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Using denoisers for image recovery

agnostic tool that provides excellent soft-tissue contrast

without the use of ionizing radiation. Compared to oth-
er clinical imaging modalities (e.g., computed tomography
or ultrasound), however, the data acquisition process for
MRI is inherently slow, which motivates undersampling;
thus, there is a need for accurate, efficient reconstruction
methods from undersampled data sets. In this article, we
describe the use of plug-and-play (PnP) algorithms for
MRI image recovery. We first describe the linearly ap-
proximated inverse problem encountered in MRI. Then, we
review several PnP methods for which the unifying com-
monality is to iteratively call a denoising subroutine as
one step of a larger optimization-inspired algorithm. Next,
we describe how the result of the PnP method can be in-
terpreted as a solution to an equilibrium equation, allow-
ing convergence analysis from this perspective. Finally,
we present illustrative examples of PnP methods applied to
MRI image recovery.

M agnetic resonance imaging (MRI) is a noninvasive di-

Introduction

MRI uses radio-frequency (RF) waves to noninvasively
evaluate the structure, function, and morphology of soft tis-
sues. It has become an indispensable imaging tool for di-
agnosing and evaluating a host of conditions and diseases.
However, MRI suffers from slow data acquisition: a typical
clinical MRI examination consists of multiple scans and can
take more than an hour to complete. For each scan, the pa-
tient may be asked to stay still for several minutes, with slight
motion potentially resulting in image artifacts. Furthermore,
dynamic applications demand collecting a series of images in
quick succession. Due to the limited time window in many
dynamic applications (e.g., contrast-enhanced MR angiog-
raphy), it is not feasible to collect fully sampled data sets.
For these reasons, MRI data are often undersampled. Con-
sequently, computationally efficient methods for recovering
Digial Otjoct Hentiir 0.1 T0NMSE 201925570 hig.h—quality images from undersampled MRI data have been
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The combination of parallel (i.e., multicoil) imaging and
compressive sensing (CS) has been shown to benefit a wide
range of MRI applications [1], including dynamic applica-
tions, and has been included in the default image-processing
frameworks offered by several major MRI vendors. More
recently, learning-based techniques (e.g., [2]—[6]) have been
shown to outperform CS methods. Some of these techniques
learn the entire end-to-end mapping from undersampled
k-space or aliased images to recovered images (e.g., [4]).
Considering that the forward model in MRI changes from
one data set to the next, such methods must be either trained
over a large and diverse data corpus or limited to a specific
application. Other methods train scan-specific convolu-
tional neural networks (CNNs) on a fully sampled region
of k-space and then use it to interpolate missing k-space
samples [5]. These methods do not require separate train-
ing data but demand a fully sampled k-space region. Due
to the large number of unknowns in CNNs, such methods
require a fully sampled region that is larger than that typi-
cally acquired in parallel imaging, limiting the acceleration
that can be achieved.

Other supervised learning methods are inspired by classic
variational optimization methods and iterate between data-
consistency enforcement and a trained CNN, which acts as a
regularizer [3]. Such methods require a large number of fully
sampled, multicoil k-space data sets, which may be difficult
to obtain in many applications. Also, because CNN training
occurs in the presence of data-set-specific forward models,
generalization from training to test scenarios remains an open
question [6]. Consequently, the integration of learning-based
methods into physical inverse problems remains a fertile area
of research. There are many directions for improvement,
including recovery fidelity, computational and memory effi-
ciency, robustness, interpretability, and ease of use.

