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ABSTRACT

Eye movements of developers are used to speculate the mental
cognition model (i.e., bottom-up or top-down) applied during pro-
gram comprehension tasks. The cognition models examine how
programmers understand source code by describing the temporary
information structures in the programmer’s short term memory.
The two types of models that we are interested in are top-down
and bottom-up. The top-down model is normally applied as-needed
(i.e., the domain of the system is familiar). The bottom-up model is
typically applied when a developer is not familiar with the domain
or the source code. An eye-tracking study of 18 developers reading
and summarizing Java methods is used as our dataset for analyz-
ing the mental cognition model. The developers provide a written
summary for methods assigned to them. In total, 63 methods are
used from five different systems. The results indicate that on aver-
age, experts and novices read the methods more closely (using the
bottom-up mental model) than bouncing around (using top-down).
However, on average novices spend longer gaze time performing
bottom-up (66s.) compared to experts (43s.)
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1 INTRODUCTION

Program comprehension is an essential task during software mainte-
nance for enabling successful evolution of programs [von Mayrhauser
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and Vans 1995]. For several years, researchers have attempted to
understand how programmers comprehend programs during main-
tenance [Brooks 1983; Burkhardt et al. 1997; Letovsky 1987; Pen-
nington 1987; Shneiderman and Mayer 1979; Soloway and Ehrlich
1984; Storey 2005; von Mayrhauser and Vans 1995, 1997]. The pro-
gram comprehension process uses existing knowledge to obtain
new knowledge and build a mental model of the program that is
under consideration [von Mayrhauser and Vans 1995]. A mental
model defines a developer’s mental or conceptual representation of
the source code to being understood [Storey 2005; von Mayrhauser
and Vans 1995]. Code cognition models examine how program-
mers understand code by describing the cognitive processes and
temporary information structures in the programmer’s mind [von
Mayrhauser and Vans 1995].

This work studies the activities and behaviors that a software
developer performs to support the process of source code compre-
hension. We accomplish this via the analysis of an eye-tracking
study data set [Abid et al. 2019] done on 18 developers who were
tasked with summarizing Java methods. We analyze the developers’
behavior from two directions. First, we introduce a mechanism to
predict the mental model [von Mayrhauser and Vans 1995] devel-
opers apply during the comprehension process. We distinguish
between two models: top-down and bottom-up. Top-down is typ-
ically applied when a developer has a hypothesis about the code
under consideration and wants to confirm it by examining a set of
locations. Alternatively, bottom-up is used when a developer has
no understanding of the code, nor any hypothesis about the code,
and must closely examine (i.e., read) the code.

Second, we adopt an approach used by [Rodeghero and McMillan
2015] to analyze eye-movement patterns. These patterns consist of
the order of words or sections that developers follow when they
read. Examples of reading patterns are reading top-to-bottom or
bottom-to-top [Rodeghero and McMillan 2015]. They concluded
that unlike natural English text (that is typically read top-to-bottom
in Western cultures), developers tend to read source code in a
non-linear manner and often jump around in the file. A similar
conclusion was reached independently by Busjahn et al. [Busjahn
et al. 2015]. Here, we examine the same three types of reading
patterns namely: top-to-bottom vs. bottom-to-top, skimming vs.
thorough, and disorderly vs sectionally. The contributions of this
work are as follows.

e Predicting the mental model of developers from their gaze data
during a program comprehension task. We distinguish between
two types of mental models from existing program comprehen-
sion literature: top-down and bottom-up.

o Identifying three phases (preparing, reading, and writing) in the
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eye tracking data while developers comprehend source code for
the purpose of summarizing methods.

e Qualitatively analyzing three reading patterns (top-to-bottom
versus bottom-to-top, skimming versus thorough, and disorderly
versus sectionally) found in source code in experts and novices.

2 RESEARCH QUESTIONS

In this paper, we address the following research questions.

e RQ 1. Can eye-tracking data be used to predict a participant’s
conceptual model [top-down vs. bottom-up]?

o RQ 2. To what degree do [experts / novices] prefer to read from
[top-to-bottom vs. bottom to top], [skim source code vs. read
thoroughly], and [read sectionally vs. disorderly]?

The results from RQ 1 would help in externalizing the mental
model used (which is hard to do verbally) by using eye tracking data.
We would not have to rely on asking the developer to think aloud
their thought processes which has its own set of drawbacks such
as misreporting or forgetting to report entirely. Such an approach
would be quite useful during interviewing for a programming po-
sition where the interviewer is interested in understanding the
program comprehension skills of their potential employee includ-
ing how they traverse through the problem solving process. It
could also help an educator learn how novices comprehend con-
cepts while they learn programming and advanced data structures.
The results from RQ 2 could give us insight into how experts and
novices differ in their reading strategies. Such insights could help
in devising evidence-based programming languages and tools to
help developers become more productive in their day to day tasks.

3 RELATED WORK

The first part of the related work deals with the main domain of
program comprehension which is a sub-field of software engineer-
ing. This is followed by the literature on the use of eye tracking by
program comprehension researchers.

