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ABSTRACT: Antibiotic tolerance is a widespread phenomenon that renders antibiotic treatments less effective and facilitates
antibiotic resistance. Here we explore the role of proteases in antibiotic tolerance, short-term population survival of antibiotics,
using queueing theory (i.e., the study of waiting lines), computational models, and a synthetic biology approach. Proteases are
key cellular components that degrade proteins and play an important role in a multidrug tolerant subpopulation of cells, called
persisters. We found that queueing at the protease ClpXP increases antibiotic tolerance ∼80 and ∼60 fold in an E. coli
population treated with ampicillin and ciprofloxacin, respectively. There does not appear to be an effect on antibiotic
persistence, which we distinguish from tolerance based on population decay. These results demonstrate that proteolytic
queueing is a practical method to probe proteolytic activity in bacterial tolerance and related genes, while limiting the
unintended consequences frequently caused by gene knockout and overexpression.
KEYWORDS: antibiotic tolerance, persistence, antibiotic resistance, queueing, protease, synthetic biology, ClpXP

The discovery of penicillin in the 1920s led to a new age of
human and animal medicine as many antibiotics were

quickly identified and developed, but the subsequent explosion
of antibiotic treatments and applications has simultaneously
driven microbial evolution and the development of widespread
resistance.1,2 A significant contributing factor to the abundance
of antibiotic-resistant microorganisms are subpopulations of
cells that survive antibiotic treatment without a genetic
mutation, antibiotic tolerant and persistent cells.3,4 Persistence
is a physiological state that enables cells to survive antibiotic
treatment via temporary changes in phenotype, such as slowed
growth and biosynthesis, rather than genotype (e.g., antibiotic
resistance).5 Although persistence has been studied for over 70
years, there has been a lack of specificity in the literature
between antibiotic tolerance and persistence.5,6 Recently, a
consensus statement that was released after a discussion panel
with 121 researchers defined antibiotic persistence as a tolerant
subpopulation of cells that result in a distinct phase of
population decay.5 We use population decay to differentiate
between tolerance and persistence in this work (Figure 1a).
The widespread nature of persistence suggests that similar

mechanisms exist to trigger the persistent state in prokaryotes.
These mechanisms include many common systems, e.g., toxin−

antitoxin (TA) systems and proteases. Although the precise
role of TA systems in persistence is unclear due to the
complications of knocking out all TA systems (E. coli has >45
known and predicted TA systems7−9) and their interrelated
role in cellular responses to stress,10 toxins in TA systems can
trigger persistence when at a higher level than their cognate
antitoxin.10−12 Within the cell, the ratio of toxin to antitoxin is
regulated during protein production13−15 and through
degradation by proteases.16,17 Proteases, such as Lon and
ClpP, are largely responsible for protein degradation and cell
maintenance.18,19 They provide an essential level of protein
regulation throughout the cell, including degradation of RpoS
(a transcription factor that responds to stress)20 and tagged
polypeptides (incomplete proteins) synthesized by stalled
ribosomes that have been rescued by the trans−translation
system.21 In E. coli, ssrA (tmRNA) and smpB are the primary
genes responsible for trans−translation, a cellular mechanism
for recovering stalled ribosomes. A tmRNA molecule acts as a
tRNA by binding to the A-site of a stalled ribosome. The
ribosome then translates the protein-coding region of the
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tmRNA, which adds an amino acid tag to target the
polypeptide for degradation by ClpXP.21 While ssrA is not
essential in E. coli, ssrA knockouts cause growth defects,
increase susceptibility to certain antibiotics,22 and affect
persistence.10,23−25 Proteases and related chaperones are also
consistently identified as persister-related genes in gene
knockout experiments26,27 and transcriptome analysis.28 In-
deed, a drug that targets persisters, acyldepsipeptide (ADEP4),
activates the protease ClpP and lowers persister levels.29 While
most published articles focus on methods that reduce persister
levels, conditions that increase their levels are integral to
understanding the causative mechanisms of action and
developing new drugs. As many persister studies incidentally
examine antibiotic tolerance,5,6 it follows that some of the
above mechanisms may play a role in antibiotic tolerance.
Synthetic biology takes advantage of these mechanisms to

develop new cellular circuits. For example, synthetic oscillators
require rapid degradation of proteins, which is accomplished
using the ssrA degradation tag;30−32 the ssrA degradation tag is
the amino acid sequence AANDENYALAA,21 which we
abbreviate to LAA throughout. Previous work establishes that
multiple circuits can be coordinated by overproduction of a
common degradation tag to target proteins to a protease.33,34

