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A
chieving global food security under climate change (CC) is 
a big challenge facing humanity1. Effective adaptation strate-
gies are needed to mitigate the negative CC impacts on crop 

production and further enhance agricultural resilience. Possible 
solutions include (1) genetic improvement through plant breeding 
and genetic engineering of new crops with stress tolerant traits2,3, 
and enhanced resource use efficiencies4,5; and (2) adaptive crop 
management practices6,7. As CC impacts on crop production will 
likely vary substantially in space2,8, environment-specific adaptation 
strategies may confer advantages6. Moreover, CC is very likely to 
shift the target population of environments in which crop cultivars 
produced by breeding programs will be grown9 and may limit the 
rate of genetic gain through breeding programs alone. Considering 

both genetic and management improvements can thus expand the 
opportunities to cope with CC, in which case suitable predictive 
models that can capture complex interactions among genotype, 
environment (including climate and edaphic conditions) and man-
agement (genetics × environment × management (G × E × M)) in 
crop development, growth and yield are required10–12. Meanwhile, 
adaptation of crop production to CC should be treated along with 
environmental sustainability, as the environmental footprint of agri-
culture may change with adoption of different adaptation strategies 
over extended areas13. Potential genetic and/or management adap-
tation strategies need to be rigorously assessed for their impacts on 
both crop production and environmental sustainability in a chang-
ing climate (Fig. 1).
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Predicting the consequences of manipulating genotype (G) and agronomic management (M) on agricultural ecosystem per-
formances under future environmental (E) conditions remains a challenge. Crop modelling has the potential to enable society 
to assess the efficacy of G × M technologies to mitigate and adapt crop production systems to climate change. Despite recent 
achievements, dedicated research to develop and improve modelling capabilities from gene to global scales is needed to pro-
vide guidance on designing G × M adaptation strategies with full consideration of their impacts on both crop productivity and 
ecosystem sustainability under varying climatic conditions. Opportunities to advance the multiscale crop modelling frame-
work include representing crop genetic traits, interfacing crop models with large-scale models, improving the representation 
of physiological responses to climate change and management practices, closing data gaps and harnessing multisource data 
to improve model predictability and enable identification of emergent relationships. A fundamental challenge in multiscale 
prediction is the balance between process details required to assess the intervention and predictability of the system at the 
scales feasible to measure the impact. An advanced multiscale crop modelling framework will enable a gene-to-farm design of 
resilient and sustainable crop production systems under a changing climate at regional-to-global scales.
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The need for a multiscale crop modelling framework
Crop modelling can help assess the efficacy of agricultural adap-
tation strategies to CC (Fig. 1). Complex G × E × M interac-
tions10–12 affecting crop development, growth and yield, and 
their nonlinearities present a formidable challenge to designing 
empirical experiments that adequately sample the G × E × M 
space. Process-based crop models (CMs) offer a unique way to 
assess the pros and cons of different adaptation strategies because 
they integrate physical and biological principles to mechanisti-
cally simulate the use and allocation of captured resources14. In 
this way, CMs can help optimize existing strategies and assist the 
design of new strategies under different environmental scenarios 
(Fig. 1). For management adaptation, many existing studies used 
CMs to assess the impacts of different practices on crop produc-
tion15,16. However, their potential impacts on environmental sus-
tainability and feedback to the climate remain under-studied, 
mainly because current CMs lack the required interfaces with 
land surface, climate and economic models. Crop modelling is 
an ideal tool to assess the benefits of various genetic solutions in 
crop improvement17. However, assessments of potential genetic 
solutions by most existing CMs are restricted due to their limited 
capabilities to simulate genetic variation and biochemistry18,19. 
Some recent model developments have uncovered opportunities 
to develop an integrated modelling framework to address ques-
tions about genetic improvement under CC. For instance, CMs 
were improved by considering the variation in relevant adaptive 
traits to drought in maize20 as well as the connection between CMs 
and genomic prediction21,22. Although geospatial simulations of 
the impact of crop genetic improvements on yield exist23, assess-
ments of their impact on environmental sustainability under  

current and future climates are still missing. To meet these 
demands for assessing CC adaptation strategies for both crop 
productivity and environmental sustainability, and assisting 
in designing new strategies, a multiscale (from gene to globe) 
crop modelling framework should be developed using systems 
approaches. Such a framework can explicitly integrate small-scale 
mechanisms with multi-sectoral impacts of different adaptation 
strategies at larger scales (Fig. 2; Table 1).

