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Machine learning for protein folding and dynamics
Frank Noé', Gianni De Fabritiis>® and Cecilia Clementi*

Many aspects of the study of protein folding and dynamics
have been affected by the recent advances in machine
learning. Methods for the prediction of protein structures from
their sequences are now heavily based on machine learning
tools. The way simulations are performed to explore the energy
landscape of protein systems is also changing as force-fields
are started to be designed by means of machine learning
methods. These methods are also used to extract the essential
information from large simulation datasets and to enhance the
sampling of rare events such as folding/unfolding transitions.
While significant challenges still need to be tackled, we expect
these methods to play an important role on the study of protein
folding and dynamics in the near future. We discuss here the
recent advances on all these fronts and the questions that need
to be addressed for machine learning approaches to become
mainstream in protein simulation.
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Introduction

During the last couple of decades advances in artificial
intelligence and machine learning have revolutionized
many application areas such as image recognition and
language translation. The key of this success has been
the design of algorithms that can extract complex pat-
terns and highly non-trivial relationships from large
amount of data and abstract this information in the
evaluation of new data.
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In the last few years these tools and ideas have also been
applied to, and in some cases revolutionized problems in
fundamental sciences, where the discovery of patterns
and hidden relationships can lead to the formulation of
new general principles. In the case of protein folding and
dynamics, machine learning has been used for multiple
purposes [1,2,3°, 4,5°°,6].

As protein sequences contain all the necessary information
to reach the folded structure, it is natural to ask if the ideas
and algorithms that have proved very useful to associate
labels to images can also help to associate a folded structure
to a protein sequence. Indeed, protein structure prediction
has greatly benefitted from the influx of idea from machine
learning, as it has been demonstrated in the CASP compe-
titions in the last few years, where several groups have used
machine learning approaches of differentkinds [1,2,7°°,3°],
and the AlphaFold team from DeepMind won the
2018 competition by a margin [8,9].

In addition to protein structure prediction, machine learn-
ing methods can help address other questions regarding
protein dynamics. Physics-based approaches to protein
folding usually involve the design of an energy function
that guides the dynamics of the protein on its conforma-
tional landscape from the unfolded to the folded state.
Different ideas have been used in the past several decades
to design such energy functions, from first-principle atom-
istic force field [10,11] to simplified coarse-grained effec-
tive potential energies [12] encoding physical principles
such as for instance the energy landscape theory of protein
folding [13,14]. In this context, neural networks can help
design these energy functions to take into account of multi-
body terms that are not easily modeled analytically [5°°].

Another aspect where machine learning has made a signifi-
cantimpactis on the analysis of protein simulations. Even if
we had an accurate protein force-field and we could simu-
late the dynamics of a protein long enough to sample its
equilibrium distribution, there is still the problem of
extracting the essential information from the simulation,
and to relate it to experimental measurements. In this case,
unsupervised learning methods can help to extract meta-
stable states from high dimensional simulation data and to
connect them to measurable observables [15].

In the following we review the recent contributions of
machine learning in the advancement of these different
aspects of the study of protein folding and dynamics. As
the field is rapidly evolving, most probably these
contributions will become even more significant in the
near future.
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Machine learning for protein structure
prediction

Structure prediction consists in the inference of the
folded structure of a protein from the sequence infor-
mation. The most recent successes of machine learning
for protein structure prediction arise with the
application of deep learning to evolutionary informa-
tion [16,17]. It has long been known that the mutation
of one amino acid in a protein usually requires the
mutation of a contacting amino acid in order to pre-
serve the functional structure [18-21] and that the co-
evolution of mutations contains information on amino
acid distances in the three dimensional structure of the
protein. Initial methods [16,22] to extract this infor-
mation from co-evolution data were based on standard
machine learning approaches but later methods based
on deep residual networks have shown to perform
better in inferring possible contact maps [1,2]. More
recently, it has been shown that it is possible to predict
distance matrices [4] from co-evolutionary information
instead of just contact maps. This result was accom-
plished by using a probabilistic neural network to
predict inter-residue distance distributions. From a
complete distance matrix, it is relatively straightfor-
ward to obtain a protein structure, but of course the
prediction of the distance matrix from co-evolution
data is not perfect, nor complete. Yet, in [7°°] it was
shown that, if at least 32—-64 sequences are available for
a protein family, then this data are sufficient to obtain
the fold class for 614 protein families with currently
unknown structures, when the co-evolutionary infor-
mation is integrated in the Rosetta structure prediction
approach. Admittedly, the authors concede that this is
not yet equivalent to obtain the crystal structure to the
accuracy that would be useful, for instance, for drug
discovery. However, it still represents a major achieve-
ment in structure prediction.

