimally stable
partitioning of the data. The two schemes accommodate different model assumptions
that can be motivated by an investigator’s trust (or lack thereof) in the original data
and additional computational considerations. We propose a hierarchical visualization
extrapolated from the stability profiles that give insights into the separation of groups,
and projected visualizations for the inspection of the stability of individual opera-
tions. Our approaches show good performance in simulation and on real data. These
approaches can be implemented using the R package bootcluster that is available
on the Comprehensive R Archive Network (CRAN).
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1 Introduction

Clustering is used to group items in a dataset based on similarity. Generally, the
clustering problem can be framed as an optimization problem, where the objective is
to maximize the similarity within a group, andminimize the similarity between groups
(Jain et al. 1999). However, performance and robustness is difficult to quantify and
are very much a function of the data set at hand. In lieu of a gold standard, the stability
of a particular clustering of a dataset can be used as a surrogate for performance and
robustness.

Various definitions, applications and estimations of stability have emerged in recent
years. The overarching aim of stability is to capture how stable the clusterings are
over several different representations of the data (Von Luxburg 2009). These data
representations are derived either through subsetting, cross-validation, data noising
or re-sampling, among others. Different data representations have the potential to
reveal different characterizations of stability for a clustering. Recently, Von Luxburg
(2009) provided a survey on the use of stability for clustering data that emphasizes the
sensitivity of the underlying structure to these data representations. Stability based on
subsampling is an intuitive example of where this sensitivity can be readily observed,
especially when the subsets are small. Another intuitive example is when the stability
estimate is generated by adding noise to the data, which can easily erode any signal
of structure, and give rise to misleading results (Hennig 2007). Briefly, we provide a
basic overview of approaches to stability estimation for clustering, but refer the reader
to Von Luxburg (2009) for a more comprehensive survey.

The bootstrap (Efron and Tibshirani 1994) has been leveraged to connect ensemble
clustering and cluster stability estimation. Felsenstein (1985) used a non-parametric
bootstrap (Efron et al. 1996) to infer phylogenetic trees in one of the earliest examples
of re-sampling for various summarizations over an ensemble of dendrograms. Kerr and
Churchill (2001) proposed a residual bootstrap that shuffles residuals from an analysis
of variance (ANOVA)model of gene expression data. Clusters from the bootstrap data
were compared to the original clusterings to assess confidence in the various clusters.
This approach is model-based in the sense that the ANOVA model fit is required to
obtain residuals, and also requires a suitable experimental design.Dudoit andFridlyand
(2003) propose applications of bagging to clustering that frames the unsupervised
problem as the supervised classification problem of predicting cluster labels. Two
bootstrapping schemes were proposed, BagClust1 determines cluster membership by
consensus from a bootstrap and permutation scheme, and BagClust2 derives a new
dissimilarity matrix based on bootstrapped data that is then used for input for another
round of clustering (Dudoit and Fridlyand 2003). In both approaches, improvements
in accuracy were observed.

Fang and Wang (2012) proposed the use of the non-parametric bootstrap for the
estimation of the number of clusters, k. The estimation of stability that they propose
is a function of pairwise comparisons between B bootstrap samples. For each pair of
bootstrap samples, the original data is projected onto the bootstrap clusterings, and
distance between the projections is calculated using binary indicators, see Fang and
Wang (2012) for details. The mapping of the data to the bootstrap clusterings is not
explicitly described. For k-means, a possibility is to assign membership based on the
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distance to the closest center, but in hierarchical clustering, this may require the use of
a pre-defined linkage. Improvements were observed over a cross-validation approach
proposed by Wang (2010), which overestimates the instability of the clustering due to
bias arising from the fold assignments.

Clustering over various subsets of the data is another approach to stability esti-
mation. Ben-Hur et al. (2001) characterize stability through pairwise similarities of
clusterings obtained from random subsets of the observations. Similarity is based on
the Jaccard distance between cluster labels for the random subsets. High similarities
between observations suggests a stable clustering, and the authors demonstrate that
this approach is a reliable way to select the number of clusters, and to assess the overall
lack of structure in the data (Ben-Hur et al. 2001).

Tibshirani and Walther (2005) proposed a method for estimating the number of
clusters by re-casting the unsupervised problem into a supervised classification prob-
lem, similar in spirit to Dudoit and Fridlyand (2003). Framing the problem in this way
enables the calculation of prediction strength, which quantifies how well a clustering
with k groups can be predicted by the data. Prediction strength is used for the purpose
of model selection. For each k, repeated cross-validation is used to form training and
test datasets, and prediction strength is calculated pairwise for observations in the test
data. Specifically, the training and test data is clustered separately for a fixed k. The test
data is then projected onto the training clustering. For example, in the k-means setting,
this projection amounts to membership labels based on the nearest centroid. For all
pairs assigned to the same cluster in the test data, those pairs that are also assigned the
same cluster (or not) in this projection are deemed to have a stable co-membership (or
not). For each cluster, the proportion of co-members that stably map together when
projected onto the training set is then computed, and the prediction strength is defined
to be the minimum of these proportions.

Within the prediction strength framework, an estimate of prediction strength at the
individual observation level is also defined (Tibshirani and Walther 2005). Similar to
calculations at the cluster level, the estimation of prediction strength at the individual
observation level is done in a pairwise manner. The estimate of prediction strength for
an individual, i , is estimated as the proportion of pairs (i, i ′) in the test cluster Ak(i)
that map to together with i when projected onto the training set, is the proportion of
pairwise co-memberships for all i ′ �= i , within the assigned cluster in the test data
that stably map together when projected onto the training set. In this work, we also
emphasize stability at the individual level, but define it as an estimate of how stable
an individual maps to the same cluster across bootstrap samples.

Hennig (2007) proposed a method to estimate cluster-wise stability through boot-
strapping and other re-sampling approaches. In this framework, the stability of an
original cluster is estimated by the mean maximal Jaccard coefficient. The stability
measure is specific to the clustering of the original data, as the comparisons are made
between all of the re-sampled clusterings, and the original data clustering. A limitation
of this approach is the implicit requirement of mapping between the re-sampled and
original clusters. Importantly, during the re-samplings, it is possible that an original
cluster is not detected through the mapping. When this occurs, the method simply
ignores the re-sampled clusterings for the estimation for that cluster. Consequently,
this can potentially lead to an overestimation of stability, since a cluster that does not
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consistently emerge during re-samplings is actually an indication of instability that is
not accounted for. In addition, as a measure of cluster similarity, the maximal Jaccard
coefficient is not symmetric (although the Jaccard coefficient itself is symmetric).
Due to asymmetricity, a one-to-one mapping between clusters arising from different
clusterings is not guaranteed, thus searching for maximum will tend to result in an
overestimation.