When a protease is overloaded, protein species compete for
degradation; the enzyme is unable to keep up with the influx of
new proteins.35 This phenomenon can be explained by
queueing theory, in which one type of customer competes
for processing by servers, which has traditionally been applied
to systems such as computer networks and call centers.
Limited processing resources in a cell (e.g., proteases) cause
biological queues31,36 (Figure 1b). The queueing effect at the
protease ClpXP is essential in allowing for oscillation of the
highly used synthetic oscillator (often called Stricker oscillator
or dual-feedback oscillator).30,32 Variations of this oscillator
have been used in different strains of E. coli,30,33,34,37 and in
Salmonella ser. Typhimurium,38 indicating that queueing at
ClpXP is not specific to one strain or species. The coupling of

otherwise independent synthetic systems via proteolytic
queueing demonstrates that queueing affects protein degrada-
tion and thus provides a tunable method of studying
proteolytic degradation with little effect on cell growth31,33,34,36

compared to gene knockouts and overexpression of pro-
teases.18,39,40

We set out to test the hypothesis that proteolytic queueing
at the ClpXP complex affects survival of E. coli during
antibiotic treatment. Previous studies have used knockout
mutants to disrupt activity of specific proteases in E. coli, but
these studies yielded mixed results.24,27,41,42 The variability
between results of knockout mutations could be due to
differences in growth rates and metabolism, which would
modulate antibiotic efficacy.43,44 Proteases are essential to
regulating many biological networks and simply removing
them likely has downstream effects. For example, ClpXP is
known to degrade at least 50 proteins in E. coli,45 and many of
them are transcription factors like RpoS, the global regulator of
stationary phase.46,47 Many proteins are regulated at the
proteolytic level by ClpXP,19 including RpoS,48 and simply
removing ClpXP disrupts this regulation and any quantification
of persistence or tolerance is indirectly measuring an alteration
in the levels of proteins regulated by ClpXP degradation.
Proteolytic queueing is preferred over protease knockouts

when probing antibiotic efficacy because while protease
knockouts often result in growth defects,18,39 proteolytic
queueing does not noticeably affect cell growth or
death31,33,34,36 (Figure S1). Our results show that during
antibiotic treatment, degradation plays a role in cell survival
and the effect is tunable using queue formation. Proteolytic
queueing at ClpXP increases antibiotic survival and analysis of
population decay with and without a queue demonstrates that
queueing specifically increases antibiotic tolerance. We
hypothesize that the queue is affecting the degradation of
one or many regulatory molecules within the cell that cause
downstream effects and enhance antibiotic tolerance. These
results demonstrate that proteolytic queueing provides a new
method to probe proteolytic activity in antibiotic tolerance and
persistence.

■ RESULTS
Proteolytic Queueing Affects Tolerance. Cultures were

grown to stationary phase and incubated for 24 h prior to
dilution into fresh media containing ampicillin to quantify
persistence (see Materials and Methods). A proteolytic queue
was induced via the production of a ssrA tagged fluorescent
protein, CFP-LAA, expressed under an IPTG inducible
promoter, Plac/ara‑1. No apparent change in growth was
observed by induction (Figure S1) as reported previously.33,34

The effects of queue formation on antibiotic survival are shown
as the percentage of the population that survived ampicillin
treatment (Figure 2). When CFP alone (no degradation tag
control) was overexpressed during ampicillin treatment, there
was no significant effect on persister levels (p > 0.2, Figure 2a).
Queue formation (overexpression of CFP-LAA) during
ampicillin treatment led to a 25-fold increase in survival after
3 h in a concentration-dependent manner (Figure 2b; p <
0.0001, n ≥ 12).
When a queue was induced for 24 h prior to ampicillin

treatment the surviving population at 3 h was over 80-fold
higher than the uninduced population, only if induction was
maintained during ampicillin treatment. However, if the
inducer was removed during ampicillin treatment, the initial

