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M
a g n eti c r e s o n a n c e i m a gi n g ( M RI) i s a n o ni n v a si v e di -

a g n osti c t o ol t h at pr o vi d es e x c ell e nt s oft-tiss u e c o ntr a st  

wit h o ut t h e u s e of i o ni zi n g r a di ati o n. C o m p ar e d t o ot h -

er cli ni c al i m a gi n g m o d aliti e s ( e. g., c o m p ut e d t o m o gr a p h y 

or  ultr a s o u n d),  h o w e v er,  t h e  d at a  a c q ui siti o n  pr o c e s s  f or  

M RI  i s  i n h er e ntl y  sl o w,  w hi c h  m oti v at e s  u n d er s a m pli n g;  

t h u s, t h er e i s a n e e d f or a c c ur at e, effi ci e nt r e c o n str u cti o n 

m et h o d s fr o m u n d er s a m pl e d d at a s et s. I n t hi s arti cl e, w e 

d e s cri b e t h e u s e of pl u g- a n d- pl a y ( P n P) al g orit h m s f or 

M RI  i m a g e  r e c o v er y.  W e  fir st  d e s cri b e  t h e  li n e arl y  a p -

pr o xi m at e d i n v er s e pr o bl e m e n c o u nt er e d i n M RI. T h e n, w e 

r e vi e w s e v er al P n P m et h o d s f or w hi c h t h e u nif yi n g c o m -

m o n alit y i s t o it er ati v el y c all a d e n oi si n g s u br o uti n e a s 

o n e st e p of a l ar g er o pti mi z ati o n-i n s pir e d al g orit h m. N e xt, 

w e d e s cri b e h o w t h e r e s ult of t h e P n P m et h o d c a n b e i n -

t er pr et e d a s a s ol uti o n t o a n e q uili bri u m e q u ati o n, all o w-

i n g  c o n v er g e n c e  a n al ysi s  fr o m  t hi s  p er s p e cti v e.  Fi n all y,  

w e pr e s e nt ill u str ati v e e x a m pl e s of P n P m et h o d s a p pli e d t o 

M RI i m a g e r e c o v er y.

I nt r o d ucti o n
M RI  u s e s  r a di o-fr e q u e n c y  ( R F)  w a v e s  t o  n o ni n v a si v el y  

e v al u at e t h e str u ct ur e, f u n cti o n, a n d m or p h ol o g y of s oft tis -

s u es.  It  h a s  b e c o m e  a n  i n dis p e ns a bl e  i m a gi n g  t o ol  f or  di -

a g n osi n g  a n d  e v al u ati n g  a  h ost  of  c o n diti o ns  a n d  dis e a s es.  

H o w e v er, M RI s uff er s fr o m sl o w d at a a c q uisiti o n: a t y pi c al 

cli ni c al M RI e x a mi n ati o n c o n sist s of m ulti pl e s c a n s a n d c a n 

t a k e m or e t h a n a n h o ur t o c o m pl et e. F or e a c h s c a n, t h e p a-

ti e nt m a y b e a s k e d t o st a y still f or s e v er al mi n ut e s, wit h sli g ht 

m oti o n p ot e nti all y r e s ulti n g i n i m a g e artif a ct s. F urt h er m or e, 

d y n a mi c a p pli c ati o n s d e m a n d c oll e cti n g a s eri e s of i m a g e s i n 

q ui c k s u c c e ssi o n. D u e t o t h e li mit e d ti m e wi n d o w i n m a n y 

d y n a mi c  a p pli c ati o n s  ( e. g.,  c o ntr a st- e n h a n c e d  M R  a n gi o g -

r a p h y),  it  is  n ot  f e a si bl e  t o  c oll e ct  f ull y  s a m pl e d  d at a  s et s.  

F or t h e s e r e a s o n s, M RI d at a ar e oft e n u n d er s a m pl e d. C o n -

s e q u e ntl y, c o m p ut ati o n all y effi ci e nt m et h o d s f or r e c o v eri n g 

hi g h- q u alit y i m a g e s fr o m u n d er s a m pl e d M RI d at a h a v e b e e n 

a cti v el y r e s e ar c h e d f or t h e l a st t w o d e c a d e s.
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The combination of parallel (i.e., multicoil) imaging and 
compressive sensing (CS) has been shown to benefit a wide 
range of MRI applications [1], including dynamic applica-
tions, and has been included in the default image-processing 
frameworks offered by several major MRI vendors. More 
recently, learning-based techniques (e.g., [2]–[6]) have been 
shown to outperform CS methods. Some of these techniques 
learn the entire end-to-end mapping from undersampled 
k-space or aliased images to recovered images (e.g., [4]). 
Considering that the forward model in MRI changes from 
one data set to the next, such methods must be either trained 
over a large and diverse data corpus or limited to a specific 
application. Other methods train scan-specific convolu-
tional neural networks (CNNs) on a fully sampled region 
of k-space and then use it to interpolate missing k-space 
samples [5]. These methods do not require separate train-
ing data but demand a fully sampled k-space region. Due 
to the large number of unknowns in CNNs, such methods 
require a fully sampled region that is larger than that typi-
cally acquired in parallel imaging, limiting the acceleration 
that can be achieved. 

Other supervised learning methods are inspired by classic 
variational optimization methods and iterate between data-
consistency enforcement and a trained CNN, which acts as a 
regularizer [3]. Such methods require a large number of fully 
sampled, multicoil k-space data sets, which may be difficult 
to obtain in many applications. Also, because CNN training 
occurs in the presence of data-set-specific forward models, 
generalization from training to test scenarios remains an open 
question [6]. Consequently, the integration of learning-based 
methods into physical inverse problems remains a fertile area 
of research. There are many directions for improvement, 
including recovery fidelity, computational and memory effi-
ciency, robustness, interpretability, and ease of use.

This article focuses on PnP algorithms [7], which alter-
nate image denoising with forward-model-based signal recov-
ery. They facilitate the use of state-of-the-art image models 
through their manifestations as image denoisers, whether 
patch based (e.g., [8]) or deep neural network (DNN) based 
(e.g., [9]). The fact that PnP algorithms decouple image mod-
eling from forward modeling has advantages in compres-
sive MRI, where the forward model can change significantly 
among different scans due to variations in the coil sensitivity 
maps, sampling patterns, and image resolution. Furthermore, 
fully sampled k-space MRI data are not needed for PnP; the 
image denoiser can be learned from MRI image patches or, 
possibly, even magnitude-only patches. The objective of this 
article is twofold: 1) to review recent advances in PnP meth-
ods and 2) to discuss their application to compressive MRI 
image reconstruction. For an extended version of this article 
that contains additional references and more in-depth discus-
sions on a variety of topics, see [10].