In this work we propose stability estimates based on the non-parametric bootstrap.
Our approaches offer several advantages over existing methods for stability estima-
tion. (1) To our knowledge, this is the first bootstrapping approach for cluster stability
that can guide in the determination of the number of clusters and also retains valuable
interpretations of stability at the level of the cluster and individual observation. (2)
Two bootstrapping approaches to stability are developed that reflect different model
assumptions, which can be motivated by an investigator’s trust (or lack thereof) in
the original data. Specifically, the first approach, scheme 1, can be used to assess
confidence (stability) around clustering from the original dataset based on bootstrap
replications. Whereas, a second approach, scheme 2, searches over the bootstrap clus-
terings for an optimally stable partitioning of the data. (3) Both bootstrap approaches
directly estimate the conditional stability through comparisons between clusterings
that depend on symmetric measure of cluster similarities. (4) Different visualizations
are proposed, such as hierarchical visualizations extrapolated from stability profiles
that reflect separation and stability of inferred clusters and projected visualizations
for the inspection of individual stability. In this work, we focus on k-means, but
the approach can be generalized to other clustering methods. The R (https://www.r-
project.org/) package, bootcluster, is available on the Comprehensive R Archive
Network (CRAN) and supports bootstrap stability estimation using these approaches.

2 Methods

In this section, we outline different approaches to estimating cluster stability that are
based on non-parametric bootstrapping. The objective is to estimate how stable the
clustering is (1) overall, (2) at the cluster level, and (3) at the individual observa-
tion level. This is achieved through the estimation of cluster centers for the original
data and bootstrapped datasets, the projection of the data onto the partitions esti-
mated from the bootstrapped datasets, and the comparisons of these mappings. Two
bootstrapping schemes are illustrated in Fig. 1, which differ in the nature of their
comparisons. Scheme 1 (Fig. 1a) depicts a scenario in which the clusterings arising
from the bootstrapped datasets are directly compared to the clustering of the original
data. In scheme 2 (Fig. 1b), the clusterings arising from the bootstrapped datasets are
compared to the clusterings of the original data, and to each other. These approaches
can be implemented using the R package bootcluster that is available on CRAN.

In the following sections, we propose two approaches that can be used to make the
comparisons that underly the stability estimates used in scheme 1 and 2 (Fig. 1). We
define naive stability (Sect. 2.1) as estimates that rely on the crude indicators (0–1)
to capture a stable mapping, or lack thereof, when the data points are fit to the boot-
strapped centers. An alternative approach is presented that utilizes the Jaccard index
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- Compared via Jaccard

- Bootstrapped dataset i
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C* - Clustering for comparison
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- Clustering of the reference dataCD

Data

B1 B2 B3 B4 Bp

C1 C2 C4 CpC3
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B1 B2 B3 B4 Bp

C1 C2 C4 CpC3
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B1 B2 B3 B4 Bp
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C2 C4 CpC3
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B1 B2 B3 B4 Bp

C1 C2 C4

Cp

C3

C0 C0

C0

C0

(A) (B)

Fig. 1 Schematics for bootstrapping schemes for estimating clustering stability. a Clusters are estimated
from the data, C0. Bootstrap data sets are sampled from the data with replacement (B1, . . . , Bp) and
clustered (C1, . . . ,Cp). The bootstrap clusterings are compared only to the original clustering of the data,
C∗
0 , using a naive 0–1 approach to membership, or a Jaccard coefficient. b Similar to scheme A, clusters

are estimated from the data and bootstrapped datasets. However, in addition to comparing the original data
clustering to the bootstrapped clusterings, each of the bootstrapped clusterings is compared with each other,
and the original data clustering

(Sect. 2.2) to estimate the stability in the same basic framework. For simplicity, we
develop these approaches for the k-means algorithm, but themethods are generalizable
to other prototype and non-prototype methods. Moreover, we describe the naive and
Jaccard-based formulations within the scheme 1 framework, but these formulations
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are used in connection with both bootstrapping schemes, and are both implemented
in our applications.

2.1 Bootstrapping estimation of naive stability

In this work, we define naive stability in a straightforward manner. By applying a
clustering algorithm to a dataset, each observation included is assigned a cluster label.
Ifwe have a bootstrapped sample, then newcluster assignmentswill be obtained,which
leads to a different partition of the feature space. This causes changes in the labels
of some observations and also in the members of certain clusters. The observations
that switch labels frequently across bootstrap re-samplings are regarded as unstable.
Therefore, the naive stability of an observation can be measured by the frequency that
it remains in a cluster across re-samplings.

This procedure is outlined in Algorithm 1, where X = (X1, X2, . . . , Xn)
T is the

sample of size n, andXb is the data set from bth re-sampling. The notation C is used to
denote a clustering, with Cb as the clustering on the bth re-sampled data. Further, Cbi
denotes the set of data points in the i th cluster of Cb, while C(Xi ) is the set of all data
points in the cluster that contains Xi . A limitation to the naive approach is that clusters
from different re-samplings have to be mapped to each other. In our applications, the
minimum Euclidean distance between cluster centers is used for the mapping. Note
that in Algorithms 1 and 2, the number of clusters, k, is fixed for the calculation of
bootstrapped stability. In practice, this algorithm should be implemented several times
over a range of k values to estimate the number of clusters.

Algorithm 1 Bootstrapping estimation of naive stability
Input:
m0 ∈ Rk×p - cluster centers for full data, X0, or reference dataset.
C0 ∈ Rn - cluster memberships for full data, X0, or reference dataset.
X1,X2, . . . ,XB - bootstrap samples.
k - number of clusters.
for b = 1 to B do

Apply k-means clustering to Xb to obtain mb .
Map observations xi −→ mb , ∀xi ∈ X , to obtain its bootstrapped membership Cb(xi ).
Map bootstrapped clusters Cb −→ Cb0.
Map points to original clusters Cb0(xi ).
Obtain the indicator of whether xi changes membership I bi = I {Cb0(xi ) = C0(xi )}.
I b ∈ Rn - Indicator vector by the bootstrapped data.

end for

Output:
Sobs = 1

B
∑B

b=1 I
b ∈ Rn - observation stability vector.