Figure 1. (a) Examples of population decay in typical (black), high
persistence (blue), and high tolerance (red) populations. A shift in
tolerance can be distinguished from a change in the number of
persisters. For example, a high persistence population can initially
have the same decay rate as a typical population but have higher
survival because of more persisters (dotted blue line). A high
tolerance population can have the same persister level as a typical
population but have a shift in the initial decay rate (dotted red line).
(b) A simple model of proteolytic queueing. When native proteins
have low competition for the protease, there is no queue. Induction of
synthetic tagged proteins competes with the native proteins for the
protease and overloads the protease, which results in a proteolytic
queue (bottleneck).
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24 h of queueing had a minimal effect on survival at 3 h (p >
0.01, Figure 2c). These results indicate that survival was
affected by queue formation rather than CFP itself, and that
the size of the queue (level and length of induction)
determines the effect. To confirm that these results are due
to induction during antibiotic treatment, we waited 1 h into
ampicillin treatment before inducing expression of the
fluorescent protein. As we previously observed, induction of
untagged CFP had no apparent effect on persister levels
(Figure 2d), while quantification of fluorescence after
ampicillin treatment confirmed that CFP was produced
(Figure 2e). Overexpression of CFP-LAA for 2 h of ampicillin
treatment still increased cell survival compared to the
uninduced and untagged CFP populations (Figure 2d).
We did further testing to confirm that this effect is not

specific to glycerol as a carbon source or ampicillin as the
antibiotic. When glucose was the carbon source rather than
glycerol, survival still increased due to CFP-LAA induction
(Figure 2f), which demonstrates that the effect is not directly

related to the carbon source. We then tested the effects of
queueing against the antibiotic ciprofloxacin, because cipro-
floxacin targets DNA gyrase49 while ampicillin targets the cell
wall.50 CFP alone caused a slight increase in survival (Figure
3a), however the CFP-LAA tag led to a 60-fold increase in
survival (Figure 3b).

Chloramphenicol Inhibits the Synthetic Queue.
Neither ampicillin nor ciprofloxacin directly affect production
of the fluorescent protein (i.e., target transcription or
translation) and thus should not prevent queue formation.
On the other hand, an antibiotic that affects protein
production should prevent queue formation, and therefore
CFP-LAA induction would not affect survival in the presence
of such an antibiotic. We found this to be the case when testing
the effects of queueing on the survival of cells treated with
chloramphenicol. Chloramphenicol is an antibiotic that
inhibits protein translation by binding to bacterial ribosomes
and inhibiting protein synthesis, thereby inhibiting bacterial
growth.51 Induction of CFP-LAA does not increase survival of

Figure 2. Proteolytic queueing affects survival of cells treated with the antibiotic ampicillin. (a) Induction of untagged CFP during antibiotic
treatment has no significant effect on survival (p > 0.2). (b) Induction of CFP-LAA during antibiotic treatment causes an increase in survival. (c)
CFP-LAA was induced (+) with 100 μM of IPTG or not induced (−). Induction before ampicillin lasted 24 h in stationary phase prior to antibiotic
treatment. Queueing affects survival if the queue is maintained during ampicillin treatment. (d,e) Expression of CFP or CFP-LAA was induced with
IPTG 1 h into the 3 h antibiotic treatment. Induction of CFP alone (no queue) had no significant effects on survival. Induction of CFP-LAA
increased survival (d). Population fluorescence was measured for untagged CFP after antibiotic treatment, demonstrating that CFP is being
produced via induction (e). (f) Induction of CFP-LAA during antibiotic treatment causes an increase in survival with glucose as a carbon source
rather than glycerol, demonstrating that it is not a solely a carbon-specific phenomenon. Cultures were treated with ampicillin (100 μg/mL). Error
bars represent SEM n ≥ 3. *p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001.
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antibiotic treatment when treated with chloramphenicol alone
(Figure S2), but chloramphenicol is not bactericidal, so we
cotreated cultures with both ampicillin and chloramphenicol.
The overall percent survival with chloramphenicol is much
higher than with ampicillin alone, which is consistent with the
literature.52 As expected, cotreatment with ampicillin and
chloramphenicol had no apparent effect on cell survival,
supporting that even when CFP-LAA was induced the queue
could not form if translation was blocked (Figure 3c).
Proteolytic Queueing Affects Population Decay. To

