
Applied Mathematics Letters 102 (2020) 106144

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

A regularization approach for solving Poisson’s equation with
singular charge sources and diffuse interfaces

Siwen Wang a, Arum Lee a, Emil Alexov b, Shan Zhao a,∗

a Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
b Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA

a r t i c l e i n f o

Article history:
Received 1 October 2019
Received in revised form 11 November
2019
Accepted 11 November 2019
Available online 18 November 2019

Keywords:
Poisson’s equation
Singular source
Diffuse interface
Regularization
Green’s function

a b s t r a c t

Singular charge sources in terms of Dirac delta functions present a well-known
numerical challenge for solving Poisson’s equation. For a sharp interface between
inhomogeneous media, singular charges could be analytically treated by fundamen-
tal solutions or regularization methods. However, no analytical treatment is known
in the literature in case of a diffuse interface of complex shape. This letter reports
the first such regularization method that represents the Coulomb potential compo-
nent analytically by Green’s functions to account for singular charges. The other
component, i.e., the reaction field potential, then satisfies a regularized Poisson
equation with a smooth source and the original elliptic operator. The regularized
equation can then be simply solved by any numerical method. By considering two
benchmark problems, the proposed regularization method is numerically validated
and compared with a semi-analytical quasi-harmonic method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The Poisson equation, as a mean field model, is widely used for the study of electrostatic interactions in
biological and chemical systems at molecular level [1] and also for the design of semiconductor devices at the
nanoscale [2]. In typical applications, two dielectric materials are concerned in the system and one of them
carries fixed point charges, which are represented as Dirac delta functions in the source term of Poisson’s
equation. In classical settings, a sharp interface is assumed to separate two media, which yields a piecewise
constant for the dielectric coefficient of Poisson’s equation.

Recently, the use of diffuse interface Poisson models becomes popular [3,4]. For biological and chemical
systems in molecular or nanoscales, the assumption of a sharp interface as the boundary of two dielectric
materials seems to be unphysical [5]. The diffuse interface model [6], in which a smooth transition layer
is assumed at material boundaries, provides an alternative to model the dielectric function. In studying
electrostatic interactions of macromolecule and solvent, various free energy variational models have been
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proposed, including minimal molecular surface [7], level set [8], and phase field [9]. These models all feature a
diffuse interface type dielectric boundary. In this letter, a simple Poisson’s equation involving inhomogeneous
media and a diffuse interface is studied. In particular, we will assume constant dielectric values inside each
dielectric medium, while the dielectric function varies smoothly from one medium to another, through a
narrow transition band.

The accurate treatment of singular charge sources of Poisson’s equation is a well-known challenge.
Mathematically, the fixed point charges are expressed in terms of the Dirac delta functions, which are
unbounded at charge centers. In conventional numerical algorithms, a trilinear scheme is often used to
distribute point charges to their neighboring grid points. This is known to be a very poor approximation, and
motivates a recent development of a second order accurate geometric discretization of the multidimensional
Dirac delta distribution [10]. We note that the numerical difficulty for representing singular functions via
discrete finite values could be completely avoided if charge singularities are treated analytically.

For Poisson’s equation with singular charges and diffuse interfaces, a family of semi-analytical methods
have been proposed [4] for eleven orthogonal coordinate systems in which the three-dimensional (3D) Laplace
equation is separable. The dielectric function is assumed to be variant only in one orthogonal direction,
and the underlying diffuse interface can then be approximated via several pieces of quasi-harmonic diffuse
interfaces. For each quasi-harmonic dielectric function, Green’s functions for Poisson’s equation can be
calculated analytically. The singular charges are treated analytically in this approach with diffuse interfaces.
Nevertheless, this semi-analytical method is limited to simple geometries. No analytical procedure is available
in the literature for singular charges with complex domains and diffuse interfaces.

In a related field, a series of regularization methods have been developed for solving the Poisson–
Boltzmann (PB) equation with singular charges and sharp interfaces over any domain, see the references
in [11]. In regularization methods, the potential function is decomposed into a singular component plus one or
two other components. Satisfying a Poisson equation with the same singular sources, the singular component
can be analytically solved as Coulomb potentials or Green’s functions. After removing the singular part, the
other potential components are bounded, and thus can be accurately solved by finite difference or finite
element methods. However, all existing regularization methods are designed for piecewise constant dielectric
functions with sharp interfaces. It is unclear if regularization formulation could be established for diffuse
interfaces.