Sclust = 1
n j

∑
x∈C0

j
Sobs ∈ Rk , where n j = |C0j | for j = 1, . . . , k.

Sover = 1
n

∑n
i Sobsi ∈ R.
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2.2 Bootstrapping estimation of Jaccard index based stability

For the naive estimation of stability proposed in Algorithm 1, we defined stability at
the observation level as the probability of an observation consistently being assigned
to the same cluster. However, the naive stability estimation of Algorithm 1 requires
the mapping between centers from different re-samplings. This can be an issue when
a cluster is broken down into multiple smaller clusters in a re-sampled clustering. This
problem can be circumvented by using the change in pairwise co-membership.

To motivate the use of the Jaccard coefficient, let us first consider the Hamming
distance between clusterings, which are based on such pair-wise relationships. Let C
andD be two clustering partitions of X , which is distributed as P . We use the notation
xi ∼C x j , when xi and x j belong to the same cluster of C, and xi �C x j otherwise.
The Hamming clustering distance between two clusterings, C and D, is defined as:

dP (C,D) = Pr [(xi ∼C x j ) ⊕ (xi ∼D x j )],

where ⊕ is the logical XOR operation. Along the same lines, the similarity between
two clusterings can be defined as:

Sim(C,D) =
n∑

i=1

n∑

j=1, j �=i

I (xi ∼C x j )I (xi ∼D x j ) + I (xi �C x j )I (xi �D x j )

n(n − 1)
,

which is constructed based on agreements on each co-membership between two clus-
terings, C and D. Let the similarity at the individual level as:

Sim(xi , C,D) =
n∑

j=1, j �=i

I (xi ∼C x j )I (xi ∼D x j ) + I (xi �C x j )I (xi �D x j )

n − 1
.

Thus, the overall similarity can be decomposed in terms of each observation:

Sim(C,D) = 1

n

n∑

i=1

Sim(xi , C,D), (1)

where, Sim(xi , C,D), can be expressed as:

Sim(xi , C,D) =
n∑

j=1, j �=i

I (xi ∼C x j )I (xi ∼D x j ) + I (xi �C x j )I (xi �D x j )

n − 1

=
n∑

j=1, j �=i

{I (xi ∼C x j )I (xi ∼D x j ) + I (xi �C x j )I (xi �D x j )}

[ n∑

j=1, j �=i

{I (xi ∼C x j )I (xi ∼D x j ) + I (xi ∼C x j )I (xi �D x j )

+ I (xi �C x j )I (xi ∼D x j ) + I (xi �C x j )I (xi �D x j )
]−1

.

(2)
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Upon inspection of Sim(xi , C,D), it is immediately clear that the summation∑
j �=i I (xi �C x j )I (xi �D x j ) is expected to be large and dominating, which will

tend to send Sim(xi , C,D) → 1. Ignoring this part, Sim(xi , C,D) can be redefined
as:

A(xi , C,D) =
n∑

j=1, j �=i

I (xi ∼C x j )I (xi ∼D x j )
[ n∑

j=1, j �=i

{I (xi ∼C x j )I (xi ∼D x j )

+ I (xi ∼C x j )I (xi �D x j ) + I (xi �C x j )I (xi ∼D x j )}
]−1

= |C(xi ) ∩ D(xi )| − 1

|C(xi ) ∪ D(xi )| − 1

≈ |C(xi ) ∩ D(xi )|
|C(xi ) ∪ D(xi )|

= Jaccard(C(xi ),D(xi )).

The definition of overall similarity remains, except that the observation-wise simi-
larity Sim(xi , C,D) is replaced by A(xi , C,D) in Equation(1):

A(C,D) = 1

n

n∑

i=1

A(xi , C,D). (3)

Let C0, . . . , CB be the clusterings obtained from original data and B re-sampled data
sets, then we define conditional observation-wise and overall stability estimated as:

Sobs(xk, Ci ) = 1

B

B∑

j=0, j �=i

A(xk, Ci , C j ),

Sover (Ci ) = 1

B

B∑

j=0, j �=i

A(Ci , C j ), (4)

and unconditional overall stability:

Sover = 1

B(B + 1)

B∑

i=0

B∑

j=0, j �=i

Sim(Ci , C j ) = 1

B + 1

B∑

i=0

Sover (Ci ). (5)

Notably, unconditional cluster-wise stability cannot be defined.Moreover, although
the unconditional overall stability can be defined, we emphasize that it is generally
not useful because it does not reflect the feature of a specific clustering. Therefore,
all the stability estimates in this study are conditional on a reference clustering. By
this definition, we propose the Jaccard index based stability, and the bootstrapping
approach for estimation in Algorithm 2. This algorithm proceeds similarly to Algo-
rithm 1, but with some key differences. For each bootstrapped dataset, k-means is
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applied to obtain estimates of the centers mb. Note that each observation, xi , is then
mapped to the closest center using Euclidean distance. Finally, the Jaccard coefficient
is computed between the bootstrapped and reference clusterings.

In these approaches, the fact that the bootstrapped datasets may contain repeated
observations, and may omit some observations, is not problematic. This is because
the bootstrapped dataset is used to update the mean estimates (centroids) in each
iteration of k-means. If multiple instances occur in a data set, then within k-means,
these multiple instances will be assigned the same cluster membership and used to
update the means accordingly. On the other hand, if an observation does not occur,
it will not enter into the clustering of the bootstrapped sample. However, once the
k-means clustering has been carried out until convergence on the bootstrapped data,
the means from the clustering are used to map each observation in the dataset, xi , to
a cluster (xi −→ mb) in order to obtain its membership, Cb(x), which is based on
the minimum distance to the mean centers. This process can be understood in the first
couple of lines within the for loops in Algorithms 1 and 2.