This article focuses on PnP algorithms [7], which alter-
nate image denoising with forward-model-based signal recov-
ery. They facilitate the use of state-of-the-art image models
through their manifestations as image denoisers, whether
patch based (e.g., [8]) or deep neural network (DNN) based
(e.g., [9]). The fact that PnP algorithms decouple image mod-
eling from forward modeling has advantages in compres-
sive MRI, where the forward model can change significantly
among different scans due to variations in the coil sensitivity
maps, sampling patterns, and image resolution. Furthermore,
fully sampled k-space MRI data are not needed for PnP; the
image denoiser can be learned from MRI image patches or,
possibly, even magnitude-only patches. The objective of this
article is twofold: 1) to review recent advances in PnP meth-
ods and 2) to discuss their application to compressive MRI
image reconstruction. For an extended version of this article
that contains additional references and more in-depth discus-
sions on a variety of topics, see [10].

Image recovery in compressive MRI
In this section, we describe the standard linear inverse prob-
lem formulation in MRI. We acknowledge that more sophis-

ticated formulations exist (see, e.g., [31] in this issue for a
more careful modeling of physics effects). Briefly, the mea-
surements are samples of the Fourier transform of the image,
where the Fourier domain is often referred to as k-space. The
transform can be taken across two or three spatial dimensions
and includes an additional temporal dimension in dynamic ap-
plications. Furthermore, measurements are often collected in
parallel from C =1 receiver coils. In dynamic parallel MRI
with Cartesian sampling, the k-space measurements from the
ith coil at time ¢ take the form

' =POFSix® +w, €))
where x” € C" is the vectorized 2D or 3D image at discrete
time 7, S; € C"*" is a diagonal matrix containing the sensi-
tivity map for the ith coil, F € CY*" is the 2D or 3D discrete
Fourier transform, the sampling matrix P € R**" contains
M rows of the N X N identity matrix, and wﬁt) eCM is ad-
ditive white Gaussian noise (AWGN). Often, the sampling
pattern changes across frames ¢. The MRI literature often
refers to R= N/M as the acceleration rate. The AWGN as-
sumption, which does not hold for the measured parallel MRI
data, is commonly enforced by using noise prewhitening fil-
ters, which yields the model (1) but with diagonal “virtual”
coil maps S; [11].

MRI measurements are acquired using a sequence of
measurement trajectories through k-space that can be Car-
tesian or non-Cartesian in nature. Cartesian trajectories are,
essentially, lines through k-space. In the Cartesian case,
one k-space dimension (i.e., the frequency encoding) is
fully sampled, while the other one or two dimensions (i.e.,
the phase encodings) are undersampled to reduce acquisi-
tion time. Typically, one line, or readout, is collected after
every RF pulse, and the process is repeated several times to
collect adequate samples of k-space. Non-Cartesian trajecto-
ries include radial or spiral curves, which have the effect of
distributing the samples among all dimensions of k-space.
Compared to Cartesian sampling, non-Cartesian sampling
provides more efficient coverage of k-space and yields an
“incoherent” forward operator that is more conducive to
compressed-sensing reconstruction. However, Cartesian sam-
pling remains the method of choice in clinical practice, due
to its higher tolerance to system imperfections and an exten-
sive record of success.

Because the sensitivity map, S;, is patient specific and var-
ies with the location of the coil with respect to the imaging
plane, both S; and x® are unknown in practice. Although
calibration-free methods have been proposed to estimate
Six” or to jointly estimate S; and x, it is more common
to first estimate S; through a calibration procedure and then
treat S; as known in (1). Stacking {yﬁ’)}, {x"}, and {wﬁ')} into
vectors y,x, and w, and packing {P(’>FS,-} into a known
block-diagonal matrix A, we obtain the linear inverse prob-
lem of recovering x from

y=Ax+w, w~ N(0,c0), 2
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where N(0,6°I) denotes a circularly symmetric, complex-
Gaussian random vector with mean 0 and covariance o> I.

