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Abstract—This paper studies stable recovery of a
collection of point sources from its noisy M + 1 low-
frequency Fourier coefficients. We focus on the super-
resolution regime where the minimum separation of
the point sources is below 1/M . We propose a sepa-
rated clumps model where point sources are clustered
in far apart sets, and prove an accurate lower bound of
the Fourier matrix with nodes restricted to the source
locations. This estimate gives rise to a theoretical
analysis on the super-resolution limit of the MUSIC
algorithm.

I. INTRODUCTION

In imaging and signal processing, S point sources

are usually represented by a discrete measure:

µ(ω) =
∑S

j=1 xjδωj
(ω), where x = {xj}Sj=1 ∈

C
S represents the source amplitudes and Ω =

{ωj}Sj=1 ⊆ T := [0, 1) represents the source

locations. A uniform array of M+1 sensors collects

the noisy Fourier coefficients of µ, denoted by

y ∈ C
M+1. One can write

y = ΦMx+ η, (I.1)

where ΦM = ΦM (Ω) is the (M+1)×S Fourier or

Vandermonde matrix (with nodes on the unit circle):

ΦM (Ω) =




1 . . . 1
e−2πiω1 . . . e−2πiωS

...
...

...

e−2πiMω1 . . . e−2πiMωS


 ,

and η ∈ C
M+1 represents noise.

Our goal is to accurately recover µ, especially

the support Ω, from y. The measurements y contains

information about µ at a coarse resolution of approx-

imately 1/M , whereas we would like to estimate

µ with a higher resolution. In the noiseless setting

where η = 0, the measure µ can be exactly re-

covered by many methods. With noise, the stability

of this inverse problem depends on Ω. A crucial

quantity is the minimum separation between the two

closest points in Ω, defined as

∆ = ∆(Ω) = min
1≤j<k≤S

|ωj − ωk|T,

where | · |T is the metric on the torus T. In imaging,

1/M is regarded as the standard resolution. As a

manifestation of the Heisenberg uncertainty princi-

ple, recovery is sensitive to noise whenever ∆ <
1/M , which case is referred as super-resolution.

The super-resolution factor (SRF) is M/∆, standing

for the maximum number of points in Ω that is

contained in an interval of length 1/M .

Prior mathematical work on super-resolution can

be placed in three main categories: (a) the min-max

error of super-resolution was studied in [1], [2] when

point sources are on a fine grid of R; (b) when Ω is

well-separated such that ∆ ≥ C/M for some con-

stant C > 1, some representative methods include

total variation minimization (TV-min) [3], [4], [5],

greedy algorithms [6], and subspace methods [7],

[8]. These results address the issue of discretization

error [6] arising in sparse recovery, but they do

not always succeed when ∆ < 1/M ; (c) when

∆ < 1/M , certain assumptions on the signs of µ are

required by many optimization-based methods [9],

[10], [11]. Alternatively, subspace methods exploit

a low-rank factorization of the data and can recover

complex measures, but there are many unanswered

questions related to its stability that we would like

to address.

This paper focuses on a highly celebrated sub-

space method, called MUltiple SIgnal Classification

(MUSIC) [12]. An important open problem is to

understand the super-resolution limit of MUSIC:

characterize the support sets Ω and noise level for

which MUSIC can stably recover all measures µ
supported in Ω within a prescribed accuracy. Prior
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numerical experiments in [7] showed that MUSIC

can succeed even when ∆ < 1/M , but a rigorous

justification was not provided. This is one of our

main motivations for the theory presented in this

paper and in our more detailed preprint [13].