Algorithm 2 Bootstrapping estimation of Jaccard index based stability
Input:
m0 ∈ Rk×p - cluster centers for full data, X0, or reference dataset.
C0 ∈ Rn - cluster memberships for full data, X0, or reference dataset.
X1,X2, . . . ,XB - bootstrap samples. k - number of clusters.
for b = 1 to B do

Apply k-means clustering to Xb to obtain mb .
Map observations xi −→ mb , ∀xi ∈ X , to obtain its bootstrapped membership Cb(xi ).
Obtain the Jaccard coefficient with respect to xi , which is A(xi ) = Jaccard(C0(xi ),Cb(xi )).
Ab ∈ Rn - Jaccard coefficient vector by the bootstrapped data.

end for

Output:
Sobs = 1

B
∑B

b=1 Ab ∈ Rn - observation stability vector.

Sclust = 1
n j

∑
x∈C0

j
Sobs ∈ Rk , where n j = |C0j | for j = 1, . . . , k.

Sover = 1
n

∑n
i Sobsi ∈ R.

2.3 Properties of Jaccard-based observation-wise stability estimation

We propose that A(xi , C,D) is a valid measure of observation-wise clustering sim-
ilarity. Specific information is quantified from A(xi , C,D) about xi , and its value
ranges from 0 to 1. When C(xi ) and D(xi ) have exactly the same members, we
have A(xi , C,D) = 1, meaning clusterings C and D are identical with respect to
xi , although C and D can be very different with respect to other observations. When
C(xi ) andD(xi ) have completely different members except for xi , then A(xi , C,D) =

1
|C(xi )∪D(xi )| → 0 as |C(xi ) ∪ D(xi )| → ∞. On the other hand, this is not true for
Sim(xi , C,D). For example, if we have n = 100, and |C(xi )| = |D(xi )| = 10, then
in the above case we will have A(xi , C,D) = 1/20 = 0.05, which is close to 0, while
Sim(xi , C,D) = (1+ 80)/100 = 0.81. Inherently, Sim(xi , C,D) is very sensitive to
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both sample and cluster sizes, and the interpretation of similarity and stability would
vary among different data sets. Dropping the term

∑
j �=i I (xi �C x j )I (xi �D x j )

would have the effect of scaling the support of A(xi , C,D) to approximately to (0, 1],
and thus maintain consistent interpretation of the similarity and stability across data
sets.

The measure, A(xi , C,D) = A(xi ,D, C), is a symmetric measure of similarity
between C and D with respect to xi . This property justifies the comparison of a
fixed clustering with all other clusterings at the observation level, by which the con-
ditional stability is defined. We propose that the conditional stability is important
in that it retains the specific information for the reference clustering. We illustrate
this concept with a simple example. Let C1, C2, . . . C101 be a set of 101 cluster-
ings, based on the original data clustering and re-sampled clusterings. Suppose that
C1(xi )∩ C j (xi ) = {xi }, j = 2, 3, . . . , 101, and C2(xi ) = · · · = C101(xi ). In addition,
we assume |C j (xi )| = 10, j = 1, 2, ..., 101. The observation-wise clustering similar-
ity is calculated as, A(xi , C1, C j ) ≈ 0.05, j = 2, . . . 101, and A(xi , C j , Ck) = 1, for
2 ≤ j �= k ≤ 101. Furthermore, it can be shown that the conditional stability estimate
(Equation 4) is Sobs(xi , C1) ≈ 0.05, while Sobs(xi , C j ) ≈ 0.99. The interpretation
is that, the clustering of xi in C1 is unstable, but are stable in C j , j = 2, 3, . . . , 101.
However, if the unconditional overall stability (Equation 5) is used, then the estimates
will be erroneously concluded that the results are generally stable, regardless of the
clustering it refers to.

2.4 Bootstrapped estimate description inmathematical terms

The stability estimates arising frombootstrap schemes 1 and 2 (Fig. 1) can be expressed
as conditional and unconditional expectations, respectively. Let Xi be a random
variable such that Xi ∼ F(x) and X = (X1, X2, . . . , Xn)

T , while Y is another
independent sample drawn from the same distribution. Let CX denote the partition of
sample space that corresponds to a sample X, and CX(x) denote the set of all points
in sample space that are within the same partition of x . Then, we define the similarity
between two partitions CX and CY with respect to x as:

A(CX, CY | x) = P(z ∈ CX(x) ∩ CY(x))
P(z ∈ CX(x) ∪ CY(x)) ,

and the overall similarity as:

A(CX, CY) = Ex (A(CX, CY | x)).

The overall stability with respect to a sample X, which is estimated by scheme 1
(Fig. 1a), can be defined as:

Sover (CX) = EXY(A(CX, CY) | CX),
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where EXY takes the expectation over both X and Y. On the other hand, the uncondi-
tioned stability estimated by scheme 2 (Fig. 1b) can be expressed as:

Sover = EXY(A(CX, CY)).

The individual stability is more meaningful in the conditioned scheme 2, and can be
defined as:

Sobs (x | CX) = E (A (CX, CY | x) | CX) .

The cluster-wise stability is defined as the integration of Sobs(x | CX) within a corre-
sponding partition with respect to x .

2.5 Estimation of k

The stability estimates can be used for selecting the number of clusters, k. For this
purpose, the bootstrapping schemes should be carried out over a range of k values,
resulting in a stability profile. However, instead of directly using the overall stability,
we calculate cluster-wise mean Jaccard index during each re-sampling, record the
minimum, and then average the minima across the B re-samplings. This measure is
defined based on observation-wise similarity, such that it will have a large drop when
k̂ is greater than the true number of clusters k, and be independent of the value k.
The overall stability does not always have such desirable properties. For example,
when k̂ = k + 1, there will always be at least one group randomly split into at least
two clusters, leading to a drop in stability. However, when k is large, this drop may
be washed out in the average of stability, which is calculated over a large number of
clusters. In contrast, the proposed measure, denoted by Smin , only records the minimal
cluster-wise similarity from each re-sampling, such that the effects of random splitting
of groups will stand out, regardless of k. A similar minimum estimate is also utilized
in the prediction strength method (Tibshirani and Walther 2005).

For the selection of k, we define cluster-wise similarity for the i th cluster in bth
re-sampling as:

Ab(C0i ) = 1

|C0i |
∑

x∈C0
i

Jaccard(C0i , Cb(x)),

then we can further define the average of minimum similarity as

Smin = 1

B

B∑

b=1

min
i

Ab(C0i ).