3.1 Program Comprehension

One of the earliest cognition models is the Shneiderman and Mayer
model that differentiates between two types of memories. First, is
short-term memory that records the internal semantic represen-
tation of the program via chunking mechanism. The second type
of memory is the long-term memory that contains the knowledge
base with semantic and syntactic knowledge. The knowledge base
in long-term memory helps build the short-term memory during
the comprehension process [Shneiderman and Mayer 1979].
Brooks hypothesizes that program comprehension is reconstruc-
tion knowledge about the domain of the program [Brooks 1983].
In such an approach, programmers understand a completed pro-
gram in a top-down manner. The process starts with a hypothesis
about the general goal of the program. This initial hypothesis is
then confirmed or refined by forming additional hypotheses. On
the other hand, Soloway and Ehrlich observe that top-down under-
standing is used when a developer is familiar with code [Soloway
and Ehrlich 1984]. They observe that expert programmers use bea-
cons (familiar features such as three lines used in a swap) and rules
of programming discourse to decompose goals and plans into lower-
level plans. They note that de-localized plans complicate program
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comprehension. Data flow - transformations applied to data objects
Computer Program Text Abstractions Goal hierarchy - functional
achievements of program Control flow - sequences of program
actions and the passage of control between them The Pennington
model observes that programmers first develop a control-flow ab-
straction of the program which captures the sequence of operations
in the program [Pennington 1987]. This model is referred to as
the program model. Control flow is the sequences of actions per-
formed by the program. Then, the situation model (bottom-up), uses
knowledge about data-flow abstractions and functional abstractions
(i.g..transformations applied to data objects). The situation model
is complete once the program goal is reached.

Letovsky proposes the knowledge-based model that depends on
pre-programming expertise, problem domain, knowledge, rules of
discourse plans and goals [Letovsky 1987]. Finally, the latest cogni-
tion is the integrated metamodel that is found by [von Mayrhauser
and Vans 1995]. The metamodel is built based on the previous
models. The model consists of four major components. The first
three components deal with creating mental representations at var-
ious levels of abstraction and the fourth component describes the
knowledge base needed to create the mental representations.

The top-down model is usually applied as-needed (i.e., the pro-
gramming language or code is familiar). It integrates domain knowl-
edge as a starting point for formulating hypotheses. The program
model may be invoked when the code and application is completely
unfamiliar. This is done in examining the control-flow of a program.
The situation model describes data-flow and functional abstractions
in the program. It may be developed after a partial program model is
formed using systematic or opportunistic strategies. The knowledge
base consists of information needed to build these three cognitive
models. It represents the programmer’s current knowledge and is
used to store new knowledge [von Mayrhauser and Vans 1995].

A number of user studies are conducted to examine what types
of mental models are formed by both novice and expert program-
mers during comprehension [Burkhardt et al. 1997; von Mayrhauser
and Vans 1997]. Von Mayrhauser and Vans perform a user study
included four developers doing maintenance tasks (e.g., fixing a
bug) [von Mayrhauser and Vans 1997]. They execute a think-aloud
experiment while audio and video taping developers. They con-
clude that a developer switches between top-down, bottom-up,
and program model in order to build the mental model. With little
experience on the domain, the comprehension is done at a lower
level by reading the source code closely (bottom-up) to build a
higher-level abstraction. Furthermore, programmers with domain
expertise look for specific information such as statement execution
order and definition as well as variable use.

Burkhardt et al. conduct a user study to evaluate a cognitive
model of object-oriented (OO) program understanding [Burkhardt
et al. 1997]. In particular, they want to draw a distinction between
the program model and the situation model in OO program under-
standing. 30 experts and 21 novices are asked to perform one of
two tasks: designing a variation of the library problem or writing
comments for existing code. The mental model is judged based on
a post-questionnaire. Burkhardt et al. conclude that the situation
model is more fully developed than the program model, even in an
early phase of comprehension [Burkhardt et al. 1997]. This contrasts
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with the results of Pennington for procedural programmers [Pen-
nington 1987]. She showed that the program model developed more
fully in the early stages of comprehension, whereas the situation
model emerged later. They explain the difference as the OO para-
digm, with its emphasis on objects and relationships of objects, may
facilitate the construction of a situation model earlier in program
comprehension. In this paper, we analyze the comprehension pro-
cess one step further by studying if the reading behavior captured
by eye-tracking data can predict the mental model of developer
during a comprehension task (i.e., summarizing a method).

3.2 Eye Tracking in Code Comprehension

Eye-tracking technology has been used to study how developers
read [Crosby and Stelovsky 1990; Rodeghero et al. 2014] and review
[Sharif et al. 2012; Uwano et al. 2006] source code. Crosby et al.
[Crosby and Stelovsky 1990] concluded that subjects needed numer-
ous fixations in most areas of a binary algorithm than did subjects
in studies using pseudocode-like text [Crosby and Stelovsky 1990].
Uwano et al. found that the longer a reviewer read through the code,
the more efficiently the reviewer could find the defect [Uwano et al.
2006]. This correlation was later confirmed by Sharif et al. [Sharif
et al. 2012]. Moreover, experts tend to focus on beacons more, while
novices may read lines more broadly [Sharif et al. 2012]. This result
was later statistically reproduced by Busjahn et al. [Busjahn et al.
2015].

