HotFuzz: Discovering Algorithmic Denial-of-Service
Vulnerabilities Through Guided Micro-Fuzzing

William Blairf, Andrea Mambretti*, Sajjad Arshad®, Michael Weissbacher*,
William Robertson*, Engin Kirda*, and Manuel Egele'
tBoston University
*INortheastern University
T{wdblair, megele } @bu.edu, *{mbr, mw, wkr, ek} @ccs.neu.edu, iarshad@iseclab.org

Abstract—TFifteen billion devices run Java and many of them are
connected to the Internet. As this ecosystem continues to grow,
it remains an important task to discover any unknown security
threats these devices face. Fuzz testing repeatedly runs software
on random inputs in order to trigger unexpected program
behaviors, such as crashes or timeouts, and has historically re-
vealed serious security vulnerabilities. Contemporary fuzz testing
techniques focus on identifying memory corruption vulnerabilities
that allow adversaries to achieve either remote code execution or
information disclosure. Meanwhile, Algorithmic Complexity (AC)
vulnerabilities, which are a common attack vector for denial-of-
service attacks, remain an understudied threat.

In this paper, we present HotFuzz, a framework for automatically
discovering AC vulnerabilities in Java libraries. HotFuzz uses
micro-fuzzing, a genetic algorithm that evolves arbitrary Java
objects in order to trigger the worst-case performance for a
method under test. We define Small Recursive Instantiation (SRI)
as a technique to derive seed inputs represented as Java objects
to micro-fuzzing. After micro-fuzzing, HotFuzz synthesizes test
cases that triggered AC vulnerabilities into Java programs and
monitors their execution in order to reproduce vulnerabilities
outside the fuzzing framework. HotFuzz outputs those programs
that exhibit high CPU utilization as witnesses for AC vulnerabil-
ities in a Java library.

We evaluate HotFuzz over the Java Runtime Environment (JRE),
the 100 most popular Java libraries on Maven, and challenges
contained in the DARPA Space and Time Analysis for Cyber-
security (STAC) program. We evaluate SRI’s effectiveness by
comparing the performance of micro-fuzzing with SRI, measured
by the number of AC vulnerabilities detected, to simply using
empty values as seed inputs. In this evaluation, we verified
known AC vulnerabilities, discovered previously unknown AC
vulnerabilities that we responsibly reported to vendors, and
received confirmation from both IBM and Oracle. Our results
demonstrate that micro-fuzzing finds AC vulnerabilities in real-
world software, and that micro-fuzzing with SRI-derived seed
inputs outperforms using empty values.

I. INTRODUCTION
Software continues to be plagued by vulnerabilities that allow
attackers to violate basic software security properties. These
vulnerabilities take myriad forms, for instance failures to en-
force memory safety that can lead to arbitrary code execution
(integrity violations) or failures to prevent sensitive data from

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA

ISBN 1-891562-61-4

https://dx.doi.org/10.14722/ndss.2020.24415
www.ndss-symposium.org

being released to unauthorized principals (confidentiality vio-
lations). The third traditional security property, availability, is
not exempt from this issue. However, denial-of-service (DoS)
as a vulnerability class tends to be viewed as simplistic, noisy,
and easy (in principle) to defend against.

This view, however, is simplistic, as availability vulnerabilities
and exploits against them can take sophisticated forms. Algo-
rithmic Complexity (AC) vulnerabilities are one such form,
where a small adversarial input induces worst-case! behavior
in the processing of that input, resulting in a denial of service.

While in the textbook example against a hash table an adver-
sary inserts values with colliding keys to degrade the complex-
ity of lookup operations from an expected O(1) to O(n), the
category of AC vulnerabilities is by no means hypothetical.
Recent examples of algorithmic complexity vulnerabilities
include denial of service issues in Go’s elliptic curve cryptog-
raphy implementation [4], an AC vulnerability that manifests
through amplification of API requests against Netflix’ internal
infrastructure triggered by external requests [14], and a denial
of service vulnerability in the Linux kernel’s handling of
TCP packets [3]. The vulnerability in the Linux kernel was
considered serious enough that it was embargoed until OS
vendors and large Linux users such as cloud providers and
content delivery networks could develop and deploy patches.
While these particular vulnerabilities involved unintended CPU
time complexity, AC vulnerabilities can also manifest in the
spatial domain for resources such as memory, storage, or
network bandwidth.

