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Many aspects of the study of protein folding and dynamics

have been affected by the recent advances in machine

learning. Methods for the prediction of protein structures from

their sequences are now heavily based on machine learning

tools. The way simulations are performed to explore the energy

landscape of protein systems is also changing as force-fields

are started to be designed by means of machine learning

methods. These methods are also used to extract the essential

information from large simulation datasets and to enhance the

sampling of rare events such as folding/unfolding transitions.

While significant challenges still need to be tackled, we expect

these methods to play an important role on the study of protein

folding and dynamics in the near future. We discuss here the

recent advances on all these fronts and the questions that need

to be addressed for machine learning approaches to become

mainstream in protein simulation.
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Introduction
During the last couple of decades advances in artificial

intelligence and machine learning have revolutionized

many application areas such as image recognition and

language translation. The key of this success has been

the design of algorithms that can extract complex pat-

terns and highly non-trivial relationships from large

amount of data and abstract this information in the

evaluation of new data.
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In the last few years these tools and ideas have also been

applied to, and in some cases revolutionized problems in

fundamental sciences, where the discovery of patterns

and hidden relationships can lead to the formulation of

new general principles. In the case of protein folding and

dynamics, machine learning has been used for multiple

purposes [1,2,3�, 4,5��,6].

As protein sequences contain all the necessary information

to reach the folded structure, it is natural to ask if the ideas

and algorithms that have proved very useful to associate

labels to images can also help to associate a folded structure

to a protein sequence. Indeed, protein structure prediction

has greatly benefitted from the influx of idea from machine

learning, as it has been demonstrated in the CASP compe-

titions in the last few years, where several groups have used

machine learning approaches of different kinds [1,2,7��,3�],
and the AlphaFold team from DeepMind won the

2018 competition by a margin [8,9].

In addition to protein structure prediction, machine learn-

ing methods can help address other questions regarding

protein dynamics. Physics-based approaches to protein

folding usually involve the design of an energy function

that guides the dynamics of the protein on its conforma-

tional landscape from the unfolded to the folded state.

Different ideas have been used in the past several decades

to design such energy functions, from first-principle atom-

istic force field [10,11] to simplified coarse-grained effec-

tive potential energies [12] encoding physical principles

such as for instance the energy landscape theory of protein

folding [13,14]. In this context, neural networks can help

design these energy functions to take into account of multi-

body terms that are not easily modeled analytically [5��].

Another aspect where machine learning has made a signifi-

cant impact is on the analysis of protein simulations. Even if

we had an accurate protein force-field and we could simu-

late the dynamics of a protein long enough to sample its

equilibrium distribution, there is still the problem of

extracting the essential information from the simulation,

and to relate it to experimental measurements. In this case,

unsupervised learning methods can help to extract meta-

stable states from high dimensional simulation data and to

connect them to measurable observables [15].

In the following we review the recent contributions of

machine learning in the advancement of these different

aspects of the study of protein folding and dynamics. As

the field is rapidly evolving, most probably these

contributions will become even more significant in the

near future.
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78 Folding and binding
Machine learning for protein structure
prediction
Structure prediction consists in the inference of the

folded structure of a protein from the sequence infor-

mation. The most recent successes of machine learning

for protein structure prediction arise with the

application of deep learning to evolutionary informa-

tion [16,17]. It has long been known that the mutation

of one amino acid in a protein usually requires the

mutation of a contacting amino acid in order to pre-

serve the functional structure [18–21] and that the co-

evolution of mutations contains information on amino

acid distances in the three dimensional structure of the

protein. Initial methods [16,22] to extract this infor-

mation from co-evolution data were based on standard

machine learning approaches but later methods based

on deep residual networks have shown to perform

better in inferring possible contact maps [1,2]. More

recently, it has been shown that it is possible to predict

distance matrices [4] from co-evolutionary information

instead of just contact maps. This result was accom-

plished by using a probabilistic neural network to

predict inter-residue distance distributions. From a

complete distance matrix, it is relatively straightfor-

ward to obtain a protein structure, but of course the

prediction of the distance matrix from co-evolution

data is not perfect, nor complete. Yet, in [7��] it was

shown that, if at least 32–64 sequences are available for

a protein family, then this data are sufficient to obtain

the fold class for 614 protein families with currently

unknown structures, when the co-evolutionary infor-

mation is integrated in the Rosetta structure prediction

approach. Admittedly, the authors concede that this is

not yet equivalent to obtain the crystal structure to the

accuracy that would be useful, for instance, for drug

discovery. However, it still represents a major achieve-

ment in structure prediction.