Going to gene scale
Incorporating the principles of genetics and genomics into CMs will 
enable genotype-to-phenotype prediction to advance crop breed-
ing and genetic engineering18,24,25. Two approaches, referred to as 
‘top-down’ and ‘bottom-up’ approaches, can be employed to lever-
age our collective understanding of genetic controls of physiologi-
cal processes to enhance phenotypic prediction26–28. The top-down 
approach25,29 follows the philosophy of ‘modelling plant hormone 
action without modelling the hormones’30, and strives to capture 
system dynamics and phenotypic consequence from genetic varia-
tion at the whole-plant scale, with a relatively coarse granularity 
but robust prediction accuracy25. The simplification made in the 
top-down approach balances phenotyping capabilities31, propaga-
tion of measurement errors and accuracy, which are required to 
inform a decision. To effectively connect complex traits (such as 
yield) with genetic regulation, CMs should include detailed physi-
ological processes10,29,31,32. Some cultivar-specific model param-
eters in CMs are predicted by different mathematical approaches, 
from simple statistical models based on multiple loci32–35 to whole 
genome association prediction using Bayesian and machine 
learning approaches21,22,36. Successful examples of this top-down 
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Fig. 1 | Crop modelling plays a central role in assessing agricultural CC adaptation for food security and environmental sustainability. When optimizing 

existing and designing new agricultural CC adaptation strategies, lessons from both crop productivity and environmental sustainability assessments 

should be considered. G, genetics; E, environment; M, management.
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approach include reasonable predictions with quantitative trait 
loci models of maize leaf elongation response to soil water deficit 
and high evaporative demand33,34, and the transition to reproduc-
tive growth in several other crops32,37. CMs that incorporated func-
tional relationships between environmental variables and traits for 
the genetic variation in yield and agronomic performance22 have 
been successfully used in breeding drought-tolerant maize hybrids 
for the US Corn Belt3.

The bottom-up approach uses systems biology to integrate 
plant biological processes operating at different temporal and 
spatial scales26,38,39. For example, the e-photosynthesis model40, 
which simulates individual photosynthesis-related metabolic 
reactions and their major regulatory mechanisms, is a typi-
cal bottom-up model that may potentially link high through-
put genomic data with observable macroscopic phenotypes. By 
explicitly simulating gene network regulation, metabolic reac-
tions and metabolite transport, the bottom-up models, once inte-
grated to the whole-plant scale, could enable testing the impact 
of genetic manipulation on different proteins (such as photosyn-
thetic enzymes) and identify targets for crop genetic improve-
ments24. However, the bottom-up approach is limited to single 
component processes (for example, photosynthesis)40,41 or model 
plants (for example, Arabidopsis) that have relatively lower com-
plexity and have been better characterized than conventional 
crop species42. Mechanistic models that include all component 
processes controlling the forms and functions of crops are being  
investigated43. Although the bottom-up approach can provide 
a more direct connection with the underpinning of genetic  

architecture, several key challenges need to be met before scal-
ing up to the whole-plant level. These include how to integrate 
the component modules and whether the integrated models can 
give robust phenotypic responses to genetic changes under varied 
environmental and management conditions, which may be chal-
lenging in applications that require a higher prediction accuracy 
due to error propagation and inabilities to properly phenotype 
and initialize such models.

Given the different properties of top-down and bottom-up 
approaches, integrating these two approaches may provide an 
opportunity to merge their advantages. Such integration will require 
transdisciplinary cooperation to harness collective knowledge in 
the form of functional models that capture essential features of 
the underlying biology while retaining the required predictability. 
Comparing these two approaches for genotype-to-phenotype pre-
diction under varied environmental conditions will help identify 
potential model deficiencies and corresponding opportunities for 
improvement. To make them operationally feasible, the fine-grained 
bottom-up models must be simplified in mechanistic representa-
tions while maintaining predictive capability of system dynamics 
for large-scale applications44. One possibility is to build surrogate 
models of the bottom-up models which can statistically emulate the 
behaviours of the latter but with greater computational efficiency. 
This is critical for some applications requiring many model runs, 
such as high-resolution simulation over large areas and the Monte 
Carlo-based parameter estimation. Surrogate models for selected 
processes could also be combined with top-down models to build 
a hybrid model to simulate the whole-plant-level impact of crop 
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Fig. 2 | A conceptual illustration of the multiscale crop modelling framework. a, Opportunities to advance the multiscale crop modelling. b, Models operating 