Every two years, the performance of the different meth-
ods for structure prediction is assessed in the CASP
(Ciritical Assessment of Techniques for Protein Structure
Prediction) competition, where a set of sequences with
structures yet to be released are given to participants to
predict the structure blindly. The extent of the impact of
machine learning in structure prediction has been quite
visible in the latest CASP competitions. The typical
methodology in previous CASP editions for the top
ranked predictions has been to use very complex work-
flows based on protein threading and some method for
structure optimization like Rosetta [23]. Protein thread-
ing consists in selecting parts of the sequence for which
there are good templates in the PDB and stitch them
together [24]. A force-field can then be used to relax this
object into a protein structure. The introduction of
co-evolution information in the form of contact maps
prediction provided a boost in the performance, at the
expense of even more complex workflows.

Historically the difference between top predictors in
CASP has been minimal — indicating that there was
not a clearly better method, but rather an incremental
improvement of the workflows. This situation created a
barrier of entry to a certain extent for new ideas and
models. However, in the Ilatest edition of CASP
(CASP13), the group of AlphaFold [9] ranked first with
a very simplified workflow [8], heavily based on machine
learning methods. The approach extended the contact
and distance matrix predictions to predict histograms of
distances between amino acids using a very deep residual
network on co-evolutionary data. This approach allowed
to take into account implicitly the possible errors and
inaccuracy in the prediction itself. In addition, it used an
autoencoder architecture derived from previous work on
drawing [25] to replace threading all-together and gener-
ate the structure directly from the sequence and distance
histograms. The use of an autoencoder guarantees an
implicit, but much more elegant threading of the avail-
able structural information in the PDB to the predicted
structure. In a second approach from the same group, a
knowledge-based potential derived from the distance
histograms was also used. The potential was simply
minimized to converged structures. This last protein-
specific potential minimization might look surprising at
first, but it is actually very similar to well-known struc-
ture-based models for protein folding [26,13].

An alternative and interesting machine learning approach for
structure predictions, which also offers wider applicability, is
to use end-to-end differentiable models [27°,3%,28]. While
the performance of these methods does not yet reach
the performance of co-evolution based methods for cases
where co-evolutionary information is high, they can be
applied to protein design, and in cases where co-evolution
data is missing. In [27°], a single end-to-end network is
proposed that is composed by multiple transformations from
the sequence to the protein backbone angles and finally to
three-dimensional coordinates on which a loss function is
computed in terms of root mean square deviations against
known structures. In [3°] a sequence-conditioned energy
function is parameterized by a deep neural network and
Langevin dynamics is used to generate samples from the
distribution. In [28] a generative adversarial model is used to
produce realistic (, distance matrices on blocks up to
128-residues, then standard methods are used to recreate
the backbone and side chain structure from there. Inci-
dentally, a variational autoencoder was also tested as a
baseline with comparable results. This model is not
conditioned on sequence, so it is useful for generating
new structures and for in-painting missing parts in a
crystal structure.

Folding proteins with machine learned force
fields

State-of-the-art force fields can reproduce with reason-
able accuracy the thermodynamical and structural
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properties of globular proteins [10] or intrinsically
disordered proteins (IDPs) [11]. Generally, force fields
are designed by first assigning a functional form for all the
different types of interactions (e.g. electrostatic, Van der
Waals, etc.) between the atoms of different types, then
optimizing the parameters in these interactions to
reproduce as best as possible some reference data.

