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a b s t r a c t

In this paper, a second order accurate augmented matched interface and boundary
(MIB) is introduced for solving two-dimensional (2D) elliptic interface problems with
piecewise constant coefficients. The augmented MIB seamlessly combines several key
ingredients of the standard MIB, augmented immersed interface method (IIM), and
explicit jump IIM, to produce a new fast interface algorithm. Based on the MIB, zeroth
and first order jump conditions are enforced across an arbitrarily curved interface, which
yields fictitious values on Cartesian nodes near the interface. By using such fictitious
values, a simple procedure is proposed to reconstruct Cartesian derivative jumps as
auxiliary variables and couple them with the jump-corrected Taylor series expansions,
which allow us to restore the order of the central difference across the interface to two.
Moreover, by using the Schur complement to disassociate the algebraic computation of
auxiliary variables and function values, the discrete Laplacian can be efficiently inverted
by using the fast Fourier transform (FFT). It is found in our numerical experiments
that the iteration number in solving the auxiliary system weakly depends on the mesh
size. As a consequence, the total computational cost of the augmented MIB is about
O(n2 log n) for a Cartesian grid with dimension n × n in 2D. Therefore, the augmented
MIB outperforms the classical MIB in all cases by significantly reducing the CPU time,
while keeping the same second order of accuracy in dealing with complicated interfaces.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Elliptic interface problem has drawn a great amount of attention due to its wide application in many fields
such as computational electromagnetics and optics [1,2], biomolecular electrostatics [3,4], and material science [5].
Its mathematical model is featured by a regular or mostly irregular interface, across which there exist discontinuous
coefficients and singular source. A typical two-dimensional (2D) elliptic interface problem can be formulated through the
Poisson equation

−∇ · (β∇u) = f (x, y), (x, y) ∈ Ω (1)

with the Dirichlet boundary condition

u(x, y) = g(x, y), (x, y) ∈ ∂Ω. (2)
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For simplicity, we assume the domain Ω being a rectangular one in 2D. In the domain, there is an interface Γ separating
Ω into two subdomains Ω = Ω+

∪ Ω−. The interface is defined as Γ = Ω+
∩ Ω−. The coefficient β(x, y) and source

term f (x, y) are smooth and continuous in each subdomain, but are discontinuous across the interface. In this paper, we
concern ourselves with the case of piecewise constant coefficients, i.e., β is defined to be β+ inΩ+ and β− inΩ−. We also
denote the source term f (x, y) as f +(x, y) and f −(x, y) in Ω+ and Ω−, respectively. Across the interface Γ , the function
values of u from different subdomains are associated by the jump conditions

[[u]] :=u+
− u−

= φ(x, y), (3)

[[βun]] :=β+
∇u+

· n⃗ − β−
∇u−

· n⃗ = ψ(x, y), (4)

where n⃗ is the unit outer normal direction from Ω− to Ω+, and the superscript stands for the limiting value from each
side of the interface. Eqs. (3) and (4) are called as the zeroth and first order jump conditions.

Analytical solutions for elliptic interface problems are not readily available in the presence of irregular interfaces,
while standard numerical methods may fail to produce accurate solutions because of the difficulty in enforcing the
jump conditions into numerical discretization. For example, the finite difference method on Cartesian mesh will invoke a
large error as the interface cuts through the grid lines near the irregular points. Besides, the process of jump conditions
imposition may alter the condition number of numerical schemes, because it changes the structure of the coefficients
matrix. It is crucial to appropriately address the issue from jump condition enforcement in order to design robust
numerical schemes, especially when some iterative solver is utilized to solve the discretized system.

The finite element method (FEM) solution of elliptic interface problems dates back to 1970s by Babuška [6]. In
continuous FEMs, complex interfaces are represented by using body-fitted unstructured grids, while the jump conditions
can be satisfied in the variational formulations [7,8]. Recently, both discontinuous Galerkin (DG) [9,10] and weak Galerkin
(WG) [11,12] type discontinuous FEMs have been constructed for solving elliptic interface problems. Immersed FEM
[13–17] is an another popular FEM for elliptic equations, in which structured Cartesian meshes are employed so that the
time-consuming mesh generation process can be avoided. To treat interfaces that cut through finite elements, the basis
functions in cut-through elements can be modified to weakly satisfy jump conditions [13]. Other interface approaches,
such as enforcing jump conditions via fictitious nodes [17] and Lagrange multipliers [15,16], have also been developed.
Simple procedures, based on Delaunay triangulation [18] and Voronoi diagram [19] respectively, have been introduced to
alter uniform grids locally to generate semi-structured interface-fitted meshes, which lead to effective virtual element [18]
and finite volume [19] approaches.

The development of Cartesian grid finite difference methods for solving elliptic interface problems has received much
attention in the past several decades. Peskin [20,21] proposed the immersed boundary method (IBM) to model blood flow
in heart. In this method, singular forces are smeared out by discrete delta function. It proved to be a robust and efficient
method, and it is typically first order in high dimension application. Fedkiw, Osher and coworkers [22,23] introduced the
ghost fluid method (GFM) to treat contact discontinuities in the inviscid Euler equation. The principle lies in extending the
piecewise function into the other subdomain to build a set of artificial values by the jump conditions. The extension of the
first order GFM to second order has been reported in [24] recently. LeVeque and Li [25,26] have invented the immersed
interface method (IIM) which introduces correction terms of jump conditions into finite difference discretization by Taylor
expansion. As the first second-order accurate Cartesian grid method, the IIM has gained a great popularity in numerous
applications involving elliptic equations and interfaces. By iteratively enforcing zeroth and first order jump conditions, a
matched interface and boundary (MIB) method has been introduced in [27], which avoids the challenge of implementing
high order jump conditions in constructing high order Cartesian grid methods. The MIB scheme is systematically carried
out and can be made to arbitrarily high order in principle in the presence of straight interfaces. Orders up to 16 have
been achieved numerically [27]. In treating smoothly curved interfaces, the MIB method can usually achieve the fourth
order convergence [2,27]. Other effective Cartesian grid methods for elliptic interface problems include coupling interface
method [28], piecewise-polynomial interface method [29], kernel free integral equation method [30], and virtual node
method [31,32].

There is a great interest in developing fast interface algorithms to accelerate algebraic computations by means of
fast Poisson solvers, which include geometric multigrid method with a complexity O(N) and fast Fourier transform (FFT)
with a complexity O(N logN), where N is the spatial degree of freedom. For FEMs, the discrete systems based on the
interface-fitted mesh can be solved by using the algebraic or geometric multigrid solvers, see for example Ref. [33] with
adaptive mesh refinement. For Cartesian grid methods, the formulation of the restriction and prolongation in a multigrid
cycle is far away from trivial for interface problems. A major breakthrough in this direction is the multigrid IIM method
developed by Adams and Li [34]. Later, multigrid solvers have also been applied in other Cartesian grid methods, including
the piecewise-polynomial interface method [29] and virtual node method [31,32].