Image recovery in compressive MRI
In this section, we describe the standard linear inverse prob-
lem formulation in MRI. We acknowledge that more sophis-

ticated formulations exist (see, e.g., [31] in this issue for a 
more careful modeling of physics effects). Briefly, the mea-
surements are samples of the Fourier transform of the image, 
where the Fourier domain is often referred to as k-space. The 
transform can be taken across two or three spatial dimensions 
and includes an additional temporal dimension in dynamic ap-
plications. Furthermore, measurements are often collected in 
parallel from C 1$  receiver coils. In dynamic parallel MRI 
with Cartesian sampling, the k-space measurements from the 
ith coil at time t take the form

	 ,y P FS x w( ) ( ) ( ) ( )
i
t t

i
t

i
t

= + � (1)

where x C( )t N!  is the vectorized 2D or 3D image at discrete 
time ,t  S Ci

N N! #  is a diagonal matrix containing the sensi-
tivity map for the ith coil, F CN N! #  is the 2D or 3D discrete 
Fourier transform, the sampling matrix P R( )t M N! #  contains 
M  rows of the N N#  identity matrix, and w C( )

i
t M!  is ad-

ditive white Gaussian noise (AWGN). Often, the sampling 
pattern changes across frames .t  The MRI literature often 
refers to /R N M_  as the acceleration rate. The AWGN as-
sumption, which does not hold for the measured parallel MRI 
data, is commonly enforced by using noise prewhitening fil-
ters, which yields the model (1) but with diagonal “virtual” 
coil maps Si  [11].

MRI measurements are acquired using a sequence of 
measurement trajectories through k-space that can be Car-
tesian or non-Cartesian in nature. Cartesian trajectories are, 
essentially, lines through k-space. In the Cartesian case, 
one k-space dimension (i.e., the frequency encoding) is 
fully sampled, while the other one or two dimensions (i.e., 
the phase encodings) are undersampled to reduce acquisi-
tion time. Typically, one line, or readout, is collected after 
every RF pulse, and the process is repeated several times to 
collect adequate samples of k-space. Non-Cartesian trajecto-
ries include radial or spiral curves, which have the effect of 
distributing the samples among all dimensions of k-space. 
Compared to Cartesian sampling, non-Cartesian sampling 
provides more efficient coverage of k-space and yields an 
“incoherent” forward operator that is more conducive to 
compressed-sensing reconstruction. However, Cartesian sam-
pling remains the method of choice in clinical practice, due 
to its higher tolerance to system imperfections and an exten-
sive record of success.

Because the sensitivity map, ,Si  is patient specific and var-
ies with the location of the coil with respect to the imaging 
plane, both Si  and x( )t  are unknown in practice. Although 
calibration-free methods have been proposed to estimate 
S x( )

i
t  or to jointly estimate Si  and ,x( )t  it is more common 

to first estimate Si  through a calibration procedure and then 
treat Si  as known in (1). Stacking { } { },,y x( ) ( )t

i
t  and { }w( )

i
t  into 

vectors , ,y x  and ,w  and packing { }P FS( )t
i  into a known 

block-diagonal matrix ,A  we obtain the linear inverse prob-
lem of recovering x  from

	 , ( , )y Ax w w I ,0N 2+ v= + � (2)
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where 0( , )IN 2v  denotes a circularly symmetric, complex-
Gaussian random vector with mean 0 and covariance .I2v

Signal recovery and denoising
The maximum likelihood (ML) estimate of x  from y in (2) 
is ( | ),y xargmaxx pxml _V  where ( | ),y xp  the probability 
density of y conditioned on ,x  is known as the likelihood 
function. The ML estimate is often written in the equivalent 
form { ( | )} .y xargmin lnx pxml = -V  In the case of -2v variance 
AWGN ,w  we have / Ax( | ) ( )y x ylnp 21 const2

2
2

v- = - +  
and, therefore, ,y Axargminx x 2

2
ml = -V  which can be rec-

ognized as least-squares estimation. Although least-squares 
estimation can give reasonable performance when A is tall 
and well conditioned, this is rarely the case under moderate 
to high acceleration (i.e., ).R 22  With acceleration, it is criti-
cally important to exploit prior knowledge of signal structure.

The traditional approach to exploiting such prior knowl-
edge is to formulate and solve an optimization problem of 
the form

	 ( ) ,y Ax xargminx
2
1

x
2 2

2

v
z= - +' 1V � (3)

where the regularization term ( )xz  encodes prior knowledge 
of .x  In fact, xV  in (3) can be recognized as the maximum 
a posteriori (MAP) estimate of x  under the prior density 
model ( ) ( ( )) .x xexpp ? z-  To see why, recall that the MAP 
estimate maximizes the posterior distribution ( | ) .x yp  That 
is, ( ) { ( )}.x y x yargmax argmin lnx p px xmap _ ; ;= -V  Be-
cause Bayes’ rule implies that ( ) ( )x y y xln lnp p; ;= + 

( ) ( ),x yln lnp p-  we have

	 { ( ) ( )}.y x xargmin ln lnx p p
x

map ;= - -V � (4)

Recalling that the first term in (3) (i.e., the “loss” term) was ob-
served to be ( | )y xlnp-  (plus a constant) under AWGN noise, 
the second term in (3) must obey ( ) ( ) .x xlnp constz =- +  
We will find this MAP interpretation useful in the sequel.

It is not easy to design good regularizers z  for use in 
(3). They must not only mimic the negative log of the prior 
density but also enable tractable optimization. One common 
approach is to use ( ) ,x x 1z m W=  where HW  is a tight frame 
(e.g., a wavelet transform) and 02m  is a tuning parameter 
[12]. Such regularizers are convex, and the 1,  norm rewards 
sparsity in the transform outputs xW  when used with the qua-
dratic loss.

Particular insight comes from considering the special case 
of ,A I=  where the measurement vector in (2) reduces to an 
AWGN-corrupted version of the image x:

	 w, ( , )z x w I0 .N 2+ v= + � (5)

The problem of recovering x  from noisy ,z  known as de-
noising, has been intensely researched for decades. Although 
it is possible to perform denoising by solving a regularized 

optimization problem of the form (3) with ,A I=  today’s 
state-of-the-art approaches are either algorithmic (e.g., [8]) 
or DNN based (e.g., [9]). This begs an important question: 
can these state-of-the-art denoisers be leveraged for MRI 
signal reconstruction by exploiting the connections between 
the denoising problem and (3)? As we shall see, this is pre-
cisely what the PnP methods do.