at different scales involved in the multiscale crop modeling framework. c, Data collection to support model development and evaluation at varied scales.
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trait manipulations at finer (gene and metabolic) scales effectively 
and efficiently. Meanwhile, lessons from the top-down approach 
may help component integrations in the bottom-up approach, as 
top-down models provide robust physiological overviews of crop 
growth and development processes. The top-down approach can 
also be used in designing better structures for those simplified 
mechanistic models or surrogate models. Such integration provides 
a promising approach to represent genetic traits in CMs for breed-
ing and genetic engineering research—a research domain which is 
still in its infancy24.

Going to global scale
Reliable large-scale simulations to assess agricultural CC adaptation 
are needed because decisions about adaptation are usually made 

at a broader scale, beyond that which the traditional CMs were 
developed and tested (that is, plot-to-field scale)45. Current CMs 
are mainly designed for yield simulation at the field scale, exclud-
ing or implicitly considering processes related to surface fluxes 
of water, energy, carbon and nutrients. For these reasons, current 
CMs appear unsuitable for evaluating the environmental impacts 
of agricultural CC adaptation at large scales. Meanwhile, land sur-
face models (LSMs) and their counterparts in Earth system models 
(ESMs) focus more on surface and subsurface hydrology, surface 
energy balance and biogeochemical cycling processes46. Many LSMs 
can be coupled to an atmospheric model, a river model, an ocean 
model (via the river model) and, occasionally, even to an integrated 
assessment model. These couplings could enable both assess-
ment of the broader role agriculture plays in the Earth system and 

Table 1 | A summary of recommended actions to advance multiscale crop modelling

Directions or opportunities Recommended actions Process 
unerstanding

Model development 
and evaluation

Data collection 
and model-data 
integration

Going to gene scale Comparing top-down and bottom-up approaches  
for genotype-to-phenotype simulation

✓ ✓ ✓

Integrating top-down and bottom-up approaches  
to represent genetic traits in CMs

✓ ✓

Going to global scale Interfacing CMs with large-scale land surface,  
climate and economic models

✓ ✓ ✓

Scaling the surface heterogeneity from field to  
regional or global scale

✓

Better representation of 
physiological responses 
to CC

Simulating coupled soil–root–canopy-atmosphere 
water transfer driven by energy balances

✓ ✓

Improving the stomatal and intra-leaf diffusional 
conductance models

✓ ✓

Improving the simulation of responses of carbon or 
nitrogen source–sink relationship to stresses

✓ ✓

Developing mechanistic models for ozone stress ✓ ✓

Simulating the root growth and metabolism under 
oxygen deficiency

✓ ✓

Better representation of 
crop management practices

Simulating coupled carbon–nitrogen–phosphorus 
cycles in CMs

✓ ✓ ✓

Simulating microorganism–root interactions in CMs ✓ ✓ ✓

Representing more management practices in 
large-scale CMs

✓ ✓ ✓

Simulating stresses from crop pests and diseases  
as well as weed competition on crop growth

✓ ✓ ✓

Improving simulation of fate and transport of pesticide 
across landscapes

✓ ✓

Closing the data gaps Collecting more site-level experimental data following 
standardized protocols

✓

Conducting multi-dose experiments for observed crop 
responses to CC factors

✓

Collecting more soil profile data to improve the 
gridded soil products

✓

Enriching management data through working 
with farmers and government agencies, and using 
crowdsourcing and remote sensing technologies

✓

Model-data integration Evaluating CMs using eddy-covariance flux data ✓ ✓

Evaluating CMs in simulating the emergent 
relationships inferred from data

✓ ✓

Spatially explicit calibrating CMs using remote sensing 
data as constraints

✓ ✓
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studies regarding food security, and environmental quality under 
socioeconomic development, technological innovations and CC. 
Although some LSMs have incorporated crop growth and a num-
ber of plant physiological mechanisms, such as stomatal and bio-
chemical limitations to photosynthesis and plant hydraulics, crop 
modelling schemes in ESMs require development of crop-specific 
processes that are better resolved by field-scale agronomic CMs47. 
Most ESM-based CMs do not incorporate sufficient details describ-
ing crop phenology, organ development and their responses to envi-
ronmental stresses; therefore, they cannot always capture observed 
variation in crop yields. These inter-model differences occur 
because field-scale agronomic CMs and LSMs, or ESMs, were origi-
nally developed for different goals. LSMs or ESMs can become pow-
erful tools to simulate the ‘food–energy–water’ nexus48, the crux of 
both food security and environmental sustainability, if essential bio-
logical functionalities related to both surface energy–water–carbon 
fluxes and crop growth and yield are included.