The definition of the similarity at the level of the observation (individual) enables
us to compute Smin , which we use for model selection. Note that when k̂ is smaller
than the true number of clusters the clustering result can be either stable or unstable,
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depending on the geometry of feature space. On the other hand, when k̂ is larger, the
clustering results tends to be unstable. Therefore, instead of using maximal stability,
we select the maximum k with a Smin over a specified threshold. In our applications,
thresholds are applied in the range of 0.8–0.9, which are also used in the prediction
strength method (Tibshirani and Walther 2005).

2.6 Simulations

A series of simulations are used to assess and benchmark the performance of the
proposed bootstrapping stability methods. Our first simulation sets out to examine the
consequences from subsetting the data for stability estimation compared to the re-
sampling bootstrap approach. We examined scheme 1 using a naive formulation given
in Algorithm 1 to compare estimates arising from subsets of the data of dwindling
sizes. The naive formulation given in Algorithm 1 allows for the direct comparison
of the clustering results between the re-sampling and subsetting approach. For visual
purposes, two clusters were simulated in two dimensions, the clusters are standard
normal variables with (50, 50) observations per group, centered at (0, 0) and (2, 0),
respectively.

Following Tibshirani andWalther (2005), we also simulated six scenarios to exam-
ine the performancewith respect to selection of the number of clusters, k. The proposed
bootstrap schemes were tested, along with the pairwise bootstrap proposed by Fang
andWang (2012) and prediction strength (Tibshirani andWalther 2005). The pairwise
bootstrap and prediction strength were implemented in the R programming language
(https://www.r-project.org) using the package fpc. Each of the following simulations
was performed 50 times.

1. Null model: A null model simulation was performed using 200 data points uni-
formly distributed over the unit square in ten dimensions.

2. Three-cluster model: Three clusters were simulated in two dimensions: the
clusters are standard normal variables with (25, 25, 50) observations per group,
centered at (0, 0), (0, 5) and (5,− 3).

3. Random four clusters in three dimensions: Four clusters were randomly chosen
to have 25 or 50 multivariate normal observations with the covariance matrix
as the identity matrix, I , and cluster centers randomly chosen from N (0, 5 · I ).
Simulations with clusters having minimum distance less than 1.0 units between
them were discarded.

4. Random four clusters in ten dimensions: Four clusters were randomly chosen
to have 25 or 50 multivariate normal observations with the covariance matrix as
the identity matrix, I , and cluster centers randomly chosen from N (0, 1.9 · I ).
Simulations with clusters having minimum distance less than 1.0 units between
them were discarded. In this and the previous scenario, the settings are such that
about one-half of the random realizations were discarded.

5. Two elongated clusters: Two elongated clusters were simulated in three dimen-
sions. Each cluster is generated as follows: set x1 = x2 = x3 = t with t taking on
100 equally spaced values from − 0.5 to 0.5 with Gaussian noise with standard
deviation 0.1 is then added to each feature. A second cluster is generated in the
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same way, except that the value 10 is then added to each feature. The result is two
elongated clusters, stretching out along the main diagonal of a three-dimensional
cube.

6. Two close elongated clusters: Two close and elongated clusters were simulated
in three dimensions. As in simulation five, a second cluster was generated in the
same way as the first cluster. The value of 1.0 is then added to the first feature only.

2.7 Applications to real data

The bootstrap approaches were applied to four different datasets that range in terms
of complexity. Each dataset can be found in the UCI machine learning repository.
The iris and wine data are well-studied for classification and clustering. The iris data
has 150 observations and four features. The wine data has 178 observations and 13
features. Iris and wine each have three classes that are not used for the clustering, but
rather in a post hoc manner to assess performance.

The NCI60 microarray data set contains 64 samples representing 12 different
types of cancer and 6, 830 gene expression features (Ross et al. 2000). The first two
principal components (PCs) were used for clustering. The image segmentation data
set was derived by randomly sampling from a database of 7 outdoor images. The
images were hand-segmented to create a classification for every pixel. The total of
2, 100 instances (observations) consist of 7 classes, with 300 observations per class.
Although 19 features were present, six features were excluded due to redundancy or
being uninformative. As with the iris and wine data sets, the class labels are not used
in the clustering. To our knowledge, the image segmentation data has not been studied
for clustering, whereas the other datasets have been. Linear discriminant analysis was
applied to the image data in order to obtain a general assessment of the separability
of the different classes of images (Hastie et al. 2001).

For the real data examples,we constructed a hierarchical visualization of the clusters
derived from the stability profile. The hierarchy is derived by first selecting the largest
k with stability Smin above 0.9. These k’s correspond to well-separated clusters, or
the ones that can be easily detected by the algorithm. The second largest k with the
stability Smin above 0.8 but below 0.9 is selected to represent finer cluster structures
that are more challenging to detect (for example, more overlapped clusters).

3 Results

Stability estimation via repetitive subsetting is performed by randomly drawing a
subset of observations without replacement multiple times (Ben-Hur et al. 2001; Tib-
shirani andWalther 2005). Our first simulation was motivated by the fact that stability
for prototype methods is closely related to the variability of centroids, which in turn is
a function of sample sizes. Subsetting leads to a smaller sample size, and subsequently
to an underestimation of stability and larger variance in estimates. Due to differences
in defining clustering distances, stability or other characterizations of a clustering,
estimates from different approaches are not directly comparable. For example, predic-
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Fig. 2 Simulation of a simple balanced 2-cluster model that illustrates the bias and standard error captured
by the naive bootstrapped stability and repeated sub-setting stability approach. Heatmap depiction of fre-
quencies of data points retaining their original memberships for a bootstrap resampling, b 1/2 subsetting
(middle), and c 1/4 subsetting (right). Blue is unstable and red is stable. The d bias and e standard errors of
naive stability for bootstrap resampling and subsetting (color figure online)

tion strength (Tibshirani andWalther 2005) and Boot2012 (Fang andWang 2012) rely
on agreements of co-memberships, while Ben-Hur et al. (2001) uses Jaccard distance.
However, all of them depend on the changes in item memberships. We examined the
consistency of the predicted membership of a grid of data points in sample space
between bootstrap resampling and repetitive subsetting in a balanced 2-cluster model
(Fig. 2). In this simple model, the exact mapping between resampled clusters and
original ones is known, which enables the determination of membership switch. Fig-
ure 2a–c depicts the frequency of a point retaining its original membership on a gray
scale. The light gray areas have low frequencies of membership changes, while those
in darker gray areas tend to change membership more often. The differences between
bootstrap resampling (Fig. 2a) and repetitive subsetting with 1/2 the data (Fig. 2b) are
subtle, but the dark gray area (unstable region) for repetitive subsetting with 1/2 the
data is larger than that of the bootstrapping. Naturally, the effect is much more striking
when repetitive subsetting with 1/4 of the data (Fig. 2c). The bias and standard errors
were also found to be higher for the repetitive subsetting (Fig. 2d, e).