Every two years, the performance of the different meth-

ods for structure prediction is assessed in the CASP

(Critical Assessment of Techniques for Protein Structure

Prediction) competition, where a set of sequences with

structures yet to be released are given to participants to

predict the structure blindly. The extent of the impact of

machine learning in structure prediction has been quite

visible in the latest CASP competitions. The typical

methodology in previous CASP editions for the top

ranked predictions has been to use very complex work-

flows based on protein threading and some method for

structure optimization like Rosetta [23]. Protein thread-

ing consists in selecting parts of the sequence for which

there are good templates in the PDB and stitch them

together [24]. A force-field can then be used to relax this

object into a protein structure. The introduction of

co-evolution information in the form of contact maps

prediction provided a boost in the performance, at the

expense of even more complex workflows.
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Historically the difference between top predictors in

CASP has been minimal — indicating that there was

not a clearly better method, but rather an incremental

improvement of the workflows. This situation created a

barrier of entry to a certain extent for new ideas and

models. However, in the latest edition of CASP

(CASP13), the group of AlphaFold [9] ranked first with

a very simplified workflow [8], heavily based on machine

learning methods. The approach extended the contact

and distance matrix predictions to predict histograms of

distances between amino acids using a very deep residual

network on co-evolutionary data. This approach allowed

to take into account implicitly the possible errors and

inaccuracy in the prediction itself. In addition, it used an

autoencoder architecture derived from previous work on

drawing [25] to replace threading all-together and gener-

ate the structure directly from the sequence and distance

histograms. The use of an autoencoder guarantees an

implicit, but much more elegant threading of the avail-

able structural information in the PDB to the predicted

structure. In a second approach from the same group, a

knowledge-based potential derived from the distance

histograms was also used. The potential was simply

minimized to converged structures. This last protein-

specific potential minimization might look surprising at

first, but it is actually very similar to well-known struc-

ture-based models for protein folding [26,13].

An alternativeand interesting machine learning approach for

structure predictions, which also offers wider applicability, is

to use end-to-end differentiable models [27�,3�,28]. While

the performance of these methods does not yet reach

the performance of co-evolution based methods for cases

where co-evolutionary information is high, they can be

applied to protein design, and in cases where co-evolution

data is missing. In [27�], a single end-to-end network is

proposed that is composed by multiple transformations from

the sequence to the protein backbone angles and finally to

three-dimensional coordinates on which a loss function is

computed in terms of root mean square deviations against

known structures. In [3�] a sequence-conditioned energy

function is parameterized by a deep neural network and

Langevin dynamics is used to generate samples from the

distribution. In [28] a generative adversarial model is used to

produce realistic Ca distance matrices on blocks up to

128-residues, then standard methods are used to recreate

the backbone and side chain structure from there. Inci-

dentally, a variational autoencoder was also tested as a

baseline with comparable results. This model is not

conditioned on sequence, so it is useful for generating

new structures and for in-painting missing parts in a

crystal structure.

Folding proteins with machine learned force
fields
State-of-the-art force fields can reproduce with reason-

able accuracy the thermodynamical and structural
www.sciencedirect.com
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properties of globular proteins [10] or intrinsically

disordered proteins (IDPs) [11]. Generally, force fields

are designed by first assigning a functional form for all the

different types of interactions (e.g. electrostatic, Van der

Waals, etc.) between the atoms of different types, then

optimizing the parameters in these interactions to

reproduce as best as possible some reference data.