This letter reports the first regularization method in the literature that is able to handle diffuse interfaces.
Besides a decomposition of potential function, the success of the new method lies in a decomposition of the
inhomogeneous dielectric function. The singular charge sources containing in a complex domain can then be
analytically treated. The details of the proposed regularization formulation will be discussed in Section 2.
This new method can be combined with any numerical discretization, and is expected to find extensive
applications for various real world problems. Numerical validation for two examples will be considered in
Section 3. Finally, this letter ends with a conclusion.

2. Regularization formulation

Consider a three-dimensional (3D) Poisson’s equation with a Dirichlet boundary condition [4]⎧⎪⎪⎨⎪⎪⎩
−∇ · (ϵ(r⃗)∇u(r⃗)) = ρ := 4π

Ns∑
j=1

qjδ(r⃗ − r⃗j), in Ω ,

u(r⃗) = g(r⃗) on ∂Ω ,

(1)

where u is the potential function and g is a boundary function. The domain Ω consists of three regions, an
interior domain Ωi, an exterior domain Ωe, and a transition layer Ωt in between Ωi and Ωe. See Fig. 1(a).
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Fig. 1. (a) Domain setting of the problem; (b) Diffuse interfaces used in the spherical domain example.

The interface between Ωi and Ωt is denoted by Γi, while the one between Ωt and Ωe is Γe. There exist Ns

point charges inside Ωi with charge numbers being qj , for j = 1, 2, . . . , Ns. The dielectric function ϵ(r⃗) takes
constant values ϵ = ϵi in Ωi and ϵ = ϵe in Ωe. Here we assume ϵi < ϵe. In Ωt, ϵ(r⃗) varies smoothly from
ϵi to ϵe, so that it is a C2 continuous function over the entire domain Ω . Consequently, function u and its
gradient ∇u are continuous everywhere in Ω , except at charge centers.

In the proposed two-component regularization, the potential u is decomposed into a Coulomb component
uC and a reaction field component uRF with u = uC +uRF . As in the sharp interface case [11], the Coulomb
potential is assumed to satisfy a homogeneous Poisson’s equation with the same singular charges ρ{

−ϵi∆uC(r⃗) = ρ(r⃗) in R3;
uC(r⃗) = 0. as |r⃗| → ∞.

(2)

Thus, the singular component uC is analytically given as the Green’s function G(r⃗), i.e., uC(r⃗) = G(r⃗) :=∑Ns
j=1

qj

ϵi|r⃗−r⃗j | .
To deal with the diffuse interface, we propose to decompose the dielectric function into a constant base

value plus a variant part, i.e., ϵ = ϵi + ϵ̂. Consequently, ϵ̂ = 0 in Ωi and ϵ̂ = ϵe − ϵi in Ωe, with ϵ̂ ≥ 0
throughout the domain Ω . By introducing the dual decomposition into Poisson’s equation (1), we have

− ∇ · (ϵ̂∇uC) − ∇ · (ϵ̂∇uRF ) − ϵi∆uC − ϵi∆uRF = ρ, in Ω . (3)

By subtracting (2) from (3), the Poisson equation is now free of singular sources

− ∇ · (ϵ̂∇G) − ∇ · (ϵ̂∇uRF ) − ϵi∆uRF = 0, in Ω , (4)

where we have substituted uC by the known Green’s function G. Note that G(r⃗) is unbounded at charge
centers inside Ωi. However, in the proposed regularization, we have deliberately designed a nice property:
ϵ̂ = 0 in Ωi. This enables us to simplify the new source term of Eq. (4) as,

∇ · (ϵ̂∇G) = ∇ϵ̂ · ∇G + ϵ̂∆G = ∇ϵ̂ · ∇G = ∇ϵ · ∇G. (5)

In Eq. (5), ϵ̂∆G is dropped out, because ∆G = 0 everywhere except at charge centers within Ωi, while
ϵ̂ = 0 in Ωi. In the last step, we have ∇ϵ = ∇ϵ̂ because ϵ and ϵ̂ differ by a constant ϵi. The gradient of
Green’s function is analytically given as ∇G(r⃗) = −

∑Ns
j=1

qj(r⃗−r⃗j)
ϵi|r⃗−r⃗j |3 . Moreover, by the definition of ϵ, ∇ϵ is

non-vanishing only in Ωt, while ∇ϵ = 0 for both Ωi and Ωe. Thus, ∇ϵ · ∇G is finite in Ω , and one just needs
to calculate it in the transition band Ωt.