Bednarik and Tukiainen observed that low-experience program-
mers repeatedly fixated on the same sections, while experienced
programmers target the output of the code, such as evaluation
expressions [Bednarik and Tukiainen 2006, 2008]. Kevic et al. con-
ducted a study on three bug fix tasks. They found that developers
focus on small parts of methods that are often related to data flow
[Kevic et al. 2015]. Eye-tracking studies have also been done to
gauge the effectiveness of identifier style [Binkley et al. 2013; Sharif
and Maletic 2010b] and class diagram layout on comprehension
[Sharif 2011; Sharif and Maletic 2010a].

Rodeghero et al. conducted a study of programmers during sum-
marization [Rodeghero et al. 2014]. They concluded that program-
mers consider method signatures as the most important section of
code followed by invocation terms then control flow terms. Term-
based summarization was enhanced when the locations of terms
is considered in and information retrieval technique namely, VSM
used to generate keyterms for a summary. Rodeghero et al. also
analyzed the same data set to study the eye movement patterns
(the order of words or sections that people follow when they read).
In particular, they looked at three types of reading patterns namely:
top-to-bottom vs bottom-to-top, skimming vs thorough, and disor-
derly vs sectionally. They found that programmers prefer to read
code by jumping between sections rather than reading code one
section at a time [Rodeghero and McMillan 2015]. In this paper, the
same reading patterns analyzed by Rodeghero et al. [Rodeghero
and McMillan 2015] are also examined as part of the analysis on a
new dataset.

4 EYE TRACKING STUDY OVERVIEW

We now describe the process of designing and performing the eye-
tracking study for the method summarization tasks. In this paper we
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Table 1: Java Systems Used in the Study

System version Domain Total methods Selected methods
ArgoUML 0.30.2 UML diagramming tool 14,635 15
MegaMek 0.36.0 Computer game 12,490 15
Siena 1.0.0 Database library 4,116 12
sweetHome3d4.1 Interior design application 6,084 12
aTunes 3.1.0 Audio player 9,579 9
Total 46,904 63

analyze data collected from an eye-tracking study of 18 developers
summarizing methods [Abid et al. 2019]. The tasks, processed eye-
tracking data, and the statistical analysis will be made available
through the replication package at http://seresl.unl.edu/ETRA2019.

4.1 Study Tasks

The study consists of a total of 63 methods chosen from five open
source Java systems randomly selected from different domains (see
Table 1). While the selection of methods chosen to be summarized
is random, two conditions were maintained: trivial methods such
as setters and getters were not part of the sample and the largest
method was restricted to 80 lines of code (LOC). This was done in
the prior study to avoid excessive fatigue during tasks and to com-
plete the study in under an hour. McCabe’s cyclomatic complexity
is computed for all 63 methods. The complexity of the methods
ranges between 1 to 28 with average = 6, SD = 5, and Median =
5). A total of 63 methods were selected from the systems shown in
Table 1. On average, participants summarized 15 of the 23 methods
provided to them via a random sampling.

The participants were asked to read the assigned methods and
write a summary for the method. They were also told that they could
navigate the codebase if they needed to. The study was conducted
inside the Eclipse integrated development environment (IDE) using
iTrace [Guarnera et al. 2018; Shaffer et al. 2015]. iTrace connects to
an eye tracker and maps eye gaze data to semantic elements on the
fly even in the presence of file scrolling and file switching.

4.2 Participants

There were 18 participants in this study of which 5 were experts
and 13 were novices. Two of the experts were from industry with
the other three experts were senior PhD students with 5+ years of
experience working in open source software. Novices were mainly
undergraduate students at a local university and had between one
to five years of programming experience.

4.3 Eye Tracking Apparatus and Measures

The Tobii X60 eye tracker was used for the data collection. As in
[Rodeghero et al. 2014], two types of eye-movement data [Rayner
1998] are used: number of fixations and their durations (gaze time).
Since we compare in RQ2 our results to [Rodeghero et al. 2014], we
use the same eye tracking measures. Gaze time is the total number
of milliseconds spent on a region of interest (ROI) such as a method
call or identifier. A fixation filter [Olsson 2007] is set to count
fixations that are more than 100 milliseconds (same as Rodeghero).
We use number of fixations and number of visits interchangeably.
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4.4 Study Procedure

After signing the informed consent form, the participants were first
given a short description of study procedure including types of
questions asked. They were then given examples of three method
summaries so they were familiar with how to answer the question.
These examples were different from the ones they were asked to
summarize. We did this to make sure the participants understood
what they were expected to do during the summarization task.
They were encouraged to use their own words to summarize the
methods rather than just narrating what each line in the method
was doing. After a quick calibration the data was captured using
iTrace [Guarnera et al. 2018]. The participants wrote their summary
in a text file. The study took between 45-90 minutes for 15 method
summarizations.We recalibrated the participant after every 5 tasks
or as needed to be sure there was no issue with drift. We double
checked to make sure calibration is still valid before moving to the
next task.