In the last few years, a new approach on the design of force-
fields has emerged, that takes advantage of machine learn-
ing tools [29,30]. The idea is to use either a deep neural
network or some other machine learning model to represent
the classical energy function of a system as a function of the
atomic coordinates, instead of specifying a functional form a
priori [31°]. The model can then be trained on the available
data to ‘learn’ to reproduce some desired properties, such as
energies and forces as obtained from quantum mechanical
calculations. As a neural network is a universal function
approximator, this approach has the significant advantage
that can approximate a large number of possible functional
forms for the energy, instead of being constrained by a
predefined one, and can in principle include multi-body
correlations that are generally ignored in classical force-
fields. The downside of this increased flexibility however
resides in the fact thata very large amount of data is needed
to train the machine learning model as the model may
extrapolate poorly in regions of the conformational space
where data are not available. So far, large amount of
quantum chemical calculations have been used to train
such force-fields, but in principle experimental data could
also be included [32].

The machine learning approach to force field design has
evolved rapidly in the last decade, but it has so far mostly
been tested on small organic molecules. Some of the
proposed methods are tailored to reproduce the thermody-
namics of specific molecules (e.g. [33]), while others
attempt to design transferable force-fields that are trained
onalarge number of small molecules and could in principle
be used to simulate a much larger molecule such as a protein
(e.g. [34°,35]). Indeed, quantum mechanical calculations
on water, amino acids, and small peptides have been
included in the latest generation of machine-learned clas-
sical force-fields (e.g. the development version of the ANT
potential [36]). We are aware of one instance where a
machine-learned force-field has been used to simulate a
50 ns molecular dynamics trajectory of a cellulose-binding
domain protein (1EXG) in its folded state. Recently, a
transferable machine-learned force-field has been tested on
polypeptides. However, machine-learned force-fields have
not(yet) been used for protein folding simulations, nor have
they been used to predict thermodynamic or kinetic prop-
ertiecs. While we believe that this will be possible and
machine-learned force-fields will be widely used in protein
simulations in the near future, at the moment there are still
some significant challenges that need to be overcome
towards this goal [6].

One fundamental challenge resides on the modeling of
long-range interactions. If only quantum calculations on
small molecules are used in the training of force-ficlds,
interactions on scales larger than these molecules could
easily be missed in the training. The locality of the
machine-learned force-fields could be insufficient to cap-
ture electrostatic interactions, or long-range van der Waals
interactions [37]. This problem could be addressed by
separating the long-range effects in the force-field. For
instance, atomic partial charges could be learned [38]
simultaneously to local energy terms and used in electro-
static interactions that could be added to the machine-
learned energy part to obtain a total energy that is used in
the training.

Another main challenge resides in the software used for
the simulations. Calculating energies and forces for a
protein configuration by means of a trained neural net-
work is several orders of magnitude faster than obtaining
these quantities @b initio with quantum mechanical cal-
culations, but it is still slower than with a standard
classical force-field. In order to simulate protein folding,
molecular dynamics trajectories of at least microseconds
are needed and this timescale is not currently accessible
with machine-learned force-fields. Research in this area
has so far mostly focused on obtaining an accurate repre-
sentation for the energy and forces for molecules and tests
have been performed on small systems, mostly as a proof
of concept. As this field mature, we believe that signifi-
cant efforts will also be made to optimize the software for
practical applications and molecular dynamics simulation
with machine learned force-fields will become a viable
alternative to current approaches. Additionally, the
whole arsenal of methods that have been developed to
enhance the sampling of protein configurational land-
scapes with classical force-fields (e.g. [39,40]) can also
be used with machine-learned force-fields to reach longer
timescales and larger system sizes.