A significant achievement in the field is the augmented IIM (AIIM) [35,36] which introduces the jump in the normal
derivative of the solution [un] as an augmented variable. Thanks to the symmetric coefficient matrix derived from finite
difference stencil, a fast Poisson solver associated with GMRES iterative method can be employed to solve the Schur
complement system efficiently. The algebraic complexity of the AIIM primarily depends on the underlying fast solver,
i.e., the FFT in case of a piecewise constant β [35] and the multigrid for piecewise variable coefficients [36]. Another
effective approach for decomposing jump conditions was introduced in [37,38]. Instead of using [un], jumps in Cartesian
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derivatives, such as [ux], [uxx], [uy], [uyy] and even higher order ones, are calculated explicitly. Near the interface, jump
corrected Taylor expansions have been proposed in [38], which lead to an explicit jump immerse interface method (EJIIM)
for solving piecewise constant coefficient problems. For variable coefficient elliptic equations, a decomposed immersed
interface method (DIIM) has been constructed using similar ideas [37]. A common feature of these three IIMs is that the
Laplacian operator is approximated by the standard finite difference approximation, which results in a symmetric and
diagonally dominant matrix for fast Poisson solver. The jump corrections are realized by means of auxiliary variables
which can be solved either through the Schur complement method [35,36,38] or from the previous iterative step [37].
The robustness of these numerical schemes crucially depends on the numerical approximation to the jump conditions
and may be affected when higher order jump conditions are included. On the other hand, the jump correction by using
only zeroth and first order jump conditions in association with fast Poisson solvers has not been investigated before.

The goal of this paper is to introduce an augmented MIB method (AMIB) for solving elliptic interface problems with
piecewise constant coefficients, which combines key features of AIIMs [35–38] and MIB method [2,27] in one framework.
As in the regular MIB method, only zeroth and first order jump conditions will be employed to generate two layers of
fictitious values on irregular nodes surrounding the interface, one inside and one outside. Unlike the MIB method, the
fictitious values will not be directly used for modifying partial differential equation (PDE) discretization. Instead, jump
corrected Taylor expansions introduced in the EJIIM [37,38] will be established based on the MIB fictitious values. Then,
by treating the reconstructed Cartesian derivative jumps as auxiliary variables, an enlarged linear algebraic system will
be formed, in a process quite similar to the AIIM [35,36]. Also, this system will be solved by the same Schur complement
approach formulated in the AIIM, in which the discrete Laplacian is inverted by the FFT algorithm. The resulting AMIB
scheme will be much more efficient than the classical MIB, while keeping the same second order accuracy. Like the original
MIB, the AMIB is a PDE-independent approach, i.e., the interface treatment does not depend on the underlying PDE, which
is a property not shared with the IIMs. The generation of the AMIB to other PDE interface problems and to higher order
will be investigated elsewhere.

The rest of the paper is organized as follows. In Section 2, several key aspects of the proposed AMIB method will be
presented. Section 3 will be dedicated to the implementation of our new approach in different complex interfaces and
numerical convergence rate will be validated. A summary and future development will be discussed at the end of this
paper.

2. Theory and algorithm

In this work, we focus on piecewise constant coefficient elliptic problem. Hence, our original PDE (1) can be rewritten
as below after moving the coefficient β to the right hand side of the equation,

△ u = −
f (x, y)
β

, (x, y) ∈ (Ω−
∪Ω+) \ Γ (5)

with the same Dirichlet boundary conditions (2) and interface jump conditions (3) and (4).
We restrict our discussion on an rectangular domain [a, b] × [c, d] in which a close interface Γ is embedded. The

domain is partitioned into nx and ny equally spaced intervals in x- and y-directions respectively such that the mesh sizes
are hx = (b− a)/nx and hy = (d− c)/ny. We assume h = hx = hy for simplicity. The grid nodes coordinates are defined as

xi = a + ih, yj = c + jh, i = 0, . . . , nx, j = 0, . . . , ny.

In this way, Cartesian grids are generated across the domain.
Assume that the interface is defined by a level set function Γ = {(x, y), ϕ(x, y) = 0}, with ϕ(x, y) > 0 in Ω− and

ϕ(x, y) < 0 in Ω+. Two functions are defined at each grid point

ϕmin
ij = min{ϕi−1,j, ϕi,j, ϕi+1,j, ϕi,j−1, ϕi,j+1},

ϕmax
ij = max{ϕi−1,j, ϕi,j, ϕi+1,j, ϕi,j−1, ϕi,j+1}.

If ϕmin
i,j ϕ

max
i,j > 0, then the grid point (xi, yj) is called a regular point, otherwise irregular point.

We have the standard second order finite difference for second order partial derivative of x with the truncation error
O(h2) as follows:

∂2u(xi, yj)
∂x2

≈
u(xi−1, yj) − 2u(xi, yj) + u(xi+1, yj)

h2 (6)

Similar stencil could be derived for y-direction partial derivatives. While the standard difference could be used for
approximation at regular points, modification is required for irregular points as finite difference is not well-defined
because the function may not be smoothly continuous across the interface.
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2.1. Correcting finite difference for Laplacian

In the MIB method [2,27], the Laplacian will be approximated in a tensor product manner. Similarly, it is sufficient for
us to discuss the ideas of the proposed AMIB method by focusing on one direction first. Assume the interface intersects
the grid line y = yj at some point α between xi and xi+1. We first establish the Taylor expansion that relates the function
values at (xi, yj) and (xi+1, yj) across the interface. Let us drop the function dependence on y at the moment, by denoting
u = u(x). This reduces the derivation into a one-dimensional (1D) problem.

Assume the solution of elliptic interface problems being a piecewise smooth function, i.e., the smoothness of the
piecewise function is u ∈ C l+1 in each side of the interface. Here we take the situation with xi ∈ Ω− and xi+1 ∈ Ω+

for demonstration. It can be similarly defined if xi ∈ Ω+ and xi+1 ∈ Ω− as long as xi ≤ α < xi+1. If the Cartesian jumps
are known, we have the corrected Taylor expansions at two irregular points [38]

u(xi+1) =

l∑
k=0

hk

k!
u(k)(xi) +

l∑
k=0

(h+)k

k!
[u(k)

]|x=α+O(hl+1) (7)

and

u(xi) =

l∑
k=0

(−h)k

k!
u(k)(xi+1) −

l∑
k=0

(h−)k

k!
[u(k)

]|x=α+O(hl+1) (8)

where h−
= xi − α, h+

= xi+1 − α with xi ≤ α < xi+1, and [u(m)
]α = limx→α+ u(m)(x) − limx→α− u(m)(x). Based on the

jump-corrected Taylor expansions (7) and (8), it is easy to derive following differences at irregular points.
Jump-corrected difference. Suppose u ∈ C4