While discovering AC vulnerabilities is notoriously challeng-
ing, program analysis seems like a natural basis for developing
solutions to tackle such issues. In fact, prior research has
started to explore program analysis techniques for finding AC
vulnerabilities in software. Most of this work is based on
manual or static analysis that scales to real world code bases,
but focuses on detecting known sources of AC vulnerabilities,
such as triggering worst case performance of commonly used
data structures [19], regular expression engines [32], [57], [62],
or serialization APIs [21].

Fuzz testing, where a fuzzer feeds random input to a program
under test until the program either crashes or times out, has
historically revealed serious bugs that permit Remote Code-
Execution (RCE) exploits in widely used software such as
operating system kernels, mobile devices, and web browsers.

IStrictly speaking, it is sufficient for attacks to cause bad behavior, it need
not be “worst-case”.

Recent work has adapted existing state-of-the-art fuzz testers
such as AFL [64] and libFuzzer [7] to automatically slow
down programs with known performance problems. These
approaches include favoring inputs that maximize the length
of an input’s execution in a program’s Control Flow Graph
(CFG) [47], incorporating multi-dimensional feedback that
provides AFL with more visibility into the portions of the
CFG each test case executes the most [37], and augmenting
AFL with symbolic execution to maximize a Java program’s
resource consumption [43]. These recent advances demonstrate
that modern fuzzers can automatically slow down programs
such as sorting routines, hash table operations, and common
Unix utilities.

These recent developments present exciting new directions for
fuzz testing beyond detecting memory corruption bugs. How-
ever, these approaches do not reconcile the traditional fuzzing
objective function of maximizing code coverage (breadth) with
the opposing goal of maximizing a given program or individual
method’s runtime (depth). Indeed, these tools are evaluated
by the slowdown they can achieve for a given program,
as opposed to the amount of code they successfully cover.
Achieving high code coverage on any program under test is
a notoriously difficult task because common program patterns
like comparing input to magic values or checksum tests are
difficult to bypass using fuzzing alone, although program trans-
formation tricks like splitting each comparison into a series
of one byte comparisons [36] or simply removing them from
the program [46] can improve coverage. Augmenting fuzzing
with advanced techniques like taint analysis [50] or symbolic
execution [44], [58] helps overcome these fuzzing roadblocks,
and RedQueen [12] showed how advanced tracing hardware
can emulate these more heavyweight techniques by providing
a fuzzer with enough information to establish correspondence
between program inputs and internal program state. Prior work
has successfully shown fuzz testing can reproduce known AC
vulnerabilities in software, and research continues to produce
innovative ways to maximize code coverage. What is missing
in fuzzing for AC vulnerabilities are techniques to automat-
ically sanitize a program’s execution for AC vulnerabilities,
analogous to how modern fuzzers rely on sanitizers to detect
memory corruption bugs [54]. Current fuzzing approaches in
general lack the ability to automatically fuzz programs at
the method level without the need for manually defined test
harnesses.

This paper proposes micro-fuzzing (a concept analogous to
micro-execution [24]) as a novel technique to automatically
construct test harnesses that allow a fuzzer to invoke methods
and sanitize their execution for AC vulnerabilities. Both AFL
and libFuzzer can fuzz individual methods, but only after
an analyst manually defines a test harness that transforms
a flat bitmap into the types required to call a method. For
AFL this involves defining a C program that reads the bitmap
from standard input, whereas libFuzzer passes the bitmap to
a specific function that it expects will call the method under
test with the appropriate types derived from the bitmap.

In contrast, micro-fuzzing takes whole programs or libraries
as input and attempts to automatically construct a test harness
for every function contained in the input. Observe that this
approach is analogous to micro-execution [24], which executes
arbitrary machine code by using a virtual machine as a test

harness that provides state on-demand in order to run the code
under test. To this end, micro-fuzzing constructs test harnesses
represented as function inputs, directly invokes functions on
those inputs, and measures the amount of resources each input
consumes using model specific registers available on the host
machine. This alleviates the need to define test harnesses
manually, and supports fuzzing whole programs and libraries
by considering every function within them as a possible entry-
point. Furthermore, we sanitize every function’s execution so
that once its observed runtime crosses a configured threshold,
we kill the micro-fuzzing process and highlight the function as
vulnerable. This sanitization highlights functions with potential
AC vulnerabilities out of all the functions micro-fuzzing auto-
matically executes, as opposed to measuring a fuzzer’s ability
to automatically slow-down individual programs or functions.