As a result of Wedin’s theorem [17], [18], the

stability of MUSIC obeys, in an informal manner,

Sensitivity ≤ Constant

xminσ2
min(ΦM )︸ ︷︷ ︸

Noise amplification factor

· Q(η)︸ ︷︷ ︸
Noise term

,

where xmin = minj |xj |, σmin(ΦM ) is the smallest

non-zero singular value of ΦM , and Q(η) is a

quantity depending on noise. Therefore, MUSIC can

accurately estimate µ provided that the noise term is

sufficiently small compared to the noise amplifica-

tion factor which depends crucially on σmin(ΦM ).
In the separated case ∆ > 1/M , accurate es-

timates for σmin(ΦM ) and σmax(ΦM ) are known

[14], [15], [8], [7]. In the super-resolution regime

∆ < 1/M , the value of σmin(ΦM ) is extremely sen-

sitive to the “geometry” or configuration of Ω, and a

more sophisticated description of the “geometry” of

Ω other than the minimum separation is required.

Based on this observation, we define a separated

clumps model where Ω consists of well-separated

subsets, where each subset contains several closely

spaced points. This situation occurs naturally in

applications where point sources clustered in far

apart sets.

Under this separated clumps model, we provide a

lower bound of σmin(ΦM ) with the dominant term

scaling like SRF−λ+1, where λ is the cardinality

of the largest clump. This is a significant improve-

ment on existing lower bounds with continuous

measurements where the exponents depend on the

total sparsity S [1], [2]. We use this estimate to

rigorously establish the resolution limit of MUSIC

and explain numerical results. More comprehensive

explanations, comparisons, simulations, and proofs

can be found in [13].

II. MINIMUM SINGULAR VALUE OF

VANDERMONDE MATRICES

We first define a geometric model of Ω where the

point sources are clustered into far apart clumps.

Assumption 1 (Separated clumps model). Let M
and A be a positive integers and Ω ⊆ T have

cardinality S. We say that Ω consists of A separated

clumps with parameters (M,S, α, β) if the follow-

ing hold.

1) Ω can be written as the union of A disjoint sets

{Λa}Aa=1, where each clump Λa is contained in

an interval of length 1/M .

2) ∆ ≥ α/M with max1≤a≤A(λa − 1) < 1/α
where λa is the cardinality of Λa.

3) If A > 1, then the distance between any two

clumps is at least β/M .

There are many types of discrete sets that con-

sist of separated clumps. Extreme examples include

when Ω is a single clump containing all S points,

and when Ω consists of S clumps containing a single

point. While our theory applies to both extremes, the

in-between case where Ω consists of several clumps

each of modest size is the most interesting, and

developing a theory of super-resolution for this case

has turned out to be quite challenging.

Under this separated clumps model, we expect

σmin(ΦM ) to be an `2 aggregate of A terms, where

each term only depends on the “geometry” of each

clump.

Theorem 1. Let M ≥ S2. Assume Ω satisfies

Assumption 1 with parameters (M,S, α, β) for some

α > 0 and

β ≥ max
1≤a≤A

20S1/2λ
5/2
a

α1/2
. (II.1)

Then there exist explicit constants Ca > 0 such that

σmin(ΦM ) ≥
√
M
( A∑

a=1

(
Caα

−λa+1
)2)− 1

2

. (II.2)

The main feature of this theorem is the exponent

on SRF = 1/α, which depends on the cardinality

of each clump as opposed to the total number of

points. Let λ be the cardinality of the largest clump:

λ = maxAa=1 λa. Theorem 1 implies

σmin(ΦM ) ≥ C
√
M SRF−λ+1. (II.3)

Previous results [1], [2] strongly suggest (we avoid

using “imply” because they studied a similar inverse

problem but with continuous, rather than discrete

measurements like the ones considered here) that

σmin(ΦM ) ≥ C
√
M SRF−S+1. (II.4)

By comparing the inequalities (II.3) and (II.4), we

see that our lower bound is dramatically better when

all of the point sources are not located within a sin-

gle clump. These results are also consistent with our

intuition that σmin(ΦM ) is smallest when Ω consists

of S closely spaced points; more details about this
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can be found in [13]. In [16], a lower bound of

σmin(ΦM ) is derived for a model called clustered

nodes; a detail comparison between Theorem 1 and

results in [16] can be found in [13].

The following theorem provides an upper bound

on σmin(ΦM ) when Ω contains λ consecutive points

spaced by α/M , and this shows that the dependence

on SRF in inequality (II.3) is optimal.