Regional-to-global CC adaptation assessment requires a systems 
approach to understand interactions among different elements of 
the climate–agriculture–environment system, which can be lever-
aged to increase overall system efficiency, resilience and sustain-
ability. One possible research pathway is to integrate field-scale  
crop modelling capabilities with LSMs or ESMs47,49,50–52 making CMs 
a sub-module of larger system models. This integration will enable 
both CMs and the host LSMs to complement and benefit from each 
other. CMs can take advantage of the more advanced biophysical 
and biogeochemical representations in LSMs to help improve the 
simulation of crop growth and yield at regional-to-global scales. 
Similarly, LSMs can benefit from the explicit and mechanistic repre-
sentation of crop growth to improve surface energy–water–carbon 
flux simulation over agricultural land. For regional-to-global scale 
applications, trade-offs between model complexity and computa-
tional efficiency need to be considered29. For example, when incor-
porating genetic models, the coarse-grained top-down approach33 
may be preferred for its better computational efficiency and reli-
ability compared to the fine-grained bottom-up approach. In  
addition, the three-dimensional representation of leaf anatomy44 
as well as root and canopy architectures53,54 in structural–func-
tional models55 may also need to be simplified in LSMs for 
regional-to-global scale applications44,56.

One challenge when integrating CMs with large-scale models is 
scaling the heterogeneity over cropland45,57. Most large-scale crop 
simulations still use field-scale CMs with spatially aggregated input 
data (soil, weather and management), such as those in the Global 
Gridded Crop Model Intercomparison58,59 of the Agricultural Model 
Intercomparison and Improvement Project (AgMIP; https://agmip.
org/)60. However, such aggregation may lead to biases in both simu-
lated yield and its variability depending on regional characteristics, 
CMs and spatial resolution of simulation45,61. Finer resolutions could 
somewhat mitigate the problem but would dramatically increase the 
computational burden, especially when using ESM-based CMs at 
regional-to-global scales. Recent advances in representing land sur-
face heterogeneity in ESMs also shed light on the scaling issue in 
crop modelling. As more data on field-scale elevation, soil, yield and 
management become available, high-resolution cropland grids (~30 
m) can be clustered into several tiles based on the multi-dimensional 
characteristic space62. Simulations over the clustered tiles within 
one coarse grid can then be mapped back to high-resolution grids 
through post-processing. Necessary adjustments to model struc-
tures may be needed when adding this scaling complexity into 
CMs, especially for those using a single soil column for all cropland 
within one coarse grid.

Integrating CMs with large-scale models enables a consistent 
and systematic assessment of the adaptation impacts on multiple 
sectors of the Earth system at regional-to-global scales. Possible 
applications include determining how genetic modifications of crop 

growth, vigour, stress response or resource use efficiency influ-
ence water–energy–carbon cycles at regional-to-global scales and 
their potential feedback to the climate. These large-scale impacts 
of possible genetic improvements can be assessed using ESMs with 
embedded CMs to guide crop breeding, designing sustainable 
cropping systems and their placement on the landscape. Likewise, 
adaptive changes in the amount and timing of irrigation7 as well as 
nitrogen fertilization63 in response to CC may have economic and 
environmental implications that can be assessed with the coupled 
crop, economic and environmental models64.

Better representation of physiological responses to CC
Realistic physiological responses to CC in CMs are essential for rig-
orous CC adaptation assessment65. Multi-model intercomparisons, 
like AgMIP60, show that current CMs can simulate comparable yields 
under current climate and management conditions66–69. However, 
those models diverge significantly in predicting future yield under 
common CC scenarios67,70,71, mainly due to their diverging assump-
tions about the underlying physiology of how crop growth will 
respond to changes in various environmental factors, including 
carbon dioxide concentration ([CO2])67,72,73, temperature67,73,74, soil 
water and nutrient availability68. The divergence issue becomes 
more complicated with their significant differences in representing 
combined effects of different environmental stresses on plant devel-
opment and biomass production31,66. Multi-model ensemble can 
lead to more robust model predictions with a potentially narrower 
uncertainty range than an individual model projection67–69,71,75,76. 
However, since most CMs have limited capability to simulate the 
combined effects of multiple CC factors on crop growth, confidence 
in such multi-model projections is reduced, especially when con-
sidering climate extremes (droughts, heatwaves and flooding) and 
their interactions.