Bootstrapping stability based on the Jaccard index for the determination of the num-
ber of clusters, k, was also examined. Table 1 shows the performance of three methods
for the selection of k for six classic simulation scenarios that were simulated 50 times
and estimated using the prediction strength approach (Pred str) (Tibshirani andWalther
2005), the pairwise bootstrap data comparisons method (Boot2012) (Fang and Wang
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Table 1 Performance for
identifying the number of
clusters, k, for six different
simulations of 50 datasets each

Method Estimation of number of clusters

1 2 3 4 5 6 ≥ 7

Null model

Pred str 46∗ 4 0 0 0 0 0

Boot2012 0∗ 4 0 0 0 0 46

Boot-min-S1 47∗ 3 0 0 0 0 0

Boot-min-S2 46∗ 4 0 0 0 0 0

Three-cluster model

Pred str 0 0 50∗ 0 0 0 0

Boot2012 0 12 38∗ 0 0 0 0

Boot-min-S1 0 0 50∗ 0 0 0 0

Boot-min-S2 0 0 50∗ 0 0 0 0

Random four-cluster in three dimensions

Pred str 0 0 0 50∗ 0 0 0

Boot2012 0 5 7 38∗ 0 0 0

Boot-min-S1 0 1 2 47∗ 0 0 0

Boot-min-S2 0 1 1 48∗ 0 0 0

Random four-cluster in ten dimensions

Pred str 2 3 7 38∗ 0 0 0

Boot2012 0 13 11 26∗ 0 0 0

Boot-min-S1 3 5 7 35∗ 0 0 0

Boot-min-S2 3 3 7 37∗ 0 0 0

Two elongated clusters

Pred str 0 46∗ 0 4 0 0 0

Boot2012 0 50∗ 0 0 0 0 0

Boot-min-S1 0 47∗ 0 3 0 0 0

Boot-min-S2 0 48∗ 0 2 0 0 0

Two close elongated clusters

Pred str 2 35∗ 12 1 0 0 0

Boot2012 0 34∗ 6 2 4 0 4

Boot-min-S1 5 40∗ 4 1 0 0 0

Boot-min-S2 5 41∗ 3 1 0 0 0

Results are shown for prediction strength (pred str), bootstrapping
proposed by Fang et al. (Boot2012), and bootstrapping scheme 1
(Boot-min-S1) and 2 (Boot-min-S2). The asterisk (*) indicates the
true number of clusters

2012), and our proposed Jaccard-based bootstrap estimate of stability using scheme
1 (Boot-min-S1) and scheme 2 (Boot-min-S2). Results indicate that our method is
comparable, and in some scenarios outperforms prediction strength, while generally
better than Boot2012. The stability profiles for difference settings are shown in Fig. 3.
The simulation results also support our argument that Boot2012 usually has poor
performance for asymmetric settings (three-cluster model and random four-cluster
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Fig. 3 Stability profiles based on minimal cluster similarity from each re-sampling (Smin) for the different
simulation experiments estimated via Jaccard-based bootstrapping. For each simulated scenario, 50 sim-
ulations were performed across k = 1 . . . 7 using scheme 2. The vertical lines indicate the true cluster
numbers and horizontal lines indicate a threshold criteria of 0.9 Simulation scenarios are for a a null model,
b three-cluster model, c four clusters in three dimensions, d four clusters in ten dimensions, e two elongated
clusters, and f two elongated close clusters

model) due to its criteria of maximum stability. Furthermore, this criteria also makes
it impossible for Boot2012 to detect a null model. The difference between Boot-min-
S1 and Boot-min-S2 is often subtle (Table 1), with Boot-min-S2 identical or slightly
superior in all settings except for the null model estimation. With the exception of
Boot2012, the errors in the selection of k are rather conservative in the sense that
they tend to underestimate k, rather than overestimate. The proposed bootstrapping
schemes clearly outperform both Boot2012 and Pred Str for the two close elongated
cluster simulations (Table 1).

Boot-min-S1 andBoot-min-S2were applied to the iris data, which has three classes.
Boot-min-S2 suggests the correct number of clusters (k = 3) (Fig. 4a), whereas
Boot-min-S1 selects k = 2, with only a marginal difference in stability from Boot-
min-S2. Comparatively, both prediction strength and Boot2012 imply two clusters
due to the severe overlapping between species Virginica and Versicolor in feature
space (data not shown). This further illustrates the advantage of our method in dealing
with asymmetrically distributed and overlapping clusters. The individual stability plot
includes three categories of stability, high (> 0.9), moderate (0.8–0.9) and low (< 0.8)
(Fig. 4c). The stability of the observations for Boot-min-S2 (k = 3) naturally reveals
more unstable points towards the boundaries of the clusters. For the iris data, we also
considered two different representations of the data, one based on the first two PCs, and
another using only sepalwidth and length.Visualizations of individual stability suggest
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Fig. 4 Results for the iris and wine data. Stability profiles based on minimal cluster similarity from each
re-sampling (Smin) for the two bootstrapping schemes for the a iris and bwine data. Individual stability for
c iris and dwine are shown for stable (> 0.9), moderately stable (0.8–0.9) and unstable (< 0.8) points. Note
that the stability is visualized on PC axis, although the clustering and stability estimation was performed
using the entire datasets. MDS representation of the results for e iris and f wine data that is based on the
symmetric distance measure for each pair of clusterings arising from bootstrapped samples. The density
plots are constructed according to the Jaccard index-based distance between re-sampled cluster labels. The
asterisk indicates the final clustering result from scheme 2, which resides near the center of the cloud, which
may be interpreted as an average representation of the clusterings
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Fig. 5 Results of theNCI dataset clustering. a Stability profile based onminimal cluster similarity from each
re-sampling (Smin) for the NCI dataset. b Inferred cluster assignment from stability analysis. c Individual
stability is shown for stable (> 0.9), moderately stable (0.8–0.9) and unstable (< 0.8) points. d Visual
hierarchy depicts the three clusters that are well separated and their memberships. The cluster specific
stability is indicated

that the less stable clusters (Supplemental Figure 1E) contain a higher proportion of
unstable points (Supplemental Figure 1 C, D), as expected, which is a trend we will
see in the other datasets.