gain further insight into the relationship between proteolytic
queueing, tolerance, and persistence, we measured how a
proteolytic queue affects population decay by measuring
survival for up to 8 h of ampicillin treatment. Our results
show a typical biphasic curve indicative of persister cells in the
uninduced population. When the population is induced 24 h
prior to and during antibiotic treatment this curve shifts as the
rate of population decay slows compared to uninduced
cultures. The addition of the inducer exclusively during
antibiotic treatment takes a similar effect between two and 3
h into treatment. If the queue is induced 24 h prior to
antibiotic treatment, but the queue is not maintained (i.e., the
inducer is removed during antibiotic treatment), the effect of
the queue dissipates between one to 2 h. There is no apparent
difference between induced and uninduced cultures after 8 h,
which suggests there is little to no effect on persistence (Figure
4a).
Computational Modeling Supports Queueing-Toler-

ance. On the basis of the in vivo results, we considered a
simple computational model of population decay during
antibiotic treatment modified from Kussel et al.53 In our
model, the persister population (P) has a lower death rate than
the susceptible population (N), where the death rates are
represented by μp and μn respectively. We estimated μp and μn
based on the experimentally determined decay rate of the
uninduced population before and after 2 h, and set the initial
persister population to 0.2% of the total population (Figure
4b). Normal (susceptible) cells enter persistence at rate α, and
persister cells return to the normal state at rate β. The rates α

and β were set relative to μn based on the relationship between
these values in Kussel et al.53 Our base model resembles
population decay as measured in experimental tests. We use
the model to determine whether the increase in overall
population survival due to queue formation can be attributed
to an increased rate of entering persistence (α) or increased
tolerance (i.e., decreased μn). Exploration of these parameters
using stochastic simulations shows that increasing the rate at
which normal cells become persisters (α) shortens the first
phase of population decay and increases the number of
persisters (Figure 4c). Decreasing the rate of normal cell death
(μn) lengthens the first phase of population decay but has little
to no effect on the number of persisters (Figure 4d).

Overexpression of RpoS Does Not Reproduce
Queueing-Tolerance. An increase in tolerance in response
to proteolytic queueing at ClpXP is likely due to an increase in
the number of one or many proteins. A good candidate is the
transcription factor RpoS, a persister related gene27 that is
responsible for regulation of stationary phase, affected by the
level of ssrA, and regulated by proteolytic degradation.20 As
such, we tested the effects of increasing RpoS levels by gene
overexpression using the same vector, promoter, and ribosome
binding sites as used to overexpress CFP and CFP-LAA. We
found that overexpression of RpoS does not cause a significant
increase in tolerance, especially when compared to proteolytic
queueing (Figure 5).

■ DISCUSSION
Proteolytic queueing is an integral component of native
systems, and synthetic queues have great potential for studying
systems at the proteolytic level. Here we show that queueing
provides a tunable method to interfere with protease
degradation and affect antibiotic tolerance. Increased antibiotic
tolerance in response to queueing was independent of the
carbon source (glycerol or glucose) and antibiotic class (β-
lactam or fluoroquinolone). When we prevented queue
formation using chloramphenicol, adding the inducer did not
affect cell survival under the treatment of ampicillin. While
CFP production alone slightly increased survival for cipro-

Figure 3. Proteolytic queueing effects in the presence of ciprofloxacin and chloramphenicol. (a) Induction of untagged CFP during ciprofloxacin
treatment increases survival less than 4-fold. (b) Induction of CFP-LAA during ciprofloxacin treatment increases survival ∼60-fold. (c) Induction of
CFP-LAA during ampicillin and chloramphenicol treatment has no apparent effect on survival (p > 0.7). X-axis labels correspond to Figure 2.
Cultures were treated with ciprofloxacin (1 μg/mL) or chloramphenicol (5 μg/mL) respectively. Error bars represent SEM n ≥ 3. *p < 0.05. **p <
0.01.
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floxacin, we suspect that high production of CFP with no
apparent method of removal (besides cell division; minimal
degradation) causes cell stress and affects survival, especially
since high levels of fluorescent proteins can cause oxidative
stress,54,55 which is known to increase persistence.56−58