Higher [CO2] alone is expected to benefit crop production. Free 
air CO2 enrichment (FACE) experiments show that elevated [CO2] 
may increase net carbon assimilation and plant growth for C3 crops 
and for C4 crops under water-limited conditions77,78. Elevated [CO2] 
also reduces stomatal conductance and potentially enhances water 
use efficiency79–81. However, this does not necessarily lower the 
drought risk, since elevated [CO2] may stimulate leaf growth and 
hence lead to more water consumption in some crop species, such 
as soybean82,83. Moreover, reduced canopy cooling associated with 
lower transpiration rates under elevated [CO2] could also increase 
canopy temperature80. The magnitudes of these CO2 effects vary 
depending on crop species and cultivar84,85 as well as environmental 
conditions because the CO2 effect interacts with temperature, water, 
nitrogen and ozone stress conditions79,86–88. The modelling com-
munity has attempted to reconcile model predictions with these 
observed results, but inconsistencies between model simulation 
and observations remain72. Part of this model-data discrepancy may 
come from different approaches CMs use to represent plant physi-
ological responses to elevated [CO2]. For example, CMs may simu-
late canopy-level assimilation using either radiation use efficiency 
(RUE)89 or photosynthetic biochemical limitation approaches17,90. 
In the RUE approach, the CO2 fertilization effect on assimilation 
is simulated through a multiplicative modifier to RUE, which is 
often empirically derived from limited experimental observations91. 
A better understanding of the biochemistry-related responses of 
leaf-scale stomatal and intra-leaf diffusional conductance, autotro-
phic respiration to elevated [CO2] and their scaling to canopy scale 
is needed for improved model performance86,92. Further, long-term 
effects of elevated [CO2] on crop growth differ from short-term 
effects due to photosynthetic acclimation, and current CMs dif-
fer in their abilities to translate short-term responses to long-term 
effects93. Coupling CO2 response to nutrient limitation through 
product inhibition and understanding the source–sink relation-
ship in carbon and nutrient allocation under varied environmental 
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conditions are essential for CMs to capture the yield responses to 
elevated [CO2]94.

Chronic or acute exposure of crops to tropospheric ozone can 
decrease photosynthesis, alter carbon allocation and reduce yield 
quantity and quality95. As ozone damage occurs at the cellular level, 
CMs need to explicitly represent leaf photosynthesis biochemistry, 
stomatal conductance and daily or sub-daily canopy growth and 
biomass partitioning to simulate ozone impacts on crop growth, 
yield and its interaction with other environmental factors. However, 
current CMs seldom consider these physiological mechanisms of 
ozone stress on crop growth96–98, and ozone-induced yield impact 
assessments at regional-to-global scales mainly rely on empirical or 
semi-empirical modelling approaches95. Future studies should pri-
oritize the development and benchmark of a mechanistic algorithm 
for ozone stress on crop growth using high-quality data from ozone 
filtration and fumigation experiments conducted in open top cham-
bers or FACE sites95,99,100.

Since extreme events, such as heatwaves, droughts and extreme 
rainfall events, are projected to increase under future climate  
scenarios101, representing their impact on crop growth and produc-
tivity in CMs is essential for projecting future food security102. Heat 
stress affects grain setting during anthesis and grain size during the 
grain filling period103–105, and therefore can directly lead to yield 
reduction. Asymmetric impacts of high day and night temperatures 
have been observed for some crop species, particularly rice106,107. 
Drought stress can reduce stomatal conductance, downregulate pho-
tosynthesis, slow plant development and growth, cause earlier leaf 
senescence and reduce yields103. The impacts of heat and drought 
stresses are growth-stage-dependent. For example, greater yield 
loss is usually observed if crops are stressed from heat and drought 
during meiosis, anthesis and grain filling stages108. Moreover, heat 
and drought stresses usually occur concurrently and interact with 
each other, increasing the overall stress for crop growth109,110. The 
crop breeding community has been targeting new cultivars that 
tolerate both drought and heat stresses over the last two decades. 
However, current CMs show suboptimal performance in simulat-
ing the impacts of drought-heat interacting stresses111,112, mainly due 
to complexity in simulating plant physiological responses to such 
complex abiotic conditions. Deficiencies in model structure can also 
lead to uncertainty in assessing heat stress impacts on crop yield and 
understanding the relative importance of drought as compared to 
heat stress113,114. Examples of this problem include using air tempera-
ture instead of canopy temperature to quantify heat stress115,116, and 