5 STUDY RESULTS

The data was checked for validity before analysis. Some invalid
samples include writing a narration of the code word for word
(e.g.,'The method has a while statement to check if values are false")
had to be discarded. Other cases are because participants were
unable to locate or unable to understand the assigned method. In
order to catch such cases, three individual researchers reviewed 257
summaries written to judge their suitability for further analysis. We
recorded an inter-rater reliability of Cohen’s kappa (k) is 0.92. In
total, we discarded 44 summaries from the total and kept the remain-
der 213 (correct) summaries for our analysis. Correct summaries
were determined by three researchers via manual inspection.

5.1 RQ1: Determining the Mental Model

According to the integrated metamodel [von Mayrhauser and Vans
1995], during source-code comprehension, developers apply one of
the two comprehension models: top-down or bottom-up. Top-down
is used when a developer has a hypothesis and wants to confirm
it by examining several locations. Conversely, bottom-up is used
when a developer has less understanding and needs to closely read
and form a hypothesis. During the comprehension process, a devel-
oper mentally chunks or groups each set of statements into higher
level abstractions. These abstractions (chunks) are aggregated fur-
ther until a high-level understanding of the program is obtained
[Storey 2005; von Mayrhauser and Vans 1995]. These models are
mostly theoretical and there are only a few user studies using tra-
ditional techniques (e.g., think aloud) to understand what mental
model people perform during maintenance or debugging tasks [von
Mayrhauser and Vans 1997] as it is a non-trivial problem. Here, we
use eye-tracking data to determine which model is used during the
summarization task.

To determine the type of mental model a developer performs, we
first divide each method into chunks/sections. Identifying source
code sections (or code snippet) is explored by Chatterjee et al. [Chat-
terjee et al. 2017]. They concluded that code snippets embedded
in different document types ranges between 10 to 13 LOC. This
suggest that they are code examples for single and specific actions.

Here, we identify code snippets or chunks within source code
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1 public void runf) {
2 (“int port = &;
3 try { Chunk 1
4 port = Integer.parselnt(hostPort.getText());
5 ServerSocket serverSocket = new ServerSocket{port);
6 Socket s = serverSocket.accept();
7 " serverSocket.close(); J
8
9 ( System.out.printin("Accepted peer connection.™); Chunk 2
12
11 conn = ConnectionFactory.getInstance().createServerConnection(s, 8);
12
13 conn. addConnectionListener(connectionListenar);
14 A vy
15 ( Board = new Board(]; h
16 panConnect.setEnabled(false) Fhunk 3
17 pan¥Xmit.setEnabled{true);
18 E 4

p N
18 } catch (Throwable err) { Chunk 4
28 err.printStackTrace();
ol L J
22

Figure 1: The four chunks of the method run from class
PacketTool. This method belongs to the megamek system.

Table 2: The average time of reading bottom-up or top-down
by experts and novices.

Inside the method Outside the method

Level of expertise Average of Bottom-up Top-down Bottom-up Top-down
Actual duration 43913ms 37351ms 1200ms 2684ms
Experts -
Percentage of duration 49% 48% 1% 2%
. Actual duration 66780ms 59763ms 5060ms 6780ms
Novices -
Percentage of duration 48% 45% 2% 4%

files [Wang et al. 2014]. A chunk is set of continuous statements
that contains various levels of text-structure abstractions. Through
manual analysis of the source code and how source code authors
tend to organize the code, we group each set of lines that form one
high level action to identify a chunk. The chunk ranges between 2
LOC to 10 LOC. Figure 1 presents an example of a method that is
divided into four chunks. The first chunk creates and prepares the
serverSocket object. The second chunk establishes the connection.
The third creates the board object. Finally, the last is the catch
block. Another example is shown in Figure 2. Based on how the
code is written (spacing between lines), this method is divided in
to three chunks. The first chunk is composed of 10 lines of creating
two variables and an array of objects. The second chunk is a loop.
The last chunk consists of two void calls that carries out the final
(usually the main) action of the method. We determine the mental
model by comparing two contiguous eye-tracking fixation records.

o If a developer starts reading a chunk and the next line read
belongs to the same chunk, then we conclude that the devel-
oper is reading closely and performing bottom-up compre-
hension.

e When the developer switches to a different chunk, we con-
clude that the developer is performing top-down compre-
hension.

