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Abstract

We consider the problem of efficiently approximating and encoding high-dimensional data
sampled from a probability distribution ρ in RD, that is nearly supported on a d-dimensional
setM - for example supported on a d-dimensional manifold. Geometric Multi-Resolution
Analysis (GMRA) provides a robust and computationally efficient procedure to construct
low-dimensional geometric approximations of M at varying resolutions. We introduce
GMRA approximations that adapt to the unknown regularity of M, by introducing a
thresholding algorithm on the geometric wavelet coefficients. We show that these data-
driven, empirical geometric approximations perform well, when the threshold is chosen as
a suitable universal function of the number of samples n, on a large class of measures ρ,
that are allowed to exhibit different regularity at different scales and locations, thereby
efficiently encoding data from more complex measures than those supported on manifolds.
These GMRA approximations are associated to a dictionary, together with a fast transform
mapping data to d-dimensional coefficients, and an inverse of such a map, all of which are
data-driven. The algorithms for both the dictionary construction and the transforms have
complexity CDn log n with the constant C exponential in d. Our work therefore establishes
Adaptive GMRA as a fast dictionary learning algorithm, with approximation guarantees,
for intrinsically low-dimensional data. We include several numerical experiments on both
synthetic and real data, confirming our theoretical results and demonstrating the effective-
ness of Adaptive GMRA.

Keywords: Dictionary Learning, Multi-Resolution Analysis, Adaptive Approximation,
Manifold Learning, Compression

1. Introduction

We model a data set as n i.i.d. samples Xn := {xi}ni=1 from a probability measure ρ in
RD. We make the assumption that ρ is supported on or near a setM of dimension d� D,
and consider the problem, given Xn, of learning a data-dependent dictionary that enables
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efficient encoding of (future) data sampled from ρ, together with fast forward and inverse
transforms between RD and the space of encodings.

In order to circumvent the curse of dimensionality, a popular model for data is sparsity:
we say that the data is k-sparse on a suitable dictionary (i.e. a collection of vectors) Φ =
{ϕi}mi=1 ⊂ RD if each data point x ∈ Rd may be expressed as a linear combination of at most
k elements of Φ. Clearly the case of interest is k � D. These sparse representations have
been used in a variety of statistical signal processing tasks, compressed sensing, machine
learning (see e.g. Protter and Elad, 2007; Peyré, 2009; Lewicki et al., 1998; Kreutz-Delgado
et al., 2003; Maurer and Pontil, 2010; Chen et al., 1998; Donoho, 2006; Aharon et al., 2005;
Candes and Tao, 2007, among many others), and spurred much research about how to
learn data-driven dictionaries (see Gribonval et al., 2015; Vainsencher et al., 2011; Maurer
and Pontil, 2010, and references therein). The algorithms used in dictionary learning are
often computationally demanding, and based on high-dimensional non-convex optimization
(Mairal et al., 2010). These approaches have the strength of being very general, with
minimal assumptions on the geometry of the dictionary or on the distribution from which
the samples are generated. This “worst-case” approach incurs bounds depending upon the
ambient dimension D in general (even in the standard case of data lying on one hyperplane).

It is possible to tackle the dictionary learning problem under geometric assumptions on
data sets (Maggioni et al., 2016), namely that data lie on or near a low-dimensional set
M. There are of course various possible geometric assumptions, the simplest one being
that M is a single d-dimensional subspace, in which case Principal Component Analysis
(PCA) (see Pearson, 1901; Hotelling, 1933, 1936) suffices for estimating the subspace. More
generally, one may assume that data lie on a union of several low-dimensional planes instead
of a single one. The problem of estimating multiple planes, called subspace clustering, is
more challenging (see Fischler and Bolles, 1981; Ho et al., 2003; Vidal et al., 2005; Yan and
Pollefeys, 2006; Ma et al., 2007, 2008; Chen and Lerman, 2009; Elhamifar and Vidal, 2009;
Zhang et al., 2010; Liu et al., 2010; Chen and Maggioni, 2011). This model was shown
effective in various applications, including image processing (Fischler and Bolles, 1981),
computer vision (Ho et al., 2003) and motion segmentation (Yan and Pollefeys, 2006). Yet
another type of geometric model gives rise to manifold learning, where M is assumed to
be a d-dimensional manifold isometrically embedded in RD, see (Tenenbaum et al., 2000;
Roweis and Saul, 2000; Belkin and Niyogi, 2003; Donoho and Grimes, 2003; Coifman et al.,
2005a,b; Zhang and Zha, 2004) and many others. It is of interest to move beyond this model
to even more general geometric models, for example where the regularity of the manifold is
reduced, and data are not forced to lie exactly on a manifold, but only close to it.

Geometric Multi-Resolution Analysis (GMRA) was proposed in Chen and Maggioni
(2010), refined in Allard et al. (2012). In GMRA, geometric approximations of M are
constructed with multiscale techniques that have their roots in geometric measure theory,
harmonic analysis and approximation theory. GMRA performs a multiscale tree decom-
position of data and builds multiscale low-dimensional geometric approximations to M.
Given data, the cover tree algorithm (Beygelzimer et al., 2006) is run to obtain a multiscale
tree in which every node is a subset of M, called a dyadic cell, and all dyadic cells at a
fixed scale form a partition ofM. After the tree is constructed, PCA is performed on the
data in each cell to locally approximateM by the d-dimensional principal subspace, so that
every point in that cell may be encoded by the d coefficients for the corresponding principal

2



Adaptive Geometric Multiscale Approximations for Intrinsically Low-dimensional Data

directions. At a fixed scaleM is thereby approximated by a piecewise linear set. In Allard
et al. (2012) the performance of GMRA for volume measures on a Cs, s ∈ (1, 2] manifold was
analyzed in the continuous case (i.e. with no sampling), albeit the effectiveness of GMRA
was demonstrated empirically on simulated and real-world data, but for a fixed data set,
and without out-of-sample extension. In Maggioni et al. (2016), the approximation error
of M was estimated in the non-asymptotic regime with n i.i.d. samples from a measure
ρ, satisfying certain technical assumptions, supported on a thin tube of a C2 manifold of
dimension d isometrically embedded in RD. The concentration bounds in Maggioni et al.
(2016) depend on n and d, but not on D, successfully avoiding the curse of dimensionality
caused by the ambient dimension. The assumption that ρ is supported in a tube around
a manifold can account for noise and does not force the data to lie exactly on a smooth
low-dimensional manifold.

In both Allard et al. (2012) and Maggioni et al. (2016), GMRA approximations are con-
structed on uniform partitions, at a fixed scale, in which all the cells have similar diameters.
However, when the regularity of M, such as smoothness or curvature, weighted by the ρ
measure, varies at different scales and locations, uniform partitions do not yield optimal
approximations. Inspired by the adaptive methods in classical multi-resolution analysis of
functions (see Donoho and Johnstone, 1994, 1995; Cohen et al., 2002; Binev et al., 2005,
2007, among many others, and references therein), we propose an adaptive version of GMRA
to construct low-dimensional geometric approximations ofM on an adaptive partition, and
provide finite sample performance guarantees for a larger classes of geometric structuresM
than those considered in Maggioni et al. (2016). This truly takes advantage of the multiscale
structure of GMRA, and leads to simple yet provably powerful approximations for a large
class of geometric objects that are not necessarily equally regular at all scales and locations.

Our main result (Theorem 8) in this paper may be paraphrased as follows: Let ρ be a
probability measure supported on or near a compact d-dimensional manifoldM ↪→ RD, with
d ≥ 3. Assume that ρ admits a(n unknown) multiscale decomposition satisfying the techni-
cal assumptions A1-A5 in section 2.1. Given n i.i.d. samples of ρ, the intrinsic dimension d,
and a parameter κ large enough, Adaptive GMRA outputs a dictionary Φ̂n = {φ̂i}i∈Jn , an
encoding operator D̂n : RD → R(d+1)Jn and a decoding operator D̂−1

n : R(d+1)Jn → RD that,
with high probability, satisfy the following properties. For every x ∈ RD, ‖D̂nx‖0 ≤ d + 1
(i.e. only d + 1 entries of the encoded data are non-zero), and the Mean Squared Error
(MSE), over data sampled from ρ, satisfies

MSE := Ex∼ρ[‖x− D̂−1
n D̂nx‖2] .

(
log n

n

) 2s
2s+d−2

.

Here s is a regularity parameter of ρ (as in definition 5), which allows us to considerM’s and
ρ’s with nonuniform regularity, varying at different locations and scales. The parameter κ is
used in choosing the threshold on the geometric wavelet coefficients, and selecting from the
GMRA a multiscale partition and set of local approximate tangent planes to use for encoding
the data. Note that the algorithm does not need to know s (indeed, κ is independent of
s), but it automatically adapts to obtain a rate that depends on s. We believe, but do not
prove, that this rate is indeed optimal. As for computational complexity, constructing Φ̂n

takes O((Cd+d2)Dn log n) and computing D̂nx only takes O(d(D+d2) log n), which means
we have a fast transform mapping data to their sparse encoding on the dictionary.
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In Adaptive GMRA, the dictionary is composed of the low-dimensional planes on adap-
tive partitions and the encoding operator transforms a point to the local affine d+1 principal
coefficients of the data in a piece of the partition (the first affine principal component here
means the local mean). We state this results in terms of encoding and decoding to stress
that learning the geometry in fact yields efficient representations of data, which may be
used for performing signal processing tasks in a domain where the data admit a sparse
representation, e.g. in compressive sensing or estimation problems (see Iwen and Maggioni,
2013; Chen et al., 2012; Eftekhari and Wakin, 2015). Adaptive GMRA is designed towards
robustness, both in the sense of tolerance to noise and to model error (i.e. data not lying
on a manifold). We assume d is given throughout this paper. If not, we refer to Little et al.
(2017, 2009a,b) for the estimation of intrinsic dimensionality.

The paper is organized as follows. Our main results, including the construction of
GMRA, Adaptive GMRA and their finite sample analysis, are presented in Section 2. We
show numerical experiments in Section 3. The detailed analysis of GMRA and Adaptive
GMRA is presented in Section 4. In Section 5, we discuss the computational complexity of
Adaptive GMRA and extend our work to adaptive orthogonal GMRA. Proofs are collected
in the appendix.

Notation. We will introduce some basic notation here. f . g means that there exists a
constant C independent on any variable upon which f and g depend, such that f ≤ Cg;
similarly for &. f � g means that f . g and f & g. The cardinality of a set A is denoted
by #A. For x ∈ RD, ‖x‖ denotes the Euclidean norm and Br(x) denotes the Euclidean ball
of radius r centered at x. Given a subspace V ∈ RD, we denote its dimension by dim(V )
and the orthogonal projection onto V by ProjV . If A is a linear operator on RD, ||A|| is its
operator norm. The identity operator is denoted by I.

2. Main results

GMRA was proposed in Allard et al. (2012) to efficiently represent points on or near a
low-dimensional manifold in high dimensions. We refer the reader to that paper for details
of the construction, and we summarize here the main ideas in order to keep the presentation
self-contained. The construction of GMRA involves the following steps:

(i) construct a multiscale tree T and the associated decomposition ofM into nested cells
{Cj,k}k∈Kj ,j∈Z where j represents scale and k location;

(ii) perform local PCA on each Cj,k: let the mean (“center”) be cj,k and the d-dim principal
subspace Vj,k. Define Pj,k(x) := cj,k + ProjVj,k

(x− cj,k).

(iii) construct a “difference” subspace Wj+1,k′ capturing Pj,k(Cj,k) − Pj+1,k′(Cj+1,k′), for
each Cj+1,k′ ⊆ Cj,k (these quantities are associated with the refinement criterion in
Adaptive GMRA).

M may be approximated, at each scale j, by its projection PΛj onto the family of linear sets
Λj := {Pj,k(Cj,k)}k∈Kj

. For example, linear approximations of the S-manifold at scale 6
and 10 are displayed in Figure 1. In a variety of distances, PΛj (M)→M. In practiceM is
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(a) S-manifold (b) scale 6 (c) scale 10

Figure 1: (a) S-manifold; (b,c) Linear approximations at scale 6, 10.

unknown, and the construction above is carried over on training data, and its result is ran-
dom with respect to the training samples. Naturally we are interested in the performance of
the construction on new samples. This is analyzed in a setting of “smooth manifold+noise”
in Maggioni et al. (2016). When the regularity (such as smoothness or curvature) of M
varies at different locations and scales, linear approximations on fixed uniform partitions
are not optimal. Inspired by adaptive methods in classical multi-resolution analysis (see
Cohen et al., 2002; Binev et al., 2005, 2007), we propose an adaptive version of GMRA
which learns adaptive and near-optimal approximations.

We will start with the multiscale tree decomposition in Section 2.1 and present GMRA
and Adaptive GMRA in Section 2.3 and 2.4 respectively.

2.1. Multiscale partitions and trees

A multiscale set of partitions of M with respect to the probability measure ρ is a family
of sets {Cj,k}k∈Kj ,j∈Z, called dyadic cells, satisfying Assumptions (A1-A5) below, for all
integers j ≥ jmin:

(A1) for any k ∈ Kj and k′ ∈ Kj+1, either Cj+1,k′ ⊆ Cj,k or ρ(Cj+1,k′ ∩ Cj,k) = 0. We
denote the children of Cj,k by C (Cj,k) = {Cj+1,k′ : Cj+1,k′ ⊆ Cj,k}. We assume that
amin ≤ #C (Cj,k) ≤ amax. Also for every Cj,k, there exists a unique k′ ∈ Kj−1 such
that Cj,k ⊆ Cj−1,k′ . We call Cj−1,k′ the parent of Cj,k.

(A2) ρ(M\∪k∈Kj
Cj,k) = 0, i.e. Λj := {Cj,k}k∈Kj

is a cover forM.

(A3) ∃θ1 > 0 : #Λj ≤ 2jd/θ1.

(A4) ∃θ2 > 0 such that, if x is drawn from ρ|Cj,k
, then a.s. ‖x− cj,k‖ ≤ θ22

−j .

(A5) Let λj,k
1 ≥ λj,k

2 ≥ . . . ≥ λj,k
D be the eigenvalues of the covariance matrix Σj,k of ρ|Cj,k

,

defined in Table 1. Then:

(i) ∃θ3 > 0 such that ∀j ≥ jmin and k ∈ Kj , λ
j,k
d ≥ θ32

−2j/d,

(ii) ∃θ4 ∈ (0, 1) such that λj,k
d+1 ≤ θ4λ

j,k
d .
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(A1) implies that the {Cj,k}k∈Kj ,j≥jmin
are associated with a tree structure, and with some

abuse of notation we call the above tree decompositions. (A1)-(A5) are natural assumptions,
easily satisfied by natural multiscale decompositions whenM is a d-dimensional manifold
isometrically embedded in RD: see the work (Maggioni et al., 2016) for a detailed discussion,
where the connections between the constants θi’s and geometric properties ofM (curvatures,
reach, etc...) are also discussed. (A2) guarantees that the cells at scale j form a partition of
M; (A3) says that there are at most 2jd/θ1 dyadic cells at scale j. (A4) ensures diam(Cj,k) .
2−j . When M is a d-dimensional manifold, (A5)(i) is the condition that the best rank d
approximation to Σj,k is close to the covariance matrix of a d-dimensional Euclidean ball,
while (A5)(ii) imposes that the (d+1)-th eigenvalue is smaller that the d-th eigenvalue, i.e.
the set has significantly larger variances in d directions than in all the remaining ones. The
conditions generalize those in (Allard et al., 2012) (which corresponded to the case when
M is a manifold) and in (Maggioni et al., 2016), for example by not assuming that all sets
{Cj,k}k (for any fixed j) have roughly the same volume, and also by weakening (A5). These
changes enlarge the class of measures ρ and sets M that we consider here, for exampling
allowing for a highly nonuniform measure ρ, and anM substantially “thickened” in many
dimensions.

We will construct such {Cj,k}k∈Kj ,j≥jmin
in Section 2.6. In our construction (A1-A4)

is satisfied when ρ is a regular doubling probability measure1 (see Christ, 1990; Deng and
Han, 2008). If we further assume that M is a d-dimensional Cs, s ∈ (1, 2] closed manifold
isometrically embedded in RD, then (A5) is satisfied as well (See Proposition 14).

It may happen that at the coarsest scales conditions (A3)-(A5) are satisfied but with
very poor constants θ: it will be clear that in all that follows we may discard a few coarse
scales (i.e. by enlarging jmin), and only work at scales that are fine enough and for which
(A3)-(A5) truly capture the local geometry ofM.

Some notation: a master tree T is associated with {Cj,k}k∈Kj ,j≥jmin
(using property

(A1)), constructed on M; since Cj,k’s at scale j have similar diameters, Λj := {Cj,k}k∈Kj

is called a uniform partition at scale j. A proper subtree T̃ of T is a collection of nodes of
T with the properties: (i) the root node is in T̃ , (ii) if Cj,k is in T̃ then the parent of Cj,k

is also in T̃ . Any finite proper subtree T̃ is associated with a unique partition Λ = Λ(T̃ )
which consists of its outer leaves, by which we mean those Cj,k ∈ T such that Cj,k /∈ T̃ but
its parent is in T̃ .

2.2. Empirical GMRA

In practice the master tree T is not given, nor can be constructed since M is not known:
we will construct one on samples by running a variation of the cover tree algorithm (see
Beygelzimer et al., 2006), which only creates candidate “centers” for the Cj,k, by adding a
multiscale partitioning step. From now on we denote the training data by X2n. We randomly
split the data into two disjoint groups such that X2n = X ′

n∪Xn where X ′
n = {x′1, . . . , x′n} and

Xn = {x1, . . . , xn}, apply our variation on cover trees on X ′
n to construct a tree satisfying

(A1-A5) (see section 2.6). After the tree is constructed, we assign points in the second

1. ρ is regular doubling if there exists C1 > 0 such that C−1
1 rd ≤ ρ(M∩Br(x)) ≤ C1r

d for any x ∈ M and
r > 0. C1 is called the doubling constant of ρ.
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GMRA Empirical GMRA

Linear projection
on Cj,k

Pj,k(x) := cj,k + ProjVj,k
(x− cj,k) P̂j,k(x) := ĉj,k + Proj

V̂j,k
(x− ĉj,k)

Linear projection
at scale j

Pj :=
∑

k∈Kj
Pj,k1j,k P̂j :=

∑
k∈Kj

P̂j,k1j,k

Measure ρ(Cj,k) ρ̂(Cj,k) = n̂j,k/n

Center cj,k := Ej,kx ĉj,k := 1
n̂j,k

∑
xi∈Cj,k

xi

Principal
subspaces

Vj,k minimizes
Ej,k‖x− cj,k − ProjV (x− cj,k)‖2

among d-dim subspaces

V̂j,k minimizes
1

n̂j,k

∑
xi∈Cj,k

‖x− ĉj,k − ProjV (x− ĉj,k)‖2
among d-dim subspaces

Covariance
matrix

Σj,k := Ej,k(x− cj,k)(x− cj,k)
T Σ̂j,k := 1

n̂j,k

∑
xi∈Cj,k

(xi − ĉj,k)(xi − ĉj,k)
T

Inner product
with respect to ρ

〈PX,QX〉 :=
´

M〈Px,Qx〉dρ 1/n
∑

xi∈Xn
〈Pxi,Qxi〉

Norm with
respect to ρ

‖PX‖ :=
(´

M ‖Px‖2dρ
) 1

2
(
1/n

∑
xi∈Xn

‖Pxi‖2
) 1

2

Table 1: This table summarizes GMRA-related quantities and their empirical counterparts
(Allard et al., 2012; Maggioni et al., 2016). 1j,k is the indicator function on Cj,k

(i.e.,1j,k(x) = 1 if x ∈ Cj,k and 0 otherwise). Here Ej,k stands for expectation with
respect to the conditional distribution dρ|Cj,k

. The measure of Cj,k is ρ(Cj,k) and

the empirical measure is ρ̂(Cj,k) = n̂j,k/n where n̂j,k is the number of points in

Cj,k. Vj,k and V̂j,k are the eigen-spaces associated with the largest d eigenvalues

of Σj,k and Σ̂j,k respectively. Here P,Q: M→ RD are two operators.

half of data Xn, to the appropriate cells. In this way we obtain a family of multiscale
partitions for the points in Xn, which we truncate to the largest subtree whose leaves
contain at least d points in Xn. This subtree is called the data master tree, denoted by
T n. We then use Xn to perform local PCA to obtain the empirical mean ĉj,k and the

empirical d-dimensional principal subspace V̂j,k on each Cj,k. Define the empirical projection

P̂j,k(x) := ĉj,k + Proj
V̂j,k

(x − ĉj,k) for x ∈ Cj,k. Table 1 summarizes the GMRA-related

quantities and their empirical counterparts.