[xi − h, α) ∩ C4(α, xi+1 + h] and xi ∈ Ω− and xi+1 ∈ Ω+, where derivatives
extend continuously up to α. The following approximations hold to O(h2) when m = 3 [38]:

uxx(xi) ≈
u(xi+1) − 2u(xi) + u(xi−1)

h2 −
1
h2

m∑
k=0

(h+)k

k!
[u(k)

], (9)

uxx(xi+1) ≈
u(xi+2) − 2u(xi+1) + u(xi)

h2 +
1
h2

m∑
k=0

(h−)k

k!
[u(k)

]. (10)

In two dimension (2D), the geometry of a curved interface could be complicated. For a fast changing curvature, one grid
line may cut the interface twice within a short distance. If the distance between two intersection points is less than h, the
numerical resolution is too coarse and cannot sense the interface. If such a distance is larger than 2h, these two interface
points can be treated independently. Nevertheless, if such a distance is in between h and 2h, we are facing a so-called
corner node. For example, see point P2 in Fig. 2 along y direction. The case with one grid line cutting the interface twice
near a corner point is also called multiple interfaces in 1D. Multiple corrections have to be applied for the irregular point
whenever multiple interfaces occur. The formula for multiple corrections is derived in x-direction for demonstration as
following:

Multiple corrections. Let xi−1 ≤ α1 < xi ≤ α2 < xi+1, h−

1 = xi−1 − α1, h+

1 = xi − α1, h−

2 = xi − α2, and h+

2 = xi+1 − α2.
For example, we may have the situation where xi ∈ Ω− and xi−1, xi+1 ∈ Ω+. Assume u ∈ C4

[xi−1, α) ∩ C4(α1, α2) ∩

C4(α2, xi+1], with derivatives extending continuously up to the boundaries of the subintervals. The following second order
approximation to second order derivative at xi holds with truncation error O(h2) when m = 3 [38],

uxx(xi) ≈
u(xi+1) − 2u(xi) + u(xi−1)

h2 +
1
h2

m∑
k=0

(h−

1 )
k
[u(k)

]α1 − (h+

2 )
k
[u(k)

]α2

k!
. (11)

Remark 2.1. All the above corrected differences in the case of single interface or multiple interfaces are concerned with
x-direction derivatives, which are also applicable to y-direction in the same manner. The combination of differences in the
x- and y-direction enables us to approximate the Laplacian operator dimension by dimension. The corrected difference
differs from standard difference by the summation of several jump quantities of derivatives, which is called a correction
term. At irregular points, such correction term is of significance to address the discontinuity along the interface while
correction term vanishes for regular points. On the other side, it helps maintain the symmetric and diagonally dominant
properties for the standard second order discretization stencil in (9)–(11), which allow the use of the FFT algorithm.

Remark 2.2. From the corrected difference, it is easy to see that to achieve second order accuracy, we need Cartesian
jump conditions up to the third order. Nevertheless, it has been proven theoretically and verified numerically in 1D [38]
that it is sufficient to retain second order accuracy if we only use jump quantities up to the second order derivative with
a truncation error O(h) at irregular points, that is m = 2. Therefore, jump quantities up to second order will be adopted in
the present study, and the second order global convergence can indeed be realized with first order local jump corrections.
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Fig. 1. Irregular points P1(i, j) and P2(i + 1, j). The interface intersects y = yj at (x∗, yj) and x = xi at (xi, y∗).

Fig. 2. Corner point P2(i, j). The interface intersects with x = xi at P1(xi, y∗

1) and P3(xi, y∗

2) while it intersects with y = yj at P4(x∗, yj).

Bearing the above x-oriented corrected difference (9)–(11) in mind, we generalize the idea into 2D. Let us take a general
case for illustration, in which we come across an irregular point with two of its adjacent points on the other side of the
interface. Assume point P1(xi, yj) with irregularity stemming from the intersection of interface Γ with grid line y = yj on
(x∗, yj) and grid line x = xi on (xi, y∗). See Fig. 1. Let h−

x = xi−x∗, h+
x = xi+1−x∗, h−

y = yj−y∗ and h+
y = yj+1−y∗. Corrected

differences are needed to approximate Laplacian with (9) applied in both x- and y-direction [38]. Thus the approximation
can be formulated as below with a local truncation error O(h) :

△u(xi, yj) ≈
u(xi−1, yj) + u(xi+1, yj) + u(xi, yj−1) + u(xi, yj+1) − 4u(xi, yj)

h2

−
1
h2

∑2

k=0

(h+
x )

k

k!
[
∂ku
∂xk

]|(x∗,yj) −
1
h2

∑2

k=0

(h+
y )

k

k!
[
∂ku
∂yk

]|(xi,y∗),

where Cartesian derivative jumps up to the second order ones are required. The correction for irregular point P2(xi+1, yj)
is simpler in comparison with point P1(xi, yj) since it only involves one adjacent point on the other side of the interface.
Formula (10) is employed for the x-partial derivative approximation in Laplacian operator while standard second finite
difference is utilized in y-direction.

For the case of a corner point P2 in Fig. 2, multiple corrected difference (11) is needed in y-direction while one
correction (9) is applied in x-direction. In this case, the interface has three intersection points with x- and y-grid lines,
i.e. P1(xi, y∗

1), P3(xi, y
∗

2), and P4(x∗, yj). Several signed distances are defined as h−
x = xi − x∗, h+

x = xi+1 − x∗, h−
y1 = y∗

1 − yj−1,
h+
y1 = yj−y∗

1, h
−
y2 = yj−y∗

2, and h+
y2 = yj+1−y∗

2. The corrected difference to approximate Laplacian at P2 is derived as: [38]

△u(xi, yj) ≈
u(xi−1, yj) + u(xi+1, yj) + u(xi, yj−1) + u(xi, yj+1) − 4u(xi, yj)

h2

−
1
h2

2∑
k=0

(h+
x )

k

k!
[
∂ku
∂xk

]|(x∗,yj)+
1
h2

2∑
k=0

(h−
y1 )

k

k!
[
∂ku
∂yk

]|(xi,y∗1)

−
1
h2

2∑
k=0

(h+
y2 )

k

k!
[
∂ku
∂yk

]|(xi,y∗2)
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Fig. 3. The interface intersect y = yj at (x∗, yj). At two irregular points P2(i, j), P3(i, j+1), a pair of fictitious values (empty squares) can be constructed.
θ is the angle between positive x-direction and the normal vector n⃗.

Three special examples are given above. Formulas for other cases could be easily generalized depending on the location
of irregular points to the interface using corrected difference (9) and (10).

