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ABSTRACT
The paper partially replicates and extends a previous study by
Busjahn et al. [4] on the factors influencing dwell time during
source code reading, where source code element type and frequency
of gaze visits are studied as factors. Unlike the previous study,
this study focuses on analyzing eye movement data in large open
source Java projects. Five experts and thirteen novices participated
in the study where the main task is to summarize methods. The
results examine semantic line-level information that developers
view during summarization. We find no correlation between the
line length and the total duration of time spent looking on the line
even though it exists between a token’s length and the total fixation
time on the token reported in prior work. The first fixations inside
a method are more likely to be on a method’s signature, a variable
declaration, or an assignment compared to the other fixations inside
a method. In addition, it is found that smaller methods tend to have
shorter overall fixation duration for the entire method, but have
significantly longer duration per line in the method. The analysis
provides insights into how source code’s unique characteristics can
help in building more robust methods for analyzing eye movements
in source code and overall in building theories to support program
comprehension on realistic tasks.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
• Software and its engineering → General programming lan-
guages;
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1 INTRODUCTION
Developing software is a complexmental activity that can be broken
down into many sub-tasks. One such task is that of reading source
code. In recent work, researchers have shown that source code
reading is indeed different from natural language reading [Busjahn
et al. 2015]. The strategies developers use to read source code are
important because it greatly influences the time taken to solve a
task such as fixing a bug or implementing a new feature. Program
comprehension [Brooks 1983; Soloway and Ehrlich 1989] is a sub-
area of software engineering that focuses on how developers read
and understand source code. Most of the eye tracking studies done
in program comprehension however, focus on small source code
snippets. We direct the reader to prior systematic literature reviews
[Obaidellah et al. 2018; Sharafi et al. 2015] for more details.

In 2014, Busjahn et al. conducted an eye tracking study in which
they analyzed dwell time on the source code token’s syntactic cate-
gory, length, and frequency [Busjahn et al. 2014]. They generated a
set of 11 small Java programs as the stimuli. They found that most
attention is spent on identifiers, operators, keywords, and literals.
However, beyond this work there are no studies done on large
source code stimuli to determine how developers distribute their
attention across the different semantic lines within source code. In
order for such results to be meaningful and impact realistic software
tools that use this data, it is important to determine if such findings
hold when more realistically sized programs are used. In this paper,
we partially replicate the analysis done in the Busjahn et al. study
using an eye tracking dataset [Abid et al. 2019] that was collected
in a realistic setting. The main difference between this study and
the Busjahn et al. study is that the data is collected on large open
source software with the methods being surrounded by the original
source code in its file and was done within the developer work en-
vironment (i.e., Eclipse IDE). The open source infrastructure iTrace
[Guarnera et al. 2018] is used to gather the data. Another difference
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is that instead of focusing purely on the syntactic tokens in the
source code, we investigated the visual attention and distribution
based on the semantic meaning of the token and surrounding line
e.g., an if-statement or assignment-statement. We found that sev-
eral trends presented in Busjahn et al. are not present at the line
level analysis in our dataset.

2 STUDY OVERVIEW
We analyze an existing dataset that consists of data from 18 par-
ticipants. Five of these are considered experts (more than 5 years
of experience in programming) and the remaining 13 are novices
(approx. a year of programming experience). The participants are
randomly assigned 15 methods to summarize out of the total num-
ber of 63 methods chosen from five Java projects. The methods to be
summarized ranged from 9 to 80 lines of code with a median of 22
LOC and a mean of 27.07 LOC. The method’s cyclomatic complexity
ranged from 1 to 28 with a median of 6 and a mean of 7.16. The
main task of the study is to read the assigned methods and write a
summary for them in a text file.