2.3. Geometric Multi-Resolution Analysis: uniform partitions

GMRA with respect to the distribution ρ associated with the multiscale tree T consists
a collection of piecewise affine projectors {Pj : RD → RD}j≥jmin on the multiscale par-
titions {Λj := {Cj,k}k∈Kj

}j≥jmin . At scale j, M is approximated by the piecewise
linear sets {Pj,k(Cj,k)}k∈Kj

. The approximation error of M by the empirical linear sets

{P̂j,k(Cj,k)}k∈Kj
is defined as:

E‖X − P̂jX‖2 = E
ˆ

M
‖x− P̂jx‖2dρ = E

∑

k∈Kj

ˆ

Cj,k

‖x− P̂j,kx‖2dρ
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where P̂j and P̂j,k are built from random samples xi ∼ ρ (according to the GMRA algo-
rithm), X is a random vector distributed according to ρ, and the expectation is taken over
X. The squared approximation error above is also called the Mean Square Error (MSE) of
GMRA. In order to understand the error, we split it into a bias term and a variance term:

E‖X − P̂jX‖ ≤ ‖X − PjX‖︸ ︷︷ ︸
bias

+E ‖PjX − P̂jX‖︸ ︷︷ ︸√
variance

. (1)

To bound the bias term, we need regularity assumptions on ρ, while for the variance term
we prove concentration bounds of the relevant quantities around their expected values.

For a fixed distribution ρ, the approximation error ofM at scale j, measured by ‖X −
PjX‖, decays at a rate dependent on the regularity of M in the ρ-measure (see Allard
et al., 2012). We quantify the regularity of ρ as follows:

Definition 1 (Model class As) A probability measure ρ supported onM is in As if

|ρ|As = sup
T

inf{A0 : ‖X − PjX‖ ≤ A02
−js, ∀ j ≥ jmin} <∞ , (2)

where T varies over the set, assumed non-empty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).

We capture the case where the L2 approximation error is roughly the same on every cell
with the following definition:

Definition 2 (Model class A∞
s ) A probability measure ρ supported onM is in A∞

s if

|ρ|A∞
s

= sup
T

inf{A0 : ‖(X − Pj,kX)1j,k‖ ≤ A02
−js
√
ρ(Cj,k), ∀ k ∈ Kj , j ≥ jmin} <∞ (3)

where T varies over the set, assumed non-empty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).

Clearly A∞
s ⊂ As. Also, since diam(Cj,k) ≤ 2θ22

−j , necessarily ‖(I − Pj,k)1j,kX‖ ≤
θ22

−j
√
ρ(Cj,k), ∀ k ∈ Kj , j ≥ jmin, and therefore ρ ∈ A∞

1 in any case. Moreover, these
classes contain suitable measures supported on manifolds:

Proposition 3 Let M be a closed manifold of class Cs, s ∈ (1, 2] isometrically embedded
in RD, and ρ be a doubing probability measure on M with the doubling constant C1. Then
our construction of {Cj,k}k∈Kj ,j≥jmin

in Section 2.6 satisfies (A1-A5), and ρ ∈ A∞
s .

The proof is postponed to Appendix A.2.

Example 1 We consider the d-dim S-manifold whose x1 and x2 coordinates are on an S-
shaped curve and xi ranges in [0, 1] for i = 3, . . . , d+ 1. By the Proposition just stated, the
volume measure on this S-manifold is in A∞

2 . Numerically one can identify s from data
sampled from ρ ∈ As as the slope of the line approximating log10 ‖X −PjX‖ as a function
of log10 rj where rj is the average diameter of Cj,k’s at scale j. Our numerical experiments
in Figure 5 (b) give rise to s ≈ 2.0, 2.1, 2.1 when d = 3, 4, 5 respectively.
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Figure 2: (a) Plot of the bias and variance estimates in Eq. (1), with s = 2, d = 5, n =
100. (b) shows the approximation error on test data versus the partition size in
GMRA and Adaptive GMRA for the 3-dim S-manifold. When the partition size
is between 1 and 102.8, the bias dominates the error so the error decreases; after
that, the variance dominates the error, which becomes increasing.

Example 2 As a comparison we consider the d-dimensional Z-manifold whose x1 and x2
coordinates are on a Z-shaped curve and xi ranges in [0, 1], for i = 3, . . . , d + 1. Volume
measure on the Z manifold is in A1.5 (see appendix B.2). Our numerical experiments in
Figure 5 (c) give rise to s ≈ 1.5, 1.7, 1.6 when d = 3, 4, 5 respectively.

The squared bias in (1) satisfies ‖X−PjX‖2 ≤ |ρ|2As
2−2js whenever ρ ∈ As (by definition

of As). In Proposition 16 we will show that the variance term is estimated in terms of the
sample size n and the scale j as follows:

E‖PjX − P̂jX‖2 ≤
d2#Λj log[αd#Λj ]

β22jn
= O

(
j2j(d−2)

n

)
,

where α, β are constants depending on θ2, θ3. In the case d = 1 both the squared bias and
the variance decrease as j increases, so choosing the finest scale of the data tree T n yields the
best rate of convergence. When d ≥ 2, the squared bias decreases but the variance increases
as j gets large as shown Figure 2, as a manifestation of the classical bias-variance tradeoff,
except that it arises here in a geometric setting (a related instance of this phenomenon
appears in Canas et al. (2012)). By choosing a proper scale j∗ to balance these two terms,
we obtain the following rate of convergence for empirical GMRA truncated at scale j∗:

Theorem 4 Suppose ρ ∈ As for s ≥ 1. Let ν > 0 be arbitrary and fix µ > 0. Let j∗ be
chosen such that

2−j∗ =




µ logn

n for d = 1

µ
(
logn
n

) 1
2s+d−2

, for d ≥ 2
(4)

9
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then there exists C1 := C1(θ1, θ2, θ3, θ4, d, ν, µ) and C2 := C2(θ1, θ2, θ3, θ4, d, µ) such that:

P

{
‖X − P̂j∗X‖ ≥ (|ρ|Asµ

s + C1)
log n

n

}
≤ C2n

−ν , for d = 1, (5)

P

{
‖X − P̂j∗X‖ ≥ (|ρ|Asµ

s + C1)

(
log n

n

) s
2s+d−2

}
≤ C2n

−ν , for d ≥ 2 . (6)

Theorem 4 is proved in Section 4.2. From the perspective of dictionary learning, it says that

GMRA provides a dictionary Φj∗ of cardinality� dn/ log n for d = 1 and� d(n/ log n)
d

2s+d−2

for d ≥ 2, consisting of the principal directions in each of the Cj∗,k’s (forming the columns

of V̂j∗,x) and the means of the Cj∗,k’s, so that every x sampled from ρ (and not just samples
in the training data) may be encoded with a vector with d + 1 nonzero entries: one entry
encodes the location k of x on the tree, e.g. (j∗, x) = (j∗, k) such that x ∈ Cj∗,k, and the

other d entries are the coefficients V̂ T
j∗,x(x− ĉj∗,x). We also remind the reader that GMRA

automatically constructs a fast transform mapping points x to the vector representing Φj∗

(See Allard et al. (2012); Maggioni et al. (2016) for a discussion). Note that by choosing ν
large enough in the Theorem,

(6) =⇒ MSE = E‖X − P̂j∗X‖2 .
(
log n

n

) 2s
2s+d−2

,

and (5) implies MSE . ( lognn )2 for d = 1. Clearly, one could fix a desired MSE of size ε2,
and obtain a dictionary of size dependent only on ε and independent of n, for n sufficiently
large, thereby obtaining a way of compressing data (for further discussion on this point see
Maggioni et al. (2016), where also a special case of Theorem 4 with s = 2 was proved).

2.4. Geometric Multi-Resolution Analysis: Adaptive Partitions

The performance guarantee in Theorem 4 is not fully satisfactory for two reasons: (i)
the regularity parameter s is required to be known to choose the optimal scale j∗, and
this parameter is typically unknown in any practical setting, and (ii) none of the uniform
partitions {Cj,k}k∈Kj

will be optimal if the regularity of ρ (and/or M) varies at different
locations and scales. This lack of uniformity in regularity can appear in a wide variety of
data sets for various reasons: when clusters exist that have cores denser than the remaining
regions of space, when sampled trajectories of a dynamical system linger in certain regions
of space for much longer time intervals than others (e.g. metastable states in molecular

Definition (infinite sample) Empirical version

Difference operator Qj,k := (Pj − Pj+1)1j,k Q̂j,k := (P̂j − P̂j+1)1j,k

Norm of difference ∆2
j,k :=

´

Cj,k
‖Qj,kx‖2dρ ∆̂2

j,k := 1
n

∑
xi∈Cj,k

‖Q̂j,kxi‖2

Table 2: Refinement criterion and the empirical counterparts

10
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Algorithm 1 - Adaptive GMRA

Input: data X2n = X ′
n ∪ Xn, intrinsic dimension d, threshold κ

Output: T n, {Cj,k}, P̂Λ̂τn
: multiscale tree, corresponding cells and adaptive piecewise

linear projectors on an adaptive partition.
1: Construct T n and {Cj,k} from X ′

n

2: Now use Xn. Compute P̂j,k and ∆̂j,k on every node Cj,k ∈ T n.

3: T̂τn ← smallest proper subtree of T n containing all Cj,k ∈ T n : ∆̂j,k ≥ 2−jτn where
τn = κ

√
(log n)/n.

4: Λ̂τn ← the partition associated with outer leaves of T̂τn
5: P̂

Λ̂τn
←∑

Cj,k∈Λ̂τn
P̂j,k1j,k.

Adaptive partitions may be effectively selected with a criterion that determines whether
or not a cell should participate in the adaptive partition. The quantities involved in the
selection and their empirical version are summarized in Table 2.

We will provide a finite sample performance guarantee of the empirical Adaptive GMRA
for a model class that is more general than A∞

s . Given any fixed threshold η > 0, we let
T(ρ,η) be the smallest proper subtree of T that contains all Cj,k ∈ T for which ∆j,k ≥ 2−jη.
The corresponding adaptive partition Λ(ρ,η) consists of the outer leaves of T(ρ,η). We let
#jT(ρ,η) be the number of cells in T(ρ,η) at scale j.

Definition 5 (Model class Bs) In the case d ≥ 3, given s > 0, a probability measure ρ
supported onM is in Bs if ρ satisfies the following regularity condition:

|ρ|Bs :=


sup

T
sup
η>0

ηp
∑

j≥jmin

2−2j#jT(ρ,η)




1
p

<∞, with p =
2(d− 2)

2s+ d− 2
(7)

where T varies over the set, assumed nonempty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).

For elements in the model class Bs we have control on the growth rate of the truncated
tree T(ρ,η) as η decreases, namely it is O(η−p). Our key estimates on variance and sample
complexity in Lemma 15 indicate that the natural measure of the complexity of T(ρ,η) is the
weighted tree complexity measure

∑
j≥jmin

2−2j#jT(ρ,η) in the definition above. First of all,
the class Bs is indeed larger than A∞

s (see appendix A.4 for a proof):

Lemma 6 Bs is a more general model class than A∞
s : if ρ ∈ A∞

s , then ρ ∈ Bs and
|ρ|Bs . |ρ|A∞

s
.

Example 3 The volume measures on the d-dim (d ≥ 3) S-manifold and Z-manifold are
in B2 and B1.5(d−2)/(d−3) respectively (see appendix B). In numerical experiments, s can be

approximated by the negative of the slope in the log-log plot of ‖X − P̂
Λ̂η

X‖d−2 versus the

weighted complexity of the truncated tree according to Eq. (9): see numerical examples in
Figure 5.
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approximation of X by PΛ(ρ,η)
X, as η → 0+:

‖X − PΛ(ρ,η)
X‖2 ≤ Bs,d|ρ|pBs

η2−p ≤ Bs,d|ρ|2Bs


 ∑

j≥jmin

2−2j#jT(ρ,η)




− 2s
d−2

, (9)

where s = (d−2)(2−p)
2p and Bs,d := B02

p/(1− 2p−2).
The main result of this paper is the following performance analysis of empirical Adaptive

GMRA (see the proof in Section 4.3).

Theorem 8 Suppose ρ satisfies quasi-orthogonality and M is bounded: M ⊂ BM (0). Let
ν > 0. There exists κ0(θ2, θ3, θ4, amax, d, ν) such that if τn = κ

√
(log n)/n with κ ≥ κ0, the

following holds:

(i) if d ≥ 3 and ρ ∈ Bs for some s > 0, there are c1 and c2 such that

P

{
‖X − P̂

Λ̂τn
X‖ ≥ c1

(
log n

n

) s
2s+d−2

}
≤ c2n

−ν . (10)

(ii) if d = 1, there exist c1 and c2 such that

P

{
‖X − P̂

Λ̂τn
X‖ ≥ c1

(
log n

n

) 1
2

}
≤ c2n

−ν . (11)

(iii) if d = 2 and

|ρ| := sup
T

sup
η>0

1

log 1
η

∑

j≥jmin

2−2j#jT(ρ,η) < +∞ ,

then there exist c1 and c2 such that

P

{
‖X − P̂

Λ̂τn
X‖ ≥ c1

(
log2 n

n

) 1
2

}
≤ c2n

−ν . (12)

Notice that by choosing ν large enough, we have

P

{
‖X − P̂

Λ̂τn
X‖ ≥ c1

(
logα n

n

)β
}
≤ c2n

−ν ⇒ MSE ≤ c1

(
logα n

n

)2β

,

so we also have MSE . (log n/n)
2s

2s+d−2 for d ≥ 3 and MSE . logd n/n for d = 1, 2.
The dependencies of the constants in Theorem 8 on the geometric constants are as

follows:

d ≥ 3 : c1 = c1(θ2,3,4, amax, d, s, κ, |ρ|Bs , B0, ν), c2 = c2(θ2,3,4, amin, amax, d, s, κ, |ρ|Bs , B0).
d = 2 : c1 = c1(θ2,3,4, amax, d, κ, |ρ|Bs , B0, ν), c2 = c2(θ2,3,4, amin, amax, d, κ, |ρ|Bs , B0).
d = 1 : c1 = c1(θ1,2,3,4, amax, d, κ,B0, ν), c2 = c2(θ1,2,3,4, amin, amax, d, κ,B0).
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Theorem 8 is more satisfactory than Theorem 4 for two reasons: (i) when d ≥ 3, the
same rate (log n/n)2s/(2s+d−2) is proved for the model class Bs which is larger than A∞

s ;
(ii) the threshold-based estimator is adaptive: it does not require a priori knowledge of the
regularity s, since the choice of κ is independent of s, yet it achieves the rate as if it knew
the optimal regularity parameter s.

From the perspective of dictionary learning, when d ≥ 3, Adaptive GMRA provides
a dictionary Φ

Λ̂τn
associated with a tree of weighted complexity (n/ log n)d−2/(2s+d−2), so

that every x sampled from ρ may be encoded by a vector with d+1 nonzero entries, among
which one encodes the location of x in the adaptive partition and the other d entries are
the local principal coefficients of x.

For a given accuracy ε, in order to achieve MSE . ε2, the number of samples we need
is nε & (1/ε)(2s+d−2)/s log(1/ε). When s is unknown, we can determine s as follows: we fix
a small n0 and run Adaptive GMRA with n0, 2n0, 4n0, . . . , Cn0 samples. For each sample
size, we evenly split data into a training set to construct Adaptive GMRA and a test set

to evaluate the MSE. According to Theorem 8, the MSE scales like [(log n)/n]
2s

2s+d−2 where
n is the sample size. Therefore, the slope in the log-log plot of the MSE versus n gives an
approximation of −2s/(2s+ d− 2).

The threshold τn in our adaptive algorithm is independent of s since κ0 does not depend
on s, which means our adaptive algorithm does not require s as a priori information but
rather will learn it from data.

Remark 9 It would also be natural to consider another stopping criterion: E2j,k := 1
ρ(Cj,k)

´

Cj,k
‖Pjx − x‖2dρ ≤ η2 which suggests stopping refinement to finer scales if the approx-

imation error is below certain threshold. The reason why we do not adopt this stopping
criterion is that in this case the threshold η would have to depend on s in order to guarantee
the (adaptive) rate MSE . (log n/n)2s/(2s+d−2) for d ≥ 3. More precisely, for any thresh-
old η > 0, let T E

(ρ,η) be the smallest proper subtree of T whose leaves satisfy E2j,k ≤ η2.

The corresponding adaptive partition ΛE
(ρ,η) consists of the leaves of T E

(ρ,η). This stop-

ping criterion guarantees ‖X − PΛE
(ρ,η)

X‖ ≤ η. It is natural to define the model class

Fs in the case d ≥ 3 to be the set of probability measures ρ supported on M such that
supT supη>0 η

(d−2)/s
∑

j≥jmin
2−2j#jΛ

E
(ρ,η) < ∞ where T varies over the set of multiscale

tree decompositions satisfying (A1-A5). One can show that A∞
s ( Fs. As an analogue of

Theorem 8, we can prove that, there exists κ0 > 0 such that if our adaptive algorithm adopts
the stopping criterion Êj,k ≤ τEn where the threshold is chosen as τEn = κ (log n/n)

s
2s+d−2

with κ ≥ κ0, then the empirical approximation on the adaptive partition Λ̂τEn
satisfies

MSE = ‖X − P̂
Λ̂
τEn

X‖2 . (log n/n)2s/(2s+d−2) . With this stopping criterion, the thresh-

old τEn would require knowing s, unlike in Theorem 8.

Theorem 8 is stated whenM is bounded. The assumption of the boundedness ofM is
largely irrelevant, and may be replaced by a weaker assumption on the decay of ρ.