In summary, we propose a new regularized Poisson’s equation for the reaction field potential{
−∇ · (ϵ(r⃗)∇uRF (r⃗)) = ∇ϵ(r⃗) · ∇G(r⃗), in Ω ,

uRF (r⃗) = g(r⃗) − G(r⃗) on ∂Ω ,
(6)
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in which the two uRF terms in Eq. (3) have been combined into one. Hence, the decomposition of dielectric
function ϵ = ϵi + ϵ̂ is used only in the derivation. All real computations can be carried out based on ϵ(r⃗)
only. Once uRF is computed from (6), the solution of the original Poisson’s equation (1) is recovered by
u = uRF + G.

3. Numerical validation

In this letter, we validate the proposed regularization method by studying two benchmark examples. The
diffuse interface is constructed through a level set function s(r⃗), which takes constant values si = 1 and
se = 0, respectively, in Ωi and Ωe. In Ωt, s(r⃗) varies smoothly from 1 to 0. The smooth dielectric function
can then be calculated as ϵ(r⃗) = s(r⃗)ϵi + (1 − s(r⃗))ϵe, in which we take ϵi = 1 and ϵe = 80.

Example 1. Consider a spherical domain Ωi with a point charge q1 = 1 at its center. Assume the
charge point to be the origin of our coordinate, i.e., r⃗1 = (0, 0, 0). A cubic computational domain Ω =
[−10, 10]3 is employed. In this example, both boundaries Γi and Γe are spheres with radii being ri = 2
and re = 5, respectively. In the transition layer ri < |r⃗| < re, the level set function is given as s(r⃗) =
se−si

2 [tanh(k( |r⃗|−ri
re−ri

− 0.5)) + 1] + si, where k = 6 is large enough to ensure that s(r⃗) can be numerically
assumed as a smooth function across Γi and Γe. An illustration of s(r) for r = |r⃗| is shown in Fig. 1(b) as
a tanh-like curve.

For a spherical domain, a semi-analytical method [4] is available to provide series solutions. Following [4],
we first approximate the present tanh-like diffuse interface s(r) by three pieces of quasi-harmonic diffuse
interfaces. In particular, we will divide the transition region Ωt into three spherical shells of the same
thickness. Referring to Fig. 1(b), this amounts to cut the interval r ∈ [ri, re] into three subintervals of equal
length. Then in each subinterval, one approximates s(r) by a quasi-harmonic function such that its endpoint
values agree with s(r). This allows us to construct analytical series solution for the present example.

Besides the proposed regularization method, the trilinear method is also examined for a comparison. In
both numerical methods, the central finite difference is employed to discretize the system. A uniform grid
with the same mesh size in all three dimensions, i.e., N = Nx = Ny = Nz, is used with a spacing h = 20

N−1 .
On boundary ∂Ω , the Dirichlet boundary data is given by the Coulomb potential for exterior medium,
i.e., g(r⃗) = q1

ϵe|r⃗| . For the regularization method, the reaction field potential uRF (r⃗) will be reported. For
both trilinear and quasi-harmonic methods, in order to directly compare with uRF (r⃗), we will subtract the
potential solution by Green’s function, and denote the resulted solution as uT L(r⃗) and uQH(r⃗), respectively.

Before we present numerical results, it should be pointed out that the asymptotic limits of numerical
solution and semi-analytical solution are different, because the quasi-harmonic diffuse interface is different
from the tanh-like diffuse interface. Theoretically, two numerical solutions uRF (r⃗) and uT L(r⃗) should
converge to the same place, as h goes to zero. However, the difference between uRF (r⃗) and uQH(r⃗) will
not become smaller for a smaller h, and could be reduced only if more pieces of quasi-harmonic functions
are employed for diffuse interface approximation.

We first visually compare three solutions. By taking N = 400, surface plots of potential solutions uQH ,
uRF and uT L on the plane z = 0 are shown in Fig. 2. It can be seen that the three solutions are almost
identical for the majority part of the domain. For trilinear solution uT L, numerical artifact is very obvious
at the charge center. Excluding a small neighborhood around the origin, the difference between uRF and
uT L is then very small. The regularization solution uRF and semi-analytical solution uQH have almost the
same shape — a flat potential inside Ωi with a smoothly increment outside the sphere. This indicates that
the charge singularity is well taken care of in the proposed regularization method.