During the summarization task, the participants are seated in
front of a 24-inch LCD monitor and their eye movements and fix-
ations are recorded using the Tobii X60 eye tracker along with
iTrace [Guarnera et al. 2018] to map these fixations to the correct
line and column number in the source code regardless of scrolling
or code folding. The screen resolution was 1920 px × 1080 px.
A more extensive explanation of the experimental set up can be
found in [Abid et al. 2019]. The source code and all methods to
be summarized can be found in our replication package at http:
//seresl.unl.edu/ETRA2019.

3 STUDY RESULTS
We use the dwell time to determine visual attention as we want
to compare our results to [Busjahn et al. 2014]. Dwell time is the
sum of all fixation durations during a single visit of an AOI. We
find that the dwell time distribution is right-skewed just as in the
Busjahn study. In order to transform this into a normal distribution,
the dwell time distribution is log-transformed. This distribution is
similar to what is reported in [Busjahn et al. 2014].

3.1 Dwell Time Compared to Line Length
As shown in [Busjahn et al. 2015], an element with more characters
takes longer to read. Due to this effect, normalization of the dwell
time must occur based on the element’s length. However, because
we are investigating line based trends, the goal is to determine if this
effect is present with the line’s length and its corresponding dwell
time. Using the log-transformed dwell times found in the previous
section, we attempted to find a correlation between the length of
the line and the total dwell time seen in Figure 1. The linear model
found for this correlation does not show any significant relationship
between the two variables (R2=0.007011). We conclude that line
length has no statistically significant effect on the total dwell time
of the line. We also investigated if this trend occurs in any of the
types of lines that categorized. While some line types, such as For
and If statement lines, have stronger correlations (R2=0.0773 and
R2=0.06081 respectively), we were unable to find any significant
correlations between line length and total dwell time.

Figure 1: Dwell time over Line Length

3.2 Distribution of Dwell Time over Line Type
The time spent looking at several different types of lines is examined.
The program is broken down into 9 different types of semantic
meaning. Method Call, If, Variable, Method Signature, For, Import,
Class Attribute, and Class are the different semantic meanings of
the lines in our analysis. Method Call is used to describe a line that
contains a call to another function inside the class or a method
from an object. If is used to describe a line containing an if or else
keyword or the corresponding conditional statement. Variable is
used to describe a line that contains a local variable declaration or
variable assignment.Method Signature is used to describe a line that
contains the definition of a method along with its parameters. For
is used to describe the for or while keyword or the corresponding
loop conditions. Import is used to describe a line with an import
statement. Class Attribute is used to describe a line that contains
a class attribute declaration inside the class declaration. Class is
used to describe a line that contains the class declaration and the
inherited classes and interfaces.

When we break down the dwell times of our subjects into these
9 semantic line types, the following distribution of dwell time is
found (Table 1). The three most common line types based on the
total dwell time of our subjects are Method Call, If, and Variable.
This is consistent when the distribution is based on the frequency
of visits to a line type. We also observe that the lowest line types are
Import, Class Attribute, and Class. As these line types are infrequent
in the code base as can be seen in Figure 2 and non-existent in the
methods the subjects are asked to summarize, it makes sense to see
these line types at the bottom of the distribution.

One study [Rodeghero et al. 2014] that looked at similar distri-
butions found that Method Signatures are the most important type
of element for comprehension and code summarization tasks while
we found that Method Signatures only accounted for 6.1% of the
total dwell time of our subjects and other line types accounted for
a larger percentage of the total dwell time. However, this previous
study [Rodeghero et al. 2014] used much shorter code snippets for
their summarization tasks than the dataset we used, so this differ-
ence is to be expected. The point to note is that context around the
method to be summarized matters.
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Figure 2: Distribution of line types in terms of percentage of
total lines both globally and in the summarized methods

Table 1: Distribution of dwell time as percentage of total fre-
quency with percentage of total duration reported in paren-
theses