lack of canopy energy budget closure and plant hydraulics in most 
traditional CMs. Compared with drought and heat stress, nega-
tive impacts of excess rainfall or waterlogging on crop growth have 
received even less attention in current CMs117,118, although it may lead 
to comparable yield losses119. Root growth and metabolism under 
oxygen deficiency should be explicitly simulated in CMs to quantify 
the oxygen limitations on active nutrient uptake and crop growth. 
Understanding and implementing these physiological responses to 
changing environmental factors in CMs should be prioritized and 
would benefit model-assisted design of CC adaptation strategies.

Better representation of crop management practices
Crop management practices are the actions farmers take to ensure 
crop productivity. Current field-scale CMs generally have specific  
crop management modules which can simulate parts of the impacts 
from some management practices. However, opportunities for 
improvement are abound, especially considering these CMs simu-
late largely diverged sensitivities of crop yield, soil carbon and nitro-
gen fluxes to management practices120,121. An emerging priority is to 
improve the model representation of management impacts on soil 
biogeochemical cycling. Unlike natural ecosystems, biogeochemi-
cal cycling in farmland soils is directly affected by crop manage-
ment practices, and it is a key determinant of crop productivity 
and CC mitigation potential of agroecosystems. Improved repre-
sentation of plant–soil–microbial interactions and the impacts of 
management practices on such interactions could improve simu-
lating coupled carbon–nitrogen–phosphorus cycles in cultivated 
soil121. Recent advancements in soil biogeochemistry and ecosystem 
modelling could be combined and leveraged122–125. Additionally, 
most previous model-ensemble-based assessments of CC impacts 
on crop production reinitialize soil water and nutrient conditions 
in each growing season to solely focus on impacts from climate  
variability66,67,126,127. Only recently have continuous multi-year 
simulations been used to assess the legacy impacts of manage-
ment practices on both crop yield and environmental sustainability 
(such as soil health and greenhouse gas emissions)128–131. Inclusion 
of regionally representative crop management remains a  priority 
for ESM-based CMs132. Current ESMs consider a limited number 
of crop management practices, such as irrigation and nitrogen  
fertilization49. Other crop management practices (such as tillage, 
crop rotation and cover crops) still need to be implemented. A chal-
lenge to implement all of them represents the large data gaps in spa-
tiotemporal characterization of these crop management practices.
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Fig. 3 | Temperature free-air controlled enhancement experiment for soybean in Illinois, uSA. a, Experiment design for the multi-level temperature 

treatment (+1.5 °C, +3.0 °C, +4.5 °C and +6.0 °C). Tc, canopy temperature. b, Different physiological mechanisms depicting the responses of soybean 

growth and yield to higher temperature. AGB, above-ground biomass; HI, harvest index. c, A conceptual temperature response function from the field 

measurement that can be used to constrain CMs, enabling models to reproduce the right yield response with the right mechanism.
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Improving pest and disease management simulation in CMs is 
another priority as crop yield loss from these processes is projected 
to increase with CC133–135. Few CMs simulate the stress from pests 
and diseases, which, if not well controlled, can be a key determi-
nant of yield gaps. Process-based simulation of crop pest and dis-
ease management requires at least three sub-modules: population 
dynamics, injury and damage, and management action. Population 
dynamics models have been well developed in the epidemiological 
community. Linking those population models with crop growth 
models is the first step to address the complex interactions between 
crop and pest or pathogen dynamics14,136. However, this coupling 
requires a better understanding of the injuries and damage mech-
anisms. For example, modelling corn borer injury to xylem ves-
sels, and hence water uptake, requires a hydraulic-driven model 
of soil–root–canopy–atmosphere water transfer along poten-
tial gradients through a series of hydraulic resistances. Pest and  
disease control actions, such as pesticide use, should be simulated 
by explicitly considering their impacts on population dynam-
ics and metabolism rates of pests and diseases. Improving the  
simulation of fate and transport of pesticides in the soil– 
crop–atmosphere continuum as well as in rivers would benefit 
environmental sustainability assessment137,138. With these advance-
ments, potential benefits in both crop production and environ-
mental sustainability of using genetic mechanisms for protection 
against pest and disease damage could also be assessed using the 
multiscale modelling framework.