To see the differences in more detail, we depict three potentials along a x line with y = 0 and z = 0, see
Fig. 3. For uRF and uQH , their difference is almost zero outside the sphere Ωi, while inside the sphere, two
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Fig. 2. Surface plot of potential solutions uQH , uRF and uT L on the plane z = 0.

Fig. 3. Line plots of uQH , uRF and uT L along a x line with y = 0 and z = 0.

Table 1
The comparison of three solutions’ differences.

|uQH − uRF | |uQH − uT L| |uRF − uT L|

N h L2 L∞ L2 L∞ L2 L∞

50 0.408 7.66E−4 1.30E−2 9.60E−4 5.30E−2 6.12E−4 5.80E−2
100 0.202 1.82E−3 2.62E−2 1.87E−3 9.35E−2 4.53E−4 1.16E−1
200 0.101 2.19E−3 2.95E−2 2.21E−3 2.07E−1 3.23E−4 2.35E−1
400 0.050 2.29E−3 3.04E−2 2.30E−3 4.41E−1 2.29E−4 4.71E−1

flat potentials attain different heights. Moreover, the height difference here actually approaches a constant
as N becomes larger, which is around 0.03. For trilinear solution uT L, it obviously converges to uRF in most
parts, except for near the charge center. However, near the origin, the disagreement between uT L and uRF

increases, suggesting a divergent behavior of trilinear charge distribution.
We finally quantitatively compare the difference of three solutions in L2 and L∞ norms for different N in

Table 1. For the difference between uT L and uRF , the L2 norm becomes smaller and smaller. This agrees with
the above observation that both numerical solutions converge to the same place as h goes to zero. However,
the L∞ norm diverges in a rate inversely proportional to h, i.e., O(h−1). This result fully illustrates how
bad the trilinear approximation is. Fortunately, such a difficulty is analytically bypassed in our regularization
method. For uQH and uRF , we note that the height difference between two solutions inside Ωi is actually
captured by the L∞ norm, which is 3.04E−2 at N = 400. In fact, the L∞ norm converges quadratically
to a constant height difference. To see this, we take 3.04E−2 as the reference value for the “exact” height
difference. Then the change in the L∞ norm is 1.74E−2, 0.42E−2, and 0.09E−2, respectively, for N = 50,
100, and 200. This obviously is a sequence with O(h2) convergence, and demonstrates the second order
accuracy of the central difference discretization underlying the regularization approach.
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Fig. 4. Color map on the plane z = 0 for ϵ(r⃗) before (left) and after (right) a Gaussian convolution in Example 2. In both figures,
dashed lines represent the VdW surfaces. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Example 2. Consider two atoms with the same radius R = 2 and charge q = 1, and different centers at
(−2, 0, 0) and (2, 0, 0). The computational domain is Ω = [−10, 10]3 with mesh size N = 400. To construct
a diffuse interface, a solvent accessible surface (SAS) [7] is first defined based on a probe radius 1.5. Then a
Heaviside function is defined as 1 and 0, respectively, for inside and outside of the SAS. At last, the Heaviside
function is convoluted with a Gaussian kernel to generate a level set function s(r⃗), which is guaranteed to
be 1 inside two balls while having a smooth transition outside two balls. The corresponding ϵ(r⃗) functions
before and after the convolution are illustrated in Fig. 4 on the plane z = 0. For this numerically generated
diffuse interface, the proposed regularization method performs equally well. The electrostatic free energy of
this two-atoms system is found to be −206.97 kcal/mol.

4. Conclusion

A novel regularization approach is introduced for Poisson’s equation with singular charge sources and
diffuse interfaces, which is the first of its kind in the literature. Through a dual decomposition of potential
and dielectric functions, the proposed regularized Poisson’s equation for the reaction field potential has the
same elliptic operator with a smooth source function, which can be easily solved by common numerical
methods. For two benchmark problems, the regularization method is validated by comparing with a
semi-analytical method and conventional trilinear distribution method. The further development of the
regularization method for the Poisson–Boltzmann equation and the Gaussian convolution algorithm for
generating diffuse interfaces will be reported in the future.
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