Furthermore, there are three main locations on the screen that a
participant can look at, namely: the text file to write the summary,
inside the assigned method to be summarized, and outside the as-
signed method being summarized (which includes other methods
perhaps being used by the method being summarized). In our anal-
ysis, we detected four reading behaviors namely; top-down inside
the method, bottom-up inside the method, top-down outside the
method and bottom-up outside the method.
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1 public void deploy(int id, Coords ¢, int nFacing, int elevation,

2 L15t<Ent1ty> loadedUnits, boolean assaultDrop) {
3 /1nt packetCount = 6 + loadedUnits.size(); Chunkl\
4 int index = @;

5 Object[] data = new Object [packetCount];

6 datalindex++] = new Integer(id);

7 datalindex++] = ¢;

8 datalindex++] = new Integer(nFacing);

9 datalindex++] = new Integer(elevation);

10 datalindex++] = new Integer{loadedUnits.size()};

11 '\data[index++] = new Boolean(assaultDrop); J
12 N -
13 ( for (Entity ent : loadedUnits) { Chunk 2 |
14 data[index++] = new Integer(ent.getId());

15 \ J
16 e N
17 send{new Packet(Packet.COMMAND_ENTITY_DEPLOY, data)); Chunk3
18 flushConn();

19 } - g

Figure 2: The three chunks of the method deploy from class
Client. This method belongs to the megamek system.

Table 3: Wilcoxon Test of experts and novices that compares
top-down and bottom-up reading. n is number of samples. A
sample is a result from one developer and one method. T is
the sum of ranks. A hypothesis is rejected if and only if the
standard normal distributed |Z| >= 1.96 and p <.05

H  Metric Mentalmodel n T z p

Top-down 30 937

Experts H1 Fixations Bottom-up 36 1274 -1.07 0.28
. o Top-down 75 5164
N H2 Fixat -0.47  0.63
ovices AHONS R ttom-up 65 4706
Preparation phase Writing phase
Text {_] |

. Close proximity
Bottom-up outside

Top-down outside

Bottom-up inside

HW e T

c1, c ,c3 cZ,cS

Reading phase

Figure 3: The timeline of the expert (E1) summarizing the
method deploy in Figure 2. c1 and c2 are short for chunk1
and chunk?2.

As presented in Table 2, for experts and novices, bottom-up is
applied more than top-down. To examine the significance of this
difference, we use the Wilcoxon test [Hollander and Wolfe 1973] to
compare the percentage of time spent performing each model. We
present the two hypotheses as follows:

H,,: For [experts / novices], the difference between the computed

metric for reading top-down and bottom-up is not statistically signifi-

cant.

From Table 3, we cannot reject hypothesis Hy (experts) and Hy
(novices) which indicates that the difference between top-down and
bottom-up is not statistically significant. Therefore, we conclude
that experts and novices apply bottom-up more that top-down but
the difference is not statistically different.
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Preparation phase

Text r_\

Close proximity

Bottom-up outside
Top-down outside
Bottom-up inside |
Top-down inside HV—“ I_U IM ~ v m ’_”\

cl,c2

Reading phase

Figure 4: The timeline of the novice (N1) summarizing the
method deploy in Figure 2. c1, c¢2, and c3 are short for
chunk1, chunk2, and chunk3.

Timeline Analysis of Developers’ Mental Models: Consid-
ering the three locations that a participant has access to and the
type of mental model applied, we generate the timeline of each
participant. We distinguish between three phases: 1) preparation
phase; 2) reading phase; and 3) writing phase. Figure 3 shows the
timeline of one expert (E1). The x-axis reflects the changes overtime
and y-axis reflects the location that the expert read and the mental
model applied. The straight lines indicate that certain reading is
done more than others i.e., the developer spent a lot of time in
bottom-up-inside indicating that he/she stayed reading bottom up
inside the method being summarized for quite some time. The time
line is also fragmented according to the level of jumping between
sections and their locations. In the first four steps in Figure 3, the ex-
pert (E1) switches behaviors or locations. The order of locations of
the first four steps are: text, top-down inside, bottom-up inside, and
top-down inside and finally back to text. This switching behavior is
an indicator that developer is getting ready to start, we call this the
preparation phase. Once this behavior is followed by four or more
stable (e.g., participant reads inside the method only) behaviors,
we conclude that the participant started a new phase which in this
case is the reading phase. The middle section is the reading phase;
the participant switches between bottom-up and top-down inside
or outside the method. The final stage is the writing phase when
the participant starts switching between the text file (to write the
summary) and the source code base. The first three lines of the text
file contains the task number, the name of the assigned method, and
the path of the file containing the assigned method. This is followed
by a section that asks the participant to write the summary. It is
possible that the participant’s gaze falls on the method name or the
path in the text file during the performing of the task. Therefore,
to detect the writing phase, we check the line number of the text
that a participant read. The writing phase starts if the participant
starts looking at line number four or higher in the text file. We are
able to determine gaze on line number because iTrace [Guarnera
et al. 2018] gives us this mapping automatically since it maps gaze
to specific lines/tokens not just in the code but also in other files in
the IDE such as text files in this case.