However, because CFP-LAA is removed via degradation
(indicated by lower fluorescence than CFP-untagged), the
effects seen via overexpression of CFP should be less
prominent during CFP-LAA overexpression. The results we
describe here would not have been identified in a clpP
knockout, because clpP knockouts break cellular systems and
detrimentally affect cellular processes,59 as evidence by growth
defects.40 Similarly, studies of TA systems and their role in
antibiotic survival are confounded by the fact that TA systems
make up highly interconnected networks with built in
redundancy so that removal of several TA systems does not
fully disclude activities by the others10,60,61 and can even affect
growth.62 As such, changes in tolerance are difficult to
differentiate from affects caused by permanent alterations in
system dynamics resulting from genetic mutations. Here we
demonstrate the utility of proteolytic queueing to study
antibiotic survival, while minimizing negative effects of
protease knockouts that could obfuscate the phenomenon of
interest.
In some cases, the change in survival at 3 h might be

interpreted as a change in persistence; however, the shift in
decay rates (as described in Figure 1a) clearly demonstrates
that queueing increases antibiotic tolerance rather than
persistence. Furthermore, the effects caused by adding or
removing the inducer during antibiotic treatment suggest that

Figure 4. Time of queue formation influences survival. (a) Stationary
phase cells were diluted 1/100 into fresh media containing ampicillin
(100 μg/mL) and sampled every hour for 8 h (n ≥ 3). Symbols (∓)
correspond to Figure 2c. Error bars represent SEM. Asterisks indicate
p-value (compared to no induction (black)) *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. There is 100% survival at time zero,
because percent survival is determined based on the surviving CFU/
mL compared to the CFU/mL at time zero. (b−d) Stochastic model

Figure 4. continued

of population decay with antibiotic treatment. (b) Reactions for the
model (left) and baseline rates used for the simulations (right) unless
stated otherwise (red lines below). Normal cell division (ω) was set
to zero as dividing cells die during ampicillin treatment. (c) Increasing
the rate of entering persistence (α) increases cell number during the
second phase of population decay. (d) Decreasing the rate of normal
cell death (μn) causes the first phase of population decay to lengthen.
Y-axes are in logarithmic scale for a, c, and d.

Figure 5. Induction of RpoS during antibiotic treatment has no
significant effect on survival after 3 h of ampicillin treatment (p > 0.4).
The same CFP-LAA data was used in Figure 2f.
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the change in antibiotic tolerance is due to an active response
to the queue, which must be maintained to affect survival.
Although persistence does not appear to be affected by the
proteolytic queue at ClpXP, further overloading ClpXP is
possible and we simply may not be able to measure an affect at
this level. However, persisters are considered metabolically
dormant and an active response to the queue could explain
why tolerance is affected but not persistence. Alternatively, the
synthetic queue may not actually form in persister cells due to
slowed translation and transcription. Our model supports that
antibiotic tolerance is being affected by queueing rather than
persistence, as altering survival of the “normal” population (i.e.,
tolerance) more closely resembles the effects of proteolytic
queueing than altering the rate of switching into persistence.
While these results are specific to queueing at ClpXP, tags are
available to test the effects of queueing at other proteases (e.g.,
Lon and ClpAP).36