PnP methods
In this section, we review several approaches to PnP signal 
reconstruction. What these approaches have in common is 
that they recover x  from measurements y of the form (2) by 
iteratively calling a sophisticated denoiser within a larger op-
timization or inference algorithm.

Prox-based PnP
To start, let us imagine how the optimization in (3) might 
be solved. Through what is known as variable splitting, we 
could introduce a new variable, v, to decouple the regulariz-
er ( )xz  from the data fidelity term /( ) .y Ax1 2 2

2
2

v -  The 
variables x  and v  could then be equated using an external 
constraint, leading to the constrained minimization problem

( ) subject to .y Ax v x vargminminx
2

1
x v

2 2
2

C CN N v
z= - + =

! !
' 1V

� (6)

Equation (6) suggests an algorithmic solution that alternates 
between separately estimating x  and estimating ,v  with an 
additional mechanism to asymptotically enforce the constraint 

.x v=

The original PnP method [7] is based on the alternating 
direction method of multipliers (ADMM) [13]. For ADMM, 
(6) is first reformulated as the “augmented Lagrangian”:

	
( )

{ ( )} ,

y Ax v

x v x v

minmax

Re

2
1

2
1H

,x v 2 2
2

2
m

v
z

h

- +

+ - + -

m
'

1 � (7)

where m  are Lagrange multipliers and 02h  is a penalty 
parameter that affects the convergence speed of the algo-
rithm but not the final solution. With ,u _ mh  (7) can be 
rewritten as

	
( )

.

y Ax v

x v u u

minmax
2
1

2
1

2
1

,x v u 2 2
2

2 2

v
z

h h

- +

+ - + -

'

1 � (8)

ADMM solves (8) by alternating the optimization of x  and v  
with gradient ascent of ;u  i.e.,

	 ( ; )x h v uk k k1 1 h= -- - � (9a)
	 ( ; )v x uproxk k k 1 h= +z - � (9b)
	 ( ),u u x vk k k k1= + -- � (9c)

where ( ; )h z h  and prox ( ; ),z hz  known as proximal maps, are 
defined as
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( ; ) ( )x x zargminz
2
1prox

x

2
_h z

h
+ -z ' 1� (10)

	
( ; )

( ; )

h z y Ax x z

z

argmin
2
1

2
1

prox ( )

x
2

2 2

2y Ax
2

_h
v h

h

- + -

= v- 2

' 1
�

(11)

	 .A A I A y zH H
2 1 2

h
v

h
v= + +

-

c cm m � (12)

Under some weak technical constraints, it can be proven [13] 
that when z is convex, the ADMM iteration (9) converges to 
,xV  the global minimum of (3) and (6).

From the discussion in the “Signal Recovery and Denois-
ing” section, we immediately recognize ( ; )zprox hz  in (10) as 
the MAP denoiser of z  under AWGN variance h  and signal 
prior ( ) ( ( )).expx xp ? z-  The key idea behind the original 
PnP work [7] was, in the ADMM recursion (9), to plug in a 
powerful image denoising algorithm, such as block-matching 
and 3D filtering (BM3D) [8], in place of the proximal denoiser 

( ; )xprox hz  from (10). If the plug-in denoiser is denoted by 
“ f,” then the PnP ADMM algorithm becomes

	 ( ; )x h v uk k k1 1 h= -- - � (13a)

	 ( )v f x uk k k 1= + - � (13b)

	 ( ).u u x vk k k k1= + -- � (13c)

A wide variety of empirical results (e.g., [7], [14], and [15]) 
have demonstrated that, when f  is a powerful denoising 
algorithm, such as BM3D, the PnP algorithm (13) produces 
far better recoveries than the regularization-based approach 
(9). Although the value of h  does not change the fixed point 
of the standard ADMM algorithm (9), it affects the fixed 
point of the PnP ADMM algorithm (13) through the ratio 

/2v h  in (12).
The success of PnP methods raises important theoretical 

questions. Because f  is not, in general, the proximal map of 

any regularizer ,z  the iterations (13) may not minimize a cost 
function of the form in (3), and (13) may not be an implemen-
tation of ADMM. It is, then, unclear if the iterations (13) will 
converge, and, if they do converge, it is uncertain what they 
converge to. The consensus equilibrium (CE) framework, 
which we discuss in the “Understanding PnP Through CE” 
section, aims to provide answers to these questions.

The use of a generic denoiser in place of a proximal denois-
er can be translated to non-ADMM algorithms, such as 
the fast iterative shrinkage and thresholding algorithm 
(FISTA), primal–dual splitting (PDS), and others, as in [16]–
[18]. Instead of optimizing x  as in (13), PnP FISTA [16] uses 
the iterative update

	 ( )z s A As yH
k k k1 2 1

v

h
= - -- - � (14a)

	 ( )x f zk k= � (14b)

	 ( ),s x x x
q

q 1
k k

k

k
k k

1
1= +

-
-

-
- � (14c)

where (14a) is a gradient descent (GD) step on the negative 
log-likelihood ( / ) y Ax1 2 2 2< <v -  at x sk 1= -  with step-size 

( , ),A0 2
2
2! < <h v -  (14b) is the plug-in replacement of the usual 

proximal denoising step in FISTA, and (14c) is an acceler-
ation step, where it is typical to use ( ) /q q1 1 4 2k k 1

2= + + -  
and .q 10 =

Comparing PnP ADMM (13) to PnP FISTA (3), one can see 
that they differ in how the data fidelity term ( / ) y Ax1 2 2 2< <v -  
is handled: PnP ADMM uses the proximal update (12), where-
as PnP FISTA and PnP PDS use the GD step (14a). In most 
cases, solving the proximal update (12) is much more com-
putationally costly than taking a GD step (14a). Thus, with 
ADMM, it is common to approximate the proximal update 
(12) using, for example, several iterations of the conjugate 
gradient (CG) algorithm or GD, which should reduce the per-
iteration complexity of (13) but may increase the number of 
iterations. However, even with these approximations of (12), 
PnP ADMM is usually close to “convergence” after 10–50 
iterations (e.g., see Figure 1).

An important difference between the aforementioned 
flavors of PnP is that the step size h  is constrained in FISTA 
but not in ADMM or PDS. Thus, PnP FISTA restricts the 
range of reachable fixed points relative to PnP ADMM and 
PnP PDS.