Theorem 2. Let λ ≤ S ≤ M − 1, and there exists

a constant c > 0 depending only on λ such that the

following hold: for any 0 < α ≤ c(M + 1)−1/2,

ω ∈ T and Ω ⊆ T of cardinality S that contains

the set ω + {0, α/M, . . . , (λ− 1)α/M}, we have

σmin(ΦM ) ≤ Cλα
λ−1.

III. MUSIC AND ITS SUPER-RESOLUTION LIMIT

In signal processing, the MUSIC algorithm [12],

has been widely used due to its superior numeri-

cal performance among subspace methods. MUSIC

relies upon the Vandermonde decomposition of a

Hankel matrix, and its stability to noise can be

formulated as a matrix perturbation problem.

Throughout the following exposition, we assume

that L is an integer satisfying the inequalities S ≤
L ≤ M + 1− S. The Hankel matrix of y is

H(y) =



y0 y1 . . . yM−L

...
...

. . .
...

yL yL+1 . . . yM


 .

If we denote the noiseless measurement vector by

y0 = ΦM (Ω)x, then it is straightforward to verify

that we have the following Vandermonde decompo-

sition

H(y0) = ΦLdiag(x1, . . . , xS)Φ
T
M−L.

Observe that both ΦL and ΦM−L have full column

rank when S ≤ L ≤ M +1−S and that H(y0) has

rank S. The Singular Value Decomposition (SVD)

of H(y0) is of the form

H(y0) = [U W ] diag(σ1, . . . , σS , 0, . . . , 0)V
∗,

where σ1 ≥ . . . ≥ σS are the non-zero singular

values of H(y0). The columns of U ∈ C
(L+1)×S

and W ∈ C
(L+1)×(L+1−S) span Range(H(y0)) and

Range(H(y0))⊥ respectively, which are called the

signal space and the noise space.

For any ω ∈ T and positive integer L, we define

the steering vector of length L+ 1 to be

φL(ω) = [1 e−2πiω e−2πi2ω . . . e−2πiLω]T .

Algorithm 1 MUltiple SIgnal Classification

Input: y ∈ C
M+1, sparsity S, L.

1: Form Hankel matrix H(y) ∈ C
(L+1)×(M−L+1)

2: Compute the SVD of H(y):

H(y) = [Û Ŵ ]diag(σ̂1, . . . , σ̂S , σ̂S+1, . . .)V̂
∗,

where Û ∈ C
(L+1)×S , Ŵ ∈ C

(L+1)×(L+1−S).

3: Compute the imaging function Ĵ (ω) =

‖φL(ω)‖2/‖Ŵ ∗φL(ω)‖2, ω ∈ [0, 1).

Output: Ω̂ = {ω̂j}Sj=1 corresponding to the S

largest local maxima of Ĵ .

MUSIC is based on the following observation that

ω ∈ Ω iff φL(ω) ∈ Range(H(y0)) = Range(U).

Table I: Functions in the MUSIC algorithm

Noise-space correlation function Imaging function

Noiseless R(ω) = ‖W∗φL(ω)‖2

‖φL(ω)‖2

J (ω) = 1
R(ω)

Noisy R̂(ω) = ‖Ŵ∗φL(ω)‖2

‖φL(ω)‖2

Ĵ (ω) = 1

R̂(ω)

This observation can be reformulated in terms

of the noise-space correlation function R(ω) and

the imaging function J (ω) (see Table I for their

definitions), as summarized in the following lemma.

Lemma 1. Let S ≤ L ≤ M + 1− S. Then

ω ∈ {ωj}Sj=1 ⇐⇒ R(ω) = 0 ⇐⇒ J (ω) = ∞.

To summarize this discussion: in the noiseless

case where we have access to y0, the source lo-

cations can be exactly identified through the zeros

of the noise-space correlation function R(ω) or the

peaks of the imaging function J (ω).
In the presence of noise, we only have access to

H(y), which is a perturbation of H(y0):

H(y) = H(y0) +H(η).