Theorem 10 Let d ≥ 3, s, δ, λ, µ > 0. Assume that there exists C1 such that
ˆ

BR(0)c
||x||2dρ ≤ C1R

−δ, ∀R ≥ R0.
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Suppose ρ satisfies quasi-orthogonality. If ρ restricted on BR(0), denoted by ρ|BR(0)
, is in

Bs for every R ≥ R0 and (|ρ|BR(0)
|Bs)

p ≤ C2R
λ for some C2 > 0, where p = 2(d−2)

2s+d−2 . Then

there exists κ0(θ2, θ3, θ4, amax, d, ν) such that if τn = κ
√
log n/n with κ ≥ κ0, we have

P

{
‖X − P̂

Λ̂τn
X‖ ≥ c1

(
log n

n

) s
2s+d−2

δ
δ+max(λ,2)

}
≤ c2n

−ν (13)

for some c1, c2 independent of n, where the estimator P̂
Λ̂τn

X is obtained by Adaptive GMRA

within BRn(0) where Rn = max(R0, µ(n/ log n)
2s

(2s+d−2)(δ+max(λ,2)) ), and is equal to 0 for the
points outside BRn(0).

Theorem 10 is proved at the end of Section 4.3. It implies MSE . (log n/n)
2s

2s+d−2
· δ
δ+max(λ,2) .

As δ increases, i.e., δ → +∞, the MSE approaches (log n/n)
2s

2s+d−2 , which is consistent with
Theorem 8 for bounded M. Similar results, with similar proofs, would hold under differ-
ent assumptions on the decay of ρ; for example for ρ decaying at least exponentially, only
additional log n terms in the rate would be lost compared in Theorem 8.

Remark 11 We claim that λ is not large in simple cases. For example, if ρ ∈ A∞
s and ρ

decays in the radial direction in such a way that ρ(Cj,k) ≤ C2−jd‖cj,k‖−(d+1+δ), it is easy

to show that ρ|BR(0)
∈ Bs for all R > 0 and |ρ|BR(0)

|pBs
≤ Rλ with λ = d− (d+1+δ)(d−2)

2s+d−2 (see

the end of Section 4.3).

Remark 12 Suppose that ρ was supported in a tube of radius σ around a d-dimensional
manifold M, a model that can account both for (bounded) noise and situations where data
is not exactly on a manifold, but close to it, as in Maggioni et al. (2016). Then Theorem 8
and Theorem 10 apply in this case, provided one stops the estimator at a scale j such that
2−j & σ.

Remark 13 In these Theorems we are assuming that d is given because it can be estimated
using existing techniques, see Little et al. (2017) and many references therein.

2.5. Connection to previous works

The works by Allard et al. (2012) and Maggioni et al. (2016) are natural predecessors to
this work. In Allard et al. (2012), GMRA and orthogonal GMRA were proposed as data-
driven dictionary learning tools to analyze intrinsically low-dimensional point clouds in a
high dimensional space. The bias ‖X − PjX‖ were estimated for volume measures on
Cs, s ∈ (1, 2] manifolds . The performance of GMRA, including sparsity guarantees and
computational costs, were systematically studied and tested on both simulated and real
data. In Maggioni et al. (2016) the finite sample behavior of empirical GMRA was studied.
A non-asymptotic probabilistic bound on the approximation error ‖X−P̂jX‖ for the model
class A2 (a special case of Theorem 4 with s = 2) was established. It was further proved
that if the measure ρ is absolutely continuous with respect to the volume measure on a
tube of a bounded C2 manifold with a finite reach, then ρ is in A2. Running the cover
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tree algorithm on data gives rise to a family of multiscale partitions satisfying Assumption
(A3-A5). The analysis in Maggioni et al. (2016) robustly accounts for noise and modeling
errors as the probability measure is concentrated “near” a manifold. This work extends
GMRA by introducing Adaptive GMRA, where low-dimensional linear approximations of
M are built on adaptive partitions at different scales. The finite sample performance of
Adaptive GMRA is proved for a large model class. Adaptive GMRA takes full advantage of
the multiscale structure of GMRA in order to model data sets of varying complexity across
locations and scales. We also generalize the finite sample analysis of empirical GMRA
from A2 to As, and analyze the finite sample behavior of orthogonal GMRA and adaptive
orthogonal GMRA.

In a different direction, a popular learning algorithm for fitting low-dimensional planes
to data is k-flats: let Fk be the collections of k flats (affine spaces) of dimension d. Given
data Xn = {x1, . . . , xn}, k-flats solves the optimization problem

min
S∈Fk

1

n

n∑

i=1

dist2(xi, S) (14)

where dist(x, S) = infy∈S ‖x−y‖. Even though a global minimizer of (14) exists, it is hard to
attain due to the non-convexity of the model class Fk, and practitioners are aware that many
local minima that are significantly worse than the global minimum exist. While often k is
considered given, it may be in fact chosen from the data: for example Theorem 4 in Canas
et al. (2012) implies that, given n samples from a probability measure that is absolutely
continuous with respect to the volume measure on a smooth d-dimensional manifoldM, the

expected (out-of-sample) L2 approximation error ofM by kn = C1(M, ρ)n
d

2(d+4) planes is of

order O(n− 2
d+4 ). This result is comparable with our Theorem 4 in the case s = 2 which says

that the L2 error by empirical GMRA at the scale j such that 2j � (n/ log n)
1

d+2 achieves

a faster rate O(n− 2
d+2 ). So we not only achieve a better rate, but we do so with provable

and fast algorithms, that are nonlinear but do not require non-convex optimization.
Multiscale adaptive estimation has been an intensive research area for decades. In the

pioneering works by Donoho and Johnstone (see Donoho and Johnstone, 1994, 1995), soft
thresholding of wavelet coefficients was proposed as a spatially adaptive method to denoise a
function. In machine learning, Binev et al. addressed the regression problem with piecewise
constant approximations (see Binev et al., 2005) and piecewise polynomial approximations
(see Binev et al., 2007) supported on an adaptive subpartition chosen as the union of data-
independent cells (e.g. dyadic cubes or recursively split samples). While the works above are
in the context of function approximation/learning/denoising, a whole branch of geometric
measure theory (following the seminal work by Jones (1990); David and Semmes (1993))
quantifies via multiscale least squares fits the rectifiability of sets and their approximability
by multiple images of bi-Lipschitz maps of, say, a d-dimensional square. We can the view
the current work as extending those ideas to the setting where data is random, possibly
noisy, and guarantees on error on future data become one of the fundamental questions.

Theorem 8 can be viewed as a geometric counterpart of the adaptive function approx-
imation in Binev et al. (2005, 2007). Our results are a “geometric counterpart” of sorts.
We would like to point out two main differences between Theorem 8 and Theorem 3 in
Binev et al. (2005): (i) In Binev et al. (2005, Theorem 3), there is an extra assumption that
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the function is in Aγ with γ arbitrarily small. This assumption takes care of the error at
the nodes in T \ T n where the thresholding criteria would succeed: these nodes should be
added to the adaptive partition but have not been explored by our data. This assumption
is removed in our Theorem 8 by observing that the nodes below the data master tree have
small measure so their refinement criterion is smaller than 2−jτn with high probability.
(ii) we consider scale-dependent thresholding criterion ∆̂j,k ≥ 2−jτn unlike the criterion
in Binev et al. (2005, 2007) that is scale-independent. This difference arises because at
scale j our linear approximation is built on data within a ball of radius . 2−j and so the
variance of PCA on a fixed cell at scale j is proportional to 2−2j . For the same reason,
we measure the complexity of T(ρ,η) in terms of the weighted tree complexity instead of the
cardinality since the former one gives an upper bound of the variance in piecewise linear
approximation on partition via PCA (see Lemma 15). Using scale-dependent threshold and
measuring tree complexity in this way give rise to the best rate of convergence. In con-
trast, if we use scale-independent threshold and define a model class Γs for whose elements

#T(ρ,η) = O(η−
2d

2s+d ) (analogous to the function class in Binev et al. (2005, 2007)), we can

still show that A∞
s ⊂ Γs, but the estimator only achieves MSE . ((log n)/n)

2s
2s+d . However

many elements2 of Γs not in A∞
s are in Bs′ with 2(d−2)

2s′+d−2 = 2d
2s+d , and in Theorem 8 the

estimator based on scaled thresholding achieves a better rate, which we believe is optimal.

We refer the reader to Maggioni et al. (2016) for a thorough discussion of further related
work related to manifold and dictionary learning.

2.6. Construction of a multiscale tree decomposition

Our multiscale tree decomposition is constructed from a variation of the cover tree algorithm
(see Beygelzimer et al., 2006) applied on half of the data denoted by X ′

n. In brief the cover
tree T (X ′

n) on X ′
n is a leveled tree where each level is a “cover” for the level beneath it.

Each level is indexed by j and each node in T (X ′
n) is associated with a point in X ′

n. A
point can be associated with multiple nodes in the tree but it can appear at most once at
every level. Let Tj(X ′

n) ⊂ X ′
n be the set of nodes of T at level j. The cover tree obeys the

following properties for all j = jmin, . . . , jmax:

1. Nesting: Tj(X ′
n) ⊂ Tj+1(X ′

n);

2. Separation: for all distinct p, q ∈ Tj(X ′
n), ‖p− q‖ > 2−j ;

3. Covering: for all q ∈ Tj+1(X ′
n), there is p ∈ Tj(X ′

n) such that ‖p−q‖ < 2−j . The node
at level j associated with p is a parent of the node at level j + 1 associated with q.

In the third property, q is called a child of p. Each node can potentially have multiple
parents satisfying the distance constraint in 3. above, but is only assigned to one of them
in the tree. The properties above imply that for any q ∈ X ′

n, there exists p ∈ Tj such that
‖p − q‖ < 2−j+1. The authors in Beygelzimer et al. (2006) showed that cover tree always
exists and that can be constructed in time O(CdDn log n) .

2. For these elements, the average cell-wise refinement is monotone in the sense that for every Cj,k and
Cj+1,k′ ⊂ Cj,k, we have ∆j+1,k′/

√
ρ(Cj+1,k′) ≤ ∆j,k/

√
ρ(Cj,k).
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We now show that from a set of nets {Tj(X ′
n)}j=jmin,...,jmax as above we can construct a

set of Cj,k’s with desired properties. (see Appendix A for the construction of Cj,k’s and the

proof of Proposition 14). M̃ defined in (31) is equal to the union of the Cj,k’s up to a set
with 0 empirical measure.

Proposition 14 Assume ρ is a doubling probability measure onM with doubling constant
C1. Then {Cj,k}k∈Kj ,jmin≤j≤jmax constructed in Appendix A satisfies the Assumptions

1. (A1) with amax ≤ C2
1 (24)

d and amin = 1.

2. For any ν > 0,

P

{
ρ(M\ M̃) >

28ν log n

3n

}
≤ 2n−ν ; (15)

3. (A3) with θ1 = C−1
1 4−d;

4. (A4) with θ2 = 3.

5. Additionally:

5a. if ρ satisfies the conditions in (A5) with Br(z), z ∈ M, replacing Cj,k with
constants θ̃3, θ̃4 such that λd(Cov(ρ|Br(z)

)) ≥ θ̃3r
2/d and λd+1(Cov(ρ|Br(z)

)) ≤
θ̃4λd(Cov(ρ|Br(z)

)), then the conditions in (A5) are satisfied by the Cj,k’s we

construct with θ3 := θ̃3(4C1)
−212−d and θ4 := θ̃4/θ̃312

2d+2C4
1 .

5b. if ρ is the volume measure on a closed Cs manifold isometrically embedded in
RD, then the conditions in (A5) are satisfied by the Cj,k’s when j is sufficiently
large.

Even though the {Cj,k} does not exactly satisfy Assumption (A2), we claim that (15) is
sufficient for our performance guarantees in the case thatM is bounded by M and d ≥ 3,
since simply approximating points onM\ M̃ by 0 gives the error:

P

{
ˆ

M\M̃
‖x‖2dρ ≥ 28M2 log n

3n

}
≤ 2n−ν . (16)

The constants in Proposition 14 are extremely pessimistic, due to the generality of
the assumptions on the space M. Indeed when M is a nice manifold as in case (5b),
the statement in the Proposition says that the constants for the Cj,k’s we construct are
similar to those of the ideal Cj,k’s. In practice we use a much simpler and more efficient
tree construction method and we experimentally obtain the properties above with amax =
C2
14

d and amin = 1, at least for the vast majority of the points, and θ{3,4} u θ̃{3,4}. We
describe this simpler construction for the multiscale partitions in Appendix A.3, together
with experiments suggesting that at least in relatively simple cases one may expect θ{3,4} u

θ̃{3,4}.
Besides cover trees, there are other methods that can be used in practice for the multi-

scale partition, such as METIS by Karypis and Kumar (1999) that is used in the numerical
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examples in Chen and Maggioni (2010) and Allard et al. (2012), iterated PCA (see some
analysis in Szlam (2009)) or iterated k-means. These can be computationally more efficient
than cover trees, with the downside being that they may lead to partitions not satisfying
our usual assumptions (in theory, and perhaps in practice).

3. Numerical experiments

We conduct numerical experiments on both synthetic and real data to demonstrate the
performance of our algorithms. Given {xi}ni=1, we split them to training data for the
constructions of empirical GMRA and Adaptive GMRA and test data for the evaluation of
the approximation errors:

L2 error L∞ error

Absolute error

(
1

ntest

∑

xi∈test set

‖xi − P̂xi‖2
) 1

2

max
xi∈test set

‖xi − P̂xi‖

Relative error

(
1

ntest

∑

xi∈test set

‖xi − P̂xi‖2/‖xi‖2
) 1

2

max
xi∈test set

‖xi − P̂xi‖/‖xi‖

where ntest is the cardinality of the test set and P̂ is the piecewise linear projection given by
empirical GMRA or Adaptive GMRA. In our experiments we use absolute error for synthetic
data, 3D shape and relative error for the MNIST digit data, natural image patches.

3.1. Synthetic data

We take samples {xi}ni=1 on the d-dim S and Z-manifolds, whose first two coordinates
xi,1, xi,2 are on the S and Z curve and other coordinates xi,k ∈ [0, 1], k = 3, 4, . . . , d+1. We
evenly split the samples to the training set and the test set. In the noisy case, training data
are corrupted by Gaussian noise: x̃traini = xtraini + σ√

D
ξi, i = 1, . . . , n2 where ξi ∼ N (0, ID×D),

but test data are noise-free. Test data error below the noise level implies that we are
denoising the data.

3.1.1. Regularity parameter s in the As and Bs model

We sample 105 training points on the d-dim S- or Z-manifolds, for d = 3, 4, 5. The measure
on the S-manifold is not exactly the volume measure but is comparable with the volume
measure. The log-log plot of the approximation error versus scale in Figure 5 (b) shows that
volume measures on the d-dim S-manifold are in As with s ≈ 2.0, 2.1, 2.2 when d = 3, 4, 5,
consistent with our theory which gives s = 2. Figure 5 (c) shows that volume measures on
the d-dim Z-manifold are in As with s ≈ 1.5, 1.7, 1.6 when d = 3, 4, 5, consistent with our
theory which gives s = 1.5. The log-log plot of the approximation error versus the weighted
complexity of the adaptive partition in Figure 5 (d) and (e) gives rises to an approximation
of the regularity parameter s in the Bs model in the table.
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Figure 5: 105 training points are sampled on the d-dimensional S or Z-manifold (d = 3, 4, 5).
In (b) and (c), we display log10 ‖X − P̂jX‖n, versus scale j. The negative of the
slope on the solid portion of the line approximates the regularity parameter s
in the As model. In (d) and (e), we display the log-log plot of ‖X − P̂

Λ̂η
X‖d−2

n

versus the weighted complexity of the adaptive partition for the d-dimensional
S and Z-manifold. The negative of the slope on the solid portion of the line
approximates the regularity parameter s in the Bs model. Our five experiments
give the s in the table. For the 3-dim Z-manifold, while s = +∞ in the case of
infinite samples, we do obtain a large s with 105 samples.

3.1.2. Error versus sample size n

We take n samples on the 3-dim S- and Z-manifolds embedded in R100 (d = 3, D = 100).
In Figure 6, we set the noise level σ = 0 (a,c) and σ = 0.05 (b,d), display the log-log
plot of the average approximation error over 10 trails with respect to the sample size n for
empirical GMRA at scale j∗ which is chosen as per Theorem 4: 2−j∗ = [(log n)/n]1/(2s+d−2)

with d = 3 and s = 2 for the S-manifold and s = 1.5 for the Z-manifold. For Adaptive
GMRA, the ideal κ increases as σ increases. We let κ ∈ {0.3, 0.4} when σ = 0 and
κ ∈ {1, 2} when σ = 0.05. We also test the Nearest Neighbor (NN) approximation. The
negative of the slope, determined by least squared fit, gives rise to the rate of convergence:
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Figure 6: L2 error versus the sample size n, for the 3-dim S and Z manifolds (d = 3), top
and bottom rows respectively, of GMRA at the scale j∗ chosen as per Theorem
4 (with the constant µ set, arbitrarily, equal to 1), and Adaptive GMRA with
varied κ. We let κ ∈ {0.3, 0.4} when σ = 0 (left column) and κ ∈ {1, 2} when
σ = 0.05 (right column).

L2 error ∼ nslope. When σ = 0, the convergence rate for the nearest neighbor approximation
should be 1/d = 1/3. GMRA gives rise to a smaller error and a faster rate of convergence
than the nearest neighbor approximation. When σ = 0.05, Adaptive GMRA yields a faster
rate of convergence than GMRA, especially for the Z manifold. We note a de-noising effect
when the approximation error falls below σ as n increases. In Adaptive GMRA, different
values of κ do yield different errors up to a constant, but the rate of convergence is almost
independent of κ, as predicted by Theorem 8.
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Figure 7: Average running time of GMRA in 10 experiments versus the sample size n for
the S (a) and Z (b) manifolds. We set d = 2, D = 100 and d = 3, D = 100 and
d = 3, D = 20 respectively.

3.1.3. Running time versus sample size n

The complexity of GMRA is O(CdDn log n). In Figure 7, we display the average running
time of GMRA in 10 experiments for the S and Z manifolds when d = 2, D = 100 and
d = 3, D = 100 and d = 3, D = 20. The running time of GMRA is almost linear in n. The
running time increases as d and D increase since the complexity of GMRA is exponential
in d and linear in D.

3.1.4. Robustness of GMRA and Adaptive GMRA

The robustness of the empirical GMRA and Adaptive GMRA is tested on the 3-dim S and
Z-manifolds embedded in R100 while σ varies but n is fixed to be 105. Figure 8 shows that
the average L2 approximation error in 10 trails increases linearly with respect to σ for both
uniform and Adaptive GMRA with κ ∈ {0.01, 0.05, 0.5}.

3.2. 3D shapes

We run GMRA and Adaptive GMRA on 3D points clouds on the teapot, armadillo and
dragon in Figure 9. The teapot data are from the matlab toolbox and others are from the
Stanford 3D Scanning Repository http://graphics.stanford.edu/data/3Dscanrep/.

Figure 9 shows that the adaptive partitions chosen by Adaptive GMRA matches our
expectation that, at irregular locations, cells are selected at finer scales than at “flat”
locations.