The balanced FISTA approach
In the “Signal Recovery and Denoising” section, when 
discussing the optimization problem (3), the regularizer 
( )x x 1< <z m W=  was mentioned as a popular option, where 

W  is often a wavelet transform. The resulting optimiza-
tion problem,

	 ,argminx y A xx
2
1

x
2 2

2
1< < < <

v
m W= - +' 1V � (15)

is said to be stated in “analysis” form (see [19] in this issue). 
The proximal denoiser associated with (15) has the form
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FIGURE 1. The normalized mean-squared error (NMSE) versus iteration 
for two PnP and two CS algorithms on the cardiac cine recovery data 
set 3 at R = 10. UWT: undecimated wavelet transform. 
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	 ( ; ) .argminz x x z
2
1prox

x
1

2< < < <h m
h

W= + -z ' 1 � (16)

When W  is orthogonal, it is well known that ( ; )zprox h =z  
( ; ),f ztdt mh  where

	 ( ; ) ( ; )f z zsoft-threshH
tdt _x xW W � (17)

is the “transform-domain thresholding” denoiser with 
[ ( , )] { , ( / } .maxu u0soft-thresh )u un n n n_ ; ; ; ;x x-  The denoiser 
(17) is very efficient to implement because it amounts to little 
more than computing forward and reverse transforms.

In practice, (15) yields much better results with nonor-
thogonal ,W  such as when HW  is a tight frame (see, e.g., 
the references in [20]). In the latter case, IHW W =  with 
tall .W  However, for general tight frames ,HW  the proximal 
denoiser (16) has no closed-form solution. What if we sim-
ply plugged the transform-domain thresholding denoiser 
(17) into an algorithm, such as ADMM or FISTA? How 
can we interpret the resulting approach? Interestingly, as 
we will describe, if (17) is used in PnP FISTA, then it does 
solve a convex optimization problem, although one with a 
different form than (3). This approach was independently 
proposed in [12] and [20]; in the latter, it was referred to as 
balanced FISTA (bFISTA) and applied to parallel cardiac 
MRI. Notably, bFISTA was proposed before the advent of 
PnP FISTA. More details are provided later in the article.

The optimization problem (15) can be stated in constrained 
“synthesis” form as

,argminx y A
2
1forH H

( )
2 2

2
1

range
< < < <a a a a

v
mWW= = - +

!a W
' 1V W W �

� (18)

where a  are transform coefficients. Then, as ,"3b  (18) can 
be expressed in the unconstrained form

	
,argmin

x

y A P
2
1

2

forH

H
2 2

2
2
2

1< < < < < <

a

a a a a
v

b
mW

W=

= - + +=

a
W' 1W

V W
�
(19)

with projection matrix P I .H_ WW-=
W  In practice, it is not 

possible to take "3b  and, for finite values of ,b  the prob-
lems (18) and (19) are not equivalent. However, (19) under 
finite b  is interesting to consider in its own right, and it 
is sometimes referred to as the balanced approach. If we 
solve (19) using FISTA with step size 02h  [recall (14a)] and 
choose the particular value / ,1b h=  then, remarkably, the 
resulting algorithm takes the form of PnP FISTA (14) with 
( ) ( ; ).f z f ztdt m=  This particular choice of b  is motivated by 

computational efficiency (because it leads to the use of )ftdt  
rather than recovery performance. Still, as we demonstrate 
in the “Demonstration of PnP in MRI” section, it performs 
relatively well.

Regularization by denoising
Another PnP approach, proposed by Romano, Elad, and Mi-
lanfar in [21], recovers x  from measurements y in (2) by find-
ing the xV  that solves the optimality condition

	 ( ) ( ( )),x x xA A y f1 10 T
2v h

= - + -V V V � (20)

where f  is an arbitrary (i.e., “plug in”) image denoiser and 
02h  is a tuning parameter. In [21], several algorithms were 

proposed to solve (20). Numerical experiments in [21] sug-
gest that, when f  is a sophisticated denoiser (such as BM3D) 
and h  is well tuned, the solutions xV  to (20) are state of the 
art, similar to those of PnP ADMM. As in [21] and [22], we 
first focus on the real-valued case, but later, we consider the 
complex-valued case of interest in MRI.

The approach in (20) was termed regularization by denois-
ing (RED) in [21] because, under certain conditions, the 
xV  that solve (20) are the solutions to the regularized least-
squares problem

	 ( )xargminx y Ax
2
1

x
2

2
red< <

v
z= - +' 1V � (21a)

with

	 ( ) ( ( )),x x x f x
2
1 T

red _z
h

- � (21b)

where the regularizer redz  is explicitly constructed from 
the plug-in denoiser f.  What are these conditions? As-
suming that f  is differentiable almost everywhere, it was 
shown in [22] that the solutions of (20) correspond to those 
of (21) when 1) f  is locally homogeneous, which means that 
( ) ( ) (( ) )f x f x1 1e e+ = +  for all x  and sufficiently small 
nonzero ,e  and 2) f  has a symmetric Jacobian matrix (i.e., 
[ ( )] ( )f x f x xJ J ).T 6=  However, it was demonstrated in [22] 
that these properties are not satisfied by popular image denois-
ers, such as the median filter, transform-domain thresholding, 
nonlocal means, BM3D, trainable nonlinear reaction diffu-
sion, and denoising convolutional neural network (DnCNN). 
Furthermore, it was proven in [22] that if the Jacobian of f  
is nonsymmetric, then there does not exist any regularizer z  
under which the solutions of (20) minimize a regularized loss 
of the form in (3).