The noise-space correlation and imaging functions

are perturbed to R̂(ω) and Ĵ (ω) respectively. Sta-

bility of MUSIC depends on the perturbation of the

noise-space correlation function from R(ω) to R̂(ω)
which we measure by

‖R̂ − R‖∞ := max
ω∈[0,1)

|R̂(ω)−R(ω)|.

By using Wedin’s theorem [17], [18, Theorem 3.4],

we can prove the following perturbation bound.
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Proposition 1. Let S ≤ L ≤ M + 1 − S. Suppose

2‖H(η)‖2 < xminσmin(ΦL)σmin(ΦM−L). Then

‖R̂ − R‖∞ ≤ 2‖H(η)‖2
xminσmin(ΦL)σmin(ΦM−L)

.

If η is independent Gaussian noise, i.e., η ∼
N (0, σ2I), the spectral norm of H(η) satisfies the

following concentration inequality [19, Theorem 4]:

Lemma 2. If η ∼ N (0, σ2I), then

E‖H(η)‖2 ≤ σ
√
2C(M,L) log(M + 2),

P {‖H(η)‖2 ≥ t} ≤ (M + 2) exp

(
− t2

2σ2C(M,L)

)
,

for t > 0, and C(M,L) = max(L+1,M −L+1).

Combining Proposition 1, Lemma 2 and Theorem

1 gives rise to a stability analysis of MUSIC:

Theorem 3. Let M be an even integer satisfying

M ≥ 2S2 and set L = M/2. Fix parameters ε > 0,

ν > 1, and let η ∼ N (0, σ2I). Assume Ω satisfies

Assumption 1 with parameters (L, S, α, β) for some

α > 0 and β satisfying (II.1). There exist explicit

constants ca > 0 such that if

σ

xmin
< C(M, ν)

( A∑

a=1

c2aα
−2(λa−1)

)−1

ε,

C(M,ν) =
M

32
√

ν(M + 2) log(M + 2)
,

then with probability no less than 1−(M+2)−(ν−1),

‖R̂ − R‖∞ ≤ ε.

In order to guarantee an ε-perturbation of the

noise-space correlation function, the noise-to-signal

ratio should follow the scaling law

σ

xmin
∝
√

M

logM

(
A∑

a=1

c2aα
−2(λa−1)

)−1

ε.

Let λ be the cardinality of the largest clump. By

(II.3), this scaling law reduces to

σ

xmin
∝
√

M

logM
α2λ−2ε =

√
M

logM
SRF−(2λ−2)ε.

The resolution limit of MUSIC is exponential in

SRF, but the exponent only depends on the car-

dinality of the separated clumps instead of the total

sparsity S. These estimates are verified by numerical

experiments in [13].
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for sparse super-resolution of positive measures,” Journal

of Fourier Analysis and Applications, vol. 23, no. 5, pp.
1153–1194, 2017.

[11] J. J. Benedetto and W. Li, “Super-resolution by means
of Beurling minimal extrapolation,” Applied and Compu-

tational Harmonic Analysis, 2018.
[12] R. Schmidt, “Multiple emitter location and signal parameter

estimation,” IEEE Transactions on Antennas and Propaga-

tion, vol. 34, no. 3, pp. 276–280, 1986.
[13] W. Li and W. Liao, “Stable super-resolution limit and

smallest singular value of restricted fourier matrices,” arXiv

preprint arXiv:1709.03146, 2017.
[14] H. L. Montgomery and R. C. Vaughan, “Hilbert’s inequal-

ity,” Journal of the London Mathematical Society, vol. 2,
no. 1, pp. 73–82, 1974.

[15] J. D. Vaaler, “Some extremal functions in Fourier analysis,”
Bulletin of the American Mathematical Society, vol. 12,
no. 2, pp. 183–216, 1985.

[16] D. Batenkov, L. Demanet, G. Goldman, and Y. Yomdin,
“Stability of partial Fourier matrices with clustered nodes,”
arXiv preprint arXiv:1809.00658, 2018.
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