Signal recovery and denoising
The maximum likelihood (ML) estimate of x from y in (2)
is Xm = argmax.p(ylx), where p(ylx), the probability
density of y conditioned on x, is known as the likelihood
function. The ML estimate is often written in the equivalent
form Xml = argminy {—Inp(y | x)}. In the case of o2 variance
AWGN w, we have —Inp(y |x)= (1/20‘2)H y— Ax||§ + const
and, therefore, Xm = argmian y — Ax |, which can be rec-
ognized as least-squares estimation. Although least-squares
estimation can give reasonable performance when A is tall
and well conditioned, this is rarely the case under moderate
to high acceleration (i.e., R > 2). With acceleration, it is criti-
cally important to exploit prior knowledge of signal structure.
The traditional approach to exploiting such prior knowl-
edge is to formulate and solve an optimization problem of
the form

% = argmin{ 5 |y~ Ax [} + 900 | ®

where the regularization term ¢ (x) encodes prior knowledge
of x. In fact, ¥ in (3) can be recognized as the maximum
a posteriori (MAP) estimate of x under the prior density
model p(x)ocexp(—¢(x)). To see why, recall that the MAP
estimate maximizes the posterior distribution p(x|y). That
is, Xmap = argmaxy p(x | y) = argming{—Inp(x | y)}. Be-
cause Bayes’ rule implies that Inp(x | y) = Inp(y | x) +
Inp(x) — Inp(y), we have

Xmap = argmin {—Inp(y|x) —Inp(x)}. 4)

Recalling that the first term in (3) (i.e., the “loss” term) was ob-
served to be —Inp(y | x) (plus a constant) under AWGN noise,
the second term in (3) must obey ¢ (x)=—Inp(x)+ const.
We will find this MAP interpretation useful in the sequel.

It is not easy to design good regularizers ¢ for use in
(3). They must not only mimic the negative log of the prior
density but also enable tractable optimization. One common
approach is to use ¢ (x) = A| Wx [, where ¥" is a tight frame
(e.g., a wavelet transform) and A >0 is a tuning parameter
[12]. Such regularizers are convex, and the (; norm rewards
sparsity in the transform outputs ¥x when used with the qua-
dratic loss.

Particular insight comes from considering the special case
of A =1, where the measurement vector in (2) reduces to an
AWGN:-corrupted version of the image x:

z=x+w, w~ N(@O,0c°I). (5)
The problem of recovering x from noisy z, known as de-
noising, has been intensely researched for decades. Although
it is possible to perform denoising by solving a regularized

optimization problem of the form (3) with A =1, today’s
state-of-the-art approaches are either algorithmic (e.g., [8])
or DNN based (e.g., [9]). This begs an important question:
can these state-of-the-art denoisers be leveraged for MRI
signal reconstruction by exploiting the connections between
the denoising problem and (3)? As we shall see, this is pre-
cisely what the PnP methods do.

PnP methods

In this section, we review several approaches to PnP signal
reconstruction. What these approaches have in common is
that they recover x from measurements y of the form (2) by
iteratively calling a sophisticated denoiser within a larger op-
timization or inference algorithm.

Prox-based PnP

To start, let us imagine how the optimization in (3) might
be solved. Through what is known as variable splitting, we
could introduce a new variable, v, to decouple the regulariz-
er ¢(x) from the data fidelity term (1/20‘2)||y — Ax ||§ The
variables x and v could then be equated using an external
constraint, leading to the constrained minimization problem

1
202

X = argminmin
veoy vel

|y —Ax H; + ¢(v)} subjectto x=v.
(©)

Equation (6) suggests an algorithmic solution that alternates
between separately estimating x and estimating v, with an
additional mechanism to asymptotically enforce the constraint
x=v.