In Figure 10, we display the absolute L2/L∞ approximation error on test data versus
scale and partition size. The left column shows the L2 approximation error versus scale
for GMRA and the center approximation. While the GMRA approximation is piecewise
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Figure 8: The average L2 approxi-
mation error in 10 trails
versus σ for GMRA and
Adaptive GMRA with
κ ∈ {0.01, 0.05, 0.5} on data
sampled on the 3-dim S and
Z-manifolds. This shows
the error of approximation
grows linearly with the noise
size, suggesting robustness
in the construction.
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linear, the center approximation is piecewise constant. Both approximation errors decay
from coarse to fine scales, but GMRA yields a smaller error than the approximation by local
centers. In the middle column, we run GMRA and Adaptive GMRA with the L2 refinement
criterion defined in Table 2 with scale-dependent (∆j,k ≥ 2−jτn) and scale-independent
(∆j,k ≥ τn) threshold respectively, and display the log-log plot of the L2 approximation error
versus the partition size. Overall Adaptive GMRA yields the same L2 approximation error
as GMRA with a smaller partition size, but the difference is insignificant in the armadillo
and dragon, as these 3D shapes are complicated and the L2 error simply averages the error
at all locations. Then we implement Adaptive GMRA with the L∞ refinement criterion:
∆̂∞

j,k = maxxi∈Cj,k
‖P̂j+1xi − P̂jxi‖ and display the log-log plot of the L∞ approximation

error versus the partition size in the right column. In the L∞ error, Adaptive GMRA saves
a considerable number (about half) of cells in order to achieve the same approximation
error as GMRA. In this experiment, scale-independent threshold is slightly better than
scale-dependent threshold in terms of saving the partition size.

3.3. MNIST digit data

We consider the MNIST data set from http://yann.lecun.com/exdb/mnist/, which con-
tains images of 60, 000 handwritten digits, each of size 28 × 28, grayscale. The intrinsic
dimension of this data set varies for different digits and across scales, as it was observed in
Little et al. (2017). We run GMRA by setting the diameter of cells at scale j to be O(0.9j)
in order to slowly zoom into the data at multiple scales.

We evenly split the digits to the training set and the test set. As the intrinsic dimension
is not well-defined, we set GMRA to pick the dimension of V̂j,k adaptively, as the smallest
dimension needed to capture 50% of the energy of the data in Cj,k. As an example, we
display the GMRA approximations of the digit 0, 1, 2 from coarse scales to fine scales in
Figure 11. The histogram of the dimensions of the subspaces V̂j,k is displayed in (a). (b)

represents log10 ‖P̂j+1xi − P̂jxi‖ from the coarsest scale (top) to the finest scale (bottom),
with columns indexed by the digits, sorted from 0 to 9. We observe that 1 has more fine
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(a) 41,472 points (b) 165,954 points (c) 437,645 points

(d) κ ≈ 0.18, partition size = 338 (e) κ ≈ 0.41, partition size = 749 (f) κ ≈ 0.63, partition size = 1141

Figure 9: Top line: 3D shapes; bottom line: adaptive partitions selected with refinement
criterion ∆̂j,k ≥ 2−jκ

√
(log n)/n. Every cell is colored by scale. In the adaptive

partition, at irregular locations cells are selected at finer scales than at “flat”
locations.

scale information than the other digits. In (c), we display the log-log plot of the relative
L2 error versus scale in GMRA and the center approximation. The improvement of GMRA
over center approximation is noticeable. Then we compute the relative L2 error for GMRA
and Adaptive GMRA when the partition size varies. Figure 11 (d) shows that Adaptive
GMRA achieves the same accuracy as GMRA with fewer cells in the partition. Errors
increase when the partition size exceeds 103 due to a large variance at fine scales. In
this experiment, scale-dependent threshold and scale-independent threshold yield similar
performances.

3.4. Natural image patches

It was argued in Peyré (2009) that many sets of patches extracted from natural images
can be modeled a low-dimensional manifold. We use the Caltech 101 dataset from https:

//www.vision.caltech.edu/Image_Datasets/Caltech101/ (see F. Li and Perona, 2006),
take 40 images from four categories: accordion, airplanes, hedgehog and scissors and extract
multiscale patches of size 8×8 from these images. Specifically, if the image is of size m×m,
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Figure 10: Left column: log10(L
2 error) versus scale for GMRA and center approximation;

Middle column: log-log plot of the L2 error versus partition size for GMRA and
Adaptive GMRA with scale-dependent and scale-independent threshold under
the L2 refinement defined in Table 2; Right column: log-log plot of L∞ error
versus partition size for GMRA and Adaptive GMRA with scale-dependent and
scale-independent threshold under the L∞ refinement.

for ` = 1, . . . , log2(m/8), we collect patches of size 2`8, low-pass filter them and downsample
them to become patches of size 8 × 8 (see Gerber and Maggioni (2013) for a discussion
about dictionary learning on patches of multiple sizes using multiscale ideas). Then we
randomly pick 200, 000 patches, evenly split them to the training set and the test set. In
the construction of GMRA, we set the diameter of cells at scale j to be O(0.9j) and the
dimension of V̂j,k to be the smallest dimension needed to capture 50% of the energy of the
data in Cj,k. We also run GMRA and Adaptive GMRA on the Fourier magnitudes of these
image patches to take advantage of translation-invariance of the Fourier magnitudes. The
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Figure 11: The top three rows: multiscale approximations of the digit 0, 1, 2 in the MNIST
data set, from the coarsest scale (left) to the finest scale (right). (a) the his-
togram of dimensions of the subspaces V̂j,k; (b) log10 ‖P̂j+1xi − P̂jxi‖ from the
coarsest scale (top) to the finest scale (bottom), with columns indexed by the
digits, sorted from 0 to 9; (c) log-log plot of the relative L2 error versus scale
in GMRA and the center approximation; (d) log-log plot of the relative L2 er-
ror versus partition size for GMRA, Adaptive GMRA with scale-dependent and
scale-independent threshold.

results are shown in Figure 13. The histograms of the dimensions of the subspaces V̂j,k

are displayed in (a,d). Figure 13 (b) and (e) show the relative L2 error versus scale for
GMRA and the center approximation. We then compute the relative L2 error for GMRA
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Figure 12: Caltech 101 image patches

Figure 13: Top line: learning on 200, 000 image patches; bottom line: results of learning the
Fourier magnitudes of the same image patches. (a,d) histograms of the dimen-
sions of the subspaces V̂j,k; (b,e) relative L

2 error versus scale for GMRA and the
center approximation; (c,f) relative L2 error versus the partition size for GMRA,
Adaptive GMRA with scale-dependent and scale-independent threshold.

and Adaptive GMRA when the partition size varies and display the log-log plot in (c) and
(f). It is noticeable that Adaptive GMRA achieves the same accuracy as GMRA with a
smaller partition size. We conducted similar experiments on 200, 000 multiscale patches
from CIFAR 10 from https://www.cs.toronto.edu/~kriz/cifar.html (see Krizhevsky
and Hinton, 2009) with extremely similar results (not shown).

4. Performance analysis of GMRA and Adaptive GMRA

This section is devoted to the performance analysis of empirical GMRA and Adaptive
GMRA. We will start with the following stochastic error estimate on any partition.
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4.1. Stochastic error on a fixed partition

Suppose T̃ is a finite proper subtree of the data master tree T n. Let Λ be the partition
consisting the outer leaves of T̃ . The piecewise affine projector on Λ and its empirical
version are

PΛ =
∑

Cj,k∈Λ
Pj,k1j,k and P̂Λ =

∑

Cj,k∈Λ
P̂j,k1j,k.

A non-asymptotic concentration bound on the stochastic error ‖PΛX − P̂ΛX‖ is given by:

Lemma 15 Let Λ be the partition associated a finite proper subtree T̃ of the data master
tree T n. Suppose Λ contains #jΛ cells at scale j. Then for any η > 0,

P{‖PΛX − P̂ΛX‖ ≥ η} ≤ αd ·#Λ · e
− βnη2

d2
∑

j 2−2j#jΛ (17)

E‖PΛX − P̂ΛX‖2 ≤
d2 log(αd#Λ)

∑
j 2

−2j#jΛ

βn

where α = α(θ2, θ3) and β = β(θ2, θ3, θ4).

Lemma 15 and Proposition 16 below are proved in appendix C .

4.2. Performance analysis of empirical GMRA on uniform partitions

According to Eq. (1), the approximation error of empirical GMRA is split into the squared
bias and the variance. A corollary of Lemma 15 with Λ = Λj results in an estimate of the
variance term.

Proposition 16 For any η ≥ 0,

P{‖PjX − P̂jX‖ ≥ η} ≤ αd#Λje
−β22jnη2

d2#Λj (18)

E‖PjX − P̂jX‖2 ≤ d2#Λj log[αd#Λj ]

β22jn
. (19)

In Eq. (1), the squared bias decays like O(2−2js) whenever ρ ∈ As and the variance
scales like O(j2j(d−2)/n). A proper choice of the scale j gives rise to Theorem 4 whose proof
is given below.

Proof of Theorem 4

Proof [Proof of Theorem 4]

E‖X − P̂jX‖2 ≤ 2‖X − PjX‖2 + 2E‖PjX − P̂jX‖2

≤ 2|ρ|2As
2−2sj +

2d2#Λj log[αd#Λj ]

β22jn
≤ 2|ρ|2As

2−2sj +
2d22j(d−2)

θ1βn
log

αd2jd

θ1

as #Λj ≤ 2jd/θ1 due to Assumption (A3).
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Intrinsic dimension d = 1: In this case, both the squared bias and the variance decrease
as j increases, so we should choose the scale j∗ as large as possible as long as most cells at
scale j∗ have d points. We will choose j∗ such that 2−j∗ = µ logn

n for some µ > 0. After

grouping Λj∗ into light and heavy cells whose measure is below or above 28(ν+1) logn
3n , we can

show that the error on light cells is upper bounded by C( lognn )2 and all heavy cells have at
least d points with high probability (see Lemma 17).

Lemma 17 Suppose j∗ is chosen such that 2−j∗ = µ logn
n with some µ > 0. Then

‖(X − Pj∗X)1{Cj∗,k:ρ(Cj∗,k)≤ 28(ν+1) logn
3n

}‖
2 ≤ 28(ν + 1)θ22µ

3θ1

(
log n

n

)2

,

P
{
each Cj∗,k satisfying ρ(Cj∗,k) >

28(ν+1) logn
3n has at least d points

}
≥ 1− n−ν .

Lemma 17 is proved in appendix D. If j∗ is chosen as above, The probability estimate in
(5) follows from

‖X − Pj∗X‖ ≤ |ρ|As2
−sj∗ ≤ |ρ|Asµ

s

(
log n

n

)s

≤ |ρ|Asµ
s log n

n
,

P

{
‖Pj∗X − P̂j∗X‖ ≥ C1

log n

n

}
≤ α

θ1µ
((log n)/n)−1 e−

µβθ1C
2
1 logn

d2 ≤ α
θ1µ

nn−µβθ1C
2
1

d2

log n
≤ C2n

−ν

provided that C1 is chosen such that µβθ1C
2
1/d

2 − 1 > ν.
Intrinsic dimension d ≥ 2: When d ≥ 2, the squared bias decreases but the variance

increases as j gets large. We choose j∗ such that 2−j∗ = µ ((log n)/n)
1

2s+d−2 to balance these
two terms. We use the same technique as d = 1 to group Λj∗ into light and heavy cells
whose measure is below and above, repectively, 28/3 · (ν + 1)(log n)/n, we can show that

the error on light cells is upper bounded by C((log n)/n)
2s

2s+d−2 and all heavy cells have at
least d points with high probability (see Lemma 18).

Lemma 18 Let j∗ be chosen such that 2−j∗ = µ ((log n)/n)
1

2s+d−2 with some µ > 0. Then

‖(X − Pj∗X)1{Cj∗,k:ρ(Cj∗,k)≤ 28(ν+1) logn
3n

}‖
2 ≤ 28(ν + 1)θ22µ

2−d

3θ1

(
log n

n

) 2s
2s+d−2

,

P

{
∀Cj∗,k : ρ(Cj∗,k) >

28(ν + 1) log n

3n
, Cj∗,k has at least d points

}
≥ 1− n−ν .

Proof of Lemma 18 is omitted since it is the same as the proof of Lemma 17. The probability
estimate in (6) follows from

‖X − Pj∗X‖ ≤ |ρ|As2
−sj∗ ≤ |ρ|Asµ

s

(
log n

n

) s
2s+d−2

,

P

{
‖Pj∗X − P̂j∗X‖ ≥ C1

(
log n

n

) s
2s+d−2

}
≤ αdµ−d

θ1

(
log n

n

)− d
2s+d−2

e−
βθ1C

2
1µd−2 logn

d2 ≤ C2n
−ν

provided that βθ1C
2
1µ

d−2/d2 − 1 > ν.
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4.3. Performance analysis of empirical GMRA on adaptive partitions

Proof [Proof of Theorem 8] In the case that M is bounded by M , the minimum scale
jmin = log2

θ2
M . We first consider the case d ≥ 3. In our proof C stands for constants that

may vary at different locations, but it is independent of n and D. We will begin by defining
several objects of interest:

• T n: the data master tree whose leaf contains at least d points in Xn. It can be viewed
as the part of a multiscale tree that our data have explored.

• T : a complete multiscale tree containing T n. T can be viewed as the union T n and
some empty cells, mostly at fine scales with high probability, that our data have not
explored.

• T(ρ,η): the smallest subtree of T which contains {Cj,k ∈ T : ∆j,k ≥ 2−jη}.

• Tη = T(ρ,η) ∩ T n.

• T̂η: the smallest subtree of T n which contains {Cj,k ∈ T n : ∆̂j,k ≥ 2−jη}.

• Λ(ρ,η): the partition associated with T(ρ,η).

• Λη : the partition associated with Tη.

• Λ̂η : the partition associated with T̂η.

• Suppose T 0 and T 1 are two subtrees of T . If Λ0 and Λ1 are two adaptive partitions
associated with T 0 and T 1 respectively, we denote by Λ0∨Λ1 and Λ0∧Λ1 the partitions
associated to the trees T 0 ∪ T 1 and T 0 ∩ T 1 respectively.

We also let b = 2amax + 5 where amax is the maximal number of children that a node has
in T ; κ0 = max(κ1, κ2) where b2κ21/(21θ

2
2) = ν + 1 and α2κ

2
2/b

2 = ν + 1 with α2 defined in
Lemma 20. In order the obtain the MSE bound, one can simply set ν = 1.

The empirical Adaptive GMRA projection is given by P̂
Λ̂τn

=
∑

Cj,k∈Λ̂τn
P̂j,k1j,k. Using

the triangle inequality, we split the error as follows:

‖X − P̂
Λ̂τn

X‖ ≤ e1 + e2 + e3 + e4

where

e1 := ‖X − PΛ̂τn∨Λbτn
X‖ , e2 := ‖PΛ̂τn∨Λbτn

X − P
Λ̂τn∧Λτn/b

X‖

e3 := ‖PΛ̂τn∧Λτn/b
X − P̂

Λ̂τn∧Λτn/b
X‖ , e4 := ‖P̂Λ̂τn∧Λτn/b

X − P̂
Λ̂τn

X‖.

A similar split appears in the works of Binev et al. (2005, 2007). The partition built from
those Cj,k’s satisfying ∆̂j,k ≥ 2−jτn does not exactly coincide with the partition chosen
based on those Cj,k satisfying ∆j,k ≥ 2−jτn. This is accounted by e2 and e4, corresponding

to those Cj,k’s whose ∆̂j,k is significantly larger or smaller than ∆j,k, which we will prove
to be small with high probability. The remaining terms e1 and e3 correspond to the bias
and variance of the approximations on the partition obtained by thresholding ∆j,k.
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Term e1: The first term e1 is essentially the bias term. Since Λ̂τn ∨ Λbτn ⊇ Λbτn ,

e21 = ‖X − PΛ̂τn∨Λbτn
X‖2 ≤ ‖X − PΛbτn

X‖2 ≤ ‖X − PΛ(ρ,bτn)
X‖2

︸ ︷︷ ︸
e211

+ ‖PΛ(ρ,bτn)
X − PΛbτn

X‖2
︸ ︷︷ ︸

e212

.

e211 may be upper bounded deterministically from Eq. (9):

e211 ≤ Bs,d|ρ|pBs
(bτn)

2−p ≤ Bs,d|ρ|
2(d−2)
2s+d−2

Bs
(bκ)

4s
2s+d−2

(
log n

n

) 2s
2s+d−2

. (20)

e12 encodes the difference between thresholding T and T n, but it is 0 with high probability:

Lemma 19 For any ν > 0, κ such that κ > κ1, where b2κ21/(21θ
2
2) = ν + 1,

P{e12 > 0} ≤ C(θ2, amax, amin, κ)n
−ν (21)

The proof is postponed, together with those of the Lemmata that follow, to appendix D).
IfM is bounded by M , then e212 ≤ 4M2 and

Ee212 ≤ 4M2P{e12 > 0} ≤ 4M2Cn−ν ≤ 4M2C

(
log n

n

) 2s
2s+d−2

(22)

if ν > 2s/(2s+ d− 2), for example ν = 1.
Term e3: e3 corresponds to the variance on the partition Λ̂τn ∧ Λτn/b. For any η > 0,

P{e3 > η} ≤ αd#(Λ̂τn ∧ Λτn/b)e
− βnη2

d2
∑

j≥jmin
2−2j#j(Λ̂τn∧Λτn/b)

according to Lemma 15. Since Λ̂τn ∧Λτn/b ⊂ Tτn/b, for any j ≥ 0, regardless of Λ̂τn , we have

#j(Λ̂τn ∧ Λτn/b) ≤ #jTτn/b ≤ #Tτn/b. Therefore

P{e3 > η} ≤ αd#Tτn/be
− βnη2

d2
∑

j≥jmin
2−2j#jTτn/b ≤ αd#Tτn/be

− βnη2

d2|ρ|
p
Bs

(τn/b)−p
, (23)

which implies

Ee23 =
ˆ +∞

0
ηP {e3 > η} dη =

ˆ +∞

0
ηmin

(
1, αd#Tτn/be

− βnη2

d2
∑

j≥jmin
2−2j#jTτn/b

)
dη

≤
d2 logαd#Tτn/b

βn

∑

j≥jmin

2−2j#jTτn/b ≤ C
log n

n

(τn
b

)−p
≤ C(θ2, θ3, d, κ, s, |ρ|Bs)

(
log n

n

) 2s
2s+d−2

.

Term e2 and e4: These terms account for the difference of truncating the master tree
based on ∆j,k’s and its empirical counterparts ∆̂j,k’s. We prove that ∆̂j,k’s concentrate
near ∆j,k’s with high probability if there are sufficient samples.

Lemma 20 For any η > 0 and any Cj,k ∈ T

max
{
P
{
∆̂j,k ≤ η and ∆j,k ≥ bη

}
,P
{
∆j,k ≤ η and ∆̂j,k ≥ bη

}}
≤ α1e

−α222jnη2 (24)

for some constants α1 := α1(θ2, θ3, amax, d) and α2 := α2(θ2, θ3, θ4, amax, d).
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This Lemma enables one to show that e2 = 0 and e4 = 0 with high probability:

Lemma 21 Let α1 and α2 be the constants in Lemma 20. For any fixed ν > 0,

P{e2 > 0}+ P{e4 > 0} ≤ α1aminn
−ν (25)

when κ is chosen such that κ > κ2, with α2κ
2
2/b

2 = ν + 1.

SinceM is bounded by M , we have e22 ≤ 4M2 so

Ee22 ≤ 4M2P{e2 > 0} ≤ 4M2α1aminn
−ν ≤ 4M2α1amin

(
log n

n

) 2s
2s+d−2

if ν > 2s/(2s+ d− 2), for example ν = 1. The same bound holds for e4.