One may then wonder how to justify (20). In [22], Reehorst 
and Schniter proposed an explanation for (20) based on “score 
matching,” which we now summarize. Suppose we are given a 
large corpus of training images { } ,xt t

T
1=  from which we could 

build the empirical prior model

( ) ( ),x x x
T

p 1
x

t

T

t
1

_ d -
=

W /

where d  denotes the Dirac delta. Because images are known 
to exist outside { } ,xt t

T
1=  it is possible to build an improved 

prior model pxu  using kernel density estimation (KDE), that is,
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	 ( ; ) ( ; , ),x x x Ip
T
1 Nx

t

T

t
1

_h h
=

u / � (22)

where 02h  is a tuning parameter. If we adopt pxu  as the prior 
model for x, then the MAP estimate of x  [recall (4)] becomes

	 ( ; ) .argmin lnx y Ax xp
2
1

x
x

2
2< <

v
h= - - u' 1V � (23)

Because lnpxu  is differentiable, the solutions to (23) must obey

	 ( ) ( ; ).lnx xA A y p10 T
x2 d h

v
= - - uV V � (24)

A classical result known as Tweedie’s formula says that

	 ( ; ) ( ( ; ) ),ln z f z zp 1
x mmsed h

h
h= -u � (25)

where ( ; )fmmse $ h  is the minimum mean-squared error 
(MMSE) denoiser under the prior x p x+ W  and -h variance 
AWGN. That is, ( ) { },f z x zEmmse ;=  where ( , )z x I0N h= +  
and .x p x+ W  Applying (25) to (24), the MAP estimate xV  un-
der the KDE prior pxu  obeys

	 ( ) ( ( ; )),x x xA A y f1 10 T
2 mmse

v h
h= - + -V V V � (26)

which matches the RED condition (20) when ( ; ).f fmmse $ h=  
Thus, if we could implement the MMSE denoiser fmmse  for a 
given training corpus { } ,xt t

T
1=  then RED provides a way to 

compute the MAP estimate of x under the KDE prior .pxu

Although the MMSE denoiser fmmse  can be expressed in 
closed form (see [22, eq. 67]), it is not practical to implement 
for large .T  Thus, the question remains: can the RED approach 
(20) also be justified for non-MMSE denoisers f, especially 
those that are not locally homogeneous or Jacobian symmet-
ric? As shown in [22], the answer is yes. Consider a practi-
cal denoiser fi  parameterized by tunable weights i  (e.g., a 
DNN). A typical strategy is to choose i  to minimize the MSE 
on { } ,xt t

T
1=  that is, to set { ( ) },argmin x f zE 2< <i = -i iW  where 

the expectation is taken over x p x+ W  and ( , ).z x I0N h= +  
By the MMSE orthogonality principle, we have

	
{ ( ) } { ( ; ) }

{ ( ; ) ( ) },

zx f x f z

f z f z

E E

E

2 2

2

mmse

mmse

< < < <

< <

h

h

- = -

+ -

i

i

�
(27)

and so we can write

	 { ( ; ) ( ) }argmin f z f zE 2
mmse< <i h= -

i
iW � (28)

	 ( ; ) ( ( ) ) ,argmin ln z f z zp 1E x

2

d h
h

= - -
i

iu' 1 � (29)

where (29) follows from (25). Equation (29) says that choosing 
i  to minimize the MSE is equivalent to choosing i  so that 
( / ) ( ( ) )f z z1 h -i  best matches the “score” ( ; ).ln zpxd hu

In summary, the RED approach (20) approximates the 
KDE-MAP approach (24)–(26) by using a plug-in denoiser f  
to approximate the MMSE denoiser .fmmse  When ,f fmmse=  

RED exactly implements MAP-KDE, but with a practical f, 
RED implements a score-matching approximation of MAP-
KDE. Thus, a more appropriate title for RED might be “score 
matching by denoising.”

Comparing the RED approach from this section to the 
prox-based PnP approach from the “Prox-Based PnP” section, 
we see that RED starts with the KDE-based MAP estima-
tion problem (23) and replaces the p -xu based MMSE denoiser 
fmmse  with a plug-in denoiser f, whereas PnP ADMM starts 

with the -z based MAP estimation problem (3) and replaces 
the -z based MAP denoiser proxz  from (10) with a plug-in 
denoiser f. It has recently been demonstrated that, when the 
prior is constructed from image examples, MAP recovery 
often leads to sharper, more natural-looking image recoveries 
than MMSE recovery [23]. Thus, it is interesting that RED 
offers an approach to MAP-based recovery using MMSE 
denoising, which is much easier to implement than MAP 
denoising [23].

Further insight into the difference between RED and 
prox-based PnP can be obtained by considering the case of 
symmetric linear denoisers, that is, ( )f z Wz=  with W W ,T=  
where we will also assume that W  is invertible. Although 
such denoisers are far from state of the art, they are useful 
for interpretation. It is easy to show [24] that ( )f z Wz=  is 
the proximal map of ( ) ( / ) ( )x x W I x1 2 ,T 1z h= --  that is, that 

( ; ) ,z Wzprox h =z  recalling (10). With this proximal denoiser, 
we know that the prox-based PnP algorithm solves the opti-
mization problem

	 ( ) .argminx y Ax x W I x
2
1

2
1 T

x
2

2 1
pnp < <

v h
= - + --' 1V � (30)

Meanwhile, because ( )f z Wz=  is both locally homogeneous 
and Jacobian symmetric, we know from (21) that the RED un-
der this f  solves the optimization problem

	 ( ) .argminx y Ax x I W x
2
1

2
1 T

x
2

2
red < <

v h
= - + -' 1V � (31)

By comparing (30) and (31), we see a clear difference be-
tween RED and prox-based PnP. The “CE for RED” section 
compares RED to prox-based PnP from yet another perspec-
tive: CE.

So far, we have described RED as solving for xV  in (20), 
but how, exactly, is this accomplished? In the original RED 
article [21], three algorithms were proposed to solve (20): GD, 
inexact ADMM, and a “fixed-point” heuristic that was later 
recognized [22] as a special case of the proximal gradient 
(PG) algorithm. Generalizations of PG RED were proposed 
in [22]. The fastest among them is the accelerated-PG RED 
algorithm, which uses the iterative update

	 ( ; / )x h v Lk k 1 h= - � (32a)

	 ( )z x x x
q

q 1
k k

k

k
k k

1
1= +

-
-

-
- � (32b)

	 ( ) ,v f z z
L L
1 1 1

k k k= + -` j � (32c)
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where h was defined in (12), (32b) uses the same accelera-
tion as PnP FISTA (14b), and L 02  is a design parameter 
that can be related to the Lipschitz constant of ( )red $z  from 
(21) (see Section V-C in [22]). The RED equations (32) and 
(33) may be used with complex-valued quantities. When L 1=  
and ,q k1k 6=  (32) reduces to the “fixed-point” heuristic from 
[21]. To reduce the implementation complexity of h, one could 
replace (32a) with the GD step

	 ( ),x x A Av y
L

H
k k k1 2 1

v

h
= - -- - � (33)

which achieves a similar complexity reduction as when going 
from PnP ADMM to PnP FISTA (as discussed in the “Prox-
Based PnP” section). The result would be an “accelerated 
GD” form of RED. Convergence of the RED algorithms will 
be discussed in the “CE for RED” section.