The original PnP method [7] is based on the alternating
direction method of multipliers (ADMM) [13]. For ADMM,
(6) is first reformulated as the “augmented Lagrangian™

minmax| -5 |y - Ax[ + o)
+Re{a”(x—v)}+2in\\x—v|!2}, M

where A are Lagrange multipliers and 7 >0 is a penalty
parameter that affects the convergence speed of the algo-
rithm but not the final solution. With u =7A, (7) can be
rewritten as

min m;lX{?H y—Ax[;+ o)
+ gl =y rul =5 ful). ®)

ADMM solves (8) by alternating the optimization of x and v
with gradient ascent of u; i.e.,

xc=hWi1 —ur-1;1) (9a)
Vi = prox¢(xx + ur-1;1) (9b)
Ur=ur—1+ Xc—ve), (9¢)

where h(z;n) and prox¢(z;7n), known as proximal maps, are
defined as
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proxe(z: ) = argmin {gx) + 5 |~z (10)
RN PN O LR O [
h(z,n)—arggnn{zdzl\y Ax | +2,7||x ZH}
= ProX y-aclp/ 2% (25 77) (1)
2 \~! 2
= A“A+"—1> <AH +9 ) 12
( 7 y " z (12)

Under some weak technical constraints, it can be proven [13]
that when ¢ is convex, the ADMM iteration (9) converges to
X, the global minimum of (3) and (6).

From the discussion in the “Signal Recovery and Denois-
ing” section, we immediately recognize proxe(z; 7) in (10) as
the MAP denoiser of z under AWGN variance 77 and signal
prior p(x) o< exp(—¢(x)). The key idea behind the original
PnP work [7] was, in the ADMM recursion (9), to plug in a
powerful image denoising algorithm, such as block-matching
and 3D filtering (BM3D) [8], in place of the proximal denoiser
proxg(x; n7) from (10). If the plug-in denoiser is denoted by
“f.” then the PnP ADMM algorithm becomes

xk=hWi-1—ur-1;1m) (13a)
vi= f(xx+ur-1) (13b)
ur=ur-1+ (Xr —ve). (13¢)

A wide variety of empirical results (e.g., [7], [14], and [15])
have demonstrated that, when f is a powerful denoising
algorithm, such as BM3D, the PnP algorithm (13) produces
far better recoveries than the regularization-based approach
(9). Although the value of 7 does not change the fixed point
of the standard ADMM algorithm (9), it affects the fixed
point of the PnP ADMM algorithm (13) through the ratio
o?/n in (12).

The success of PnP methods raises important theoretical
questions. Because f is not, in general, the proximal map of
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FIGURE 1. The normalized mean-squared error (NMSE) versus iteration
for two PnP and two CS algorithms on the cardiac cine recovery data
set 3 at R=10. UWT: undecimated wavelet transform.

any regularizer ¢, the iterations (13) may not minimize a cost
function of the form in (3), and (13) may not be an implemen-
tation of ADMM. It is, then, unclear if the iterations (13) will
converge, and, if they do converge, it is uncertain what they
converge to. The consensus equilibrium (CE) framework,
which we discuss in the “Understanding PnP Through CE”
section, aims to provide answers to these questions.

The use of a generic denoiser in place of a proximal denois-
er can be translated to non-ADMM algorithms, such as
the fast iterative shrinkage and thresholding algorithm
(FISTA), primal—dual splitting (PDS), and others, as in [16]—
[18]. Instead of optimizing x as in (13), PnP FISTA [16] uses
the iterative update

k= Sko1 — %A”(Ask_l ) (14a)

xi= f(zx) (14b)
-1—1

Sk:.X'k'f‘qk#(Xk_Xk—l), (14c¢)

where (14a) is a gradient descent (GD) step on the negative
log-likelihood (1/20%)|y — Ax|* at x =si—1 with step-size
n€(0,0%| Alz%), (14b) is the plug-in replacement of the usual
proximal denoising step in FISTA, and (14c) is an acceler-
ation step, where it is typical to use g = (1+ v 1+ 4gt-1)/2
and go=1.

Comparing PnP ADMM (13) to PnP FISTA (3), one can see
that they differ in how the data fidelity term (1/26%)] y — Ax|*
is handled: PnP ADMM uses the proximal update (12), where-
as PnP FISTA and PnP PDS use the GD step (14a). In most
cases, solving the proximal update (12) is much more com-
putationally costly than taking a GD step (14a). Thus, with
ADMM, it is common to approximate the proximal update
(12) using, for example, several iterations of the conjugate
gradient (CG) algorithm or GD, which should reduce the per-
iteration complexity of (13) but may increase the number of
iterations. However, even with these approximations of (12),
PnP ADMM is usually close to “convergence” after 10-50
iterations (e.g., see Figure 1).