2.2. Reconstructing the Cartesian derivative jumps

So far we have established the corrected differences with Cartesian derivative jumps undetermined. These jumps are
solution dependent and their reconstruction is non-trivial so that it needs appropriate numerical approximation as one
part of the solution. That is where fictitious values generated by the MIB method come in.

To maintain a first order convergence locally for the irregular points, an interpolation polynomial with third order
accuracy is expected to approximate the interracial jump value. This guarantees the truncation error being O(h) for second
order derivatives. Such approximations will be realized in two stages in the proposed AMIB method: First, a pair of
fictitious values are constructed along the Cartesian grid line as smooth extension for each piecewise function in the
other subdomain. Second, the fictitious values are utilized in two interpolations from each subdomain to produce jump
quantities of up to second order derivatives.

2.2.1. Fictitious values formulation
The MIB method [2,27] is employed to generate fictitious values in the vicinity of the interface with the aid of known

jump conditions (3) and (4). One more jump condition could be analytically derived by differentiating Eq. (3) along the
tangential direction τ of the interface as below,

[[uτ ]] = u+

τ − u−

τ = ρ(x, y) (12)

For an interface point, the normal vector of the interface is n⃗ = (cos θ, sin θ ) and the tangential direction is τ⃗ =

(− sin θ, cos θ ) with 0 ≤ θ ≤ 2π being the angle between positive x-direction and the vector n⃗ as shown in Fig. 3. The
Cartesian forms of three known interface conditions can be given as [27],

[[u]] = u+
− u−

= φ(x∗, y∗) (13)

[[uτ ]] = (−u+

x sin θ + u+

y cos θ ) − (−u−

x sin θ + u−

y cos θ ) = ρ(x∗, y∗) (14)

[[βun]] = β+(u+

x cos θ + u+

y sin θ ) − β−(u−

x cos θ + u−

y sin θ ) = ψ(x∗, y∗) (15)

for a point (x∗, y∗) on the interface.
Two equivalent approaches were proposed in [27] for generating two fictitious values in x-direction, by either canceling

u−
y or u+

y in (13), (14), and (15). Likewise, fictitious value simulation in y-direction can be completed in a similar fashion
by canceling either u−

x or u+
x .
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For simplicity, we only illustrate the case with the cancellation of u−
x and u−

y . This yields the following formulations
for x- and y-direction fictitious values respectively:

[[u]] =u+
− u−, (16)

[[βun]]−β
− tan θ [[uτ ]] = C+

x u+

x − C−

x u−

x + C+

y u+

y , (17)

where C+
x = β+ cos θ + β− tan θ sin θ , C−

x = β− cos θ + β− tan θ sin θ and C+
y = β+ sin θ − β− sin θ , and

[[u]] =u+
− u−, (18)

[[βun]]+β
− cot θ [[uτ ]] = D+

x u
+

x + D+

y u
+

y − D−

y u
−

y , (19)

where D+
x = (β+

− β−) cos θ,D+
y = β− cos θ cot θ + β+ sin θ and D−

y = β−(cos θ cot θ + sin θ ).
To illustrate how to obtain a pair of fictitious values along x-direction, formulation (16) and (17) are discretized by the

finite difference, yielding

[[u]] = w+

0,iûi,j + w+

0,i+1ui+1,j + w+

0,i+2ui+2,j − (w−

0,j−1ui−1,j + w−

0,iui,j + w−

0,i+1ûi+1,j) (20)

[[βun]] − β− tan θ [[uτ ]] =C+

x (w+

1,iûi,j + w+

1,i+1ui+1,j + w+

1,i+2ui+2,j)

− C−

x (w−

1,i−1ui−1,j + w−

1,iui,j + w−

1,i+1ûi+1,j)

+ C+

y (p+

1,juΓ ,j + p+

1,j+1uΓ ,j+1 + p+

1,j+2uΓ ,j+2), (21)

where ûi,j and ûi+1,j stand for the unknown fictitious values at point (xi, yj) and (xi+1, yj) on each side of the interface. Here
w and p denote the finite difference weights [39] for approximation along x- and y-direction. It could be automatically
obtained through a call to Fortran subroutine [39]. The superscripts − and + in w and p signify the Ω− and Ω+ domain
separated by the interface while i denotes the order of derivative and j represents the location along the grid line. Note
that three auxiliary function values uΓ ,j−1, uΓ ,j, uΓ ,j+1 at points (x∗, yj−1), (x∗, yj), (x∗, yj+1) in the y-direction are deployed
to approximate u+

y , see Fig. 3. Additionally, each of these three auxiliary values are interpolated or extrapolated by three
function values in Ω+. For example, in Fig. 3, uΓ ,j+1 is interpolated by function values ui,j+1, ui+1,j+1 and ui+2,j+1 while
both uΓ ,j and uΓ ,j−1 are extrapolated by three function values from their right side in the Ω+ domain.

With uΓ ,j, uΓ ,j+1 and uΓ ,j+2 appropriately approximated, (20) and (21) give fictitious values ûi,j and ûi+1,j at points
(xi, yj) and (xi+1, yj) represented as a linear combination of surrounding points near the interface and three jump
conditions at interface point (x∗, y∗). A general form of ûi,j is given as

ûi,j =

∑
(xI ,yJ )∈Si,j

WI,JuI,J + W0[[u]] + W1[[uτ ]] + W2[[βun]]

=

∑
(xI ,yJ )∈Si,j

WI,JuI,J + W0φ(x∗, y∗) + W1ρ(x∗, y∗) + W2ψ(x∗, y∗) (22)

where Si,j represents a set of surrounding nodes involved in (20) and (21). Similarly, ûi+1,j could be represented by the
functions values on the set Si+1,j and known jump values with different weights WI,J . Pairs of fictitious values in the
y-direction could be generated with Eqs. (18) and (19) following a similar procedure as above.

The MIB fictitious value representation typically involves points other than immediate neighbors of (xi, yj) as shown in
(22). The underlying extrapolation is designed so that a second order accurate approximation is maintained in estimating
these fictitious values. Moreover, no stability issue is experienced for the present elliptic interface problems. For time-
dependent problems, a different extrapolation strategy has been studied in the MIB literature [40,41]. Non-orthogonal
local coordinates were introduced to minimize the distance between extrapolation point and stencil center [40], and to
simplify extrapolation in three-dimensions [41].