We implement micro-fuzzing for Java programs in HotFuzz,
which uses a genetic algorithm to evolve method inputs with
the goal to maximize method execution time. Java provides an
ideal platform for evaluating micro-fuzzing because of its wide
use across different domains in industry and the JVM’s support
for introspection allows HotFuzz to automatically generate test
harnesses, represented as valid Java objects, for individual
methods dynamically at runtime. To generate initial popula-
tions of inputs, we devise two different strategies. The Identity
Value Instantiation (IVI) strategy creates inputs by assigning
each actual parameter the identity element of the parameter’s
domain (e.g., 0 for numeric types or *” for strings). In contrast,
Small Recursive Instantiation (SRI) assigns parameters small
values chosen at random from the parameter’s domain. We
use IVI for the sole purpose of providing a baseline for
measuring the effectiveness of using SRI to generate seed
inputs for micro-fuzzing, based on recent recommendations
for evaluating new fuzz testing techniques [33].

Irrespective of how inputs are instantiated, HotFuzz leverages
the EyeVM, an instrumented JVM that provides run-time
measurements at method-level granularity. If micro-fuzzing
creates an input that causes the method under test’s execution
time to exceed a threshold, HotFuzz marks the method as
potentially vulnerable to an AC attack. To validate potential AC
vulnerabilities, HotFuzz synthesizes Java programs that invoke
flagged methods on the suspect inputs and monitors their end-
to-end execution in an unmodified JVM that mirrors a produc-
tion environment. Those programs that exceed a timeout are
included in HotFuzz’s output corpus. Every program contained
in the output corpus represents a witness of a potential AC
vulnerability in the library under test that a human operator can
either confirm or reject. Sanitizing method execution for AC
vulnerabilities based on a threshold mimics the sanitizers used
by modern fuzzers that kill a process whenever an integrity
violation occurs at runtime, but it also introduces false positives
into our results given that it is difficult to configure a proper
timeout that detects only true positives. In our evaluation, we
show that the number of bugs detected by our sanitizer is
concise enough to permit manual analysis of the results.

We evaluate HotFuzz by micro-fuzzing the Java Runtime
Environment (JRE), challenges provided by the DARPA Space
and Time Analysis for Cybersecurity (STAC) program, and
the 100 most popular libraries available on Maven, a popular
repository for hosting Java program dependencies. We identify
5 intentional (in STAC) and 158 unintentional (in the JRE and

Maven libraries) AC vulnerabilities.
In summary, this paper makes the following contributions:

e We introduce micro-fuzzing as a novel and efficient tech-
nique for identifying AC vulnerabilities in Java programs
(see Section III-A).

e We devise two strategies (IVI and SRI) to generate seed
inputs for micro-fuzzing (see Section III-A2b).

e We propose the combination of IVI and SRI with micro-
fuzzing to detect AC vulnerabilities in Java programs.

e We design and evaluate HotFuzz, an implementation of
our micro-fuzzing approach, on the Java Runtime Envi-
ronment (JRE), challenges developed during the DARPA
STAC program, and the 100 most popular libraries avail-
able on Maven. Our evaluation results yield previously
unknown AC vulnerabilities in real-world software, in-
cluding 26 in the JRE, 132 across 47 Maven libraries,
including the widely used org.json library, “solve” 5 chal-
lenges from the STAC program, and include confirmations
from IBM and Oracle. In addition, micro-fuzzing with
SRI-derived seed inputs outperforms IVI-derived seed
inputs, measured by the number of AC witnesses detected
(see Section V).

II. BACKGROUND AND THREAT MODEL
In this section, we briefly describe Algorithmic Complexity
(AC) vulnerabilities, different approaches that detect such
vulnerabilities, the threat model we assume, and the high-level
design goals of this work.

A. AC Vulnerabilities

AC vulnerabilities arise in programs whenever an adversary
can provide inputs that cause the program to exceed desired
(or required) bounds in either the spatial or temporal domains.
One can define an AC vulnerability in terms of asymptotic
complexity (e.g., an input of size n causes a method to store
O(n?) bytes to the filesystem instead of the expected O(n)),
in terms of a concrete function of the input (e.g., an input
of size n causes a method to exceed the intended maximum
150n seconds of wall clock execution time), or in other
more qualitative senses (e.g., “the program hangs for several
minutes”). However, in each case there is a definition, explicit
or otherwise, of what constitutes an acceptable resource con-
sumption threshold.