In the last few years, a new approach on the design of force-

fields has emerged, that takes advantage of machine learn-

ing tools [29,30]. The idea is to use either a deep neural

networkor someothermachine learningmodel to represent

the classical energy function of a system as a function of the

atomiccoordinates, insteadof specifying a functional form a

priori [31�]. The model can then be trained on the available

data to ‘learn’ to reproduce some desired properties, such as

energies and forces as obtained from quantum mechanical

calculations. As a neural network is a universal function

approximator, this approach has the significant advantage

that can approximate a large number of possible functional

forms for the energy, instead of being constrained by a

predefined one, and can in principle include multi-body

correlations that are generally ignored in classical force-

fields. The downside of this increased flexibility however

resides in the fact that a very large amount of data is needed

to train the machine learning model as the model may

extrapolate poorly in regions of the conformational space

where data are not available. So far, large amount of

quantum chemical calculations have been used to train

such force-fields, but in principle experimental data could

also be included [32].

The machine learning approach to force field design has

evolved rapidly in the last decade, but it has so far mostly

been tested on small organic molecules. Some of the

proposed methods are tailored to reproduce the thermody-

namics of specific molecules (e.g. [33]), while others

attempt to design transferable force-fields that are trained

on a large number of small molecules and could in principle

be used to simulatea much larger moleculesuch asa protein

(e.g. [34�,35]). Indeed, quantum mechanical calculations

on water, amino acids, and small peptides have been

included in the latest generation of machine-learned clas-

sical force-fields (e.g. the development version of the ANI

potential [36]). We are aware of one instance where a

machine-learned force-field has been used to simulate a

50 ns molecular dynamics trajectory of a cellulose-binding

domain protein (1EXG) in its folded state. Recently, a

transferable machine-learned force-fieldhas been tested on

polypeptides. However, machine-learned force-fields have

not (yet)been used forprotein folding simulations, norhave

they been used to predict thermodynamic or kinetic prop-

erties. While we believe that this will be possible and

machine-learned force-fields will be widely used in protein

simulations in the near future, at the moment there are still

some significant challenges that need to be overcome

towards this goal [6].
www.sciencedirect.com 
One fundamental challenge resides on the modeling of

long-range interactions. If only quantum calculations on

small molecules are used in the training of force-fields,

interactions on scales larger than these molecules could

easily be missed in the training. The locality of the

machine-learned force-fields could be insufficient to cap-

ture electrostatic interactions, or long-range van der Waals

interactions [37]. This problem could be addressed by

separating the long-range effects in the force-field. For

instance, atomic partial charges could be learned [38]

simultaneously to local energy terms and used in electro-

static interactions that could be added to the machine-

learned energy part to obtain a total energy that is used in

the training.

Another main challenge resides in the software used for

the simulations. Calculating energies and forces for a

protein configuration by means of a trained neural net-

work is several orders of magnitude faster than obtaining

these quantities ab initio with quantum mechanical cal-

culations, but it is still slower than with a standard

classical force-field. In order to simulate protein folding,

molecular dynamics trajectories of at least microseconds

are needed and this timescale is not currently accessible

with machine-learned force-fields. Research in this area

has so far mostly focused on obtaining an accurate repre-

sentation for the energy and forces for molecules and tests

have been performed on small systems, mostly as a proof

of concept. As this field mature, we believe that signifi-

cant efforts will also be made to optimize the software for

practical applications and molecular dynamics simulation

with machine learned force-fields will become a viable

alternative to current approaches. Additionally, the

whole arsenal of methods that have been developed to

enhance the sampling of protein configurational land-

scapes with classical force-fields (e.g. [39,40]) can also

be used with machine-learned force-fields to reach longer

timescales and larger system sizes.

Machine learning of coarse-grained protein
folding models
In parallel to efforts for the design of atomistic force-fields,

machine learninghasalsobeenusedtoobtaincoarsermodels

[42,43,5��], that could be applied to study larger systems and

longer timescales with reduced computational resources.