Line Type All Subjects Expert Novice
Class 0.61 ( 0.76) 0.31 ( 0.64) 0.69 ( 0.79)
Class Attr. 0.89 ( 0.88) 0.41 ( 0.52) 1.02 ( 0.97)
Import 2.55 ( 3.11) 2.89 ( 3.54) 2.45 ( 3.00)
For 3.62 ( 3.35) 3.55 ( 2.96) 3.64 ( 3.45)
Method Sig. 5.24 ( 6.10) 4.48 ( 6.12) 5.46 ( 6.09)
Return 7.55 ( 8.30) 4.91 ( 5.79) 8.30 ( 8.97)
Variable 17.90 (16.83) 17.81 (17.61) 17.93 (16.62)
If 23.43 (23.56) 25.08 (23.98) 22.96 (23.45)
Method Call 38.22 (37.11) 40.56 (38.84) 37.55 (36.65)

Table 2: Distribution of dwell time inside summarizedmeth-
ods as percentage of total frequencywith percentage of total
duration reported in parentheses

Line Type All Subjects Expert Novice
Method Sig. 3.21 ( 3.96) 3.68 ( 4.75) 3.06 ( 3.74)
For 3.84 ( 3.62) 3.72 ( 3.16) 3.88 ( 3.75)
Return 7.66 ( 8.57) 4.59 ( 5.46) 8.60 ( 9.43)
Variable 19.07 (18.14) 18.68 (18.66) 19.18 (17.99)
If 25.39 (25.59) 26.69 (26.27) 25.00 (25.40)
Method Call 40.82 (40.13) 42.63 (41.71) 40.28 (39.69)

3.3 Comparison of Experts and Novices
In an attempt to find any significant differences between expert and
novice reading time during code summarization tasks, we examine
the dwell time distributions of both experts and novices over the
9 line types defined previously. The two distributions are almost
the same. To verify this, we run the Mann-Whitney test at 95%
confidence due to the non-parametric (unpaired) nature of the data.

The results are not significant based on dwell time (p=0.07 Cohen’s
d=0.90) and on frequency (p=0.09 Cohen’s d=0.85).

3.4 First Fixation Duration and Line Frequency
In [Busjahn et al. 2014], they investigated a trend found in natural
language reading which states that words that are less frequent
will have longer first fixation duration and longer first dwell time
[Rayner and Duffy 1986]. They found that this trend does not exist
between keyword frequency and first fixation duration in Java.
We examined if a trend occurs between the number of various
line types and the first fixation duration on a given line type. To
see this effect at different scopes, we used the line type frequency
of all files used in the study, the file the subject is summarizing,
and the method the subject is summarizing. For the last trend, we
remove any gazes from outside the method to investigate if the
trend exists when looking inside the methods being summarized.
We failed to find any significant correlation between any of the
relationships investigated for the global-level (R2=0.00040), file-
level (R2= 0.00013), and method-level (R2=0.000030) frequency. It
can be concluded that frequency of semantic line types has no
significant effect on the first fixation duration.

Table 3: Distributions of first and last fixations as percent-
age of total frequency and percentage of total duration in
parentheses.

Line Type First Fixation Last Fixation
For 2.37 ( 2.42) 3.95 ( 3.18)
Return 2.37 ( 3.82) 11.86 (16.94)
If 19.76 (16.90) 19.76 (26.23)
Variable 24.11 (24.98) 20.95 (16.19)
Method Call 24.51 (19.13) 41.11 (36.05)
Method Sig. 26.88 (32.76) 2.37 ( 1.40)

3.5 First and Last Fixations Inside Methods
Table 2 shows a distribution of all fixations inside summarized
methods. The first fixations inside the method are identified from
Table 3 for each subject’s code summarization tasks and categorized
by line type. As can be seen in Table 3,Method Signature Method Call,
and Variable are the most common line types that are first fixated on
inside the method. The second most common isMethod Call, which
is the most common fixation type both in terms of duration and
frequency when all fixations are taken into account, only accounts
for 24.51% of total duration of first fixations and 19.13% of visits.
While Method Signature and Variable normally only account for
5.24% and 17.90% of all fixations, they account for more in the first
fixations. The Method Signature is less common to be viewed than
Variable lines when all fixations are taken into account. This large
relative increase inMethod Signature line types being viewed shows
that Method Signature is common for developers to look at in the
beginning of summarizing a method.