Queueing at ClpXP is likely affecting the proteome of the
cell, either directly or indirectly, and pleiotropic effects on
protein content and gene regulation could be limiting
antibiotic efficacy. We suspect that queue formation increases
the intracellular concentration of one or multiple protein
species causing a regulatory cascade. When considering
proteins both degraded by ClpXP and related to persistence,
TA systems are unlikely to be the causative factor, because
decreasing degradation should increase antitoxin levels and
decrease survival rather than increase survival as we observe.
Instead, we consider regulatory proteins as candidates for the
causative factor in queueing effects on tolerance. Several
regulatory proteins are degraded by ClpXP45 including RpoS
and DksA, proteins that have been implicated in persis-
tence24,58,63 and may be involved in tolerance.
We have tested the effect of overexpressing RpoS under the

same conditions as proteolytic queueing to see if we could
replicate the queueing-tolerance phenotype. Our results show
that overexpression of RpoS does not significantly affect
antibiotic tolerance. These results do not confirm that RpoS
alone is responsible for changes in tolerance, especially
considering that RpoS levels range broadly under different
stress conditions and that over 23% of the E. coli genome is
regulated by RpoS.47 However, several other regulatory and
stress response proteins are degraded by ClpXP,45 and
increased concentrations of one or several of these proteins
due to slowed degradation could be causing the downstream
effects that lead to increased tolerance. In a similar vein,
computational modeling has shown that altering degradation
of MarA (a regulatory protein degraded by Lon that is related
to antibiotic tolerance) leads to increased coordination of
downstream genes.64

The increase in antibiotic tolerance due to queue formation
at ClpXP may be specific to overexpression of the LAA-tag,
especially when considering that the number of LAA tagged
proteins naturally increases during stress. The number of
proteins with LAA tags increase during heat shock,65 and
queue formation at the proteases is likely a consequence of the
increasing cellular traffic. If the native LAA tag is removed from
SsrA while maintaining the ribosome rescue function, the
survival of ampicillin treatment decreases in E. coli.24 As the
LAA tag could be a measurement of environmental stress, cells
may have evolved to increase tolerance in response to
increased queueing via LAA. Since ribosome rescue and
proteolytic queueing are common across species, stress
signaling via proteolytic queueing could be a general

mechanism to regulate survival related genes. Considering
that proteolytic queueing is a natural phenomenon and
synthetic queues have fewer negative effects compared to
protease knockouts, our work demonstrates that proteolytic
queueing is a viable alternative method to study proteolytic
degradation by specific proteases. In the case of antibiotic
tolerance, identifying the key proteins affected by the queue
during bacterial tolerance and then understanding how these
proteins interact has the potential to determine new drug
targets for killing bacterial pathogens.

■ MATERIALS AND METHODS
Strains and Plasmids. All strains are derived from E. coli

DH5αZ1, and contain plasmids with the synthetic circuits,
p24KmNB82 (CFP-LAA) and p24KmNB83 (untagged CFP)
as described in ref 36, and p24KmAA01, which contains RpoS
cloned downstream of Plac/ara promoter of p24Km (kanamycin
25 μg/mL) as in ref 36. As such, CFP, CFP-LAA and RpoS are
all expressed under identical promoters and ribosome binding
sites. DH5αZ1 was derived from E. coli K12 (arguably the
most studied bacteria strain66); it is used by many in synthetic
biology, and outside the field,67−70 this strain has previously
been used to study persistence/tolerance or mechanisms
related to them (e.g., toxin−antitoxin systems),71−73 and our
previous queueing experiments used these derivatives.36

The cultures were grown in modified MMA media,74 which
we will refer to as MMB. MMB media consists of the
following: K2HPO4 (10.5 mg/mL), KH2PO4 (4.5 mg/mL),
(NH4)2SO4 (2.0 mg/mL), C6H5Na3O7 (0.5 mg/mL), and
NaCl (1.0 mg/mL). Additionally, MMB+ consists of MMB
and the following: 2 mM MgSO4·7H2O, 100 μM CaCl2,
thiamine (10 μg/mL), 0.5% glycerol, and amino acids (40 μg/
mL). Cultures grown on glucose as the carbon source included
0.5% glucose instead of glycerol. Strains containing the plasmid
p24Km and derivatives were grown in MMB+ kanamycin (Km,
25 μg/mL) or on Miller’s lysogeny broth (LB) agar plates +
Km (25 μg/mL). All cultures were incubated at 37 °C and
broth cultures were shaken at 250 rpm.