2.2.2. Approximation to derivative jumps
We next consider how to reconstruct Cartesian jumps based on fictitious values. This procedure essentially bridges the

MIB method with the AIIM method, and has never been studied before in the finite difference literature.
In order to provide jump quantities in the corrected difference, we need to build two Lagrange polynomials of

degree two on each subdomain to give limiting derivatives from left (below) and right (above), which will result in the
approximated jumps for up to second order derivative. Take a jump approximation along x-direction for an illustration
here. As shown in Fig. 3, we combine real values ui−1,j and ui,j at points (xi−1, yj) and (xi, yj) together with fictitious value
ûi+1,j at ui+1,j for the Lagrange polynomial on the left-side subdomain. Meanwhile, with aid of fictitious value ûi,j at point
(xi, yj) combined with real value ui+1,j and ui+2,j located at points (xi+1, yj) and (xi+2, yj), we obtain another Lagrange
polynomial for the right-side subdomain.
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By taking derivatives of first and second orders on both Lagrange polynomials, we can approximate the jump values
at intersecting point (x∗, yj) with regard to x-partial derivatives as below

[
∂u
∂x

] = lim
x→(x∗)+

∂u
∂x

(x, yj) − lim
x→(x∗)−

∂u
∂x

(x, yj)

=w+

1,1ûi,j + w+

1,2ui+1,j + w+

1,3ui+2,j − w−

1,1ui−1,j − w−

1,2ui,j − w−

1,3ûi+1,j + O(h2),

[
∂2u
∂x2

] = lim
x→(x∗)+

∂2u
∂x2

(x, yj) − lim
x→(x∗)−

∂2u
∂x2

(x, yj)

=w+

2,1ûi,j + w+

2,2ui+1,j + w+

2,3ui+2,j − w−

2,1ui−1,j − w−

2,2ui,j − w−

2,3ûi+1,j + O(h),

which are equivalent to

w−

1,1ui−1,j + w−

1,2ui,j − w+

1,2ui+1,j − w+

1,3ui+2,j − w+

1,1ûi,j + w−

1,3ûi+1,j + [
∂u
∂x

] = 0, (23)

w−

2,1ui−1,j + w−

2,2ui,j − w+

2,2ui+1,j − w+

2,3ui+2,j − w+

2,1ûi,j + w−

2,3ûi+1,j + [
∂2u
∂x2

] = 0, (24)

with local truncation error O(h2) and O(h), respectively.
In addition to the two approximations to derivatives by (23) and (24), a third equation of the function jump in the

correction term is needed. Instead of a numerical approximation, the function jump across the interface from left to right
is explicitly obtained by the analytical jump condition (3).

[u] = lim
x→(x∗)+

u(x, yj) − lim
x→(x∗)−

u(x, yj) = c[[u]] = cφ(x∗, yj), (25)

where limx→(x∗)+ or limx→(x∗)− stands for the right or left limit, and constant c is either 1 or −1 depending on the desired
values from the given interface conditions. The analytical jump condition instead of numerical approximation guarantees
the exact jump quantity.

Note that w+

i,j and w
−

i,j denote the weights on each function value after taking certain derivative of Lagrange polynomial
at the intersecting point (x∗, yj). The subscript i stands for the order of derivative while subscript j signifies the order of
function value from the left. Especially, the signs − and + in w and u here represent the value from the left and right
subdomain of the interface respectively, rather than the sign definition in the Ω subdomain. This is how the constant
c is ensuring the correct sign of function jump [u] in the correction term regulated by given jump condition (3). This
clarification applies for the below and above subdomain in the study of y-direction derivative jumps.

In the following, we denote a vector Q̃ =
(
[u], [ ∂u

∂x ], [
∂2u
∂x2

]
)T as the jump quantities in correction term for one irregular

point. Eqs. (23)–(25) can be rewritten into a matrix–vector form for the jump quantities formulation

C̃ Ũ + IQ̃ = Φ̃ (26)

where Ũ includes all function values contained in Si,j and Si+1,j, C̃ is a coefficient matrix containing the corresponding finite
difference weights for Ũ . And Φ̃ is composed of terms after moving the known interface quantities φ(x∗, y∗), ψ(x∗, y∗) and
ρ(x∗, y∗) in representation of fictitious values ûi,j and ûi+1,j to the right-hand side. For [u], we simply take corresponding
row of C̃ as zero and corresponding entry of Φ̃ as cφ in (26).

2.3. Augmented system

2.3.1. Formulation of the augmented system
Let Ui,j indicate the discrete solution while u(xi, yj) is continuous solution at (xi, yj). Based on the corrected difference

analysis, the problem (5) is discretized in all interior nodes as

LhUi,j + Ci,j = −
fi,j
βi,j
, 1 ≤ i ≤ nx − 1, 1 ≤ j ≤ ny − 1, (27)

where Ci,j is the correction term, and LhUi,j is the standard five point central difference scheme

LhUi,j :=
Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j

h2 .

The degree of freedom of this system is N = (nx − 1)(ny − 1).
Note that correction term only exists at irregular points but vanishes at regular points. Via Eq. (27), a relation between

numerical solution and jump values of x- or y-partial derivatives is obtained as

AU + BQ = F (28)

where A is a N-by-N symmetric and diagonally dominant matrix, and the N-vector F is modified from the right-hand
side of (27) after homogenizing the boundary conditions. Variable U stands for the numerical solution for all grid nodes.
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Similar to Q̃ introduced in (26) for local approximation to a single set of correction jump quantities, here Q is a vector of all
auxiliary variables [u]i, [ ∂u∂x ]i, [

∂2u
∂x2

]i, i = 1, 2, . . ., and [u]j, [ ∂u∂y ]j, [
∂2u
∂y2

]j, j = 1, 2, . . . at all intersection points between the
interface and mesh lines. The total number of auxiliary variables, denoted as M here, is the triple of that of all intersection
points, while the latter is usually proportional to nx or ny. In other words, M is usually one-dimensional smaller than
N = (nx − 1)(ny − 1). The matrix B with dimension N-by-M contains coefficients from correction terms. In particular,
matrix B is a sparse matrix, since the correction terms only have impact on the irregular points which account for a small
portion in the whole computation grid points.

In matrix–vector form, the approximation to all the jump quantities in correction terms could be represented as

CU + IQ = Φ (29)

where the notations in (29) share the same meaning as their local counterparts in Eq. (26). Here the matrix C with
dimension M-by-N is also a sparse matrix, and I is a M-by-M identity matrix. An augmented equation system is therefore
obtained by combining (28) and (29),

KW = R, (30)

where

K =

(
A B
C I

)
,W =

(
U
Q

)
, and R =

(
F
Φ

)
.

2.3.2. A Schur complement procedure
We are concerned with solving the linear system of equations efficiently. The symmetric coefficient matrix A enables

us to take advantage of the fast Fourier transform (FFT) algorithm in the implementation. Eliminating U in (30) gives a
Schur complement system for Q ,

(I − CA−1B)Q = Φ − CA−1F , (31)

which has a much smaller dimension. To solve for Q in equation system (31), biconjugate gradient method could be
utilized. Once Q is determined, U could be solved by one more FFT on

AU = (F − BQ ). (32)

Solving the Schur complement system (31) will consume the majority of computational cost. Thus it needs a careful
treatment. It can be explained in the following steps.

1. With F determined initially, we can calculate F̂ = Φ−CA−1F easily after performing FFT on F , together with simple
multiplication and subtraction on matrix and vector.