In this work, we assume an explicit definition of this threshold
independent of a given program under analysis and rely on
domain knowledge and manual filtering of AC witnesses in
order to label those that should be considered as true vul-
nerabilities. We believe that this is a realistic assumption and
pragmatic method for vulnerability identification that avoids
pitfalls resulting from attempting to automatically understand
intended resource consumption bounds, or from focusing ex-
clusively on asymptotic complexity when in practice, as the
old adage goes, “constants matter.”” We define an AC witness
to be any input that causes a specific method under test’s
resource consumption to exceed a configured threshold. We
consider any method that has an AC witness to contain an AC
vulnerability.

We recognize that this definition of an AC vulnerability based
on observing a method’s resource consumption exceeding
some threshold will inevitably cause some false positives,

since the chosen threshold may not be appropriate for a
given method under test. Section III presents a strategy for
minimizing false positives by automatically reproducing AC
vulnerabilities in a production environment outside our fuzzing
framework. This step may fail to remove all false positives, and
in our evaluation given in Section V we show that the output
of this validation stage is concise enough to allow an analyst
to manually triage the results. Since we make no assumption
about the methods we test in our analysis, we believe observing
output that consists of less than three hundred test cases is
reasonable for a human analyst.

B. AC Detection

Software vulnerability detection in general can be roughly
categorized as a static analysis, dynamic testing, or some
combination of the two. Static analysis has been proposed to
analyze a given piece of code for its worst case execution time
behavior. While finding an upper bound to program execution
time is certainly valuable, conservative approximations in static
analysis systems commonly result in a high number of false
positives. Furthermore, even manual interpretation of static
analysis results in this domain can be challenging as it is
often unclear whether a large worst-case execution time results
from a property of the code or rather the approximation in
the analysis. Additionally, static analyses for timing analysis
commonly work best for well structured code that is written
with such analysis in mind (e.g., code in a real-time operating
system). The real-world generic code bases in our focus (e.g.,
the Java Runtime Environment), have not been engineered with
such a focus and quickly reach the scalability limits of static
timing analyzers.

Dynamic testing, in particular fuzz testing, has emerged as
a particularly effective vulnerability detection approach that
runs continuously in parallel with the software development
lifecycle [41], [56]. State of the art fuzzers detect bugs by
automatically executing a program under test instrumented
with sanitizers until the program either crashes or times out.
A sanitized program crashes immediately after it violates an
invariant enforced by the sanitizer, such as writing past the
boundary of a buffer located on the stack or reading from
previously freed memory. Once a fuzzer generates a test case
that crashes a given sanitized program under test, the test
case is a witness for a memory corruption bug in the original
program. Since memory corruption bugs may be extended into
exploits that achieve Remote Code Execution or Information
Disclosure, fuzzers offer an effective and automated approach
to software vulnerability detection. When source code is not
available, a fuzzer can still attempt to crash the program under
test in either an emulated or virtualized environment.

Fuzz testing’s utility for detecting memory corruption bugs in
programs is well known, and current research explores how to
maximize both the amount of code a fuzzer can execute and
the number of bugs a fuzzer can find. Unfortunately, defining
a sanitizer that crashes a process after an AC vulnerability
occurs is not as straightforward as detecting memory integrity
violations. This is in part because what constitutes an AC
vulnerability heavily depends on the program’s domain. For
example, a test case that slows down a program by several
milliseconds may be considered an AC vulnerability for a
low latency financial trading application and benign for a web
service that processes requests asynchronously.

In this work, we propose a sanitizer in HotFuzz that kills a
process after a method’s runtime exceeds a configured thresh-
old. Like sanitizers for memory corruption bugs, this allows us
to save only those test cases that exhibit problematic behavior.
The drawback is that we do not have absolute certainty that
our test cases are actual bugs in the original program and risk
highlighting test cases as false positives. Building a fuzzing
analysis that does not introduce any false positives is notori-
ously difficult, and fuzzers that detect memory corruption bugs
are not immune to this problem. For example, Aschermann et
al. [12] point out that previous evaluations erroneously report
crashing inputs that exhaust the fuzzer’s available memory as
bugs in the original program under test. Furthermore, sanitizers
point out many different sources of bugs including stack
based overflows, use after free, use after return, and heap
based overflows. While the presence of any of these bugs is
problematic, triaging is still required to understand the problem
given in a test case.