Finally, we complete the probability estimate (10): let c20 = Bs,d|ρ|
2(d−2)
2s+d−2

Bs
(bκ)

4s
2s+d−2 such

that e11 ≤ c0 ((log n)/n)
s

2s+d−2 . We have

P
{
‖X − P̂

Λ̂τn
X‖ ≥ c1 ((log n)/n)

s
2s+d−2

}

≤ P
{
e3 > (c1 − c0) ((log n)/n)

s
2s+d−2

}
+ P{e12 > 0}+ P{e2 > 0}+ P{e4 > 0}

≤ P
{
e3 > (c1 − c0) ((log n)/n)

s
2s+d−2

}
+ Cn−ν ,

as long as κ is chosen such that κ > max(κ1, κ2) where b2κ21/(21θ
2
2) = ν +1 and α2κ

2
2/b

2 =
ν + 1 according to (21) and (25). Applying (23) gives rise to

P
{
e3 > (c1 − c0) ((log n)/n)

s
2s+d−2

}
≤ αd#Tτn/be

− βn

|ρ|
p
Bs

(τn/b)−p (c1−c0)2((logn)/n)
2s

2s+d−2

≤ αd#Tτn/bn
−β(c1−c0)

2κp

bp|ρ|
p
Bs ≤ αdaminn

−
(

β(c1−c0)
2κp

bp|ρ|
p
Bs

−1

)

≤ αdaminn
−ν

if c1 is taken large enough such that β(c1−c0)2κp

bp|ρ|pBs

≥ ν + 1.

We are left with the cases d = 1, 2. When d = 1, for any distribution ρ satisfying
quasi-orthogonality (8) and any η > 0, the tree complexity may be bounded as follows:

∑

j≥jmin

2−2j#jT(ρ,η) ≤
∑

j≥jmin

2−2j2j/θ1 = 2/θ12
−jmin = 2M/(θ1θ2) ,

so ‖X − PΛ(ρ,η)
X‖2 ≤ 8MB0η

2/(3θ1θ2). Hence

e211 ≤ 8MB0
3θ1θ2

(bτn)
2 ≤ 8MB0b2κ2

3θ1θ2
(log n)/n, P{e3 > η} ≤ αd#Tτn/be

− θ1θ2βnη2

2Md2 ,

which yield Ee23 ≤ 2Md2 logαd#Tτn/b/(θ1θ2βn) ≤ C(log n)/n and estimate (11).
When d = 2, for any distribution satisfying quasi-orthogonality and given any η > 0,

we have
∑

j≥jmin
2−2j#jT(ρ,η) ≤ −|ρ|−1 log η, whence ‖X − PΛ(ρ,η)

X‖2 ≤ −4
3B0|ρ|η2 log η.

Therefore

e211 ≤ −4
3B0|ρ|(bτn)2 log(bτn) ≤ C(log2 n)/n , P{e3 > η} ≤ αd#Tτn/be

− 2βnη2

d2|ρ| logn ,
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which yield Ee23 ≤ d2|ρ| logαd#Tτn/b(log n)/(2βn) ≤ C(log2 n)/n and the probability esti-
mate (12).

Proof [Proof of Theorem 10] Let R > 0. If we run Adaptive GMRA on BR(0), and
approximate points outside BR(0) by 0, the MSE of the Adaptive GMRA in BR(0) is

‖(I−P̂
Λ̂τn

)1{‖x‖≤R}X‖2 . (|ρ|B0(R)|p+R2) ((log n)/n)
2s

2s+d−2 . Rmax(λ,2) ((log n)/n)
2s

2s+d−2 .

The squared error outside BR(0) is

‖1{‖x‖≥R}X‖2 =
ˆ

BR(0)c
||x||2dρ ≤ CR−δ. (26)

The total MSE is

MSE . Rmax(λ,2) ((log n)/n)
2s

2s+d−2 +R−δ.

Minimizing over R suggests taking R = Rn = max(R0, µ(log n/n)
− 2s

(2s+d−2)(δ+max(2,λ)) ), yield-

ing MSE . ((log n)/n)
2s

2s+d−2
· δ
δ+max(λ,2) . The probability estimate (13) follows from Eq. (26)

and Eq. (10) in Theorem 8.

In Remark 11, we claim that λ is not large in simple cases. If ρ ∈ A∞
s and ρ de-

cays such that ρ(Cj,k) ≤ 2−jd‖cj,k‖−(d+1+δ), we have ∆j,k ≤ 2−js2−jd/2‖cj,k‖−(d+1+δ)/2.
Roughly speaking, for any η > 0, the cells of distance r to 0 satisfying ∆j,k ≥ 2−jη

will satisfy 2−j ≥ (ηr
d+1+δ

2 )
2

2s+d−2 . In other words, the cells of distance r to 0 are trun-

cated at scale jmax such that 2−jmax = (ηr
d+1+δ

2 )
2

2s+d−2 , which gives rise to complexity

≤ 2−2jmaxrd−12jmaxd ≤ η−
2(d−2)
2s+d−2 rd−1− (d+1+δ)(d−2)

2s+d−2 . If we run Adaptive GMRA with thresh-
old η on BR(0), the weighted complexity of the truncated tree is upper bounded by

η−
2(d−2)
2s+d−2 rd−

(d+1+δ)(d−2)
2s+d−2 . Therefore, ρ|BR(0)

∈ Bs for all R > 0 and |ρ|BR(0)
|pBs
≤ Rλ with

λ = d− (d+1+δ)(d−2)
2s+d−2 .

5. Discussions and extensions

5.1. Computational complexity

The computational cost in GMRA and Adaptive GMRA may be split as follows:

Tree construction: Cover tree itself is an online algorithm where a single-point insertion
or removal takes cost at most O(log n). The total computational cost of the cover tree
algorithm is CdDn log n where C > 0 is a constant (Beygelzimer et al., 2006).

Local PCA: At every scale j, we perform local PCA on the training data restricted to the
Cj,k for every k ∈ Kj , using the random PCA algorithm (Halko et al., 2009). Recall that
n̂j,k denotes the number of training points in Cj,k. The cost of local PCA at scale j is in
the order of

∑
k∈Kj

Ddn̂j,k = Ddn, and there are about 1/d log n scales which gives rise to
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the total cost of Dn log n.

Adaptive approximation: To achieve an adaptive approximation, we need to compute the
empirical geometric wavelet coefficients ∆̂j,k for every Cj,k, which costs 2Ddn̂j,k on Cj,k and
2Dn log n for the whole tree.

The computational costs of GMRA and Adaptive GMRA are summarized in Table 3.

Operations Computational cost

Multiscale tree construction CdDn log n

Randomized PCA at all nodes Dn log n

Computing ∆j,k’s 2Dn log n

GMRA CdDn log n+Dn log n

Adaptive GMRA CdDn log n+ 3Dn log n

Compute Pj(x) for a test point D log n︸ ︷︷ ︸
find Cj,k containing x

+ Dd︸︷︷︸
compute Pj,k(x)

= D(log n+ d)

Table 3: Computational cost

5.2. Quasi-orthogonality

A main difference between GMRA and orthonormal wavelet bases (see Daubechies, 1992;
Mallat, 1998) is that Vj,x * Vj+1,x where (j, x) = (j, k) such that x ∈ Cj,k. Therefore the
geometric wavelet subspace ProjVj,x

⊥Vj+1,x which encodes the difference between Vj+1,x and
Vj,x is in general not orthogonal across scales.

Theorem 8 involves a quasi-orthogonality condition (8), which is satisfied if the operators
{Qj,k} applied onM are rapidly decreasing in norm or are orthogonal. When ρ ∈ A∞

1 such
that ‖Qj,kX‖ ∼ 2−j

√
ρ(Cj,k), quasi-orthogonality is guaranteed. In this case, for any node

Cj,k and Cj′,k′ ⊂ Cj,k, we have ‖Qj′,k′X‖/
√
ρ(Cj′,k′) . 2−(j′−j)‖Qj,kX‖/

√
ρ(Cj,k), which

implies
∑

Cj′,k′⊂Cj,k
〈Qj,kX,Qj′,k′X〉 . 2‖Qj,kX‖2. Therefore B0 . 2. Another setting is

when Qj′,k′ and Qj,k are orthogonal whenever Cj′,k′ ⊂ Cj,k, as guaranteed in orthogonal
GMRA in Section 5.3, in which case exact orthogonality is automatically satisfied.

Quasi-orthogonality enters in the proof of Eq. (9). If quasi-orthogonality is violated, we
still have a convergence result in Theorem 8 but the convergence rate will be worse: MSE
. [(log n)/n]

s
2s+d−2 when d ≥ 3 and MSE . [(logd n)/n]

1
2 when d = 1, 2.

5.3. Orthogonal GMRA and adaptive orthogonal GMRA

A different construction, called orthogonal geometric multi-resolution analysis in Section
5 of Allard et al. (2012), follows the classical wavelet theory by constructing a sequence
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of increasing subspaces and then the corresponding wavelet subspaces exactly encode the
orthogonal complement across scales. Exact orthogonality is therefore satisfied.

5.3.1. Orthogonal GMRA

In the construction, we build the sequence of subspaces {Ŝj,k}k∈Kj ,j≥jmin
with a coarse-to-

fine algorithm in Table 4. For fixed x and j, (j, x) denotes (j, k) such that x ∈ Cj,k. In
orthogonal GMRA the sequence of subspaces Sj,x is increasing such that S0,x ⊂ S1,x ⊂
· · ·Sj,x ⊂ Sj+1,x · · · and the subspace Uj+1,x exactly encodes the orthogonal complement of
Sj,x in Sj+1,x. Orthogonal GMRA with respect to the distribution ρ corresponds to affine
projectors onto the subspaces {Sj,k}k∈Kj ,j≥jmin

.

Orthogonal GMRA Empirical orthogonal GMRA

Subpaces

S0,x = V0,x Ŝ0,x = V̂0,x

U1,x = ProjS⊥
0,x

V1,x, S1,x = S0,x ⊕ U1,x Û1,x = Proj
Ŝ⊥
0,x

V̂1,x, Ŝ1,x = Ŝ0,x ⊕ Û1,x

. . . . . .

Uj+1,x = ProjS⊥
j,x
Vj+1,x Ûj+1,x = Proj

Ŝ⊥
j,x
V̂j+1,x

Sj+1,x = Sj,x ⊕ Uj+1,x Ŝj+1,x = Ŝj,x ⊕ Ûj+1,x

Affine Sj :=
∑

k∈Kj
Sj,k1j,k Ŝj :=

∑
k∈Kj

Ŝj,k1j,k
projectors Sj,k(x) := cj,k + ProjSj,k

(x− cj,k) Ŝj,k(x) := ĉj,k + Proj
Ŝj,k

(x− ĉj,k)

Table 4: Orthogonal GMRA

For a fixed distribution ρ, the approximation error ‖X − SjX‖ decays as j increases.
We will consider the model class Ao

s where ‖X − SjX‖ decays like O(2−js).

Definition 22 A probability measure ρ supported onM is in Ao
s if

|ρ|Ao
s
= sup

T
inf{Ao

0 : ‖X − SjX‖ ≤ Ao
02

−js, ∀ j ≥ jmin} <∞ , (27)

where T varies over the set, assumed non-empty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).

Notice thatAs ⊂ Ao
s. We split the MSE into the squared bias and the variance as: E‖X−

ŜjX‖2 = ‖X − SjX‖2+E‖SjX − ŜjX‖2. The squared bias ‖X−SjX‖2 ≤ |ρ|2Ao
s
2−2js when-

ever ρ ∈ Ao
s. In Lemma 34 we show E‖SjX − ŜjX‖2 ≤ d2j4#Λj log[αj#Λj ]

β22jn
= O

(
j52j(d−2)

n

)

where α and β are the constants in Lemma 15. A proper choice of the scale yields the
following result:
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Theorem 23 Assume that ρ ∈ Ao
s, s ≥ 1. Let ν > 0 be arbitrary and µ > 0. If j∗ is

properly chosen such that

2−j∗ =




µ logn

n for d = 1

µ
(
log5 n

n

) 1
2s+d−2

for d ≥ 2
,

then there exists a constant C1(θ1, θ2, θ3, θ4, d, ν, µ, s) such that

P

{
‖X − Ŝj∗X‖ ≥ (|ρ|Ao

s
µs + C1)

log5 n

n

}
≤ C2(θ1, θ2, θ3, θ4, d, µ)n

−ν for d = 1,

P

{
‖X − Ŝj∗X‖ ≥ (|ρ|Ao

s
µs + C1)

(
log5 n

n

) s
2s+d−2

}
≤ C2(θ1, θ2, θ3, θ4, d, µ, s)n

−ν for d ≥ 2 .

(28)

Theorem 23 is proved in appendix E.1.

5.3.2. Adaptive Orthogonal GMRA

Definition (infinite sample) Empirical version

∆o
j,k := ‖(Sj − Sj+1)1j,kX‖ ∆̂o

j,k :=
∥∥∥(Ŝj − Ŝj+1)1j,kX

∥∥∥

=
(
‖(I− Sj)1j,kX‖2 − ‖(I− Sj+1)1j,kX‖2

) 1
2

=

(∥∥∥(I− Ŝj)1j,kX
∥∥∥
2
−
∥∥∥(I− Ŝj+1)1j,kX

∥∥∥
2
) 1

2

Table 5: Refinement criterion in adaptive orthogonal GMRA

Orthogonal GMRA can be constructed adaptively to the data with the refinement cri-
terion defined in Table 5. We let τ on := κ(log5 n/n)

1
2 where κ is a constant, truncate the

data master tree T n to the smallest proper subtree that contains all Cj,k ∈ T n satisfying

∆̂o
j,k ≥ 2−jτ on, denoted by T̂τon . Empirical adaptive orthogonal GMRA returns piecewise

affine projectors on the adaptive partition Λ̂τon consisting of the outer leaves of T̂τon . Our
algorithm is summarized in Algorithm 2.

If ρ is known, given any fixed threshold η > 0, we let T(ρ,η) be the smallest proper tree of
T that contains all Cj,k ∈ T for which ∆o

j,k ≥ 2−jη. This gives rise to an adaptive partition
Λ(ρ,η) consisting the outer leaves of T(ρ,η). We introduce a model class Bos for whose elements
we can control the growth rate of the truncated tree T(ρ,η) as η decreases.

Definition 24 In the case d ≥ 3, given s > 0, a probability measure ρ supported on M is
in Bos if the following quantity is finite

|ρ|pBo
s
:= sup

T
sup
η>0

ηp
∑

j≥jmin

2−2j#jT(ρ,η) with p =
2(d− 2)

2s+ d− 2
(29)

where T varies over the set, assumed non-empty, of multiscale tree decompositions satisfying
Assumptions (A1-A5).
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Algorithm 2 Empirical Adaptive Orthogonal GMRA

Input: data X2n = X ′
n ∪ Xn, intrinsic dimension d, threshold κ

Output: Ŝ
Λ̂τon

: adaptive piecewise linear projectors

1: Construct T n and {Cj,k} from X ′
n

2: Compute Ŝj,k and ∆̂o
j,k on every node Cj,k ∈ T n.

3: T̂τon ← smallest proper subtree of T n containing all Cj,k ∈ T n : ∆̂o
j,k ≥ 2−jτ on where

τ on = κ
√
(log5 n)/n.

4: Λ̂τon ← partition associated with the outer leaves of T̂τon
5: Ŝ

Λ̂τon

←∑
Cj,k∈Λ̂τon

Ŝj,k1j,k.

Notice that exact orthogonality is satisfied for orthogonal GMRA. One can show that,
as long as ρ ∈ Bos ,

‖X − SΛ(ρ,η)
X‖2 ≤ Bo

s,d|ρ|pBo
s
η2−p ≤ Bo

s,d|ρ|2Bo
s


 ∑

j≥jmin

2−2j#jT(ρ,η)




− 2s
d−2

,

where Bo
s,d := 2p/(1 − 2p−2). We can prove the following performance guarantee of the

empirical adaptive orthogonal GMRA (see Appendix E.2):

Theorem 25 SupposeM is bounded: M⊂ BM (0) and the multiscale tree satisfies ρ(Cj,k) ≤
θ02

−jd for some θ0 > 0. Let d ≥ 3 and ν > 0. There exists κ0(θ0, θ2, θ3, θ4, amax, d, ν) such

that if ρ ∈ Bos for some s > 0 and τ on = κ
[
(log5 n)/n

] 1
2 with κ ≥ κ0, then there is a c1 and

c2 such that

P

{
‖X − Ŝ

Λ̂τon

X‖ ≥ c1

(
log5 n

n

) s
2s+d−2

}
≤ c2n

−ν . (30)

In Theorem 25, the constants are c1 := c1(θ0, θ2, θ3, θ4, amax, d, s, κ, |ρ|Bo
s
, ν) and c2 :=

c2(θ0, θ2, θ3, θ4, amin, amax, d, s, κ, |ρ|Bo
s
). Eq. (30) implies that MSE . ( log

5 n
n )

2s
2s+d−2 for

orthogonal Adaptive GMRA when d ≥ 3. In the case of d = 1, 2, we can prove that

MSE . log4+d n
n .
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Algorithm 3 Construction of a multiscale tree decomposition {Cj,k}
Input: data X ′

n

Output: A multiscale tree decomposition {Cj,k}
1: Run cover tree on X ′

n to obtain a set of nets {Tj(X ′
n)}j∈[jmin,jmax]

2: j = jmin: Cjmin,0 = M̃ defined in (31)
3: for j = jmin + 1, . . . , jmax : For every Cj−1,k0 at scale j − 1, Cj−1,k0 has

# (Tj(X ′
n) ∩ Cj−1,k0) children indexed by aj,k ∈ Tj(X ′

n) ∩ Cj−1,k0 with corresponding
Cj,k’s constructed as follows:

C
(j)
j,k = M̃

⋂
Voronoi(aj,k, Tj(X ′

n) ∩ Cj−1,k0)

and for i = j + 1, . . . , jmax

C
(i)
j,k =

( ⋃

ai,k′∈C
(i−1)
j,k

B 1
4
2−i(ai,k′)

)⋃
C

(i−1)
j,k

Finally, let Cj,k = C
(jmax)
j,k .

Appendix A. Tree construction, regularity of geometric spaces

A.1. Tree construction

We now show that from a set of nets {Tj(X ′
n)}j∈[jmin,jmax] from the cover tree algorithm we

can construct a set of Cj,k with desired properties. Similar constructions are classical in

harmonic analysis (Christ, 1990). Let {aj,k}N(j)
k=1 be the set of points in Tj(X ′

n). Given a set
of points {z1, . . . , zm} ⊂ RD, the Voronoi cell of z` with respect to {z1, . . . , zm} is defined
as

Voronoi(z`, {z1, . . . , zm}) = {x ∈ RD : ‖x− z`‖ ≤ ‖x− zi‖ for all i 6= `}.
Let

M̃ =

jmax⋃

j=jmin

⋃

aj,k∈Tj(X ′
n)

B 1
4
2−j (aj,k) . (31)

Our Cj,k’s are constructed in Algorithm 3. These Cj,k’s form a multiscale tree decomposition

of M̃. We will prove thatM\M̃ has a negligible measure and {Cj,k}k∈Kj ,j∈[jmin,jmax] satisfies

Assumptions (A1-A5). The key is that every Cj,k is contained in a ball of radius 3 · 2−j and
also contains a ball of radius 2−j/4.