Coarse-grained models map groups of atoms in some effec-

tive interactive ‘beads’ and assign an effective energy func-

tion between the beads to try to reproduce some properties

of a protein system. Different properties could be targeted,

and different strategies have been used to design coarse-

grained models, either starting from atomistic simulations

(bottom-up) (e.g. [44,45]), experimental data (top-down)

(e.g. [46]) or enforcing general ‘rules’ such as the minimal

frustration principle for protein folding [13,14]. In

principle, the same ideas used in the design of atomistic

force-fields from quantum mechanical data can be used to

make the next step in resolution and design coarse-grained
Current Opinion in Structural Biology 2020, 60:77–84



80 Folding and binding
molecular models from all-atom molecular simulations [12].

One main problem in the design of models at a resolution

coarser than atomistic is the fact that by renormalizing local

degrees of freedom multi-body terms emerge in the effec-

tive energy function even if only pairwise interactions were

used in a reference atomistic force-field. Such multi-body

terms should then be taken into account in the energy

function of the coarse-grained model to correctly reproduce

the thermodynamics and dynamics of the model at finer

resolution. Attempts have been made to include these terms

in coarse-grained models, but it is challenging to define

suitable and general functional forms to capture these effects

in an effective energy function. For this reason, neural

networks appear as a natural choice for the design of

coarse-grained potentials, as they can automatically capture

non-linearities and multi-body terms while agnostic on their

specific functional form. Indeed, in the last fewyears, several

groups have attempted to use machine learning methods to

design coarse-grained potentials for different systems

[42,43,5��]. Most recently, CGnet (see Figure 1), a neural

network for coarse-grained molecular force-fields, has been

proposed and has been used to model the folding/unfolding

dynamics of a small protein [5��]. The CGnet applications

presented so far have been system-specific. However similar

ideas to what has been used in the design of transferable

atomistic force-fields from quantum mechanical data could

also been used to try to obtain more transferable coarse-

grained models. In general, transferability remains an out-

standing issue in the design of coarse models [47] and its

requirement may decrease the ability of reproducing faith-

fully properties of specific systems. So far, the challenges in

the definition of general and multi-body functional forms for
Figure 1
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coarse-grained models have not allowed to rigorously inves-

tigate the trade-off between transferability and accuracy for

such models. The use of machine learning tools to design

effective potential energy functions may soon allow to

explore this question systematically.

Machine learning for analysis and enhanced
simulation of protein dynamics
Machine learning has been quite impactful in the analysis

of simulations of protein dynamics. In this context, two

closely related aims are: Firstly, the extraction of collec-

tive variables (CVs) associated with the slowest dynamical

processes and the metastable states (that can be defined

from the knowledge of the slow CVs) from given protein

molecular dynamics (MD) simulation data [15]; and

finally, enhancing the simulations so as to increase the

number of rare event transitions between them.

A cornerstone for the extraction of slow CVs, metastable

states and their statistics are shallow machine learning

methods such as Markov state models (MSMs) [48] and

Master-equation models [49], which model the transitions

between metastable states via a Markovian transition or

rate matrix. A key advantage of MSMs is that they can be

estimated from short MD simulations started from

an arbitrary (non-equilibrium) distribution, and yet

make predictions of the equilibrium distribution and

long-timescale kinetics. While more complex models,

for example, including memory, are conceivable, MSMs

are simpler to estimate, easier to interpret and are moti-

vated by the observation that if they are built in the slow
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CVs of the molecule, the error made by the Markovian

approximation is close to zero for practical purposes [48].

For this reason, much method development has been

made in the past 10–15 years in order to optimize the

pipeline for the construction of MSMs, that is: finding

suitable molecular features to work with [50], reducing

the dimensionality of feature space [51,52], clustering the

resulting space [53,49], estimating the MSM transition

matrix [54] and coarse-graining it [55,56]. While all steps

of this pipeline have significantly improved over time,

constructing MSMs this way is still very error prone and

depends on significant expert knowledge. A critical step

forward was the advent of the variational approach of

conformation dynamics (VAC) [57] and later the more

general variational approach of Markov processes

(VAMP) [58]. These principles define loss functions that

the best approximation to the slow CVs should minimize,

and can thus be used to search over the space of features,

discretization and transition matrices variationally [50].