C. Fuzzing AC

SlowFuzz [47] and PerfFuzz [37], adapt two state of the art
fuzzers, libFuzzer and AFL, respectively, and demonstrate the
capability to automatically slow down individual programs or
methods implemented in C/C++. Parallel developments also
showed frameworks built on top of AFL can successfully slow
down programs in interpreted languages as well [43].

HotFuzz departs from these previous works by automatically
creating test harnesses during micro-fuzzing, and sanitizing
method execution for AC vulnerabilities. In contrast to these
tools, HotFuzz does not require an analyst to manually define a
test harness in order to fuzz individual methods contained in a
library. This key feature differentiates micro-fuzzing found in
HotFuzz from how AFL or libFuzzer fuzz individual methods.
Since AFL and LibFuzzer only consider test cases consisting
of flat bitmaps, one can fuzz an individual method with AFL
by defining a test harness that transforms a bitmap read from
stdin into function inputs, and with libFuzzer an analyst
implements a C function that takes the test case as input
and must transform it into the types needed to invoke a
function. Observe that this must be done manually, whereas
HotFuzz examines the type signature of the method under
test and attempts to generate the test harness automatically.
To reproduce our evaluation using existing tools, we would
need to manually define approximately 400,000 individual test
harnesses for all the artifacts contained in our evaluation.

SlowFuzz and PerfFuzz both explore how fuzzers can au-
tomatically slow down individual programs. Understanding
what techniques work best to slow down code is neces-
sary to understand how to design a fuzzer to detect AC
vulnerabilities. SlowFuzz observed that using the number of
executed instructions as a test case’s fitness in libFuzzer’s
genetic algorithm can be used to slow down code with known
performance problems, such as sorting routines and hash table
implementations. PerfFuzz went a step further and showed how
incorporating a performance map that tracks the most visited
edges in a program’s CFG can help a fuzzer further slow down
programs.

These approaches take important steps needed to understand
what techniques allow fuzzers to automatically slow down
arbitrary code in order to spot AC vulnerabilities in programs.
At the same time, they lack three important properties for being

used to detect unknown AC vulnerabilities. First, they require
manually defined test harnesses in order to fuzz individual
functions. Second, these fuzzing engines only consider flat
bitmaps as input to the programs under test, and miss the
opportunity to evolve the high level classes of the function’s
domain in the fuzzer’s genetic algorithm. Finally, these tools
are meant to understand what techniques successfully slow
down code the most, and do not provide a method for sanitizing
method execution for AC vulnerabilities and presenting these
results to a human analyst.

D. Optimization

The goal of identifying AC vulnerabilities boils down to
a simple to posit yet challenging to answer optimization
question. “What are concrete input values that make a given
method under test consume the most resources?” One possible
approach to tackle such optimization problems is with the
help of genetic algorithms. A genetic algorithm emulates the
process of evolution to derive approximations for a given
optimization problem. To this end, a genetic algorithm will
start with an initial population of individuals and over the dura-
tion of multiple generations repeatedly perform three essential
steps: 1) Mutation, ii) Crossover, and iii) Selection. In each
generation, a small number of individuals in the population
may undergo mutation. Furthermore, each generation will see
a large number of crossover events where two individuals
combine to form offspring. Finally, individuals in the resulting
population get evaluated for their fitness, and the individuals
with the highest fitness are selected to form the population
for the next generation. The algorithm stops after either a
fixed number of generations, or when the overall fitness of
subsequent populations no longer improves. In our scenario
where we seek to identify AC vulnerabilities in Java methods,
individuals correspond to the actual parameter values that are
passed to a method under test. Furthermore, assessing fitness
of a given individual can be accomplished by measuring the
method’s resource consumption while processing the individ-
ual (see Section IV-A). While mutation and crossover are
straightforward to define on populations whose individuals can
be represented as sequences of binary data, the individuals in
our setting are tuples of well-formed Java objects. As such,
mutation and crossover operators must work on arbitrary Java
classes, as opposed to flat binary data (see Section III-A1).