Understanding PnP through CE
The success of the PnP methods described raises impor-
tant theoretical questions. For example, in the case of PnP 
ADMM, if the plug-in denoiser f  is not the proximal map 
of any regularizer ,z  then it is not clear what cost function is 
being minimized (if any) or whether the algorithm will even 
converge. Similarly, in the case of RED, if the plug-in denois-
er f  is not the MMSE denoiser ,fmmse  then RED no longer 
solves the MAP-KDE problem, and it is not clear what RED 
does solve or whether a given RED algorithm will even con-
verge. In this section, we show that many of these questions 
can be answered through the consensus equilibrium (CE) 
framework [18], [22], [24], [25]. We start by discussing CE for 
the PnP approaches from the “Prox-Based PnP” section and 
follow with a discussion of CE for the RED approaches from 
the “Regularization by Denoising” section.

CE for prox-based PnP
Let us start by considering the PnP ADMM algorithm (13). 
Rather than viewing (13) as minimizing some cost function, 
we can view it as seeking a solution, ( , ),x upnp pnpV V  to

	 ( ; )x h x upnp pnp pnp h= -V V V � (34a)

	 ( ),x f x upnp pnp pnp= +V V V � (34b)

which, by inspection, must hold when (13) is at a fixed 
point. Not surprisingly, by setting x xk k 1= -  in the PnP 
FISTA algorithm (14), it is straightforward to show that it, 
too, seeks a solution to (34). It is easy to show that the PnP 
PDS algorithm [17] seeks the same solution. With (34), the 
goal of the prox-based PnP algorithms becomes well de-
fined! The pair (34) reaches a consensus in that the denois-
er f  and the data-fitting operator h agree on the output 
x .pnpV  The equilibrium comes from the opposing signs on 
the correction term u :pnpV  the data-fitting subtracts it, while 
the denoiser adds it.

By viewing the goal of prox-based PnP as solving the 
equilibrium problem (34), it becomes clear that other solvers 
beyond ADMM, FISTA, and PDS can be used. For example, 

it was shown in [25] that the PnP CE condition (34) can be 
achieved by finding a fixed point of the system

( ) ( )z I I z2 2G F= - - � (35)

, ( )
( ; )
( )

, ( )
( )

( )
.z

z
z z

h z
f z z

z z

z z

2
1

2
1andF G

1

2

1

2

1 2

1 2

h
= = =

+

+
; ; >E E H � (36)

The paper [25] actually considers the CE among N 12  agents, 
whereas here, we consider the simple case of N 2=  agents. 
There exist many algorithms to solve (35). For example, one 
could use the Mann iteration

( ) ( ) ( ) , ( , ),z z I I z1 2 2 0 1withG F( ) ( )k k k1 !c c c= - + - -+

� (37)

when F  is nonexpansive. [25] also shows that this fixed 
point is equivalent to the solution of ( ) ( ),z zF G=  in which 
case Newton’s method or other root-finding methods could 
be applied.

The CE viewpoint also provides a path to proving the con-
vergence of the PnP ADMM algorithm. Sreehari et al. [14] 
used a classical result from convex analysis to show that suf-
ficient conditions for convergence are that 1) f  is nonexpan-
sive, that is, ( ) ( )f x f y x y< < # < <- -  for any x  and ,y  and 2) 
( )f x  is a subgradient of some convex function, that is, there 

exists {  such that ( ) ( ).f x x2! {  If these two conditions are 
met, then PnP ADMM (13) will converge to a global solution. 
Similar observations were made in other recent studies, such 
as [24]. That said, Chan et al. [15] showed that many practical 
denoisers do not satisfy these conditions, and so they designed 
a variant of PnP ADMM in which h  is decreased at every 
iteration. Under appropriate conditions on f  and the rate of 
decrease, this latter method also guarantees convergence, 
although not exactly to a fixed point of (34) because h  is no 
longer fixed.

Similar techniques can be used to prove the convergence of 
other prox-based PnP algorithms. For example, under certain 
technical conditions, including nonexpansiveness of f, it was 
established [18] that PnP FISTA converges to the same fixed 
point as PnP ADMM.

CE for RED
Just as the prox-based PnP algorithms can be viewed as seek-
ing the CE of (34), it was shown in [22] that the proximal 
gradient and ADMM-based RED algorithms seek the CE 
( , )x ured redV V  of

	 ( ; )x h x ured red red h= -V V V � (38a)

	 ( ),x I f x u
L L

1 1 1 1
red red red= + - +

-`` j jV V V � (38b)

where h was defined in (12), and L  is the algorithmic param-
eter that appears in (32). (The parameter L  also manifests in 
ADMM RED, as discussed in [22].) Because (38) takes the 
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same form as (34), we can directly compare the CE conditions 
of RED and prox-based PnP.

Perhaps a more intuitive way to compare the CE conditions 
of RED and prox-based PnP follows from rewriting (38b) 
as ( ) ,x f x uLred red red= +V V V  after which the RED CE condi-
tion becomes

	 ( ; )x h x ured red red h= -V V V � (39a)

	 ( ) ,x f x uLred red red= +V V V � (39b)

which involves no inverse operations. In the typical case of 
,L 1=  we see that (39) matches (34), except that the cor-

rection u redV  is added after denoising in (39b) and before 
denoising in (34b).

Yet another way to compare the CE conditions of RED and 
prox-based PnP is to eliminate the u redV  variable. Solving (39a) 
for u redV  gives

	 ( ),u A y AxH
2red red

v

h
= -V V � (40)

which mirrors the expression for .u pnpV  Then, plugging u redV  
back into (39b) and rearranging, we obtain the fixed-point 
equation

	 ( ) ( ),x f x A y Ax
L H

2red red red
v

h
= + -V V V � (41)

or, equivalently,

	 ( ) ( ) ,A Ax y f x x
L H

2 red red red
v

h
- = -V V V � (42)

which says that the data-fitting correction [i.e., the left side of 
(42)] must balance the denoiser correction [i.e., the right side 
of (42)].

The CE framework also facilitates the convergence analy-
sis of RED algorithms. For example, using the Mann iteration, 
it was proven in [22] that, when f  is nonexpansive and ,L 12  
the PG RED algorithm converges to a fixed point.

Demonstration of PnP in MRI

Parallel cardiac MRI
We now demonstrate the application of PnP methods to paral-
lel cardiac MRI. Because the signal x is a cine (i.e., a video) 

rather than a still image, there are relatively few options avail-
able for sophisticated denoisers. Although algorithmic denois-
ers, such as BM4D, have been proposed, they tend to run very 
slowly, especially relative to the linear operators A and .AH  
For this reason, we first trained an application-specific CNN 
denoiser for use in the PnP framework. The architecture of the 
CNN denoiser, implemented and trained in PyTorch, is shown 
in Figure 2.