2. To start the biconjugate gradient iteration in solving for Q from (31), we give an initial guess Q = (0, 0, . . . , 0)T .
The terminating tolerance in biconjugate gradient iteration can be set based on the expected second convergence
requirement of solutions.

3. The left hand multiplication of matrix by vector (I − CA−1B)Q is achieved by IQ − CA−1BQ . To be more clear,
the multiplication by vector Q is first finished on matrix B and I to avoid explicitly forming matrices B and C
in multiplication of I − CA−1B in the process of programming. Otherwise, it will take a great deal of computer
storage. Once BQ is obtained, FFT and simple multiplication on vector is utilized again for CA−1(BQ ). The transpose
multiplication of (I − CA−1B)TQ is done basically by following the same strategy on IQ − BTA−1CTQ , due to its
equivalence to original transpose multiplication.

4. At last, Q will be updated to start a new iteration until the tolerance is reached.

The complexity of the AMIB method crucially depends on the iteration number consumed in solving (31), whose
dimension is M × M . In general, such an iteration number could be linearly proportional to M . Nevertheless, as to be
shown in our numerical experiments, this number does not depend or weakly depends on M in the AMIB method. Similar
finding has been observed in the AIIM [35,36]. Consequently, the complexity of the AMIB is primarily determined by the
cost of matrix–vector product in (31) or the cost of FFT for inverting A. Recall that N = (nx − 1)(ny − 1). Asymptotically,
let us denote n = O(nx) = O(ny), M = O(n), and N = O(n2). Under the assumption that the iteration number is almost
independent of n, the complexity of the AMIB algorithm will be O(n2 log(n2)) = O(n2 log n). Such a speed will be much
faster than the regular MIB method, whose complexity usually scales as O(n3).

The total number of auxiliary variables M is the triple of that of all intersection points in the proposed AMIB method.
This could be reduced by one-third if the known jumps of [u] are moved to the right hand side. We have tested this
approach and found that this does not change the computational efficiency. In particular, the iteration numbers are the
same. Since the current implementation is simpler, we focus only on this approach in numerical studies. We also note
that a direct method has been proposed recently for the augmented IIM [42]. The acceleration of the AMIB method by
means of different auxiliary variables or direct algebraic solutions will be explored in near future.
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3. Numerical experiments

In this section, we examine the performance of the proposed augmented MIB (AMIB) method for two dimensional
elliptic problem with various interfaces. A square domain with equally spaced nodes is used such that there are nx − 1
and ny − 1 interior grids in x and y direction, respectively. By taking n = nx = ny, we define N = (n− 1)2. Also the length
of the domain is chosen as a non-integer so that the intersection points between the interface and grid lines locate at
random places. The numerical accuracy and convergence will be tested by comparing the numerical solutions with exact
solutions under the standard maximum norm and L2 norm defined as

L∞ = max
1≤i,j≤n−1

|u(xi, yj) − uh(xi, yj)|

and

L2 =

√
1
N

∑
i,j

|u(xi, yj) − uh(xi, yj)|2

where u(xi, yj), uh(xi, yj) are numerical and analytical solution, respectively. And the convergence rate of the scheme will
be examined by the formula

order =|
log(∥En∥/∥E2n∥)

log(2)
|,

where ∥En∥ is the error under either of the above two defined norms on n by n mesh.
Additionally, relative error is defined here,

LR =
maxΓ |v(x, y) − v̄(x, y)|

maxΓ |v(x, y)|
,

where function v(x, y) is the real value at the intersection of grid line with the interface Γ , and v̄(x, y) is the approximate
value at the same point. This norm will be used in measuring the accuracy of the approximate jump quantities.

All the experiments were carried out on personal laptop Lenovo Thinkpad L440 with 8.00 RAM and Intel Core i5-4200M
@ 2.50 GHz.

3.1. Numerical accuracy

In this section, several comparisons on numerical accuracy between MIB method and augmented MIB method are
studied through Examples 1 to 5 The tolerance for biconjugate gradient solvers in both AMIB and MIB are set to be
1.0e−10. Iteration number in solving the Schur complement system of the AMIB scheme is reported in all examples.

Example 1. A two dimensional Poisson equation

(βux)x + (βuy)y = q(x, y)

defined in a square [−1.00001, 1.00001] × [−1.00001, 1.00001] with a circular interface defined by r2 := x2 + y2 =
1
4 .

The exact solution to this problem is

u(x, y) =

{
x2 + y2, r ≤ 0.5,

1
4 (1 −

1
8b −

1
b ) + ( r

4

4 + r2)/b, otherwise,
(33)

with the diffusion coefficient

β =

{
2, r ≤ 0.5,
b, otherwise.

Here we call β as β+ when it is outside of Γ , and β− when it is inside of the interface Γ . It follows the same principle
in below notations. The source term q(x, y) is related to the above designated solution,

q(x, y) =

{
8.0, r ≤ 0.5,
8(x2 + y2) + 4.0, otherwise.

Selected parameter b = 10 leads to jump condition [[u]] = 0 and [[βun]] = −0.75 on the interface. A computed solution
is plotted on interior nodes on a mesh with n = 64 in Fig. 4. The numerical errors from different meshes are listed in
Table 1, where we can observe that this example shows convergence rate of second order of our approach.

Example 2.Wewant to solve Laplace equation uxx+uyy = 0, defined in square [−1.00001, 1.00001]×[−1.00001, 1.00001]
with a circular interface defined by r2 := x2 + y2 =

1
4 . The constructed analytical solution are prescribed as

u(x, y) =

{
ex cos(y), r ≤ 0.5,
0, otherwise.



436 H. Feng, G. Long and S. Zhao / Journal of Computational and Applied Mathematics 361 (2019) 426–443

Table 1
Example 1 — Numerical error analysis. Here β+

= 10, β−
= 2.

[nx, ny] AMIB

L∞ L2 Iter no.

Error Order Error Order

[32, 32] 1.053E−4 – 4.526E−5 – 14
[64, 64] 2.024E−5 2.38 8.334E−6 2.44 18
[128, 128] 5.909E−6 1.78 1.506E−6 2.47 20
[256, 256] 1.041E−6 2.50 3.529E−7 2.09 27

[nx, ny] MIB

L∞ L2
Error Order Error Order

[32, 32] 2.299E−3 – 4.518E−4 –
[64, 64] 4.345E−4 2.40 8.788E−5 2.36
[128, 128] 1.569E−4 1.47 2.435E−5 1.85
[256, 256] 3.416E−5 2.20 5.300E−6 2.20

Fig. 4. The computed solution (left), and error (right) in Example 1 on a mesh with n = 64.

Fig. 5. The computed solution (left), and error (right) in Example 2 on a mesh with n = 64. Here β is equal to 1 throughout the domain.