An important difference between the aforementioned
flavors of PnP is that the step size 7 is constrained in FISTA
but not in ADMM or PDS. Thus, PnP FISTA restricts the
range of reachable fixed points relative to PnP ADMM and
PnP PDS.

The balanced FISTA approach

In the “Signal Recovery and Denoising” section, when
discussing the optimization problem (3), the regularizer
¢(x)=A|¥x|: was mentioned as a popular option, where
¥ is often a wavelet transform. The resulting optimiza-
tion problem,

YZargmin{%‘zﬂy—AxH%-k/1||‘l’x||1}, (15)

is said to be stated in “analysis” form (see [19] in this issue).
The proximal denoiser associated with (15) has the form
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proxe(z; n) = argmin{/lﬂ x| + 2%7||x —z||2}. (16)

When ¥ is orthogonal, it is well known that proxy(z; ) =
Jui(z; An), where

fuz; T) = ¥soft-thresh(¥z; 7) (17)

is the “transform-domain thresholding” denoiser with
[soft-thresh(u, T)], = max{0, (|u,|— T)/ |un|}us. The denoiser
(17) is very efficient to implement because it amounts to little
more than computing forward and reverse transforms.

In practice, (15) yields much better results with nonor-
thogonal ¥, such as when P is a tight frame (see, e.g.,
the references in [20]). In the latter case, ¥"W =1 with
tall ¥. However, for general tight frames ¥", the proximal
denoiser (16) has no closed-form solution. What if we sim-
ply plugged the transform-domain thresholding denoiser
(17) into an algorithm, such as ADMM or FISTA? How
can we interpret the resulting approach? Interestingly, as
we will describe, if (17) is used in PnP FISTA, then it does
solve a convex optimization problem, although one with a
different form than (3). This approach was independently
proposed in [12] and [20]; in the latter, it was referred to as
balanced FISTA (bFISTA) and applied to parallel cardiac
MRI. Notably, bFISTA was proposed before the advent of
PnP FISTA. More details are provided later in the article.

The optimization problem (15) can be stated in constrained
“synthesis” form as

x=Y"a fora= argmi(r‘;){%‘z”y—A‘I’Ha||%+/’t||a||1},
o Erange
(18)

where o are transform coefficients. Then, as 8 — oo, (18) can
be expressed in the unconstrained form

& = argmin{ L1y - AWV a3+ L1Péal +Alal o (19

with projection matrix Py = I — W, In practice, it is not
possible to take S — oo and, for finite values of 3, the prob-
lems (18) and (19) are not equivalent. However, (19) under
finite B is interesting to consider in its own right, and it
is sometimes referred to as the balanced approach. If we
solve (19) using FISTA with step size 1 > 0 [recall (14a)] and
choose the particular value B=1/n, then, remarkably, the
resulting algorithm takes the form of PnP FISTA (14) with
f@) = fu(z; A). This particular choice of B is motivated by
computational efficiency (because it leads to the use of fia)
rather than recovery performance. Still, as we demonstrate
in the “Demonstration of PnP in MRI” section, it performs
relatively well.

Regularization by denoising

Another PnP approach, proposed by Romano, Elad, and Mi-
lanfar in [21], recovers x from measurements y in (2) by find-
ing the x that solves the optimality condition

0=—-LATUT -y + L@ - f@)). 20)
o n

where f is an arbitrary (i.e., “plug in”) image denoiser and
n >0 is a tuning parameter. In [21], several algorithms were
proposed to solve (20). Numerical experiments in [21] sug-
gest that, when f is a sophisticated denoiser (such as BM3D)
and 7 is well tuned, the solutions X to (20) are state of the
art, similar to those of PnP ADMM. As in [21] and [22], we
first focus on the real-valued case, but later, we consider the
complex-valued case of interest in MRI.