For training, we acquired 50 fully sampled cine data sets 
with high signal-to-noise ratio (SNR) from eight healthy vol-
unteers. Thirty-three of those were collected on a 3-T scan-
ner, and the remaining 17 were collected on a 1.5-T scanner. 
(The 3-T scanner was a Magnetom Prisma Fit, and the 1.5-T 
scanner was a Magnetom Avanto, both from Siemens Health-
ineers in Erlangen, Germany.) Of the 50 data sets, 28, seven, 
seven, and eight were collected in the short-axis, two-, three-, 
and four-chamber views, respectively. The spatial and tempo-
ral resolutions of the images ranged from 1.8 to 2.5 mm and 
from 34 to 52 ms, respectively. The image sizes ranged from 
160 130#  to 256 208#  pixels, and the number of frames 
ranged from 15 to 27. For each of the 50 data sets, the refer-
ence image series was estimated as the least-squares solution 
to (1), with the sensitivity maps Si  estimated from the time-
averaged data using ESPIRiT. 

We added zero-mean, complex-valued independent and 
identically distributed Gaussian noise to these “noise-free” 
reference images to simulate noisy images with an SNR of 
24 dB. Using a fixed stride of 30 30 10# #  pixels, we decom-
posed the images into patches of size 55 55 15# #  pixels. The 
noise-free and corresponding noisy patches were assigned 
as output and input to the CNN denoiser, with the real and 
imaginary parts processed as two separate channels. All 3D 
convolutions were performed using 3 3 3# #  kernels. There 
were 64 filters of size 3 3 3 2# # #  in the first layer, 64 filters 
of size 3 3 3 64# # #  in the second through fourth layers, and 
two filters of size 3 3 3 64# # #  in the last layer. We set the 
minibatch size to four and used the Adam optimizer with a 
learning rate of 1 10 4# -  over 400 epochs. The training pro-
cess was completed in 12 h on a workstation equipped with 
a single NVIDIA graphic processing unit (GPU), a GeForce 
RTX 2080 Ti.

For testing, we acquired four fully sampled cine data sets 
from two different healthy volunteers, with two image series 
in the short-axis view, one image series in the two-chamber 

Noisy Patch Denoised Patch

3D
Conv

3D
ConvReLU ReLU 3D

Conv
3D

ConvReLUReLU –3D
Conv

FIGURE 2. The architecture of the CNN-based cardiac cine denoiser operating on spatiotemporal volumetric patches. ReLU: rectified linear unit; Conv.: convolution.
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view, and one image series in the four-chamber view. The 
spatial and temporal resolutions of the images ranged from 
1.9 to 2 mm and from 37 to 45 ms, respectively. For the four 
data sets, the space-time signal vector, x, in (2) had dimen-
sions of ,192 144 25# #  ,192 144 25# #  ,192 166 16# #  and 

,192 166 16# #  respectively, with the first 
two dimensions representing the number 
of pixels and the last dimension represent-
ing the number of frames. The data sets were 
retrospectively downsampled at acceleration 
rates, ,R  of 6, 8, and 10 by using pseudoran-
dom sampling [26]. A representative sampling 
pattern used to undersample one of the data 
sets is shown in Figure 3. The data were com-
pressed to C 12=  virtual coils for faster com-
putation. The measurements were modeled as 
described in (1), with the sensitivity maps, ,Si  estimated from the 
time-averaged data using ESPIRiT.

For compressive MRI recovery, we used PnP ADMM from 
(2) with f  as the CNN-based denoiser described previously; 
we will refer to the combination as PnP-CNN. We employed 
a total of 100 ADMM iterations, and in each ADMM itera-
tion, we performed four steps of CG to approximate (12), for 
which we used .12v h= =  We compared this PnP method to 
three CS-based methods: CS–undecimated wave transform 
(UWT), CS-total variation (TV) (note that sometimes UWT 
and TV are combined [1]), and low-rank plus sparse (L + S) as 
well as PnP-UWT and the transform-learning (see the over-
view [32] in this issue) method called low-rank and adaptive 
sparse signal (LASSI) [27].

For PnP-UWT, we used PnP FISTA from (14) with f  
implemented as ftdt  given in (17), that is, bFISTA. A 3D, sin-
gle-level Haar undecimated wavelet transform was used as W  
in (17). For CS-TV, we used a 3D finite-difference operator for 
W  in the regularizer ( ) ,x x 1< <z m W=  and for CS-UWT, we 
used the aforementioned UWT instead. For both CS-TV and 
CS-UWT, we used monotone FISTA [28] to solve the resulting 

convex optimization problem (3). For L S,+  the low-rank plus 
sparse method by Otazo et al. [29] was used. The regulariza-
tion weights for CS-UWT, PnP-UWT, CS-TV, and L S+  were 
manually tuned to maximize the reconstruction SNR (rSNR) 
(defined as / ,xx x2 2< < < <-V  where x is the true image and xV  

is the estimate) for data set 3 at .R 10=  For 
LASSI, we used the authors’ implementa-
tion at https://gitlab.com/ravsa19/lassi, and  
we did our best to manually tune all avail-
able parameters.

The rSNR values are summarized in 
Table 1. For all four data sets and three 
acceleration rates, PnP-CNN exhibited 
the highest rSNR with respect to the fully 
sampled reference. Also, compared to the 
CS methods and PnP-UWT, which uses a 

more traditional denoiser based on soft-thresholding of UWT 
coefficients, PnP-CNN was better at preserving anatomical 
details of the heart (Figure 4). The performance of PnP-UWT 
was similar to that of CS-UWT. Figure 1 plots normalized 
mean-squared error (NMSE) as a function of the number of 
iterations for the CS and PnP methods. Because the CS meth-
ods were implemented with CPU computation and the PnP 
methods were implemented with GPU computation, a direct 
runtime comparison was not possible. We did, however, com-
pare the per-iteration runtime of PnP ADMM for two different 
denoisers: the CNN and UWT-based ftdt  described previously 
in this section. 

When the CNN denoiser was replaced with the UWT-based 
,ftdt  the per-iteration runtime changed from 2.05 to 2.1 s, imply-

ing that the two approaches have very similar computational 

Table 1. The rSNR (dB) of MRI cardiac cine recovery from four test 
data sets.