Lemma 26 Every Cj,k constructed in Algorithm 3 satisfies B 2−j

4

(aj,k) ⊆ Cj,k ⊆ B3·2−j (aj,k)

Proof For any x ∈ RD and any set C ∈ RD, the diameter of C with respect to x is defined
as diam(C, x) := supz∈C ‖z−x‖. First, we prove that, for every j, Cj,k1∩Cj,k2 = ∅ whenever
k1 6= k2. Take any aj+1,k′1

∈ Cj,k1 and aj+1,k′2
∈ Cj,k2 . Our construction guarantees that

diam(Cj+1,k′1
, aj+1,k′1

) ≤ 1
42

−(j+1) + 1
42

−(j+2) + . . . < 1
22

−(j+1)
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and similarly for diam(Cj+1,k′2
, aj+1,k′2

). Since ‖aj+1,k′1
− aj+1,k′2

‖ ≥ 2−(j+1), this implies
that Cj+1,k′1

∩ Cj+1,k′2
= ∅. In our construction,

Cj,k1 =
( ⋃

aj+1,k′1
∈Cj,k1

Cj+1,k′1

)⋃
B 2−j

4

(aj,k1), Cj,k2 =
( ⋃

aj+1,k′2
∈Cj,k2

Cj+1,k′2

)⋃
B 2−j

4

(aj,k2).

Since ‖aj,k1 − aj,k2‖ ≥ 2−j , we observe that B 1
4
2−j (aj,k1) ∩ B 1

4
2−j (aj,k2) = ∅, Cj+1,k′1

∩
B 1

4
2−j (aj,k2) = ∅ for every aj+1,k′1

∈ Cj,k1 , and Cj+1,k′2
∩B 1

4
2−j (aj,k1) = ∅ for every aj+1,k′2

∈
Cj,k2 . Therefore Cj,k1 ∩ Cj,k2 = ∅.

Our construction of Cj,k’s guarantees that every Cj,k contains a ball of radius 1
4 · 2−j .

Next we prove that every Cj,k is contained in a ball of radius 3 · 2−j . The cover tree struc-
ture guarantees that X ′

n ⊂ ∪aj,k∈Tj(X ′
n)
B2·2−j (aj,k) for every j. Hence, for every aj,k and

every aj+1,k′ ∈ Cj,k, we obtain ‖aj+1,k′ − aj,k‖ ≤ 2 · 2−j and the computation above yields
diam(Cj+1,k′ , aj+1,k′) ≤ 2−j/4, and therefore diam(Cj,k, aj,k) ≤ 2 · 2−j +2−j/4 ≤ 3 · 2−j . In
summary Cj,k is contained in the ball of radius 3 · 2−j centered at aj,k.

The following Lemma will be useful when comparing comparing covariances of sets:

Lemma 27 If B ⊆ A, then we have λd(cov(ρ|A)) ≥ ρ(B)
ρ(A)λd(cov(ρ|B)).

Proof Without loss of generality, we assume both A and B are centered at x0. Let V be
the eigenspace associated with the largest d eigenvalues of cov(ρ|B). Then

λd(cov(ρ|A)) = max
dimU=d

min
u∈U

uT cov(ρ|A)u
uTu

≥ min
v∈V

vT cov(ρ|A)v
vT v

≥ min
v∈V

vT
(´

A(x− x0)(x− x0)
Tdρ

)
v

ρ(A)vT v

= min
v∈V


vT

(´
B(x− x0)(x− x0)

Tdρ
)
v

ρ(A)vT v
+

vT
(
´

A\B(x− x0)(x− x0)
Tdρ

)
v

ρ(A)vT v




≥ min
v∈V

vT
(´

B(x− x0)(x− x0)
Tdρ

)
v

ρ(A)vT v
=

ρ(B)

ρ(A)
λd(cov(ρ|B)).

A.2. Regularity of geometric spaces

To fix the ideas, consider the case where M is a manifold of class Cs, s ∈ R+ \ Z, i.e.
around every point x0 there is a neighborhood Ux0 that is parametrized by a function
f : V → Ux0 , where V is an open connected set of Rd, and f ∈ Cs, i.e. f is bsc times
continuously differentiable and the bsc-th derivative f bsc is Hölder continuous of order s−
bsc, i.e. ||f bsc(x) − f bsc(y)|| ≤ ||f bsc||Cs−bsc ||x − y||s−bsc. In particular, for s ∈ (0, 1), f is
simply a Hölder function of order s. Without loss of generality, up to a (linear) change of
coordinates we may assume x = f(xd) where xd ∈ V .
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If M is a manifold of class Cs, s ∈ (0, 1), a constant approximation of f on a set I by
the value x0 := f(xd0) on such set yields

1

ρ(I)

ˆ

I
|f(xd)− f(xd0)|2dρ(x) ≤

1

ρ(I)

ˆ

I
||xd − xd0||2s||f ||2Csdρ(x) ≤ ||f ||2Csdiam(I)2s

where we used continuity of f . If I was a ball, we would obtain a bound which would
be better by a multiplicative constant no larger than 1/d. Moreover, the left hand side is
minimized by the mean 1

ρ(I)

´

I f(y)dρ(y) of f on I, and so the bound on the right hand side

holds a fortiori by replacing f(xd0) by the mean.
Next we consider the linear approximation ofM on I ⊂M. Suppose there exits θ0, θ2

such that I is contained in a ball of radius θ2r and contains a ball of radius θ0r. Let x0 ∈ I be
the closest point on I to the mean. Then I is the graph of a Cs function f : PTx0 (I)

→ PT⊥
x0

(I)

where Tx0(I) is the plane tangent to I at x0 and T⊥
x0
(I) is the orthogonal complement of

Tx0(I). Since all the quantities involved are invariant under rotations and translations, up
to a change of coordinates, we may assume xd = (x1, . . . , xd) and f = (f1, . . . , fD−d) where
fi := fi(x

d), i = d+1, . . . , D. A linear approximation of f = (fd+1, . . . , fD) based on Taylor
expansion and an application of the mean value theorem yields the error estimates.

• Case 1: s ∈ (1, 2)

1

ρ(I)

ˆ

I

∥∥∥f(xd)− f(xd0)−∇f(xd0) · (xd − xd0)
∥∥∥
2
dρ

=
D∑

i=d+1

1

ρ(I)
sup

ξi∈domain(fi)

ˆ

I

∣∣∣∇fi(ξi)(xd − xd0)−∇fi(xd0) · (xd − xd0)
∣∣∣
2
dρ

≤
D∑

i=d+1

1

ρ(I)
sup

ξi∈domain(fi)

ˆ

Cj,k

||xd − xd0||2‖ξi − xd0‖2(s−bsc)||∇fi||2Cs−bscdρ

≤D max
i=1,...,D−d

||∇fi||2Cs−bscdiam(I)2s .

• Case 2: s = 2

1

ρ(I)

ˆ

I

∥∥∥f(xd)− f(xd0)−∇f(xd0) · (xd − xd0)
∥∥∥
2
dρ

=
D∑

i=d+1

1

ρ(I)

ˆ

I

∥∥∥fi(xd)− fi(x
d
0)−∇fi(xd0) · (xd − xd0)

∥∥∥
2
dρ

≤
D∑

i=d+1

1

ρ(I)
sup

ξi∈domain(fi)

ˆ

I

∥∥∥∥
1

2
(ξi − xd0)

TD2fi|xd
0
(ξi − xd0) + o(‖ξi − xd0‖2)

∥∥∥∥
2

dρ

≤D

2
max

i=1,...,D−d
‖D2fi‖diam(I)4 + o(2−4j).

M does not have boundaries, so the Taylor expansion in the computations above can
be performed on the convex hull of PTx0 (I)

, whose diameter is no larger than diam(I). Note
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that this bound then holds for other linear approximations which are at least as good, in
L2(ρ|I), as Taylor expansion. One such approximation is, by definition, the linear least
square fit of f in L2(ρ|I). Let LI be the least square fit to the function x 7→ f(x). Then

D∑

i=d+1

λi(cov(ρ|I))2 =
1

ρ(I)

ˆ

I
||f(x)− LI(x)||2dρ(x)

≤
{

Dmaxi=1,...,D−d ||∇fi||2Cs−bscdiam(I)2s, s ∈ (1, 2)
D
2 maxi=1,...,D−d ‖D2fi‖diam(I)4, s = 2

. (32)

Proof [Proof of Proposition 14] Claim (A1) follows by a simple volume argument: Cj,k is
contained in a ball of radius 3 ·2−j , and therefore has volume at most C1(3 ·2−j)d, and each
child contains a ball of radius 2−(j+1)/4, and therefore volume at least C−1

1 (2−(j+1)/4)d. It
follows that amax ≤ C2

1 (3 · 2−j/2−(j+1) · 4)d. Clearly amin ≥ 1 since every aj,k belongs to
both Tj(X ′

n) and Tj′(X ′
n) with j′ ≥ j. (A1),(A3), (A4) are straightforward consequences of

the doubling assumption and Lemma 26. As for (A2), for any ν > 0, we have

P

{
ρ(M\ M̃) >

28ν log n

3n

}
= P

{
ρ̂(M\ M̃) = 0 and ρ(M\ M̃) >

28ν log n

3n

}

≤ P

{
|ρ̂(M\ M̃)− ρ(M\ M̃)| > 1

2
ρ(M\ M̃) and ρ(M\ M̃) >

28ν log n

3n

}

≤ 2e−
3
28

nρ(M\M̃) ≤ 2n−ν .

In order to prove the last statement about property (A5) in the case of 5a, observe that
B2−j/4(aj,k) ⊆ Cj,k ⊆ B3·2−j (aj,k). By Lemma 27 we have

C−1
1 (2−j/4)d

ρ(Cj,k)
λd(cov(ρ|B

2−j/4
(aj,k)) ≤ λd(cov(ρ|Cj,k

) ≤ C1(3 · 2−j)d

ρ(Cj,k)
λd(cov(ρ|B

3·2−j (aj,k))

and therefore λd(cov(ρ|Cj,k
) ≥ C−2

1 (1/12)dλd(cov(ρ|B
2−j/4

(aj,k)) ≥ C−2
1 (1/12)dθ̃3(2

−j/4)2/d,

so that (A5)-(i) holds with θ3 = θ̃3(4C1)
−2(1/12)d. Proceeding similarly for λd+1, we obtain

from the upper bound above that

λd+1(cov(ρ|Cj,k
) ≤ C1(3 · 2−j)d

C−1
1 (2−j/4)d

λd+1(cov(ρ|B
3·2−j (aj,k)) ≤ (12d)2 · 144C4

1 θ̃4/θ̃3λd(cov(ρ|Cj,k
)

so that (A5)-(ii) holds with θ4 = (12d)2 · 144C4
1 θ̃4/θ̃3.

In order to prove (A5) in the case of 5b, we use calculations as in Little et al. (2017);
Maggioni et al. (2016) where one obtains that the first d eigenvalues of the covariance matrix
of ρ|Br(z) with z ∈M, is lower bounded by θ̃3r

2/d for some θ̃3 > 0. Then (A5)-(i) holds for

Cj,k with θ3 = θ̃3(4C1)
−2(1/12)d. The estimate of λd+1(cov(ρ|Cj,k

)) follows from (32) such
that

D∑

i=d+1

λi(cov(ρ|Cj,k
))2 ≤

{
Dmaxi=1,...,D−d ||∇fi||2Cs−bsc(6 · 2−j)2s, s ∈ (1, 2)
D
2 maxi=1,...,D−d ‖D2fi‖(6 · 2−j)4, s = 2

.
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Therefore, there exists j0 such that λd+1(cov(ρ|Cj,k
)) < θ4λd(cov(ρ|Cj,k

)) when j ≥ j0. The
calculation above also implies that ρ ∈ A∞

s if maxi=1,...,D−d ||∇fi||2Cs−bsc for s ∈ (1, 2) or

maxi=1,...,D−d ‖D2fi‖ for s = 2 is uniformly upper bounded.

A.3. An alternative tree construction method

The {Cj,k} constructed by Algorithm 3 is proved to satisfy Assumptions (A1-A5). In
numerical experiments, we use a much simpler algorithm to construct {Cj,k} as follows:

Cjmax,k = Voronoi(ajmax,k, Tjmax(X ′
n)) ∩B2−jmax (ajmax,k),

and for any j < jmax, we define Cj,k =
⋃

aj−1,k′ child of aj,k

Cj−1,k′ .

We observe that the vast majority of Cj,k’s constructed above satisfy Assumptions (A1-
A5) in our numerical experiments. While it is not difficult to construct counterexamples
in which the Cj,k’s thus construct fail to satisfy Assumptions (A1-A5). In Fig. 14, we
will show that (A5) is satisfied when we experiment on volume measures on the 3-dim S
and Z-manifold. Here we sample 105 training data, perform multiscale tree decomposition
as stated above, and compute θj,k3 , θj,k4 at every Cj,k. In Fig. 14, we display the mean of

{θj,k3 }k∈Kj
or {θj,k4 }k∈Kj

versus scale j, with a vertical error bar representing the standard

deviation of {θj,k3 }k∈Kj
or {θj,k4 }k∈Kj

at each scale. We observe that θ3 = minj,k θ
j,k
3 ≥ 0.05

at all scales and θ4 = maxj,k θ
j,k
4 ≤ 1/2 except at very coarse scales, which demonstrates

Assumption (A5) is satisfied here. Indeed θ4 is not only bounded, but also decreases from
coarse scales to fine scales.
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versus j of

the 3-dim S-manifold
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(c) {θj,k3 }k∈Kj
versus j of

the 3-dim Z-manifold
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Figure 14: The mean of {θj,k3 }k∈Kj
or {θj,k4 }k∈Kj

versus scale j, with a vertical error bar

representing the standard deviation of {θj,k3 }k∈Kj
or {θj,k4 }k∈Kj

at each scale.

We observe that, every Cj,k constructed above is contained in a ball of radius θ22
−j and

contains a ball of radius θ02
−j , with θ2/θ0 ∈ [1, 2] for the majority of Cj,k’s. In Fig. 15, we

take the volume measures on the 3-dim S and Z-manifold, and plot log2 of the outer-radius
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B.1. S-manifold

Since S-manifold is smooth and has a bounded curvature, the volume measure on the S-
manifold is in A∞

2 . Therefore, the volume measure on the S-manifold is in A2 and B2 when
d ≥ 3.

B.2. Z-manifold

B.2.1. The volume on the Z-manifold is in A1.5

The uniform distribution on the d dimensional Z-manifold is in A1 at two corners and
satisfies ‖(X − Pj,kX)1j,k‖ = 0 when Cj,k is away from the corners. There exists A0 > 0
such that ‖(X − Pj,kX)1j,k‖ ≤ A02

−j
√

ρ(Cj,k) when Cj,k intersects with the corners. At

scale j, there are about 2jd cells away from the corners and there are about 2j(d−1) cells
which intersect with the corners. As a result,

‖X − PjX‖ ≤ O
(√

2jd · 0 · 2−jd + 2j(d−1) · 2−2j · 2−jd
)
= O(2−1.5j),

so the volume measure on Z-manifold is in A1.5.

B.2.2. Model class Bs
Assume ρ(Cj,k) � 2−jd. We compute the regularity parameter s in the Bs model class
when d ≥ 3. It is easy to see that ∆j,k = 0 when Cj,k is away from the corners and

∆j,k ≤ 2A02
−j
√

ρ(Cj,k) . 2−j( d
2
+1) when Cj,k intersects with the corners. Given any fixed

threshold η > 0, in the truncated tree T(ρ,η), the parent of the leaves intersecting with the

corners satisfy 2−j( d
2
+1) & 2−jη. In other words, at the corners the tree is truncated at a

scale coarser than j∗ such that 2−j∗ = O(η 2
d ). Since ∆j,k = 0 when Cj,k is away from the

corners, the entropy of T(ρ,η) is dominated by the nodes intersecting with the corners whose

cardinality is 2j(d−1) at scale j. Therefore

Entropy of T(ρ,η) .
∑

j≤j∗

2−2j2j(d−1) = O
(
η−

2(d−3)
d

)
,

which implies that p ≤ 2(d−3)
d and s ≥ 3(d−2)

2(d−3) > 1.5.

Then we study the relation between the error ‖X − PΛ(ρ,η)
X‖ and the partition size

#Λ(ρ,η), which is numerically verified in Figure 4. Since all the nodes in T(ρ,η) that intersect
with corners are at a scale coarser than j∗, #Λ(ρ,η) ≈ 2j

∗(d−1) � η−
2(d−1)

d . Therefore,

η . [#Λ(ρ,η)]
− d

2(d−1) and

‖X − PΛ(ρ,η)
X‖ . η

2−p
2 = η

2s
2s+d−2 . [#Λ(ρ,η)]

− 2sd
2(d−1)(2s+d−2) = [#Λ(ρ,η)]

− 3
2(d−1) .

Appendix C. Proofs of Lemma 15 and Proposition 16

C.1. Concentration inequalities

We first recall a Bernstein inequality from Tropp (2014) which is an exponential inequality
to estimate the spectral norm of a sum independent random Hermitian matrices of size
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D × D. It features the dependence on an intrinsic dimension parameter which is usually
much smaller than the ambient dimension D. For a positive-semidefinite matrix A, the
intrinsic dimension is the quantity

intdim(A) =
trace(A)

‖A‖ .

Proposition 28 (Theorem 7.3.1 in Tropp (2014)) Let ξ1, . . . , ξn be D × D indepen-
dent random Hermitian matrices that satisfy

Eξi = 0 and ‖ξi‖ ≤ R, i = 1, . . . , n.

Form the mean ξ = 1
n

∑n
i=1 ξi. Suppose E(ξ2) � Φ. Introduce the intrinsic dimension

parameter din = intdim(Φ). Then, for nt ≥ n‖Φ‖1/2 +R/3,

P{‖ξ‖ ≥ t} ≤ 4dine
− nt2/2

n‖Φ‖+Rt/3 .

We use the above inequalities to estimate the deviation of the empirical mean from the
mean and the deviation of the empirical covariance matrix from the covariance matrix when
the data Xj,k = {x1, . . . , xn} (with a slight abuse of notations) are i.i.d. samples from the
distribution ρ|Cj,k

.

Lemma 29 Suppose x1, . . . , xn are i.i.d. samples from ρ|Cj,k
. Let the local mean and

covariance, and their empirical counterparts, be defined as

cj,k =

ˆ

Cj,k

xdρ|Cj,k
, ĉj,k :=

1

n

n∑

i=1

xi

Σj,k =

ˆ

Cj,k

(x− cj,k)(x− cj,k)
Tdρ|Cj,k

, Σ̂j,k :=
1

n

n∑

i=1

(xi − ĉj,k)(xi − ĉj,k)
T

Then

P{‖ĉj,k − cj,k‖ ≥ t} ≤ 8e
− 3nt2

6θ222
−2j+2θ22

−jt , (33)

P{‖Σ̂j,k − Σj,k‖ ≥ t} ≤
(
4θ22
θ3

d+ 8

)
e
− 3nt2

24θ422
−4j+8θ222

−2jt . (34)

Proof We start by proving (33). We will apply Bernstein inequality with ξi = xi − cj,k ∈
RD. Clearly Eξi = 0, and ‖ξi‖ ≤ θ22

−j due to Assumption (A4). We form the mean
ξ = 1

n

∑n
i=1 ξi = ĉj,k − cj,k and compute the variance

σ2 = n2‖EξT ξ‖ =

∥∥∥∥∥∥
E

(
n∑

i=1

xi − cj,k

)T ( n∑

i=1

xi − cj,k

)∥∥∥∥∥∥
=

∥∥∥∥∥

n∑

i=1

E(xi − cj,k)
T (xi − cj,k)

∥∥∥∥∥ ≤ nθ222
−2j .