E. Threat Model

In this work, we assume the following adversarial capabilities.
An attacker either has access to the source code of a targeted
program and its dependencies, or a compiled artifact that can
be tested offline. Using this code, the attacker can employ
arbitrary techniques to discover AC vulnerabilities exposed by
the program, either in the program itself or by any library
functionality invoked by the program. Furthermore, we assume
that these vulnerabilities can be triggered by untrusted input.

An adversary can achieve DoS attacks on programs and ser-
vices that utilize vulnerable libraries by taking the information
they learn about a library through offline testing and develop-
ing exploits that trigger the AC vulnerabilities contained in
library methods used by a victim program. For example, an
adversary could take the test cases produced by our evaluation
(see Section V) and attempt to reproduce their behavior on
programs that utilize the methods. Determining whether an

adversary can transform these test cases into working AC
exploits on victim programs is outside the scope of this work.

F. Design Goals

The goal of our work is to discover AC vulnerabilities in
Java code so that they can be patched before attackers have
the opportunity to exploit them. In particular, we aim for an
analysis that is automated and efficient such that it can run
continuously in parallel with the software development lifecy-
cle on production artifacts. This gives developers insight into
potential vulnerabilities hiding in their applications without
altering their development workflow.

ITII. HoTFUZZ OVERVIEW

HotFuzz adopts a dynamic testing approach to detecting AC
vulnerabilities, where the testing procedure consists of two
phases: (i) micro-fuzzing, and (ii) witness synthesis and vali-
dation. In the first phase, a Java library under test is submitted
for micro-fuzzing, a novel approach to scale AC vulnerability
detection. In this process, the library is decomposed into
individual methods, where each method is considered a distinct
entrypoint for testing by a pFuzz instance. As opposed to
traditional fuzzing, where the goal is to provide inputs that
crash a program under test, here each pFuzz instance attempts
to maximize the resource consumption of individual methods
under test using genetic optimization over the method’s inputs.
To that end, seed inputs for each method under test are
generated using one of two instantiation strategies: Identity
Value Instantiation (IVI) and Small Recursive Instantiation
(SRI). Method-level resource consumption when executed on
these inputs is measured using a specially-instrumented Java
virtual machine we call the EyeVM. If optimization eventually
produces an execution that is measured to exceed a pre-defined
threshold, then that test case is forwarded to the second phase
of the testing procedure.

Differences between the micro-fuzzing and realistic execution
environments can lead to false positives. The purpose of the
second phase is to validate whether test cases found during
micro-fuzzing represent actual vulnerabilities when executed
in a real Java run-time environment, and therefore reduce the
number of false positives in our final results. This validation
is achieved through witness synthesis where, for each test case
discovered by the first phase, a program is generated that
invokes the method under test with the associated inputs that
produce abnormal resource usage. If the behavior with respect
to resource utilization that was observed during micro-fuzzing
is replicated, then the synthesized test case is flagged as a
witness of the vulnerability that can then be examined by a
human analyst. Otherwise, we discard the synthesized test case
as a false positive.

Figure 1 depicts a graphical overview of the two phases. In
the following, we motivate and describe the design of each
component of the testing procedure in detail.

A. Micro-Fuzzing

Micro-fuzzing represents a drastically different approach to
vulnerability detection than traditional automated whole-
program fuzzing. In the latter case, inputs are generated
for an entire program either randomly, through mutation of
seed inputs, or incorporating feedback from introspection on
execution. Whole-program fuzzing has the significant benefit
that any abnormal behavior—i.e., crashes—that is observed

should be considered as a real bug as by definition all the
constraints on the execution path that terminates in the bug are
satisfied (up to the determinism of the execution). However,
whole-program fuzzing also has the well-known drawback that
full coverage of the test artifact is difficult to achieve. Thus,
an important measure of a traditional fuzzer’s efficacy is its
ability to efficiently cover paths in a test artifact.

Micro-fuzzing strikes a different trade-off between coverage
and path satisfiability. Inspired by the concept of micro-
execution [24], micro-fuzzing constructs realistic intermediate
program states, defined as Java objects, and directly executes
individual methods on these states. Thus, we can cover all
methods by simply enumerating all the methods that comprise
a test artifact, while the difficulty lies instead in ensuring
that constructed states used as method inputs are feasible in
practice.> In our problem setting, where we aim to preemp-
tively warn developers against insecure usage of AC-vulnerable
methods or conservatively defend against powerful adversaries,
we believe micro-fuzzing represents an interesting and useful
point in the design space that complements whole program
fuzzing approaches. In this work, we consider the program’s
state as the inputs given to the methods we micro-fuzz.
Modeling implicit parameters, such as files, static variables,
or environment variables are outside the scope of this work.