The approach in (20) was termed regularization by denois-
ing (RED) in [21] because, under certain conditions, the
X that solve (20) are the solutions to the regularized least-
squares problem

X = arginin{ 2(1;2 ly— Ax|* + ¢red(x)} (21a)
with
Prea(x) = ;—UxT(x ~ fx), 21b)

where the regularizer ¢ra is explicitly constructed from
the plug-in denoiser f. What are these conditions? As-
suming that f is differentiable almost everywhere, it was
shown in [22] that the solutions of (20) correspond to those
of (21) when 1) f is locally homogeneous, which means that
(1+e)f(x)= f((1+e)x) for all x and sufficiently small
nonzero €, and 2) f has a symmetric Jacobian matrix (i.e.,
[Jf(x)]T = Jf(x) Vx). However, it was demonstrated in [22]
that these properties are not satisfied by popular image denois-
ers, such as the median filter, transform-domain thresholding,
nonlocal means, BM3D, trainable nonlinear reaction diffu-
sion, and denoising convolutional neural network (DnCNN).
Furthermore, it was proven in [22] that if the Jacobian of f
is nonsymmetric, then there does not exist any regularizer ¢
under which the solutions of (20) minimize a regularized loss
of the form in (3).

One may then wonder how to justify (20). In [22], Reehorst
and Schniter proposed an explanation for (20) based on “score
matching,” which we now summarize. Suppose we are given a
large corpus of training images {x,}/ 1, from which we could
build the empirical prior model

T
Pu) 24X 8(x—x),
t=1

where & denotes the Dirac delta. Because images are known
to exist outside {x}/-1, it is possible to build an improved
prior model px using kernel density estimation (KDE), that is,
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T
Puei ) = > NG xi, D), (22)
t=1

where 77 > 0 is a tuning parameter. If we adopt px as the prior
model for x, then the MAP estimate of x [recall (4)] becomes

¥ = argmin{%‘z Iy — Ax [P — Inpr(x; n)}- 23)

Because In py is differentiable, the solutions to (23) must obey

0= %AT(A? — y) = VInpu(E: 7). (24)
A classical result known as Tiveedie’s formula says that
~ 1
Vinpx(z; n) = (famse (@3 1) = 2), (25)

where fumse(;7) is the minimum mean-squared error
(MMSE) denoiser under the prior x ~ py and 7n-variance
AWGN. That is, fimmse(z)= E{x|z}, where z =x+ N(0, nl)
and x ~ p,. Applying (25) to (24), the MAP estimate X un-
der the KDE prior px obeys

0= %AT(AY -y+ l(}‘ — fomse(X3 1)), (26)
o n

which matches the RED condition (20) when f = fumse(:; 7).
Thus, if we could implement the MMSE denoiser fumse for a
given training corpus {x,}/-1, then RED provides a way to
compute the MAP estimate of x under the KDE prior px.

Although the MMSE denoiser finmse can be expressed in
closed form (see [22, eq. 67]), it is not practical to implement
for large T. Thus, the question remains: can the RED approach
(20) also be justified for non-MMSE denoisers f, especially
those that are not locally homogeneous or Jacobian symmet-
ric? As shown in [22], the answer is yes. Consider a practi-
cal denoiser fo parameterized by tunable weights 6 (e.g., a
DNN). A typical strategy is to choose 0 to minimize the MSE
on {x,}/=1, thatis, to set © = argmineE {| x — fo(z)|*}, where
the expectation is taken over x ~ p, and z=x+ N(0, nl).
By the MMSE orthogonality principle, we have

E{lx — fo@ |’} = E{lx — fumse(z; M|}

+ E{| fomse(z: 7) — fo@) I}, 27
and so we can write
6 = arggnin E{ " fmmsc(z; 77) - fQ(Z) "2} (28)
2
= argmin E{H Vinpx(z;n) — L(fe(Z) —2) H } (29)
) n

where (29) follows from (25). Equation (29) says that choosing
6 to minimize the MSE is equivalent to choosing 6 so that
(1/17)(fo(z) — z) best matches the “score” VInpx(z; n).