Machine learning of coarse-grained protein
folding models

In parallel to efforts for the design of atomistic force-fields,
machine learning has also been used to obtain coarser models
[42,43,5°°], that could be applied to study larger systems and
longer timescales with reduced computational resources.
Coarse-grained models map groups of atoms in some effec-
tive interactive ‘beads’ and assign an effective energy func-
tion between the beads to try to reproduce some properties
of a protein system. Different properties could be targeted,
and different strategies have been used to design coarse-
grained models, either starting from atomistic simulations
(bottom-up) (e.g. [44,45]), experimental data (top-down)
(e.g. [46]) or enforcing general ‘rules’ such as the minimal
frustration principle for protein folding [13,14]. In
principle, the same ideas used in the design of atomistic
force-fields from quantum mechanical data can be used to
make the next step in resolution and design coarse-grained
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molecular models from all-atom molecular simulations [12].
One main problem in the design of models at a resolution
coarser than atomistic is the fact that by renormalizing local
degrees of freedom multi-body terms emerge in the effec-
tive energy function even if only pairwise interactions were
used in a reference atomistic force-field. Such multi-body
terms should then be taken into account in the energy
function of the coarse-grained model to correctly reproduce
the thermodynamics and dynamics of the model at finer
resolution. Attempts have been made to include these terms
in coarse-grained models, but it is challenging to define
suitable and general functional forms to capture these effects
in an effective energy function. For this reason, neural
networks appear as a natural choice for the design of
coarse-grained potentials, as they can automatically capture
non-linearities and multi-body terms while agnostic on their
specific functional form. Indeed, in the last few years, several
groups have attempted to use machine learning methods to
design coarse-grained potentials for different systems
[42,43,5°°]. Most recently, CGnet (see Figure 1), a neural
network for coarse-grained molecular force-fields, has been
proposed and has been used to model the folding/unfolding
dynamics of a small protein [5°°]. The CGnet applications
presented so far have been system-specific. However similar
ideas to what has been used in the design of transferable
atomistic force-fields from quantum mechanical data could
also been used to try to obtain more transferable coarse-
grained models. In general, transferability remains an out-
standing issue in the design of coarse models [47] and its
requirement may decrease the ability of reproducing faith-
fully properties of specific systems. So far, the challenges in
the definition of general and multi-body functional forms for

Figure 1

coarse-grained models have not allowed to rigorously inves-
tigate the trade-off between transferability and accuracy for
such models. The use of machine learning tools to design
effective potential energy functions may soon allow to
explore this question systematically.

Machine learning for analysis and enhanced
simulation of protein dynamics

Machine learning has been quite impactful in the analysis
of simulations of protein dynamics. In this context, two
closely related aims are: Firstly, the extraction of collec-
tive variables (CVs) associated with the slowest dynamical
processes and the metastable states (that can be defined
from the knowledge of the slow CVs) from given protein
molecular dynamics (MD) simulation data [15]; and
finally, enhancing the simulations so as to increase the
number of rare event transitions between them.

A cornerstone for the extraction of slow CVs, metastable
states and their statistics are shallow machine learning
methods such as Markov state models (MSMs) [48] and
Master-equation models [49], which model the transitions
between metastable states via a Markovian transition or
rate matrix. A key advantage of MSMs is that they can be
estimated from short MD simulations started from
an arbitrary (non-equilibrium) distribution, and vyet
make predictions of the equilibrium distribution and
long-timescale kinetics. While more complex models,
for example, including memory, are conceivable, MSMs
are simpler to estimate, easier to interpret and are moti-
vated by the observation that if they are built in the slow
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(a) Folding free energy landscape of the protein Chignolin as obtained with a coarse-grained model that uses a neural network to represent the
effective energy (CGnet). Top panel: Free energy as obtained from CGnet, as a function of the first two collective coordinates obtained with the
Time-Lagged Independent Component Analysis (TICA) method [41]. Bottom panel: Projection of the free energy on the first TICA coordinate. (b)
The CGnet neural network architecture. (c) Representative Chignolin configurations in the three minima from (a). Figure adapted from [5°].
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CVs of the molecule, the error made by the Markovian
approximation is close to zero for practical purposes [48].

For this reason, much method development has been
made in the past 10-15 years in order to optimize the
pipeline for the construction of MSMs; that is: finding
suitable molecular features to work with [50], reducing
the dimensionality of feature space [51,52], clustering the
resulting space [53,49], estimating the MSM transition
matrix [54] and coarse-graining it [55,56]. While all steps
of this pipeline have significantly improved over time,
constructing MSMs this way is still very error prone and
depends on significant expert knowledge. A critical step
forward was the advent of the variational approach of
conformation dynamics (VAC) [57] and later the more
general variational approach of Markov processes
(VAMP) [58]. These principles define loss functions that
the best approximation to the slow CVs should minimize,
and can thus be used to search over the space of features,
discretization and transition matrices variationally [50].
Recently, VAMPnets have been proposed that use neural
networks to find the optimal slow CVs and few-state
MSM transition matrices by optimizing the VAMP

human-built MSM pipeline by a single end-to-end learn-
ing framework. VAMPnets have been demonstrated on
several benchmark problems including protein folding
(Figure 2b) and have been shown to learn high-quality
MSMs  without significant human intervention
(Figure 2c). When used with an output layer that does
perform a classification, VAMPnets can be trained to
approximate directly the spectral components of the
Markov propagator [59°%,60].