Quantification of Persistence. Persisters were quantified
by comparing colony-forming units per milliliter (CFU/mL)
before antibiotic treatment to CFU/mL after antibiotic
treatment. The procedure for quantifying persister levels is
based on previous research71,75,76 (Figure S3). Briefly,
overnight cultures were diluted 1/100 into fresh media and
grown until they reach between OD600 0.2−0.3. A reduced
volume of culture (20 mL) was aliquoted into a 125 mL flask,
and grown for 16 h to enter stationary phase. Once in
stationary phase, cultures were divided into two flasks with
0.2% arabinose; one flask of each replicate was also treated
with 100 μM IPTG to induce expression under Plac/ara‑1.
Arabinose was added to both induced and uninduced

cultures to maintain consistency (Figure S4). All flasks were
incubated for 24 h before taking samples for plating and
antibiotic treatment; cells were diluted 1/10071,75 into glass
tubes, treated with 10× the MIC of ampicillin (100 μg/mL;
Figure S5) or 100× MIC of ciprofloxacin (1 μg/mL) at 37 °C
and shaken at 250 rpm for select time periods, 3 h unless
otherwise stated. Ampicillin solutions were stored at −80 °C
and only thawed once to reduce variability.22,77 When
indicated, samples were treated with chloramphenicol (5 μg/
mL); cultures treated with chloramphenicol alone were diluted
1/10. Samples for quantification of CFU/mL were kept on ice
and diluted using cold MMB before plating on LB/Km (25
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μg/mL) agar plates. Cultures treated with ciprofloxacin were
centrifuged at 16 000g for 3 min then washed with cold MMB
to dilute ciprofloxacin before taking samples for quantification.
LB agar plates were incubated at 37 °C for 40−48 h, then
scanned using a flatbed scanner.78,79 Custom scripts were used
to identify and count bacterial colonies80 then used to calculate
CFU/mL and persister frequency. Colonies were tested
periodically for resistance, and we found no resistance in
>350 colonies tested.
Quantification of CFP. Cells were grown and treated with

ampicillin as described in quantification of persistence above.
After antibiotic treatment, 300 μL of cell culture was added to
individual wells in a 96-Well Optical-Bottom Plate with
Polymer Base (ThermoFisher) for fluorescence measurement
using FLUOstar Omega microplate reader. The excitation and
emission (Ex/Em) used for CFP measurement was 440/480.
Readings were measured after 4 min of shaking to decrease
variability between wells. Background fluorescence (mean
fluorescence of MMB media) was subtracted from the raw
reads. Fluorescence values were normalized by CFUs as
determined by quantification of persistence, which was carried
out simultaneously. Mean and SEM for fluorescence was
determined across four biological replicates and three technical
replicates.
Computational Modeling. Our model is modified from

Kussel et al.,53 where P is the persister population and N is the
susceptible population (Figure 4b). Initial species counts P and
N were set to 99 800 and 200, respectively, for all simulations,
which we based on the percent survival of uninduced cultures.
The death rate of N (μn) and P (μp) and the rate of entering
(α) and exiting (β) persistence were set as shown in Figure 4b
unless otherwise stated. The rate of susceptible cell division
(ω) was set to zero, as normal cells cannot divide without lysis
during ampicillin treatment.81 All simulations were performed
using a custom implementation of the Gillespie algorithm82 in
Python leveraging optimizations made possible by the Cython
library.83 Libraries from the SciPy stack84 were used for
analysis.
Statistics. All data is presented as mean ± SD or SEM of at

least 3 biological replicates as appropriate.85 Statistical
significance for populations with the same number of replicates
(n) was determined using one-way f-test to determine variance
(p < 0.001 was considered to have significant variance)
followed by a Student’s t test (no variance) or a Welch’s t test
(significant variance). Populations with different n values were
compared using a Welch’s t test. All statistical tests were run in
Python using libraries from SciPy on groups with at least three
biological replicates.
Calculation of Doubling Times. Optical density (OD)

was measured at 600 nm in a microplate reader (see
Quantification of CFP). Doubling time (td) was determined
as described in ref 86. Briefly, we calculated the linear
regression of the natural logarithm (ln) of the OD over time
(t). The equation of the line can thus be derived from a
logarithmic growth curve and solved for td (eqs 1, 2).

= [ ]eOD OD t t
0

ln(2)/ d (1)

= +
t

tln(OD)
ln(2)

ln(OD )
d

0
(2)
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