With a pairwise distance, the clustering results can be projected into a clustering
space using multi-dimensional scaling (MDS), where each clustering is represented
as a point, and the clustering space can be visualized to observe the regions of high
(black) and low (white) density (Fig. 4e). Note that Equation (3) provides a Jaccard
index based similarity that is a symmetric measure for each pair of the clusterings,
A(Ci , C j ), where 0 ≤ i, j ≤ B. Therefore, the distance between the clusterings can
be defined as 1 − A(Ci , C j ).

The three classes in the wine data are approximately Gaussian distributed. Pred
str, Boot2012, Boot-min-S1, and Boot-min-S2, all correctly indicate three clusters.
Figure 4B shows the profile across different values of k forBoot-min-S1 andBoot-min-
S2, respectively. The individual observation stability is viewed on PC axes (Fig. 4d),
although the clustering was done using all 13 features. The instabilities are naturally
occurring at the boundaries, as these observations are more likely to change labels
during repetitive re-sampling from the population. On the contrary, points in well
separated clusters generally havehigher stability levels. Figure 4f shows the re-sampled
clusters using MDS. The clusterings selected by scheme 2 generally locate at the
center of the points. Analogous to the minimization of average Euclidean distances
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by sample mean, scheme 2 can be viewed as an approach to obtaining an average of
the bootstrapped clusterings, or a version of bagging.

The first two PCs of the NCI data were used to cluster the cancer samples. Applica-
tion of the Boot-min-S2method revealed three clusters (Fig. 5a, b). Prediction strength
(Tibshirani and Walther 2005) indicated no cluster structure (1 cluster), which may
be due in part to the smaller sample size and heterogeneity of the tumor samples. The
effect of subsetting on exaggerating the variability of cluster centers is more severe
for a small data set. Boot2012 (Fang and Wang 2012) suggests ≥ 20 clusters. Fig-
ure 5c–e indicate that all melanoma samples cluster together (Cluster 3) with high
stability, while the samples at the boundary of Cluster 2 and 3 are less stable. The
cluster assignments tend to keep samples from the same cancer together, with the
exception of breast which is almost evenly spread over the three clusters (Fig. 5e).
Examination of individual bootstrap samples (Supplemental Figure 3) reveals known
challenges for the k-means algorithm due to the disparity in cluster shape, specifically
elongation and imbalance between groups. Notably, the NCI microarray data does not
show any clear cluster structure if the genes are used instead of PCs. In this case, both
prediction strength and Boot-min-S2 again indicate k = 1, and Boot2012 suggests
k ≥ 20.

The image segmentation dataset consists of overlapping features and a larger num-
ber of classes (seven). The stability analysis suggests four clusters by a criteria of 0.9
(Fig. 6a). This threshold is very stringent, and is more suitable for better separated
cases, as was seen in the simulation settings. If we relax it to 0.8 to allow larger extent
of overlap, then six clusters will be detected (Fig. 6a). Figure 6b shows the cluster-
ing result in a PC space. It has been reported that the k-means clustering may not
be optimal for image dataset, because even when the true number of classes is used
(k = 7), the agreement between cluster and class labels is still low (Falasconi et al.
2010). This is also apparent in our clustering result (Fig. 6e) Individual observation
stability (Fig. 6c) and cluster stability (Fig. 6d) indicates that clusters 5 and 6 have
highest stability, which corresponds to a large proportion of sky and grass samples
(Fig. 6e). Visualizing these points, it becomes more apparent that the stability of a
cluster depends on the proportion of unstable points and the degree of their instability.
The least stable cluster (cluster 1 in Fig. 6b) is comprised of nearly all points in a
moderate stability range, it is thus clear that the stability of this cluster would be in the
moderate range (∼ 0.81). Clusters 2–4 also have lower stabilities, and pairs (Clusters
1 and 3, and Clusters 2 and 4), are more similar (Fig. 6e). This may be due to the fact
that these classes are less separable. To further investigate this, we performed linear
discriminant analysis and found that cement, foliage and window are poorly classified
when compared to sky and grass (Supplemental Table 1).

4 Discussion

The stability of a clustering captures the uncertainty of groupings and has been widely
used to characterize the results, primarily in the context of model selection. Stability
has been defined in a variety of ways that derive from different data representations
such as bootstrapping, subsetting, or cross-validation. In this work, we have proposed
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Fig. 6 Results of the image dataset clustering. a Stability profile based on minimal cluster similarity from
each re-sampling (Smin) for the image dataset. b Inferred cluster assignment from stability analysis. c
Individual stability is shown for stable (> 0.9), moderately stable (0.8–0.9) and unstable (< 0.8) points. d
Stability of the inferred clusters. e Two-layer hierarchy constructed from the stability profile. The hierarchy
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two less separable ones (red dashed clades), respectively. The cluster specific stability is indicated. (color
figure online)
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two schemes for estimating stability via non-parametric bootstrap. A major advantage
of both schemes is that stability can be estimated overall, as well as at the cluster
and individual observation levels, which offers deeper insights into cluster structure
and enables higher flexibility in model selection (e.g., Smin estimation). Moreover,
because of the symmetricmeasure of observation-wise clustering similarity, it becomes
possible to condition all levels of stability on a reference clustering. Therefore, all
stability-related results are with respect to the reference.

The difference between the two schemes for stability estimation is the clusterings
that are compared. In scheme 1, the original data clustering is trusted in the sense
that the stability is conditional on the inferred clusters from the original data. This
scheme mimics classical applications of the bootstrap that aim to assess confidence of
an estimate (Efron et al. 1996). However, in practice this may be not be ideal for noisy
data. In scheme2, the clustering of the original data is not trusted to the samedegree.On
the contrary, the data is bootstrapped to find the most representative clusters, which is
determined through the pairwise comparisons of bootstrapped clusterings. Additional
factors may play into deciding between scheme 1 and 2. From the point of view of
stability estimates, scheme 2 will always produce more stable clusters, as it selects
the most optimal from the exhaustive set of pairwise companions between clusterings.
However, this requires massive computation. For model selection, scheme 2 will also
always capture the overall stability calculated with scheme 1 by design. However, we
hypothesize that there will be additional bias’ in the stability estimates at the cluster
and individual level using scheme 2. An area of future research will assess the utility
of these approaches with out of bag estimates of stability to capture the generalization
and predictive capabilities of clustering method to assign group membership to new
samples (Breiman 1996).