We also examine the last fixation a subject makes inside the
method they are summarizing (Table 3). While Method Signature
makes up more of the fixations both in terms of duration and total
visits for the first fixation, we do not see this trend in the last
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Table 4: Distribution of fixations in large methods in per-
centage of total frequency and total dwell time in parenthe-
sis

Line Type Large Methods Small Methods
Method Sig. 2.62 ( 3.18) 4.03 ( 5.11)
For 4.05 ( 3.93) 3.55 ( 3.18)
Return 7.98 ( 8.53) 7.23 ( 8.61)
Variable 20.16 (19.69) 17.52 (15.85)
If 28.51 (27.81) 20.98 (22.31)
Method Call 36.68 (36.86) 46.69 (44.93)

fixation. Instead, we find that the last fixation is more similar to
the overall distribution of fixations. Return lines are slightly more
common in the last fixations than the overall fixation distributions,
but this difference is not large.

3.6 Small vs. Large Methods
As this is one of the few studies that have access to eye tracking
data sets with methods that have a large variance in lines of code,
we analyzed the largest and smallest methods that our subjects
summarized. We chose to classify small methods as 22 lines of code
or less and classify large methods as containing more than 22 lines
of codes. We chose this cutoff point because in previous studies, 22
lines of code was the largest size method that could be analyzed
and was the median size of the programs we studied[Rodeghero
and McMillan 2015] [Rodeghero et al. 2015].

As can be seen in Table 4, the first major change is that in smaller
methods participant fixate on For statements and If statements less
and Method Call and Method Signature lines more. This could be
because smaller methods are less likely to have longer statements
like If or For because they usually add several lines to the method.
However, after running a Mann-Whitney test we find that the
differences in distributions between small and large methods are
not statistically significant between either duration (p=0.58) or
frequency (p=0.58). We also investigate the total duration spent
fixating on lines in the method. It was found that participants spent
80 seconds on average fixating on the large methods and spent
70 seconds on average fixating on the small methods. Since larger
methods have more lines of code to look at and summarize than
smaller methods, this is to be expected. However, when we instead
look at the average time spent in a method based on the lines of
code the method contains, it is found that participants looking
at larger methods spend on average 1.893 seconds per line in the
method while participants looking at shorter methods spend on
average 3.708 seconds per line (Mann Whitney U test p < 0.0001,
medium effect size Cohen’s d=0.57).

4 CONCLUSIONS AND FUTUREWORK
The paper reports on factors that influence dwell time during source
code reading in realistically sized Java programs where the task is
to summarize methods. We found that several trends that occur
with the syntax level tokens from prior work [Busjahn et al. 2014],
are not present at the semantic line-level. There is no correlation
between the line length and the total duration of time spent looking
on the line even though it exists between a token’s length and the

total fixation time on the token reported in prior work. The first
fixations in a method are more likely to be on a method’s signature,
a variable declaration, or an assignment. In addition, we found that
smaller methods have shorter overall fixation duration for the entire
method, but significantly longer duration per line in the method.

Since source code is syntactically and semantically different from
natural language text, many of the methods used to analyze natural
language text do not always work on source code (e.g., drift correc-
tion). If we are aware of the reading patterns and visual distribution
on specific source code elements, we can use this information to
derive better heuristics for drift correction specific to source code
[Palmer and Sharif 2016]. Replications, such as ours, are important
from a scientific standpoint as they use realistic work environ-
ments [Guarnera et al. 2018] to collect data which mimic the real
world setting of how a developer works. This is the first step in our
long-term goal of developing theories in understanding program
comprehension based on eye movement data.
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