A computed solution is plotted with n = 64 in Fig. 5. Without a jump in the PDE coefficient, this example is actually
an irregular domain problem. The second order convergence of the AMIB method is again validated by the tests shown
in Table 2.

Example 3. In this example, we consider Poisson equation with an elliptic interface Γ , which is defined as

(
x

20/27
)2 + (

y
10/27

)2 = 1

with exact solution

u(x, y) =

{
ex cos(y) insideΓ ,

5e−x2−
y2
2 otherwise,

on a square domain [−1.00001, 1.00001] × [−1.00001, 1.00001]. In this example, two cases of β will be studied. In case
A, β− is equal to 10 and for case B, β− is equal to 1000. β+ is equal to 1 in both cases. It can be seen that both AMIB
and MIB methods produce larger errors when β− is increased from 10 to 1000. Furthermore, the iteration number of
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Table 2
Example 2 — Numerical error analysis.
[Nx,Ny] AMIB

L∞ L2 Iter no.

Error Order Error Order

[64, 64] 5.799E−5 – 1.758e−5 – 13
[128, 128] 1.205E−5 2.27 3.834E−6 2.20 14
[256, 256] 2.533E−6 2.25 8.709E−7 2.14 14
[512, 512] 6.315E−7 2.00 2.364E−7 1.88 15

[Nx,Ny] MIB

L∞ L2
Error Order Error Order

[64, 64] 5.770E−5 – 1.700E−5 –
[128, 128] 1.203E−5 2.26 3.767E−6 2.17
[256, 256] 2.532E−6 2.25 8.647E−7 2.12
[512, 512] 6.312E−7 2.00 2.356E−7 1.88

Fig. 6. The computed solution (left), and error (right) in example 3A on a mesh with n = 64. Here β+
= 1, β−

= 10.

Fig. 7. The computed solution (left), and error (right) in Example 4 (case A) with β+
= 1000 and β−

= 1 on a mesh with n = 64.

the AMIB computation also becomes larger. However, the AMIB method still performs robustly in dealing with interface
problems of high β ratio contrast. In fact, despite of a lower precision, the AMIB method still achieves second order of
convergence. Moreover, the increment slope of the iteration number with respect to the mesh size n is still very small.
Consequently, the AMIB method is still much more efficient than the MIB method. A computed solution of Example 3A
is plotted in Fig. 6.

Example 4. Poisson equation β △ u = f (x, y) is studied here with an interface Γ

r = 0.5(1 + 0.5 sin(3θ )),

and two exact solutions of Poisson equation designated by

u(x, y) =

{
sin(kx) cos(ky) insideΓ ,
cos(kx) sin(ky) otherwise,

on a square domain [−
π
3.2 ,

π
3.2 ] × [−

π
3.2 ,

π
3.2 ]. The parameter k is set to be 2. The source terms associated with the two

solutions are

f (x, y) =

{
−2k2β− sin(kx) cos(ky) insideΓ ,
−2k2β+ cos(kx) sin(ky) otherwise.
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Fig. 8. The computed solution (left), and error (right) in Example 5 on a mesh with n = 64.

Table 3
Example 3A — Numerical error analysis. Here β−

= 10, β+
= 1.

[nx, ny] AMIB

L∞ L2 Iter no.

Error Order Error Order

[64, 64] 7.019E−4 – 3.644E−4 – 30
[128, 128] 2.184E−4 1.68 9.981E−5 1.87 34
[256, 256] 4.347E−5 2.33 2.162E−5 2.20 41
[512, 512] 1.002E−5 2.12 5.036E−6 2.10 43

[nx, ny] MIB

L∞ L2
Error Order Error Order

[64, 64] 7.882E−4 – 4.292E−4 –
[128, 128] 2.473E−4 1.67 1.178E−4 1.87
[256, 256] 4.960E−5 2.32 2.576E−5 2.19
[512, 512] 1.187E−5 2.06 6.284E−6 2.04

Table 4
Example 3B — Numerical error analysis. Here β−

= 1000, β+
= 1.

[nx, ny] AMIB

L∞ L2 Iter no.

Error Order Error Order

[64, 64] 3.025E−2 – 1.883E−2 – 89
[128, 128] 9.261E−3 1.71 5.714E−3 1.72 72
[256, 256] 1.463E−3 2.66 9.001E−4 2.67 114
[512, 512] 4.206E−4 1.80 2.583E−4 1.80 111

[nx, ny] MIB

L∞ L2
Error Order Error Order

[64, 64] 3.704E−2 – 2.243E−2 –
[128, 128] 1.215E−2 1.61 7.404E−3 1.60
[256, 256] 2.175E−3 2.48 1.332E−3 2.47
[512, 512] 6.416E−4 1.76 3.938E−4 1.76

Two sets of parameter values for β+ and β− are chosen. Tables 5 and 6 show the numerical results with β+
= 1000, β−

=

1 (Case A) and β+
= 1, β−

= 1000 (Case B), respectively. From the two tables, the AMIB method again yields a second
order of accuracy. A comparison on the two tests demonstrates that our methods are robust enough in dealing with
changing jump ratio ρ = β+/β−, with both ρ ≫ 1 and ρ ≪ 1 (see Fig. 7).

Example 5. Our approach is also tested on a complicated geometric interface problem. The interface Γ is defined as

r = 0.5(1 + 0.5 sin(5θ ))

with two exact solutions of Poisson equation designated by

u(x, y) =

{
ex(sin(y) + y2), insideΓ ,
−(x2 + y2) otherwise,
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Table 5
Example 4A — Numerical error analysis. Here β+

= 1000, β−
= 1.

[nx, ny] AMIB

L∞ L2 Iter no.

Error Order Error Order

[64, 64] 2.213E−3 – 4.300E−4 – 52
[128, 128] 5.321E−4 2.03 1.025E−4 2.07 100
[256, 256] 1.304E−4 2.12 2.470E−5 2.05 120
[512, 512] 3.285E−5 1.99 6.300E−6 1.97 123
[1024, 1024] 8.943E−6 1.88 1.712E−6 1.88 172

[nx, ny] MIB

L∞ L2
Error Order Error Order

[64, 64] 2.092E−3 – 4.004E−4 –
[128, 128] 5.330E−4 1.97 9.906E−5 2.02
[256, 256] 1.292E−4 2.04 2.451E−5 2.01
[512, 512] 3.229E−5 2.00 6.191E−6 1.99
[1024, 1024] 8.704E−6 1.89 1.671E−6 1.90

Table 6
Example 4B — Numerical error analysis. Here β+

= 1, β−
= 1000.

[nx, ny] AMIB

L∞ L2 Iter no.