Acceleration 
CS-
UWT CS-TV L + S LASSI

PnP-
UWT

PnP-
CNN

Data Set 1 (Short Axis)
R = 6 30.10 29.03 30.97 27.09 30.18 31.82 
R = 8 28.50 27.35 29.65 25.91 28.60 31.25
R = 10 26.94 25.78 28.29 24.98 27.06 30.46 

Data Set 2 (Short Axis)
R = 6 29.23 28.27 29.73 25.87 29.29 30.81 
R = 8 27.67 26.65 28.23 24.54 27.75 30.17
R = 10 26.12 25.11 26.89 23.61 26.22 29.21 

Data Set 3 (Two Chamber)
R = 6 27.33 26.38 27.83 24.97 27.38 29.36 
R = 8 25.63 24.63 26.30 23.52 25.69 28.50
R = 10 24.22 23.24 24.93 22.51 24.28 27.49 

Data Set 4 (Four Chamber)
R = 6 30.41 29.63 30.62 27.62 30.60 32.19 
R = 8 28.68 27.76 29.00 26.33 28.94 31.42 
R = 10 27.09 26.18 27.60 25.24 27.37 30.01 

Bold indicates the winning method.
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FIGURE 3. Two different views of the 3D sampling pattern used to 
retrospectively undersample one of the four test data sets at R = 10. The 
undersampling was performed only in the phase-encoding direction, and 
the pattern was varied across frames. In this example, the number of 
frequency encoding steps, phase encoding steps, and frames are 192, 
144, and 25, respectively.

The success of PnP 
methods raises important 
theoretical questions. 
Many of these questions 
can be answered through 
the consensus equilibrium  
framework.
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costs. The extended version of this article [10] shows the results 
of experiments that investigate the effect of /2v h  on the final 
NMSE and the convergence rate. Overall, final NMSE varies 
less than 0.5 dB for / [ . , ]0 5 22 !v h  for all 
four data sets and all three acceleration 
rates, and the convergence rate is nearly the 
same. The extended version also explores 
the use of CG versus GD when solving (12) 
in PnP ADMM. The results suggest that 
one to four inner iterations of either method 
are optimal; more inner iterations slows the 
overall convergence time. The results in 
this section, although preliminary, high-
light the potential of PnP methods for MRI 
recovery of cardiac cines. By optimizing the 
denoiser architecture, the performance of PnP-CNN may be 
further improved.

Single-coil fastMRI knee data
In this section, we investigate recovery of 2D knee images 
from the single-coil fastMRI data set [30]. This data set 
contains fully sampled k-space data that are partitioned into 
34,742 training slices and 7,135 testing slices. The Cartesian 
sampling patterns from [30] were used to achieve acceleration 
rate .R 4=

We evaluated PnP using the ADMM algorithm with a 
learned DnCNN [9] denoiser. To accommodate complex-val-
ued images, DnCNN was configured with two input and two 

output channels. The denoiser was then 
trained by using only the central slices of 
the 3-T scans without fat suppression from 
the training set, comprising a total of 267 
slices (i.e., %11  of the total training data). 
The training-noise variance and the PnP 
ADMM tuning parameter /2v h  were man-
ually adjusted in an attempt to maxi-
mize rSNR.

PnP was then compared to the TV and 
U-Net baseline methods described and con-
figured in [30]. For example, 128 channels 

were used for the U-Net’s first layer, as recommended in [30]. 
We then trained three versions of the U-Net. The first version 
was trained on the full fastMRI training set with random sam-
pling masks. (The full fastMRI training set includes 1.5-T and 
3-T scans, with and without fat suppression, and an average of 
36 slices per volume.) The second U-Net was trained on the 
full fastMRI training set, but with a fixed sampling mask. The 
third U-Net was trained with only the central slices of the 3-T 
scans without fat suppression (i.e., the same data used to train 
the DnCNN denoiser) and with a fixed sampling mask.

FIGURE 4. Results from the cardiac cine data set 1 at R = 10. (a) A representative frame from the fully sampled reference and various recovery methods. 
The green arrow points to an image feature that is preserved only by PnP-CNN and not by other methods. (b) The error map 6# . (c) The temporal frame 
showing the line drawn horizontally through the middle of the image in (a), with the time dimension along the horizontal axis. The arrows point to the 
movement of the papillary muscles, which are more well defined in PnP-CNN.

Reference CS-UWT CS-TV L + S LASSI PnP-UWT PnP-CNN

(a)

(b)

(c)

What PnP approaches 
have in common is 
that they recover the 
signal by iteratively 
calling a sophisticated 
denoiser within a larger 
optimization or inference 
algorithm.
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To evaluate performance, we used the central slices of 
the nonfat-suppressed 3-T scans from the validation set, 
comprising a total of 49 slices. The evaluation considered both 
random sampling masks and the same fixed mask used for 
training. The resulting average rSNR and 
structured similarity index (SSIM) scores 
are summarized in Table 2, which shows 
that PnP-CNN performed similarly to the 
U-Nets and significantly better than TV. In 
particular, PnP-CNN achieved the highest 
rSNR score with both random and fixed 
testing masks, and the U-Net gave slightly 
higher SSIM scores in both tests. Among 
the U-Nets, the version trained with a fixed 
sampling mask and full data gave the best 
rSNR and SSIM performance when test-
ing with the same mask, but its performance dropped 
considerably when testing with random masks. Meanwhile, 
the U-Net trained with the smaller data performed signifi-
cantly worse than the other U-Nets with either fixed or ran-
dom testing masks. Although this latter U-Net used exactly 
the same training data as the PnP-CNN method, it was not 
competitive with PnP-CNN. Although preliminary, these 
results suggest that 1) PnP methods are much less sensitive to 
deviations in the forward model between training and testing 
and 2) PnP methods are effective with relatively small train-
ing data sets.

Conclusions
PnP methods present an attractive avenue for compressive 
MRI recovery. In contrast to traditional CS methods, PnP 
methods can exploit richer image structure by using state-of-
the-art denoisers. To demonstrate the potential of such meth-
ods for MRI reconstruction, we used PnP to recover cardiac 
cines and knee images from highly undersampled data sets. 
With application-specific CNN-based denoisers, PnP was 
able to significantly outperform traditional CS methods 
and to perform on par with modern deep-learning methods 
but with considerably less training data. The time is ripe 

to investigate the potential of PnP methods for a variety of 
MRI applications.
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Bold indicates the winning method.

PnP was able to 
significantly outperform 
traditional CS methods 
and to perform on par 
with modern deep-
learning methods but  
with considerably less 
training data.
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