Figure 4 presents the timeline of one novice (N1). Notice that,
the writing phase is not shown in this diagram although this partic-
ipant did write the summary. Most of the participants followed the
sequence displayed in Figure 4. After locating the method, a partici-
pant starts by bouncing between the text file, inside and outside the
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method before actually reading the method. This preparation phase
is detected on 54% of novices’ samples and 53% of experts’ samples.
All experts and novices perform the reading phase. Finally, the writ-
ing phase is detected on 15% of novices samples and 17% of experts’
samples since in many cases the participants moved their eyes from
the screen to look at the keyboard which the eye tracker did not
capture. However, we know from the text summary files that were
generated and the external video recorded that the summaries were
indeed being written. During the writing phase participants switch
between the text file and the source code to refine their summary.
Additionally, there are two participants who start writing their
summaries earlier than most in several tasks. Then, they read the
source code for some time to refine the summary.

Table 4 and Table 5 presents the average time spent in each
phase by experts and novices, respectively. On average, an expert
spends about 19% of their time preparing for the task. They usu-
ally collect the information they need about the class and data
members during this phase. Novices spend about 16% of their time
during the preparation stage. Although the percentage of the time
is not different between experts and novices, the duration spend by
novices is higher. On average, novices spend about 16s. (16,500ms.)
in the preparation phase while expert spend about 12s. (12,500ms.).
Similarly, novices spend longer time in reading and writing phases,
as they need longer time to understand and describe source code
[Abid et al. 2019].

Qualitative Analysis: We now present some additional insight
into the reading behavior of experts and novices by manually ana-
lyzing what specific line they looked at in the chunks during the
task. We do this analysis on four samples. The timeline of the expert
(E1) presented in Figure 3 is during reading the method deployin
Figure 2. In Figure 3, after locating the task from the text file, the
expert reads the method in a sequential manner starting from the
method signature. The straight lines of bottom-up-in are when the
expert is reading chunk 1. The intermediate jump to bottom-up-out
is made to read lines within close proximity to the method. In this
case, it is the first three lines of the method immediately below.
Chunk 2 and 3 are mostly read in top-down-in fashion due to their
short sizes. However, it is worth mentioning that the expert (E1) is
focusing on reading lines 13, 14, 17, and 18 while writing the sum-
mary. The summary written by this expert is “Transmit game unit
object data positioning over the network and flush the connection”.

The timeline of the novice (N1) presented in Figure 4 is during
reading of the method deploy) in Figure 2. In Figure 4, after reading
the task in the text file, the novice (N1) read the signature of the
method. Similar to the expert (E1) explained above, most of the
bottom-up-in are spent on chunk 1. Additionally, this novice (N1)
made 36 jumps to read the signature of the method compared to
10 jumps made by the expert (E1). All outside method locations
read were methods in close proximity. The summary written by
this novice is “The method deploys different entities to a specified
spot in the coordinate system. It organizes the data for the entities
before the data is sent via a packet into an appropriate format®.

Figure 5 presents the timeline of one expert (E2) summarizing the
method run in Figure 1. According to the collected data, this expert
(E2) started reading the method from the middle at line 11 followed
by line 15. Then, the expert jumped about 200 lines up to read
private Board board = null; which is the declaration of the
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Figure 5: The timeline of the expert (E2) summarizing the
method run in Figure 1. c1, c2, and c3 are short for chunk1,
chunk2, and chunka3.
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Figure 6: The timeline of the novice (N2) summarizing the
method run in Figure 1. c1, c2, and ¢3 are short for chunk1,
chunk2, and chunk3.

data member board. This jump indicates that the expert (E2) used
the search feature that was available during the experiment. Then, a
series of bottom-up-in readings are observed in the following order:
chunk1, chunk2, chunk3, and chunk2. Next, top-down is observed
between chunk 3 and chunk 2 followed by bottom-up-in: chunk2
and chunk3. The final long top-down is between chunk1 and chunk
3. Note that the expert (E2) starts writing the summary earlier on
in the session. The summary written is “Creates a connection to
host port through a socket and sets up a board®.

Figure 6 demonstrates the timeline of one novice (N2) summa-
rizing the method in Figure 1. Notice that the writing phase is not
detected. The novice (N2) starts from the middle of the method at
line 13. Then, the novice (N2) performs a series of bottom-up-in
and top-down-in behaviors in all chunks. The longest bottom-up-in
is made in chunk 2. The summary written is “The port number is
found from the hostPort and a server is started based on that number.
After notifying the user, the server makes a connection and creates
anew board®. For both the expert (E2) and novice (N2)summarizing
the method run in Figurel, none of the reading records belongs
to the method signature. This is a reasonable behavior as limited
high level information can be obtained from this signature as it
is a method with no parameters and returns void. It is possible
that because the line is so short (public void run()) it causes
developers to skip it since they saw it has limited information in
their peripheral vision. This is the same case that can be made for
seeing no fixations occurring on opening and closing braces.
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Table 4: Average duration and percentage of duration spent in each phase by experts.