Recently, VAMPnets have been proposed that use neural

networks to find the optimal slow CVs and few-state

MSM transition matrices by optimizing the VAMP

score [59��] (Figure 2a), and hence replace the entire
Figure 2
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human-built MSM pipeline by a single end-to-end learn-

ing framework. VAMPnets have been demonstrated on

several benchmark problems including protein folding

(Figure 2b) and have been shown to learn high-quality

MSMs without significant human intervention

(Figure 2c). When used with an output layer that does

perform a classification, VAMPnets can be trained to

approximate directly the spectral components of the

Markov propagator [59��,60].

The aim of enhancing MD sampling is closely connected

to identifying the metastable states or slow CVs of a given

molecular system. As the most severe sampling problems

are due to the rare-event transitions between the most

long-lived states, such as folding/unfolding transitions,

identifying such states or the corresponding slow CVs on

the fly can help to speed up the sampling. So-called

adaptive sampling methods perform MD simulation in

multiple rounds, and select the starting states for the new

round based on a model of the slow CVs or metastable

states found so far. Adaptive sampling for protein simula-

tions has been performed using MSMs [61,62] and with

neural network approximations of slow CVs [63,64]. Since

adaptive sampling uses unbiased (but short) MD
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82 Folding and binding
trajectories it is possible to reconstruct the equilibrium

kinetics using MSMs, VAMPnets or similar methods.

Recently, adaptive sampling has been used to sample

protein-protein association and dissociation reversibly in

all-atom resolution, involving equilibrium timescales of

hours [65].

An alternative to adaptive sampling is to use enhanced

sampling methods that speed up rare event sampling by

introducing bias potentials, higher temperatures, etc.,

such as umbrella sampling, replica-exchange or metady-

namics. Since these methods typically work in a space of

few collective variables, they are also sensitive to making

poor choices of collective variables, which can lead to

sampling that is either not enhanced, or even slower than

the original dynamics. Machine learning has an important

role here as it can help these methods by learning optimal

choices of collective variables iteratively during sampling.

For example, shallow machine learning methods have

been used to adapt the CV space during Metadynamics

[66,67], adversarial and deep learning have used to adapt

the CV space during variationally enhanced sampling

(VES, [68]) [69,70]. A completely different approach to

predict equilibrium properties of a protein system is the

Boltzmann Generator [71��] that trains a deep generative

neural network to directly sample the equilibrium distri-

bution of a many-body system defined by an energy

function, without using MD simulation.

Since enhanced sampling changes the thermodynamic

state of the simulation, it is suitable for the reconstruction

of the equilibrium distribution at a target thermodynamic

state by means of reweighting Boltzmann probabilities,

but generally loses information about the equilibrium

kinetics. Ways to recover the kinetics include: Firstly,

extrapolating to the equilibrium kinetics of rare event

transitions by exploiting the Arrhenius relation [72];

secondly, learning a model of the full kinetics and ther-

modynamics by combining probability reweighting and

MSM estimators in a multi-ensemble Markov model [73];

or finally, reweighting transition pathways [74]. Machine

learning and particularly deep learning has not been used

much in these methods, but certainly has potential to

improve them.

Conclusions
Machine learning can provide a new set of tools to

advance the field of molecular sciences, including protein

folding and structure prediction. Nonetheless, physical

and chemical knowledge and intuition will remain invalu-

able in the foreseeable future to design the methods and

interpret the results obtained. In particular, machine

learning can help us to extract new patterns from the

data that are not immediately evident, but in virtually all

areas reviewed above, machine learning methods that

incorporate the relevant physical symmetries, invariances

and conservation laws perform better than black-box
Current Opinion in Structural Biology 2020, 60:77–84 
methods. Furthermore, a trained scientist is still essential

to provide meaning to the patterns and use them to

formulate general principles.
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