Closing the data gaps
Observations from individual sites or site networks have been widely 
used to evaluate and improve field-scale CMs139. However, current 
field experiments have limited coverage of growth conditions (cli-
mate, soil and crop management practices). More site-level data col-
lection following standardized protocols for model evaluation and 
improvement is needed140. In addition, current field data generally 
have limited treatment levels for [CO2], temperature or [O3]. Many 
previous studies have evaluated CMs mainly for their accuracy in 
simulating target variables such as crop yield, above-ground bio-
mass and leaf area index. Any future projections on crop produc-
tion should consider that simulating the emergent relationships is as 
important as, or perhaps more important than, simulating the ‘right 
magnitude’ of any particular target variable in CMs71. Examples of 
such emergent relationships are the nonlinear yield response to tem-
perature141 and kernel number response to plant growth20. Focusing 
on functional relationships could minimize or prevent CMs from 
predicting right values due to the wrong mechanism65.

Progress in science and technology is an iterative process 
whereby experimentation will inform modelling and vice versa. 
The effectiveness of integrating field research programs with model 
development and evaluation efforts at the process level across envi-
ronmental gradients could be increased by designing standardized 
protocols to collect field data. Future field experiments should be 
designed to facilitate model development and validation of the 
‘responses’ of CMs to various environmental conditions and stress-
ors. A good example is the multi-level temperature free-air con-
trolled enhancement experiment in Illinois (USA), which collected 
data for response curves of soybean growth over multiple elevated 
temperatures (+1.5 °C, +3.0 °C, +4.5 °C and +6.0 °C), instead of 
a single-dose response value (Fig. 3). Both biometric and leaf gas 
exchange measurements were collected periodically across multiple 
growing seasons, providing valuable data for mechanism under-
standing and model testing.

Data gaps are even larger for crop modelling at regional-to-global 
scales, especially on soil and crop management characteristics. 
One major uncertainty is in soil characterization142. Though global 
soil databases exist, their collected soil profiles are insufficient to 
account for the large heterogeneity in soil characteristics. Moreover, 

the spatial distribution of soil profiles is largely biased. Traditional 
soil maps are vector or polygon products linking dominant soil 
types for different soil horizons in the same soil column as tabu-
lar characteristic data without any documented uncertainty. The 
variability within each soil map unit polygon is largely neglected 
depending on the map scales142. Regional-to-global gridded soil 
products have recently become available from spatial interpola-
tion with other environmental covariates143,144, but generalization of 
the soil-environment prediction models is still poor. Besides, soil 
parameters from these gridded products are not enough to drive 
CMs in many regions145. As an example, the organic C:N:P ratio is a 
key attribute currently lacking in those soil products. For large-scale 
crop modelling, the dominant soil-type approach is still widely used 
to derive soil parameters, which inevitably introduces uncertainties 
when either upscaling soil types or applying pedotransfer func-
tions at larger scales146, sometimes greater than uncertainties from 
climate aggregation61. Moreover, soil characteristics over cultivated 
areas are actually not static but responsive to CC, land use and man-
agement practices129. Ignoring this variability may lead to inconsis-
tency in existing soil maps as they are produced from soil surveys 
conducted at different times. Advancements in new soil sensor 
development, in situ soil data collection methods and fast soil test-
ing techniques would help collect denser soil datasets with greater 
frequencies, which will ultimately improve the quality of gridded 
soil data needed for crop modelling at large scales.