The aim of enhancing MD sampling is closely connected
to identifying the metastable states or slow CVs of a given
molecular system. As the most severe sampling problems
are due to the rare-event transitions between the most
long-lived states, such as folding/unfolding transitions,
identifying such states or the corresponding slow CVs on
the fly can help to speed up the sampling. So-called
adaptive sampling methods perform MD simulation in
multiple rounds, and select the starting states for the new
round based on a model of the slow CVs or metastable
states found so far. Adaptive sampling for protein simula-
tions has been performed using MSMs [61,62] and with
neural network approximations of slow CVs [63,64]. Since

score [59°°] (Figure 2a), and hence replace the entire adaptive sampling uses unbiased (but short) MD
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VAMPnet and application to NTL9 protein folding. (a) A VAMPnet [59°°] includes an encoder E which transforms each molecular configuration x; to
a latent space of ‘slow reaction coordinates’ y;, and is trained on pairs (y;,y:,.) sampled from the MD simulation using the VAMP score [58]. (b)
Hierarchical decomposition of the NTL9 protein state space by a network with two and five output nodes. Mean contact maps are shown for all
MD samples grouped by the network, along with the fraction of samples in that group. 3D structures are shown for the five-state decomposition,
residues involved in a-helices or B-sheets in the folded state are colored identically across the different states. If the encoder performs a
classification, the dynamical propagator P(t) is a Markov state model. (¢) Chapman—-Kolmogorov test comparing long-time predictions of the
Koopman model estimated at = 320 ns and estimates at longer lag times. Figure modified from [59ee].
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trajectories it is possible to reconstruct the equilibrium
kinetics using MSMs, VAMPnets or similar methods.
Recently, adaptive sampling has been used to sample
protein-protein association and dissociation reversibly in
all-atom resolution, involving equilibrium timescales of
hours [65].

An alternative to adaptive sampling is to use enhanced
sampling methods that speed up rare event sampling by
introducing bias potentials, higher temperatures, etc.,
such as umbrella sampling, replica-exchange or metady-
namics. Since these methods typically work in a space of
few collective variables, they are also sensitive to making
poor choices of collective variables, which can lead to
sampling that is either not enhanced, or even slower than
the original dynamics. Machine learning has an important
role here as it can help these methods by learning optimal
choices of collective variables iteratively during sampling.
For example, shallow machine learning methods have
been used to adapt the CV space during Metadynamics
[66,67], adversarial and deep learning have used to adapt
the CV space during variationally enhanced sampling
(VES, [68]) [69,70]. A completely different approach to
predict equilibrium properties of a protein system is the
Boltzmann Generator [71°°] that trains a deep generative
neural network to directly sample the equilibrium distri-
bution of a many-body system defined by an energy
function, without using MD simulation.

Since enhanced sampling changes the thermodynamic
state of the simulation, it is suitable for the reconstruction
of the equilibrium distribution at a target thermodynamic
state by means of reweighting Boltzmann probabilities,
but generally loses information about the equilibrium
kinetics. Ways to recover the kinetics include: Firstly,
extrapolating to the equilibrium kinetics of rare event
transitions by exploiting the Arrhenius relation [72];
secondly, learning a model of the full kinetics and ther-
modynamics by combining probability reweighting and
MSM estimators in a multi-ensemble Markov model [73];
or finally, reweighting transition pathways [74]. Machine
learning and particularly deep learning has not been used
much in these methods, but certainly has potential to
improve them.

Conclusions

Machine learning can provide a new set of tools to
advance the field of molecular sciences, including protein
folding and structure prediction. Nonetheless, physical
and chemical knowledge and intuition will remain invalu-
able in the foreseeable future to design the methods and
interpret the results obtained. In particular, machine
learning can help us to extract new patterns from the
data that are not immediately evident, but in virtually all
areas reviewed above, machine learning methods that
incorporate the relevant physical symmetries, invariances
and conservation laws perform better than black-box

methods. Furthermore, a trained scientist is still essential
to provide meaning to the patterns and use them to
formulate general principles.
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