A second major departure from traditional fuzzing is the
criteria used to identify vulnerabilities. Typical fuzzers use
abnormal termination as a signal that a vulnerability might
have been found. In our case, vulnerabilities are represented
not by crashes but rather by excessive resource consumption.
Thus, coverage is not the sole metric that must be maximized
in our case. Instead, HotFuzz must balance between maximiz-
ing a method’s resource utilization in addition to coverage.
Conceptually speaking, implementing resource measurement
is a straightforward matter of adding methods to the existing
Reflection API in Java that toggles resource usage recording
and associates measurements with Java methods. In practice,
this involves non-trivial engineering, the details of which
we present in Section IV. In the following, we describe
how HotFuzz optimizes resource consumption during micro-
fuzzing given dynamic measurements provided by the EyeVM,
our instrumented JVM that provides run-time measurements at
method-level granularity.

1) Resource Consumption Optimization: HotFuzz’s fuzzing
component, called pFuzz, is responsible for optimizing the
resource consumption of methods under test. To do so, puFuzz
uses genetic optimization to evolve an initial set of seed
inputs over multiple generations until it detects abnormal
resource consumption. Traditional fuzzers use evolutionary
algorithms extensively, but in this work we present a genetic
optimization approach to fuzzing that departs from prior work
in two important ways. First, as already discussed, traditional
fuzzers optimize an objective function that solely considers
path coverage (or some proxy thereof), whereas in our setting
we are concerned in addition with resource consumption. Prior
work for detecting AC vulnerabilities through fuzz testing
either record resource consumption using a combination of
program instrumentation, CPU utilization, or counting exe-
cuted instructions. In contrast, we record resource consumption

2We note that in the traditional fuzzing case, a similar problem exists in that
while crashes indicate the presence of an availability vulnerability, they do not
necessarily represent exploitable opportunities for control-flow hijacking.

INPUT DISTRIBUTED

MICRO-FUZZING

SYNTHESIS &
VALIDATION

OUTPUT

Queue
Dispatcher

JAR

Library Lo

|

|

|

|

|

|

|

|

|

|

| cPu
|

|
L

41 pFuzz Worker

L

i AC Witnesses
0 s

(=

OpenJDK

A

SYNTHESIS | 3

2 |
Observations

Fig. 1: Architectural overview of the HotFuzz testing procedure. In the first phase, individual pFuzz instances micro-fuzz each
method comprising a library under test. Resource consumption is maximized using genetic optimization over inputs seeded using
either IVI or SRI. In the second phase, test cases flagged as potential AC vulnerabilities by the first phase are synthesized into
Java programs. These programs are executed in an unmodified JVM in order to replicate the abnormal resource consumption
observed in the first phase. Programs that fail to do so are rejected as false positives. HotFuzz reports those programs that pass
the Synthesis and Validation stage as AC vulnerability witnesses to a human analyst.

using an altered execution environment (the EyeVM) and
require no modification to the library under test. Second,
traditional fuzzers treat inputs as flat bitmaps when genetic
optimization (as opposed to more general mutation) is applied.
Recall that genetic algorithms require defining crossover and
mutation operators on members of the population of inputs.
New generations are created by performing crossover between
members in prior generations. Additionally, in each generation,
some random subset of the population undergoes mutation with
small probability. Since pFuzz operates on Java values rather
than flat bitmaps, we must define new crossover and mutation
operators specific to this domain as bitmap-specific operators
do not directly translate to arbitrary Java values, which can
belong to arbitrary Java classes.

a) Java Value Crossover: Genetic algorithms create new mem-
bers of a population by “crossing” existing members. When in-
dividual inputs are represented as bitmaps, a standard approach
is single-point crossover: a single offset into two bitmaps
is selected at random, and two new bitmaps are produced
by exchanging the content to the right of the offset from
both parents. Single-point crossover does not directly apply
to inputs comprised of Java objects, but can be adapted in the
following way. Let X, X; represent two existing inputs from
the overall population and (zg,21)o = x¢ and (g, 1)1 = 7.
To produce two new inputs, perform single-point crossover for
each corresponding pair of values (zg,z1) € (X0, X1) using

;o C(z0,x1)
(0, 7)) = {(CL($07II)7CR(I()7xI))

if (zg,21) are primitives
if (zg, 1) are objects.