Insufficient agricultural management data at regional-to-global 
scales also hinders spatiotemporally explicit representation of agri-
cultural management practices in CMs147. For example, current 
global simulation efforts usually use one single reference cultivar or 
several region-specific cultivars for each crop type without explicit 
quantification of uncertainties from intra-species variability58,148. 
The spatial distribution and interannual variability in land devoted 
to specific cultivars of crop species remains poorly quantified. Some 
of these data gaps are related to strongly held desires for data privacy 
among farmers. Finding effective ways to work with farmers could 
be the key to narrow these important data gaps. University extension 
services and regional farmer groups can play critical roles to facili-
tate farmer data sharing, research dissemination and farmer benefit 
from new technologies. Governmental policies on data sharing may 
also help harness the power of agricultural data collected by public 
agencies149. In addition, crowdsourcing data150—for example, crop 
phenological stages collected by voluntary observer network151—
can complement such information. Another promising solution is to 
map agronomic management practices from space. Previous stud-
ies have demonstrated the potential of remote sensing in mapping 
crop species152, irrigation area and intensity153, and agronomic con-
servation practices (for example, cover crops and field tillage)154,155  
at large scales. Important crop phenological states, such as sow-
ing, emergence, anthesis, tasseling and silking (for maize)156–158  
can also be derived from remote sensing, which may assist setting 
management configurations (for example, sowing or harvesting 
dates and cultivar maturity groups) in CMs.

Model-data integration
Reconciling model simulations with observations is a natural 
process to advance model improvements. Besides biomass and 
yield observations, there is still a largely unrealized opportunity 
for testing CMs against eddy covariance measurements of water, 
energy and CO2 exchange under contrasting environmental con-
ditions. These tests will help identify crop responses to changes 
in diverse environmental conditions, yet have been largely over-
looked by the crop modelling community. A wealth of eddy cova-
riance data has been accumulated at tens of cropland sites and 
compiled in either regional or global flux networks159. It was not 
until recently that high-frequency eddy covariance observations 
were used to benchmark simulations of multiple CMs160. Besides 
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conventional model-data comparisons, there is a greater need for 
evaluation and calibration of the response and emergent relation-
ships in model simulations. Experimental response relationships 
(such as measured temperature responses from experiments in 
Fig. 3) can be used to evaluate and constrain CMs at site scale161. 
Simulated yield responses to environmental variability at regional 
scales can further be compared and calibrated using statistical 
model-inferred yield responses141,162, and, in turn, the insights 
from statistical models can help improve process-based CMs for 
better CC adaptation assessment163,164. With these ‘responses’ as 
constraints, CMs could be closer to ‘delivering right simulations 
with right mechanisms’. The constrained model would enable 
identifying bottleneck processes for yield production under cur-
rent and future climate scenarios at regional-to-global scales, and 
the resultant assessment can guide crop genetic improvement. 
Remote sensing observations provide another promising opportu-
nity for spatially explicit calibration of CMs at regional-to-global 
scales. Complementary information about crop growth and stress 
across different spectral bands165, with broad spatial coverage 
and increasingly finer spatiotemporal resolution of remote sens-
ing data166, allow explicit incorporation of satellite information to 
improve regional crop simulation. Satellite-derived crop phenol-
ogy stages156–158, leaf area index167, water use168 and yield169 can be 
used as model constraints170.

Concluding vision
The research community is actively seeking CC adaptation strategies 
that can ensure future crop production and environmental sustain-
ability. As conducting trial experiments in all environmental condi-
tions is not feasible and some future environmental conditions do 
not yet exist, crop modelling is a critical tool for hypothesis test-
ing and scenario analysis under varied environmental conditions. 
Scenario-based model simulations can potentially guide genetic 
improvement and management adaptation plans. To fulfil this 
potential, crop modelling must extend beyond its current scales 
(organ-to-field scales) to both smaller (gene-to-cell) and larger 
(regional-to-global) scales. Although not all scales must necessarily 
be included in a single model for all applications, coherent process 
representations and standardized interfaces to other scales should be 
developed to facilitate assembling modelling solutions suitable for 
specific demands. The development of a multiscale crop modelling 
framework requires multidisciplinary knowledge, including (but not 
limited to) genetics, genomics, molecular systems biology, plant phys-
iology, agronomy, soil science, agroecology, hydrology, biogeochemis-
try, climate, Earth system science, remote sensing and engineering171. 
Transdisciplinary collaboration and convergent research approaches 
are needed to achieve such a multiscale crop modelling paradigm, 
which will allow for more robust and useful predictions of crop pro-
duction under CC along with its environmental implications. Broader 
collaboration among crop modellers across different communities, 
and promotion of knowledge exchange, data sharing, open-source 
coding and community-based model development, benchmarking 
and intercomparison, are fruitful paths forward to success. Several 
global partnerships, such as AgMIP60, Research Program on Climate 
Change, Agriculture and Food Security (CCAFS) of the Consultative 
Group for International Agricultural Research (CGIAR)172 and Crops 
in silico (Cis)38,39 serve as guiding examples.
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