Number of Average Number Average Percentage Average Average Percentage
Phase Name LY .
non-zero cases of steps of steps Duration in ms of duration
Preparation 37/69 17 14% 12500ms 19%
Reading 69/69 86 86% 75500ms 85%
Writing 12/69 40 23% 38000ms 22%

Table 5: Average duration and percentage of duration spent in each phase by novices.

Number of Average Number Average Percentage Average Average Percentage
Phase Name LY .
non-zero cases of steps of steps Duration in ms of duration
Preparation 79/144 18 18% 16500ms 16%
Reading 144/144 114 82% 122140ms 83%
Writing 29/144 83 39% 77700ms 38%

5.2 RQ2: Reading Patterns

We examine three types of reading patterns namely: top-to-bottom
versus bottom-to-top, skimming versus thorough, and disorderly
versus sectionally studied by [Rodeghero and McMillan 2015]. To
allow for a fair comparison, the same approach is used to compute
the three metrics in both works.

5.2.1 Top-to-bottom vs. Bottom-to-top. We observed that ex-
perts and novices tend to start at the beginning of a method (not
necessarily the signature) in about 75% of the cases. However, devel-
opers do not examine each line in the code. Instead, a developer may
read code in the following order line 2, line 5, back to line 4, then to
line 6. The overall pattern of the previous example is top-to-bottom.
To examine if a developer is reading top-to-bottom or bottom-to-
top, we compute the two metrics for each data sample. For each
sample, we keep track of every time a developer changes line by
moving up or down. Then, to determine the significance, we com-
pare the percentage that the developers read from top-to-bottom or
bottom-to-top using the Wilcoxon test [Hollander and Wolfe 1973]
(paired sample) and propose the following two hypotheses:

Hp,: For [experts / novices], the difference between the computed
metric for reading top-to-bottom and bottom-to-top is not statistically
significant.

We reject a hypothesis if |Z|> 1.96 and p <= .05 (Table 6). In this
case, we reject two hypotheses (H; and H>). This indicates that
both novices and experts tend to read top-to-bottom more often
than bottom-to-top.

5.2.2  Skimming vs. Thorough. Rodeghero et al. use 1000ms to be
the cut point to define the reading thoroughly pattern. Furthermore,
we observe that developers spend 1000ms to 10,000ms when they
focus on a word or a line. Therefore, we also use 1000ms to be
our cut point to define reading thoroughly in order to facilitate
comparison to previous work. On average, experts and novices
read thoroughly 10% and 11% of the time, respectively. To measure
the significance of the result, we compare the average number of
cases when a developer read thoroughly (spending over 1000ms)
vs. skimming the code using the Wilcoxon test. We propose the
following two hypotheses:

H,, : For [experts / novices], the difference between the computed
metric for reading thoroughly and skimming the code is not statisti-
cally significant.

Table 6: Wilcoxon test results of experts and novices com-
paring the three reading patterns.

H | Metric | Reading pattern | n T Z P
Experts | H1 | Fix. Top-to-bottom | 69 | 2335 | (/) | _ g9y
Bottom-to-top 69 80
. . Top-to-bottom | 144 | 10270
N s | H2 Fix. -10.1 | <.0001*
ovices x Bottom-to-top | 14 | 170 | * 000
) Skim 69 | 2346 N
Experts | H3 Fix. Thorough 7 0 -7.22 | <.0001
) ) Skim 144 | 1 K
Novices | H4 Fix. Thorough 144 | 10439 -10.4 | <.0001
. Sectionally 69 | 1242
Experts | H5 Fix. Disorderly 7] 773 1.6 0.1
. . Sectionally 144 | 7667 .
Novices | H6 Fix. Disorderly 144 | 2062 -5.89 | <.0001

From Table 6, we reject hypotheses H3 and Hy. This strongly
suggests that both novices and experts tend to skim the code and
focus on only a few lines.

5.2.3 Disorderly vs. Sectionally. Reading disorderly means that
a developer jumps between terms/lines while reading the source
code. On the other hand, reading sectionally means that the devel-
oper inspects through sections surrounding terms/lines. Similar
to [Rodeghero and McMillan 2015], we define a section as a set of
three contiguous lines. Then, we compute the percentage in which
a developer changes the section to the percentage in which the
developer stays in the same section. Finally, the percentages are
compared using the Wilcoxon test for the following hypotheses:

Hy,: For [experts / novices], difference between the computed metric
for reading disorderly and sectionally is not statistically significant.

From Table 6, we reject hypothesis Hg but not Hs which indicates
that experts tend to use a combination of disorderly and sectional
techniques when reading code which confirms the result from the
Rodeghero study [Rodeghero and McMillan 2015]. On the other
hand, novices read the code more sectionally. Therefore, it could
be that reading sectionally maybe a sign of less experience.