Error Order Error Order

[64, 64] 3.080E−2 – 1.987E−2 – 47
[128, 128] 5.463E−3 2.49 3.484E−3 2.51 65
[256, 256] 3.370E−3 0.70 2.177E−3 0.68 74
[512, 512] 1.029E−3 1.71 6.647E−4 1.71 79
[1024, 1024] 2.914E−4 1.82 1.882E−4 1.82 112

[nx, ny] MIB

L∞ L2
Error Order Error Order

[64, 64] 3.427E−2 – 2.147E−2 –
[128, 128] 5.000E−3 2.78 3.128E−3 2.78
[256, 256] 3.336E−3 0.58 2.138E−3 0.55
[512, 512] 1.003E−3 1.73 6.449E−4 1.73
[1024, 1024] 2.856E−4 1.81 1.840E−4 1.81

on a square domain [−
π
3 ,

π
3 ] × [−

π
3 ,

π
3 ]. The diffusion coefficient β is defined as β+

= 100 and β−
= 1. The AMIB errors

are slightly larger than those of the MIB, while a second order of convergence is still achieved for the AMIB scheme (see
Fig. 8).

3.2. Cartesian jump reconstruction

In this part, we want to test the accuracy of the AMIB approximation of the jump quantities in the correction terms.
Only the approximated jump quantities of first and second Cartesian derivatives will be tested here. We note that
the zeroth order jump quantity is given analytically in our discretization. Here L2 and LR norms will be used in the
measurement. With the same parameters in Examples 1 and 3, we test the accuracy of the jump quantities for these
two examples. Table 8 shows that the convergence rate for the first and second order jumps follows second and first
order, respectively. Therefore, we conclude that the correction term is at least first order accurate as a whole.

Remark 3.1. Through the above several examples, we can see that the our method is a second order accurate scheme in
spite of the local first order accuracy around the interface. Compared to the MIB method, the AMIB gives us quite accurate
solutions as we can see in Tables 1–7, there is no much difference in the numerical errors from these two methods. Our
jump quantities approximation from fictitious points proves to be reliable in terms of accuracy, and is verified to be at
least first order accurate from Table 8.

3.3. Computational efficiency

Here we carry out a few comparisons between our augmented MIB method (AMIB) with regular MIB method (MIB) in
terms of the computational efficiency. With the same parameter set in the proceeding five examples, we conclude that our
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Table 7
Example 5 — Numerical error analysis. Here β+

= 100, β−
= 1.

[nx, ny] AMIB

L∞ L2 Iter no.

Error Order Error Order

[64, 64] 1.806E−5 – 3.277E−6 – 59
[128, 128] 2.208E−6 3.03 4.311E−7 2.93 75
[256, 256] 6.691E−7 1.72 1.250E−7 1.79 93
[512, 512] 1.717E−7 1.96 3.181E−8 1.97 116

[nx, ny] MIB

L∞ L2
Error Order Error Order

[64, 64] 3.406E−6 – 3.804E−7 –
[128, 128] 4.722E−7 2.85 6.357E−8 2.58
[256, 256] 8.000E−8 2.56 1.591E−8 2.00
[512, 512] 3.746E−8 1.09 5.400E−9 1.56

Table 8
Reconstructed Cartesian derivative jumps for Examples 1 and 3A.
Example 1

[nx, ny] First order derivative jumps Second order derivative jumps

LR L2 LR L2
Error Order Error Order Error Order Error Order

[32, 32] 2.299E−3 – 4.518E−4 – 3.187E−2 – 1.253E−2 –
[64, 64] 4.345E−4 2.40 8.788E−5 2.36 9.357E−3 1.77 4.323E−3 1.54
[128, 128] 1.569E−4 1.46 2.435E−5 1.85 6.890E−3 0.44 2.631E−3 0.72
[256, 256] 3.416E−5 2.20 5.300E−6 2.20 3.240E−3 1.09 1.318E−3 1.00

Example 3A

[nx, ny] First order derivative jumps Second order derivative jumps

LR L2 LR L2
Error Order Error Order Error Order Error Order

[32, 32] 4.095E−3 – 5.170E−3 – 0.156 – 0.214 –
[64, 64] 8.467E−4 2.27 9.702E−4 2.41 6.175E−2 1.34 0.102 1.07
[128, 128] 2.855E−4 1.56 2.870E−4 1.76 2.848E−2 1.12 4.875E−2 1.07
[256, 256] 8.976E−5 1.67 6.773E−5 2.08 1.452E−2 0.97 2.494E−2 0.97

method significantly saves the computational time after comparing the CPU time of AMIB to that of MIB. Fig. 9 covering
four examples indicates that AMIB method is particularly efficient in calculation of solution on very dense meshes, which
gives a persuasive evidence that AMIB is a successful solver.

In our previous examples, the iteration numbers needed by the biconjugate gradient method in solving the Schur
complemented system (31) have been reported. Indeed, this number grows slowly when n is increased, where n basically
represents the grid number in each direction for a square domain. As discussed above, if impact of iteration number is
negligible, the complexity of the AMIB method is essentially O(n2 log n). To verify this complexity of flops, we plot the
CPU time against n again, but now in log–log scale. See Fig. 10. In particular, we will conduct a least squares fitting in
log scale. In this fitting, it is convenient to drop log n and only concern on the flops order r in the form of O(nr ). It can
be seen in Fig. 10 the flops order of the AMIB method is around two in all cases, while that of the regular MIB is about
three. In practice, this means the AMIB is much more efficient than the MIB, while preserving the second order accuracy
in dealing with various complex interfaces.

4. Summary

In this work, we proposed a fast and second order accurate method to solve 2D elliptic interface problem based on
the MIB method. The proposed augmented MIB (AMIB) method seamlessly combines several key gradients of the MIB,
AIIM, and EJIIM schemes. The fictitious values generated by the MIB give a very straightforward way along the Cartesian
grid line to approximate the jump quantities needed in the correction terms for the corrected difference. The augmented
system in the approach provides an efficient way to solve the elliptic interface problem. The method is shown to be
second order convergent and stable via the numerical experiments for various complex interfaces. The AMIB has a very
nice property that the iteration number of the biconjugate gradient solver in solving complemented system grows very
slowly compared with the growth of the mesh refinement. Consequently, the complexity of our AMIB follows O(n2 log n)
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Fig. 9. CPU time in seconds for both MIB and AMIB methods. The horizontal line is the degree of freedom in one dimension, i.e., n + 1.

Fig. 10. Flops order in CPU time is examined for several examples. The horizontal line is the degree of freedom in one dimension, i.e., n + 1.

for n grids in each direction of a square domain. This indicates that our AMIB is a quite effective and efficient algorithm
in solving elliptic interface problem.
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Different from the existing fast interface algorithms for elliptic equations, this approach has a potential to be general-
ized in solving parabolic/hyperbolic interface problems due to the MIB treatment in jump quantities approximation. The
future plan is to extend the approach for solving time-dependent problems and generalize it into even higher orders.
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