Here, C performs one-point crossover directly on primitive
values and produces the offspring as a pair. When xy and
x1 are objects, C', and C'p recursively perform cross-over
on every member attribute in (zg, 1) and select the left and
right offspring, respectively. For example, consider a simple
Java class List that implements a singly linked list. The

List class consists of an integer attribute hd and a List
attribute t1. Crossing an instance of List & with another
instance ¢ constructs two new lists =/ and y’ given by

i = CL(Z,7) = (hd := C(Z.hd, §.hd)o, tl := Cp(Z.tl,7.t1))
Y = Cr(Z,7) = (hd := C(Z.hd, §.hd)1, tl := Cr(Z.tl,7.tl))

In this example we show how HotFuzz crosses over a List
that holds Integers, but if the type of value stored in the hd
attribute were a complex class 7', the crossover operator would
recursively apply crossover to every attribute stored in 7.

b) Java Value Mutation: Mutation operators for traditional
fuzzers rely on heuristics to derive new generations, mutating
members of the existing population through random or semi-
controlled bit flips. In contrast, micro-fuzzing requires mutat-
ing arbitrary Java values, and thus bitmap-specific techniques
do not directly apply.

Instead, pFuzz mutates Java objects using the following proce-
dure. For a given Java object = with attributes {ag, a1, ..., an},
choose one of its attributes a; uniformly at random. Then we
define the mutation operator M as

Miip_pit(a;) if a; is a numeric value,
Mnse,t_char(ai) if a; is a string or array value,
d = Magelete_char(@i) ?f a; %s a str?ng or array value,
Mieplace_char (@) if a; is a string or array value,
Mswap_chars(a;) if a; is a string or array value,
]meutate_attr(ai) if a; is an object.

Each mutation sub-operator above operates on the attribute a;
chosen from the object 2. For example, Mjjp pit selects a bit
at random in a numeric element and flips it, while Mgwap_chars
randomly selects two elements of a string or array and swaps

them. In our current implementation, we only consider arrays
of primitive types. The other sub-operators are defined in an
intuitively similar manner.

When an attribute is a class, as opposed to a primitive type or
a string or array, mutation utilizes the Mmytate_attr Operator.
Mmutate_attr recursively applies the mutation operator M to
the chosen attribute a; when a; is an object. After we obtain
the mutated attribute a}, we produce the mutated object =’ by
replacing a; with o} in .

2) Seed Generation: Given suitable crossover and mutation op-
erators, all that remains to apply standard genetic optimization
is the definition of a procedure to generate seed inputs. We
define two such procedures that we describe below: Identity
Value Instantiation (IVI), and Small Recursive Instantiation
(SRI).

a) ldentity Value Instantiation: Recent work has proposed
guidelines for evaluating new fuzz testing techniques [33]. One
of these guidelines is to compare any proposed strategy for
constructing seed inputs for fuzz testing with “empty” seed
inputs. Intuitively, empty seed inputs represent the simplest
possible seed selection strategy. Since empty bitmaps do not
directly translate to our input domain, we define IVI as an
equivalent strategy for Java values. The term “identity value”
is derived from the definition of an identity element for an
additive group.

In particular, IVI is defined as

0 if T' is a numeric type,
if T' is a boolean,
I(T)=<37 if T is a string,
{} if T is an array,
Trandom (I(To), - -, I(T3)) if T is a class.

That is, I(T) selects the identity element for all primitive
types, while for classes [is recursively applied to all parameter
types T; of a randomly selected constructor for 7T'. Thus, for a
given method under test M, I(M) is defined as I applied to
each of M’s parameter types.

b) Small Recursive Instantiation: In addition to IVI, we define
a complementary seed input generation procedure called Small
Recursive Instantiation (SRI). In contrast to IVI, SRI generates
random values for each method parameter. However, experi-
ence dictates that selecting uniformly random values from the
entire range of possible values for a given type is not the most
productive approach to input generation. For example, starting
with large random numbers as seed inputs may waste time
executing benign methods that simply allocate large empty data
structures like Lists or Sets. For example, creating a List with
the ArrayList (int capacity) constructor and passing
it an initial capa