5.2.4 Comparing Findings to Prior Work. We now compare find-
ings for RQ2 with prior work [Rodeghero and McMillan 2015].
Rodeghero and McMillan conclude that developers tend to read
top-to-bottom 49% of the time while in our case developers read top-
to-bottom about 59% of the time. Furthermore, they conclude that
developers jump between sections 75% of the time while our results
suggest that developers use both jumping and reading within a sec-
tion. One way to explain the above differences is that in prior work
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Table 7: Reading patterns of experts between this study and [Rodeghero and McMillan 2015]. (v indicate results reproduced).

Reading Pattern

Prior Work [Rodeghero and McMillan 2015]  This Study

Top-to-bottom vs.
Bottom-to-top.

49% Top-to-bottom
Not significant

75% Top-to-bottom
Top-to-bottom is performed
significantly more than bottom-to-top.

Skimming vs. 90% skimming

Through. more than reading thoroughly.v’

Skimming is performed significantly

90% skimming
Skimming is performed significantly
more than reading thoroughly. v/

Disorderly vs. 25% sectionally

Sectionally. more than reading disorderly.

Sectionally is performed significantly

47% sectionally
Not significant

developers see a fixed screen where the entire code is displayed
(no scrolling is allowed). With this limited size, the memory lost is
minimal and developers can return to the previous location easily.
In our study, methods are large in size and developers need to scroll
up and down during the summarization task. When they scroll
some of the code become invisible. Although our study environ-
ment makes the task a bit harder than the one in [Rodeghero and
McMillan 2015], our study environment simulates the real world
environment. Finally, similar to prior work, we conclude that devel-
opers tend to skim the code more frequently and read thoroughly
10% of the time. Refer to Table 7 for a comparison.

5.3 Threats to Validity

When a developer writes a summary for a method from a class,
he/she may build some knowledge about the class. This might affect
the time and the effort to understand other methods from the same
class. To mitigate this, each developer was asked to summarize
methods from different unrelated classes. To avoid fatigue, we kept
the number of methods to be summarized to 15 with the goal of
having the study completed in about an hour. To reduce the over-
head in browsing many systems, we limit the number of systems
for each developer to three. As developers mostly rely on comments
to understand methods [Crosby and Stelovsky 1990], we remove all
comments from the source code (similar to the Rodeghero study).
This was necessary as the goal of the study is to examine source
code statements that developers focus on when they write their own
summaries. Developers have different IDE environment preferences
that might affect their performance. We kept the default bare-bones
Eclipse syntax highlighting preferences for all participants. In ad-
dition, code folding was not allowed to reduce any confounding
effects. None of the participants complained about this setting or
the highlighting used. We define chunks based on how the source
code was written by the original authors and according to prior
literature [Wang et al. 2014]. It is possible that developers have a
different chunking approach which may affect the result. Individual
differences and abilities may be a possible factor however, this was
out of scope of this paper. We did not address them in our analysis.
It is possible that we will get different results with a larger number
of experts. The study is performed by 18 participants with 5 experts.
This limited number of experts may affect the validity of the result.
We use appropriate statistical tests to match our data assumptions.

6 DISCUSSION

We analyze and predict the mental model of a participant by divid-
ing the source code to predefined chunks (each chunk presents a

high level operation) based on how the code is written. The chunk
size ranges between 2-10 LOCs. Neither top-down or bottom-up
are used more significantly than the other. This is expected as top-
down is used more if the programmer is familiar with the code
[von Mayrhauser and Vans 1995] and none of our developers were
familiar with open source systems used in the study. We believe that
this result opens the door to study the mental model of developers
using eye-tracking data instead of using traditional methods (e.g.,
interview). The mental models applied by a developer depends on
their level of expertise of the domain of the presented source code.
When the sectionally and disorderly reading patterns were exam-
ined, we found that novices read sectionally (with section size equal
to three) more heavily than disorderly. This means that novices read
source code more in a line-by-line fashion (also shown by [Busjahn
et al. 2015]), a behavior also reflected in their summaries. Novices
usually write a few words describing the steps of the method being
summarized. On the other hand, experts perform both patterns.
With respect to RQ 1, we find this study to be the first attempt
to use eye gaze as a predictor of externalizing the mental model
of developers. With respect to RQ2, we find that experts perform
90% skimming in reading and top-to-bottom reading is performed
significantly more (75% of the time) than bottom-to-top.

7 CONCLUSIONS AND FUTURE WORK

The paper presents an analysis of using eye-tracking data to under-
stand the cognitive process during source code summarization. We
examine two types of mental models that developers perform dur-
ing source-code comprehension. On average, experts and novices
read the assigned method more closely (using bottom-up mental
model for comprehension) than bouncing (using top-down) around.
This is expected as all developers in the study do not have domain
knowledge about the code used in the study. However, on average,
novices have longer gaze time preforming bottom-up compare to
experts. We propose a graphical representation that demonstrates
a developer’s timeline while reading and summarizing a method.
As part of future work, we plan to conduct a follow up study of
developers reading two sets of methods - one from a domain that
the developer is familiar with and the other from an unfamiliar
domain.
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