Within the bootstrapping schemes, the comparison between clustering can be made
via naive or Jaccard-based estimates of stability. These have relatively similar formu-
lations. However, the ways in which they compare clustering capture different features
of the stability. The naive approach uses 0–1 indicators to record whether an observa-
tion changes cluster membership, and it relies on the mapping between clusters from
different clustering results. In the case of k-means, this can be achieved through the
minimal Euclidean distance between centroids. An important limitation of the naive
approach is with respect to mapping and the inaccuracies that can arise when the clus-
ters are nested, e.g., a cluster is broken into two smaller clusters in the bootstrapped
clustering of the data. This issue arises because the similarity between clusterings is
asymmetric for naive stability estimates. These can be avoided by tracking the changes
in co-memberships between different clusterings, as in Ben-Hur et al. (2001); Tibshi-
rani andWalther (2005), among others. Our implementation of Jaccard-based stability
is motivated by the idea of monitoring changes of co-memberships, and reflects our
confidence in a clustering at various levels of the method, clusters, and individual
samples.

A limitation of our approaches is the need to set a threshold for estimating k. In
practice, a threshold of 0.9 works well when the clusters are well separated or mildly
overlapped (Supplemental Figure 4). In our real data applications,when the boundaries
are less clear, it is advantageous to take a more liberal threshold of 0.8. However,
stability ranges and profiles may vary due to different characteristics of the data. In
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application, we strongly suggest a coupling of the stability profiles with a visualization
of the hierarchical organization via a dendrogram, which may provide insights into
the separations (or lack thereof) of a complex feature space. Taken together with the
stability estimates of the individual clusters and samples, additional insight can be
gained for the selection of k. Note that prediction strength (Tibshirani and Walther
2005), also requires a similar form of thresholding for model selection. In fact, the
same thresholds, 0.9 and 0.8, are used in their examples.

In terms of comparisons, our methods are closest to the bootstrapping approach
described in Fang andWang (2012). The performance differences between ourmethod
and Boot2012 is due in part to the underlying definitions of stability and the distinct
criteria for determining k. Boot2012 does not require thresholding, but suffers from
other drawbacks. In our approach, we define stability at the observation level, which
provides higher flexibility on the criteria. In particular, it enables estimation of Smin

and the usage of a criteria similar to the prediction strength approach (Tibshirani and
Walther 2005). On the other hand, the usage of maximum stability as criteria for
estimating k in Boot2012 makes it impossible to detect null structure, as the stability
will always be 1 when k̂ = 1. Such criteria also tends to be conservative when the
data structure is asymmetric (Von Luxburg 2009). This can be overcome by using
other criteria such as thresholding. However, as discussed in Sect. 2.5, the change in
overall stability when k̂ > k depends on sample size and the drop in overall stability
can be washed out in averaging, which may pose challenges in model selection. The
definition of Boot2012 stability by using an overall measure precludes its usage of a
threshold criteria.

The prediction strength approach can provide an estimate for the individual observa-
tion (Tibshirani and Walther 2005). However, due to repeated k-fold cross validation,
these estimate may be inaccurate. For example, in the case of k-means, the feature
space is partitioned according to the minimum distance of a point to cluster centers.
Therefore, there are two factors affecting the individual stability: location of true clus-
ter centers and variation of the estimates for the centers. The variation of an estimator
is usually a function of sample sizes. However, by only sampling a part from the orig-
inal sample, as is done repeatedly in prediction strength, the variation of the estimates
for centers are expected to be over-estimated, and result in an under-estimation in
stability. This is not an issue for prediction strength when used for the selection of
the number of clusters, k, because it takes the minimum (least stable cluster) as the
conservative prediction strength estimate. However, at the individual level, this is not
a possibility. We therefore believe that our approach offers less bias with respect to
stability estimation of an individual observation, although investigation through a con-
trolled simulation would be challenging. Notably, if we view the prediction strength
as a surrogate for stability, then the measure on the similarity between two clusterings
is asymmetric, which precludes the definition of conditional stability as in this study.

Hennig (2007) proposed an approach to estimate cluster-wise stability through
using mean maximal Jaccard coefficient. However, the estimation can be inaccurate,
because it implicitly requires mapping between re-sampled and original clusters, and
as discussed, the maximal Jaccard coefficient as a cluster-wise similarity measure is
asymmetric. Also, it does not provide any information of the stability of individual
observation. On the other hand, our approach does not require this re-mapping and

123

Author's personal copy



Bootstrapping estimates of stability for clusters…

uses a symmetric measure of similarity. Moreover, the flexibility of our approach
enables the user to calculate stability with respect to the initial data clustering, as in
Hennig (2007), but also enables a search over the bootstrap replicates for a more likely
clustering (scheme 2).

In this work, we focus on k-means for simplicity. However, the methods described
can be generalized to other clustering methods. In the case of k-means, observations
are mapped to the prototypes (estimated means from bootstrapped data b) xi −→ mb

estimated to obtain bootstrappedmembership Cb(xi ). Alternativemethods can be used
as long as the mappings are well-defined, e.g., linkage in hierarchical clustering. In
fact, the bootstrap can be used as a means to benchmark and select the best suited
clustering methods for a particular data set via the overall stability estimates. An
area of future research is to combine results across different clustering methods in an
ensemble fashion. A hypothesis is that different methods capture different features of
the population better than others, combinations across methods may improved cluster
assignment if coupled or weighted by stability estimates.

In conclusion, the stability of a clustering offers insights into the quality of amethod
and clustering for a dataset. We have developed novel methods for stability estimates
based on the non-parametric bootstrap. Our approaches perform well in the selection
of the number of clusters, but also offer an additional layer of model interpretation
at the cluster and individual level. The two proposed bootstrapping schemes provide
stability estimates that reflect different forms of uncertainty in the data, which may
reflect an investigator’s lack of trust in the original data clustering and the data itself.
Visual interpretations of stability have been proposed to complement the estimates
and guide the investigator in assessing the results.
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