Then for nt ≥ σ + θ22
−j/3,

P{‖ĉj,k − cj,k‖ ≥ t} ≤ 8e
− n2t2/3

σ2+θ22
−jnt/3 ≤ 8e

− 3nt2

6θ222
−2j+2θ22

−jt .
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We now prove (34). Define the intermediate matrix Σ̄j,k = 1
n

∑n
i=1(xi− cj,k)(xi− cj,k)

T .

Since Σ̂j,k − Σj,k = Σ̄j,k − Σj,k − (ĉj,k − cj,k)(ĉj,k − cj,k)
T , we have

‖Σ̂j,k − Σj,k‖ ≤ ‖Σ̄j,k − Σj,k‖+ ‖ĉj,k − cj,k‖2 ≤ ‖Σ̄j,k − Σj,k‖+ θ22
−j‖ĉj,k − cj,k‖.

A sufficient condition for ‖Σ̂j,k−Σj,k‖ < t is ‖Σ̄j,k−Σj,k‖ < t/2 and ‖ĉj,k−cj,k‖ < 2jt/(2θ2).
We apply Proposition 28 to estimate P{‖Σ̄j,k − Σj,k‖ ≥ t/2}: let ξi = (xi − cj,k)(xi −
cj,k)

T − Σj,k ∈ RD×D. One can verify that Eξi = 0 and ‖ξi‖ ≤ 2θ222
−2j . We form the mean

ξ = 1
n

∑n
i=1 ξi = Σ̄j,k − Σj,k, and then

Eξ2 = E

(
1

n2

n∑

i=1

ξi

n∑

i=1

ξi

)
=

1

n2

n∑

i=1

Eξ2i �
1

n2

n∑

i=1

θ222
−2jΣj,k �

θ222
−2j

n
Σj,k,

which satisfies
∥∥∥ θ222

−2j

n Σj,k

∥∥∥ ≤ θ422
−4j/n. Meanwhile

din = intdim(Σj,k) =
trace(Σj,k)

‖Σj,k‖
≤ θ222

−2j

θ32−2j/d
=

θ22
θ3

d.

Then, Proposition 28 implies

P{‖Σ̄j,k − Σj,k‖ ≥ t/2} ≤ 4θ22
θ3

de

−nt2/8

θ422
−4j+

θ222
−2jt

3 =
4θ22
θ3

de
−3nt2

24θ422
−4j+8θ222

−2jt .

Combining with (33), we obtain

P{‖Σ̂j,k − Σj,k‖ ≥ t} ≤ P{‖Σ̄j,k − Σj,k‖ ≥ t/2}+ P

{
‖ĉj,k − cj,k‖ ≥

2jt

2θ2

}

≤
(
4θ22
θ3

d+ 8

)
e
− 3nt2

24θ422
−4j+8θ222

−2jt .

In Lemma 29 data are assumed to be i.i.d. samples from the conditional distribution
ρ|Cj,k

. Given Xn = {x1, . . . , xn} which contains i.i.d. samples from ρ, we will show that the

empirical measure ρ̂(Cj,k) = n̂j,k/n is close to ρ(Cj,k) with high probability.

Lemma 30 Suppose x1, . . . , xn are i.i.d. samples from ρ. Let ρ(Cj,k) =
´

Cj,k
1dρ and

ρ̂(Cj,k) = n̂j,k/n where n̂j,k is the number of points in Cj,k. Then

P{|ρ̂(Cj,k)− ρ(Cj,k)| ≥ t} ≤ 2e
− 3nt2

6ρ(Cj,k)+2t (35)

for all t ≥ 0. Setting t = 1
2ρ(Cj,k) gives rise to

P

{
|ρ̂(Cj,k)− ρ(Cj,k)| ≥

1

2
ρ(Cj,k)

}
≤ 2e−

3
28

nρ(Cj,k). (36)
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Combining Lemma 29 and Lemma 30 gives rise to concentration bounds on ‖ĉj,k −
cj,k‖ and ‖Σ̂j,k − Σj,k‖ where cj,k, ĉj,k, Σj,k and Σ̂j,k are the conditional mean, empirical
conditional mean, conditional covariance matrix and empirical conditional covariance matrix
on Cj,k, respectively:

Lemma 31 Suppose x1, . . . , xn are i.i.d. samples from ρ. Define cj,k,Σj,k and ĉj,k, Σ̂j,k as
in Table 1. Then given any t > 0,

P {‖ĉj,k − cj,k‖ ≥ t} ≤ 2e−
3
28

nρ(Cj,k) + 8e
− 3nρ(Cj,k)t2

12θ222
−2j+4θ22

−jt , (37)

P
{
‖Σ̂j,k − Σj,k‖ ≥ t

}
≤ 2e−

3
28

nρ(Cj,k) +

(
4θ22
θ3

d+ 8

)
e
− 3nρ(Cj,k)t2

96θ422
−4j+16θ222

−2jt . (38)

Proof The number of samples on Cj,k is n̂j,k =
∑n

i=1 1j,k(xi). Clearly E[n̂j,k] = nρ(Cj,k).
Let I ⊂ {1, . . . , n} and |I| = s. Conditionally on the event AI := {xi ∈ Cj,k for i ∈
I and xi /∈ Cj,k for i /∈ I}, the random variables {xi, i ∈ I} are i.i.d. samples from ρ|Cj,k

.

According to Lemma 30,

P{‖ĉj,k − cj,k‖ ≥ t | n̂j,k = s} =
∑

I⊂{1,...,n}
|I|=s

P{‖ĉj,k − cj,k‖ ≥ t | AI}
1(
n
s

)

= P{‖ĉj,k − cj,k‖ ≥ t | A{1,...,s}} ≤ 8e
− 3st2

6θ222
−2j+2θ22

−jt ,

and

P{‖Σ̂j,k − Σj,k‖ ≥ t | n̂j,k = s} ≤
(
4θ22
θ3

d+ 8

)
e
− 3st2

24θ422
−4j+8θ222

−2jt .

Furthermore |ρ̂(Cj,k)− ρ(Cj,k)| ≤ 1
2ρ(Cj,k) yields n̂j,k ≥ 1

2nρ(Cj,k) and then

P

{
‖ĉj,k − cj,k‖ ≥ t

∣∣∣ |ρ̂(Cj,k)− ρ(Cj,k)| ≤
1

2
ρ(Cj,k)

}
≤ 8e

− 3nρ(Cj,k)t2

12θ222
−2j+4θ22

−jt , (39)

P

{
‖Σ̂j,k − Σj,k‖ ≥ t

∣∣∣ |ρ̂(Cj,k)− ρ(Cj,k)| ≤
1

2
ρ(Cj,k)

}
≤
(
4θ22
θ3

d+ 8

)
e
− 3nρ(Cj,k)t2

48θ422
−4j+16θ222

−2jt .(40)

Eq. (39) (40) along with Lemma 30 gives rise to

P {‖ĉj,k − cj,k‖ ≥ t} ≤ 2e−
3
28

nρ(Cj,k) + 8e
− 3nρ(Cj,k)t2

12θ222
−2j+4θ22

−jt ,

P
{
‖Σ̂j,k − Σj,k‖ ≥ t

}
≤ 2e−

3
28

nρ(Cj,k) +

(
4θ22
θ3

d+ 8

)
e
− 3nρ(Cj,k)t2

48θ422
−4j+16θ222

−2jt .

Given ‖Σ̂j,k −Σj,k‖, we can estimate the angle between the eigenspace of Σ̂j,k and Σj,k

with the following proposition.
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Proposition 32 (Davis and Kahan (1970) or Theorem 3 in Zwald and Blanchard (2006))

Let δd(Σj,k) =
1
2(λ

j,k
d − λj,k

d+1). If ‖Σ̂j,k − Σj,k‖ ≤ 1
2δd(Σj,k), then

∥∥∥ProjVj,k
− Proj

V̂j,k

∥∥∥ ≤ ‖Σ̂j,k − Σj,k‖
δd(Σj,k)

.

According to Assumption (A4) and (A5), δd(Σj,k) ≥ θ32
−2j/(4d). An application of Propo-

sition 32 yields

P
{
‖ProjVj,k

− Proj
V̂j,k

∥∥∥ ≥ t} ≤ P

{
‖Σ̂j,k − Σj,k‖ ≥

θ3(1− θ4)t

2d22j

}

≤ 2e−
3
28

nρ(Cj,k) +

(
4θ22
θ3

d+ 8

)
e
− 3θ23(1−θ4)

2nρ(Cj,k)t2

384θ42d
2+32θ22θ3(1−θ4)dt . (41)

Proof [Proof of Lemma 15] Since

‖PΛX − P̂ΛX‖2 =
∑

Cj,k∈Λ

ˆ

Cj,k

‖Pj,kx− P̂j,kx‖2dρ =
∑

j

∑

k:Cj,k∈Λ

ˆ

Cj,k

‖Pj,kx− P̂j,kx‖2dρ,

we obtain the estimate

P
{
‖PΛX − P̂ΛX‖ ≥ η

}
≤
∑

j

P





∑

k:Cj,k∈Λ

ˆ

Cj,k

‖Pj,kx− P̂j,kx‖2dρ ≥
2−2j#jΛη

2

∑
j≥jmin

2−2j#jΛ



 .(42)

Next we prove that, for any fixed scale j,

P





∑

k:Cj,k∈Λ

ˆ

Cj,k

‖Pj,kx− P̂j,kx‖2dρ ≥ t2



 ≤ α#jΛe

−β22jnt2

#jΛ . (43)

Then Lemma 15 is proved by setting t2 = 2−2j#jΛη
2/(
∑

j≥0 2
−2j#jΛ).

The proof of (43) starts with the following calculation:

∑

k:Cj,k∈Λ

ˆ

Cj,k

‖Pj,kx− P̂j,kx‖2dρ

=
∑

k:Cj,k∈Λ

ˆ

Cj,k

‖cj,k + ProjVj,k
(x− cj,k)− ĉj,k − Proj

V̂j,k
(x− ĉj,k)‖2dρ

≤
∑

k:Cj,k∈Λ

ˆ

Cj,k

‖(I− Proj
V̂j,k

)(cj,k − ĉj,k) + (ProjVj,k
− Proj

V̂j,k
)(x− cj,k)‖2dρ

≤ 2
∑

k:Cj,k∈Λ

ˆ

Cj,k

[
‖cj,k − ĉj,k‖2 + ‖(ProjVj,k

− Proj
V̂j,k

)(x− cj,k)‖2
]
dρ

≤ 2
∑

k:Cj,k∈Λ

ˆ

Cj,k

[
‖cj,k − ĉj,k‖2 + θ222

−2j‖ProjVj,k
− Proj

V̂j,k
‖2
]
dρ
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For any fixed j and given t > 0, we divide Λ into light cells Λ−
j,t and heavy cells Λ+

j,t, where

Λ−
j,t :=

{
Cj,k ∈ Λ : ρ(Cj,k) ≤

t2

20θ222
−2j#jΛ

}
and Λ+

j,t := Λ \ Λ−
j,t .

Since
´

Cj,k

[
‖cj,k − ĉj,k‖2 + θ222

−2j‖ProjVj,k
− Proj

V̂j,k
‖2
]
dρ ≤ 5θ222

−2jρ(Cj,k), for light sets

we have

2
∑

k:Cj,k∈Λ−
j,t

ˆ

Cj,k

[
‖cj,k − ĉj,k‖2 + θ222

−2j‖ProjVj,k
− Proj

V̂j,k
‖2
]
dρ ≤ t2

2
. (44)

Next we consider Cj,k ∈ Λ+
j,t. We have

P

{
‖ĉj,k − cj,k‖ ≥

t√
8ρ(Cj,k)#jΛ

}

≤ 2 exp

(
− 3

28
nρ(Cj,k)

)
+ 8e

−
3nρ(Cj,k) t2

8ρ(Cj,k)#jΛ

12θ222
−2j+4θ22

−j t√
8ρ(Cj,k)#jΛ ≤ C1e

−C2
22jnt2

#jΛ , (45)

and

P

{
‖ProjVj,k

− Proj
V̂j,k
‖ ≥ 2jt

θ2
√

8ρ(Cj,k)#jΛ

}

≤ 2e−
3
28

nρ(Cj,k) +

(
4θ22
θ3

d+ 8

)
e

−
3θ23(1−θ4)

2nρ(Cj,k) 22jt2

8θ22ρ(Cj,k)#jΛ

384θ42d
2+32θ22θ3(1−θ4)d

2jt

θ2

√
8ρ(Cj,k)#jΛ ≤ C3de

−C4
22jnt2

d2#jΛ (46)

where positive constants C1, C2, C3, C4 depend on θ2 and θ3. Combining (44), (45) and (46)
gives rise to (43) with α = max(C1, C3) and β = min(C2, C4).

Proof [Proof of Proposition 16] The bound (18) follows directly from Lemma 15 applied
to Λ = Λj ; (19) follows from (18) by integrating the probability over η:

E‖PjX − P̂jX‖2 =
ˆ +∞

0
ηP
{
‖PjX − P̂jX‖ ≥ η

}
dη

≤
ˆ +∞

0
ηmin

{
1, αd#Λje

−β22jnη2

d2#Λj

}
dη =

ˆ η0

0
ηdη +

ˆ +∞

η0

αdη#Λje
−β22jnη2

d2#Λj dη

where αd#Λje
−β22jnη20

d2#Λj = 1. Then

E‖PjX − P̂jX‖2 =
1

2
η20 +

α

2β
·
#Λ2

j

22jn
e
−β

22jnη20
#Λj ≤ d2#Λj log[αd#Λj ]

β22jn
.
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Appendix D. Proof of Eq. (9), Lemma 17, 19, 20, 21

Proof [Proof of Eq. (9)] Let Λ+0
(ρ,η) = Λ(ρ,η) and Λ+n

(ρ,η) be the partition consisting of the

children of Λ
+(n−1)
(ρ,η) for n = 1, 2, . . .. Then

‖X − PΛ(ρ,η)
X‖ = ‖

n−1∑

`=0

(PΛ+`
(ρ,η)

X − P
Λ
+(`+1)
(ρ,η)

X) + PΛ+n(ρ,η)X −X‖

= ‖
∞∑

`=0

(PΛ+`
(ρ,η)

X − P
Λ
+(`+1)
(ρ,η)

X) + lim
n→∞

PΛ+n
(ρ,η)

X −X‖

≤ ‖
∑

Cj,k /∈T(ρ,η)

Qj,kX‖+ ‖ lim
n→∞

PΛ+n
(ρ,η)

X −X‖.

We have ‖ limn→∞ PΛ+n
(ρ,η)

X −X‖ = 0 due to Assumption (A4). Therefore,

‖X − PΛ(ρ,η)
X‖2 ≤ ‖

∑

Cj,k /∈T(ρ,η)

Qj,kX‖2 ≤
∑

Cj,k /∈T(ρ,η)

B0‖Qj,kX‖2 = B0

∑

Cj,k /∈T(ρ,η)

∆2
j,k

≤ B0

∑

`≥0

∑

Cj,k∈T(ρ,2−(`+1)η)
\T

(ρ,2−`η)

∆2
j,k ≤ B0

∑

`≥0

∑

j≥jmin

(2−j2−`η)2#jT(ρ,2−(`+1)η)

≤ B0

∑

`≥0

2−2`η2
∑

j≥jmin

2−2j#jT(ρ,2−(`+1)η) ≤ B0

∑

`≥0

2−2`η2|ρ|pBs
[2−(`+1)η]−p

≤ B02
p


∑

`≥0

2−`(2−p)


 |ρ|pBs

η2−p ≤ Bs,d|ρ|pBs
η2−p.

Proof [of Lemma 17]

∥∥∥∥(X − Pj∗X)1{
Cj∗,k:ρ(Cj∗,k)≤ 28(ν+1) logn

3n

}
∥∥∥∥
2

≤
∑

{
Cj∗,k:ρ(Cj∗,k)≤ 28(ν+1) logn

3n

}

ˆ

Cj∗,k

‖x− Pj∗,k‖2dρ

≤ #

{
Cj∗,k : ρ(Cj∗,k) ≤

28(ν + 1) log n

3n

}
θ222

−2j∗ 28(ν + 1) log n

3n

≤ 28(ν+1)θ22
3θ1

2j
∗(d−2)(log n)/n ≤ 28(ν+1)θ22µ

3θ1
((log n)/n)2 .

For every Cj∗,k, we have

P
{
ρ(Cj∗,k) >

28
3 (ν + 1)(log n)/n and ρ̂(Cj∗,k) < d/n

}

≤ P
{
|ρ̂(Cj∗,k)− ρ(Cj∗,k)| > ρ(Cj∗,k)/2 and ρ(Cj∗,k) >

28
3 (ν + 1)(log n)/n

}

for n so large that 14(ν + 1) log n > 3d

≤ 2e−
3
28

nρ(Cj∗,k) ≤ 2n−ν−1.
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Then

P
{
each Cj∗,k satisfying ρ(Cj∗,k) >

28
3 (ν + 1)(log n)/n has at most d points

}

≤ #
{
Cj∗,k : ρ(Cj∗,k) <

28
3 (ν + 1)(log n)/n

}
2n−ν−1 ≤ #Λj∗2n

−ν−1 ≤ 2n−ν/(θ1µ log n) < n−ν ,

when n is so large that θ1µ log n > 2.

Proof [of Lemma 19] Since Tbτn ⊂ T(ρ,bτn), P{e12 > 0} if and only if there exists Cj,k ∈
T(ρ,bτn) \ Tbτn . In other words, P{e12 > 0} if and only if there exists Cj,k ∈ T(ρ,bτn) such that
ρ̂(Cj,k) < d/n and ∆j,k > 2−jbτn. Therefore,

P{e12 > 0} ≤
∑

Cj,k∈T(ρ,bτn)

P{ρ̂(Cj,k) < d/n and ∆j,k > 2−jbτn}

≤
∑

Cj,k∈T(ρ,bτn)

P
{
ρ̂(Cj,k) < d/n and ρ(Cj,k) >

4b2τ2n
9θ22

} (
since ∆j,k ≤ 3

2θ22
−j
√
ρ(Cj,k)

)

≤
∑

Cj,k∈T(ρ,bτn)

P
{
|ρ̂(Cj,k)− ρ(Cj,k)| > ρ(Cj,k)/2 and ρ(Cj,k) >

4b2τ2n
9θ22

}

(for n large enough so that 2b2κ2 log n > 9θ22d)

≤
∑

Cj,k∈T(ρ,bτn)

2e
− 3

28
n· 4b

2κ2 logn

9θ22n ≤ 2n
− b2κ2

21θ22 #T(ρ,bτn).

The leaves of T(ρ,bτn) satisfy ρ(Cj,k) > 4b2τ2n/(9θ
2
2). Since ρ(M) = 1, there are at most

9θ22/(4b
2τ2n) leaves in T(ρ,bτn). Meanwhile, since every node in T has at least amin children,

#T(ρ,bτn) ≤ 9θ22amin/(4b
2τ2n). Then for a fixed but arbitrary ν > 0,

P{e12 > 0} ≤ 18θ22amin

4b2τ2n
n
− b2κ2

21θ22 ≤ 18θ22amin

4b2κ2 n
1− b2κ2

21θ22 ≤ C(θ2, amax, amin, κ)n
−ν ,

if κ is chosen such that κ > κ1 where b2κ21/(21θ
2
2) = ν + 1.

Proof [of Lemma 20] We first prove (24). Introduce the intermediate variable

∆̄j,k := ‖Qj,k‖n = ‖(Pj − Pj+1)1j,kX‖n
and then observe that

P
{
∆̂j,k ≤ η and ∆j,k ≥ bη

}
≤ P

{
∆̂j,k ≤ η and ∆̄j,k ≥ (amax + 2)η

}

+ P
{
∆̄j,k ≤ (amax + 2)η and ∆j,k ≥ (2amax + 5)η

}
. (47)

The bound in Eq. (24) is proved in the following three steps. In Step One, we show that

∆j,k ≥ bη implies ρ(Cj,k) ≥ O(22jη2). Then we estimate P
{
∆̂j,k ≤ η and ∆̄j,k ≥ (amax + 2)η

}

in Step Two and P
{
∆̄j,k ≤ (amax + 2)η and ∆̄j,k ≥ (2amax + 5)η

}
in Step Three.
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Step One: Notice that ∆j,k ≤ 3
2θ22

−j
√
ρ(Cj,k). As a result, ∆j,k ≥ bη implies

ρ(Cj,k) ≥
4b222jη2

9θ22
. (48)

Step Two:

P
{
∆̂j,k ≤ η and ∆̄j,k ≥ (amax + 2)η

}
≤ P

{
|∆̂j,k − ∆̄j,k| ≥ (amax + 1)η

}
. (49)

We can write

|∆̂j,k − ∆̄j,k| ≤
∥∥∥(Pj,k − P̂j,k)1j,kX

∥∥∥
n
+

∑

Cj+1,k′∈C (Cj,k)

∥∥∥(P̂j+1,k′ − Pj+1,k′)1j+1,k′X
∥∥∥
n

≤
(
‖cj,k − ĉj,k‖+ θ22

−j‖ProjVj,k
− Proj

V̂j,k
‖
)√

ρ̂(Cj,k)
︸ ︷︷ ︸

e1

+
∑

Cj+1,k′∈C (Cj,k)

(
‖cj+1,k′ − ĉj+1,k′‖+ θ22

−(j+1)‖ProjVj+1,k′
− Proj

V̂j+1,k′
‖
)√

ρ̂(Cj+1,k′)

︸ ︷︷ ︸
e2

.

(50)

Term e1: We will estimate P{e1 > η}. Conditional on the event that {|ρ̂(Cj,k)−ρ(Cj,k)| ≤
1
2ρ(Cj,k)}, we have e1 ≤ 3

2

(
‖cj,k − ĉj,k‖+ θ22

−j‖ProjVj,k
− Proj

V̂j,k
‖
)√

ρ(Cj,k). A similar

argument to the proof of Lemma 15 along with (48) give rise to

P

{
3

2

(
‖cj,k − ĉj,k‖+ θ22

−j‖ProjVj,k
− Proj

V̂j,k
‖
)√

ρ(Cj,k) > η

}
≤ γ̃1e

−γ̃222jnη2

where γ̃1 := γ̃1(θ2, θ3, d) and γ̃2 := γ̃2(θ2, θ3, θ4, d); otherwise P
{
|ρ̂(Cj,k)− ρ(Cj,k)| > 1

2ρ(Cj,k)
}
≤

2e−
3
28

nρ(Cj,k) ≤ 2e
− b222jnη2

21θ22 . Therefore

P{e1 > η} ≤ max(γ̃1, 2)e
−min(γ̃2,

b2

21θ22
)22jnη2

(51)

Term e2: We will estimate P{e2 > amaxη}. Let Λ− =
{
Cj+1,k′ ∈ C (Cj,k) : ρ(Cj+1,k′) ≤ 22jη2

8θ22

}

and Λ+ = C (Cj,k) \ Λ−. For every Cj+1,k′ ∈ Λ−, when we condition on the event that{
ρ(Cj+1,k′) ≤ 22jη2

8θ22
and ρ̂(Cj+1,k′) ≤ 22jη2

4θ22

}
, we obtain

∑

Cj+1,k′∈Λ−

(
‖cj+1,k′ − ĉj+1,k′‖+ θ22

−(j+1)‖ProjVj+1,k′
− Proj

V̂j+1,k′
‖
)√

ρ̂(Cj+1,k′)

≤
∑

Cj+1,k′∈Λ−

θ22
−j
√
ρ̂(Cj,k) ≤ amaxη/2; (52)

53



Liao and Maggioni

otherwise,

P
{
ρ(Cj+1,k′) ≤ 22jη2

8θ22
and ρ̂(Cj+1,k′) >

22jη2

4θ22

}

≤ P
{
ρ(Cj+1,k′) ≤ 22jη2

8θ22
and |ρ̂(Cj+1,k′)− ρ(Cj+1,k′)| ≥ 22jη2

8θ22

}

≤ 2e
−
(
3n

(
22jη2

8θ22

)2
)/(

6ρ(Cj+1,k′ )+2 22jη2

8θ22

)

≤ 2e
− 3·22jnη2

64θ22 . (53)

For Cj+1,k′ ∈ Λ+, a similar argument to e1 gives rise to

P





∑

Cj+1,k′∈Λ+

(
‖cj+1,k′ − ĉj+1,k′‖+ θ22

−(j+1)‖ProjVj+1,k′
− Proj

V̂j+1,k′
‖
)√

ρ̂(Cj+1,k′) > amaxη/2





≤
∑

Cj+1,k′∈Λ+

P

{(
‖cj+1,k′ − ĉj+1,k′‖+ θ22

−(j+1)‖ProjVj+1,k′
− Proj

V̂j+1,k′
‖
)√

ρ̂(Cj+1,k′) ≥ η/2

}

≤ γ̃3e
−γ̃422jnη2 (54)

where γ̃3 := γ̃3(θ2, θ3, amax, d) and γ̃4 := γ̃4(θ2, θ3, θ4, amax, d).

Finally combining (49), (50), (51), (52), (53) and (54) yields

P
{
∆̂j,k ≤ η and ∆̄j,k ≥ (amax + 2)η

}
≤ P

{
|∆̂j,k − ∆̄j,k| ≥ (amax + 1)η

}

≤ P{e1 > η}+ P{e2 > amaxη} ≤ γ̃5e
−γ̃622jnη2 (55)

for some constants γ̃5 := γ̃5(θ2, θ3, amax, d) and γ̃6 := γ̃6(θ2, θ3, θ4, amax, d).

Step Three: The probability P
{
∆̄j,k ≤ (amax + 2)η and ∆j,k ≥ (2amax + 5)η

}
is esti-

mated as follows. For a fixed Cj,k, we define the function

f(x) = ‖(Pj − Pj+1)1j,kx‖ , x ∈M.

Observe that |f(x)| ≤ 3
2θ22

−j for any x ∈ M. We define ‖f‖2 =
´

M f2(x)dρ and ‖f‖2n =
1
n

∑n
i=1 f

2(xi). Then

P
{
∆̄j,k ≤ (amax + 2)η and ∆j,k ≥ (2amax + 5)η

}

≤ P
{
∆j,k − 2∆̄j,k ≥ η

}
= P {‖f‖ − 2‖f‖n ≥ η} ≤ 3e

− 22jnη2

648θ22 (56)

where the last inequality follows from Györfi et al. (2002, Theorem 11.2). Combining (47),
(55) and (56) yields (24).

Next we turn to the bound in Eq. (24), which corresponds to the case that ∆j,k ≤ η

and ∆̂j,k ≥ bη. In this case we have ∆̂j,k ≤ 3
2θ22

−j
√

ρ̂(Cj,k) which implies

ρ̂(Cj,k) ≥
4b222jη2

9θ22
, (57)
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instead of (48). We shall use the fact that ρ(Cj,k) ≥ (2b222jη2)/(9θ22) given (57) with high
probability, by writing

P
{
∆j,k ≤ η and ∆̂j,k ≥ bη

}
≤P
{
∆j,k ≤ η and ∆̂j,k ≥ bη

∣∣ ρ(Cj,k) ≥ 2b222jη2

9θ22

}

+ P
{
ρ(Cj,k) ≤ 2b222jη2

9θ22
and ρ̂(Cj,k) ≥ 4b222jη2

9θ22

}
(58)

where the first term is estimated as above and the second one is estimated through Eq. (35)
in Lemma 30:

P
{
ρ(Cj,k) ≤ 2b222jη2

9θ22
and ρ̂(Cj,k) ≥ 4b222jη2

9θ22

}

≤P
{
ρ(Cj,k) ≤

2b222jη2

9θ22
and |ρ̂(Cj,k)− ρ(Cj,k)| ≥

2b222jη2

9θ22

}

≤2e
−
(
3n( 2b

222jη2

9θ22
)2
)/(

6ρ(Cj,k)+2 2b222jη2

9θ22

)

≤ 2e
− 3b222jnη2

36θ22 .

Using the estimate in (58), we obtain the bound (24) which concludes the proof.

Proof [Proof of Lemma 21] We will show how Lemma 20 implies Eq. (25). Clearly e2 = 0
if Λ̂τn ∨ Λbτn = Λ̂τn ∧ Λτn/b, or equivalently T̂τn ∪ Tbτn = T̂τn ∩ Tτn/b. In the case e2 > 0,

the inclusion T̂τn ∩ Tτn/b ⊂ T̂τn ∪ Tbτn is strict, i.e. there exists Cj,k ∈ T n such that either

Cj,k ∈ T̂τn and Cj,k /∈ Tτn/b, or Cj,k ∈ Tbτn and Cj,k /∈ T̂τn . In other words, there exists

Cj,k ∈ T n such that either ∆j,k < 2−jτn/b and ∆̂j,k ≥ 2−jτn, or ∆j,k ≥ b2−jτn and

∆̂j,k < 2−jτn. As a result,

P{e2 > 0} ≤
∑

Cj,k∈T n

P
{
∆̂j,k < 2−jτn and ∆j,k ≥ b2−jτn

}
(59)

+
∑

Cj,k∈T n

P
{
∆j,k < 2−jτn/b and ∆̂j,k ≥ 2−jτn

}
.

P{e4 > 0} ≤
∑

Cj,k∈T n

P
{
∆j,k < 2−jτn/b and ∆̂j,k ≥ 2−jτn

}
. (60)

We apply (24) in Lemma 20 to estimate the first term in (59):
∑

Cj,k∈T n

P
{
∆̂j,k < 2−jτn and ∆j,k ≥ b2−jτn

}
≤

∑

Cj,k∈T n

α1e
−α2n22j ·2−2jκ2 logn

n

= α1#T nn−α2κ2 ≤ α1aminnn
−α2κ2 ≤ α1aminn

1−α2κ2
= α1aminn

−(α2κ2−1).

Using (24), we estimate the second term in (59) and (60) as follows

∑

Cj,k∈T n

P
{
∆j,k < 2−jτn/b and ∆̂j,k ≥ 2−jτn

}
≤

∑

Cj,k∈T n

α1e
−α2n22j · 2

−2j

b2
κ2 logn

n ≤ α1aminn
−(α2κ2/b2−1).

We therefore obtain (25) by choosing κ > κ2 with α2κ
2
2/b

2 = ν + 1.
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Appendix E. Proofs for orthogonal GMRA

E.1. Performance analysis of orthogonal GMRA

The proofs of Theorem 23 and Theorem 25 are resemblant to the proofs of Theorem 4 and
Theorem 8. The main difference lies in the variance term, which results in the extra log
factors in the convergence rate of orthogonal GMRA. Let Λ be the partition associated with
a finite proper subtree T̃ of the data master tree T n, and let

SΛ =
∑

Cj,k∈Λ
Sj,k1j,k and ŜΛ =

∑

Cj,k∈Λ
Ŝj,k1j,k.

Lemma 33 Let Λ be the partition associated with a finite proper subtree T̃ of the data
master tree T n. Suppose Λ contains #jΛ cells at scale j. Then for any η > 0,

P{‖SΛX − ŜΛX‖ ≥ η} ≤ αd


 ∑

j≥jmin

j#jΛ


 e

− βnη2

d2
∑

j≥jmin
j42−2j#jΛ (61)

where α and β are the constants in Lemma 15.

Proof [Proof of Lemma 33] The increasing subspaces {Sj,x} in the construction of orthog-
onal GMRA may be written as

S0,x = V0,x

S1,x = V0,x ⊕ V ⊥
0,xV1,x

S2,x = V0,x ⊕ V ⊥
0,xV1,x ⊕ V ⊥

1,xV
⊥
0,xV2,x

· · ·
Sj,x = V0,x ⊕ V ⊥

0,xV1,x ⊕ . . .⊕ V ⊥
j−1,x · · ·V ⊥

1,xV
⊥
0,xVj,x.

Therefore ‖ProjSj,x
− Proj

Ŝj,x
‖ ≤∑j

`=0(j + 1− `)‖ProjV`,x
− Proj

V̂`,x
‖, and then

P
{
‖ProjSj,x

− Proj
Ŝj,x
‖ ≥ t

}
≤

j∑

`=0

P
{
‖ProjV`,x

− Proj
V̂`,x
‖ ≥ t/j2

}
. (62)

The rest of the proof is almost the same as the proof of Lemma 15 in appendix C with a
slight modification of (41) substituted by (62).

The corollary of Lemma 33 with Λ = Λj results in the following estimate of the variance
in empirical orthogonal GMRA.

Lemma 34 For any η ≥ 0,

P{‖SjX − ŜjX‖ ≥ η} ≤ αdj#Λje
− β22jnη2

d2j4#Λj , (63)

E‖SjX − ŜjX‖2 ≤
d2j4#Λj log[αdj#Λj ]

β22jn
. (64)
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Proof [Proof of Theorem 23]

E‖X − ŜjX‖2 ≤ ‖X − SjX‖2 + E‖SjX − ŜjX‖2

≤ |ρ|2Ao
s
2−2sj +

d2j4#Λj log[αdj#Λj ]

β22jn
≤ |ρ|2Ao

s
2−2sj +

d2j42j(d−2)

θ1βn
log

αdj2jd

θ1
.

When d ≥ 2, We choose j∗ such that 2−j∗ = µ
(
(log5 n)/n

) 1
2s+d−2 . By grouping Λj∗ into

light and heavy cells whose measure is below or above 28
3 (ν +1) log5 n/n, we can show that

the error on light cells is upper bounded by C((log5 n)/n)
2s

2s+d−2 and all heavy cells have at
least d points with high probability.

Lemma 35 Suppose j∗ is chosen such that 2−j∗ = µ
(
log5 n

n

) 1
2s+d−2

with some µ > 0. Then

‖(X − Pj∗X)1
{Cj∗,k:ρ(Cj∗,k)≤

28(ν+1) log5 n
3n }

‖2 ≤ 28(ν+1)θ22µ
2−d

3θ1

(
log5 n

n

) 2s
2s+d−2

,

P
{
∀Cj∗,k : ρ(Cj∗,k) >

28(ν+1) log5 n
3n , Cj∗,k has at least d points

}
≥ 1− n−ν .

Proof of Lemma 35 is omitted since it is the same as the proof of Lemma 17. Lemma 35
guarantees that a sufficient amount of cells at scale j∗ has at least d points. The probability
estimate in (28) follows from

P

{
‖Sj∗X − Ŝj∗X‖ ≥ C1

(
log5 n

n

) s
2s+d−2

}
≤ C2 log n

(
log5 n

n

)− d
2s+d−2

e−βθ1µd−2C2
1 (2s+d−2)4/d2 logn

≤ C2 (log n)n
d

2s+d−2n−βθ1µd−2C2
1 (2s+d−2)4/d2 ≤ C2n

1−βθ1µd−2C2
1 (2s+d−2)4/d2 ≤ C2n

−ν

provided C1 is chosen such that βθ1µ
d−2C2

1 (2s+ d− 2)4/d2− 1 > ν. The proof when d = 1
is completely analogous to that of Theorem 4.

E.2. Performance analysis of adaptive orthogonal GMRA

Proof [Proof of Theorem 25] Empirical adaptive orthogonal GMRA is given by Ŝ
Λ̂τon

=
∑

Cj,k∈Λ̂τon

Ŝj,k1j,k. Using triangle inequality, we have

‖X − Ŝ
Λ̂τon

X‖ ≤ e1 + e2 + e3 + e4

with each term given by

e1 := ‖X − SΛ̂τon
∨Λbτon

X‖ e2 := ‖SΛ̂τon
∨Λbτon

X − S
Λ̂τon

∧Λτon/b
X‖

e3 := ‖SΛ̂τon
∧Λτon/b

X − Ŝ
Λ̂τon

∧Λτon/b
X‖ e4 := ‖ŜΛ̂τon

∧Λτon/b
X − Ŝ

Λ̂τon

X‖

where b = 2amax + 5. We will prove the case d ≥ 3. Here one proceeds in the same way as
in the proof of Theorem 8. A slight difference lies in the estimates of e3, e2 and e4.
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Term e3: Ee23 is the variance. One can verify that T(ρ,τon/b) ⊂ Tj0 := ∪j≤j0Λj where j0 is the

largest integer satisfying 2j0d ≤ 9b2θ0θ
2
2/(4τ

o
n
2). The reason is that ∆o

j,k ≤ 3
2θ22

−j
√
θ02−jd

so ∆o
j,k ≥ 2−jτ on/b implies 2j0d ≤ 9b2θ0θ

2
2/(4τ

o
n
2). For any η > 0,

P{e3 > η} ≤ αdj0#Tτon/be
− βnη2

j40
∑

j≥jmin
2−2j#jTτon/b ≤ αdj0#Tτon/be

− βnη2

j40 |ρ|
p
Bo
s
(τon/b)−p

The estimate of Ee23 follows from

Ee23 =
ˆ +∞

0
ηP {e3 > η} dη =

ˆ +∞

0
ηmin

(
1, αdj0#Tτon/be

− βnη2

j40
∑

j≥jmin
2−2j#jTτon/b

)
dη

≤ j40 logαj0#Tτon/b

βn

∑

j≥jmin

2−2j#jTτon/b ≤ C log5 n
n (τ on/b)

−p ≤ C(θ0, θ2, θ3, amax, κ, d, s)
(
log5 n

n

) 2s
2s+d−2

.

Term e2 and e4: These two terms are analyzed with Lemma 36 stated below such that
for any fixed but arbitrary ν > 0,

P{e2 > 0}+ P{e4 > 0} ≤ β1amin/dn
−ν

if κ is chosen such that κ > κ2 with d4β2κ
2
2/b

2 = ν + 1.

Lemma 36 b = 2amax + 5. For any η > 0 and any Cj,k ∈ T

max
(
P
{
∆̂o

j,k ≤ η and ∆o
j,k ≥ bη

}
,P
{
∆o

j,k ≤ η and ∆̂o
j,k ≥ bη

})
≤ β1je

−β2n22jη2/j4 ,

with positive constants β1 := β1(θ2, θ3, θ4, amax, d) and β2 := β2(θ2, θ3, θ4, amax, d).
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