In summary, the RED approach (20) approximates the
KDE-MAP approach (24)—(26) by using a plug-in denoiser f
to approximate the MMSE denoiser fumse. When f = fimse,

RED exactly implements MAP-KDE, but with a practical f,
RED implements a score-matching approximation of MAP-
KDE. Thus, a more appropriate title for RED might be “score
matching by denoising.”

Comparing the RED approach from this section to the
prox-based PnP approach from the “Prox-Based PnP” section,
we see that RED starts with the KDE-based MAP estima-
tion problem (23) and replaces the px-based MMSE denoiser
Jfmmse with a plug-in denoiser f, whereas PnP ADMM starts
with the ¢-based MAP estimation problem (3) and replaces
the ¢-based MAP denoiser proxy from (10) with a plug-in
denoiser f. It has recently been demonstrated that, when the
prior is constructed from image examples, MAP recovery
often leads to sharper, more natural-looking image recoveries
than MMSE recovery [23]. Thus, it is interesting that RED
offers an approach to MAP-based recovery using MMSE
denoising, which is much easier to implement than MAP
denoising [23].

Further insight into the difference between RED and
prox-based PnP can be obtained by considering the case of
symmetric linear denoisers, that is, f(z) =Wz with W = WT,
where we will also assume that W is invertible. Although
such denoisers are far from state of the art, they are useful
for interpretation. It is easy to show [24] that f(z)= Wz is
the proximal map of ¢(x) = (1/277)xT(W71 — Ix, that is, that
proxy(z; 7) = Wz, recalling (10). With this proximal denoiser,
we know that the prox-based PnP algorithm solves the opti-
mization problem

T — U P ST SRS B /o 2o
xpnp—argimn{za2 |y —Ax]| +2’7x W I)x}. (30)

Meanwhile, because f(z) = Wz is both locally homogeneous
and Jacobian symmetric, we know from (21) that the RED un-
der this f solves the optimization problem

1
20

Xred = argmin{ Sy — Ax|*+ #xT(I - W)x}. 31)
By comparing (30) and (31), we see a clear difference be-
tween RED and prox-based PnP. The “CE for RED” section
compares RED to prox-based PnP from yet another perspec-
tive: CE.

So far, we have described RED as solving for X in (20),
but how, exactly, is this accomplished? In the original RED
article [21], three algorithms were proposed to solve (20): GD,
inexact ADMM, and a “fixed-point” heuristic that was later
recognized [22] as a special case of the proximal gradient
(PG) algorithm. Generalizations of PG RED were proposed
in [22]. The fastest among them is the accelerated-PG RED
algorithm, which uses the iterative update

Xy =hWi-1;n/L) (32a)
= Xi+ M(xk — Xi-1) (32b)
qr
ve=Lfz) + (1- i)Zk (32¢)
L L)%
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where h was defined in (12), (32b) uses the same accelera-
tion as PnP FISTA (14b), and L >0 is a design parameter
that can be related to the Lipschitz constant of ¢rea(-) from
(21) (see Section V-C in [22]). The RED equations (32) and
(33) may be used with complex-valued quantities. When L =1
and gx =1 Vk, (32) reduces to the “fixed-point” heuristic from
[21]. To reduce the implementation complexity of /, one could
replace (32a) with the GD step

A Avi-1 — y), (33)

Xk=Xk—1— L 3
which achieves a similar complexity reduction as when going
from PnP ADMM to PnP FISTA (as discussed in the ‘“Prox-
Based PnP” section). The result would be an “accelerated
GD” form of RED. Convergence of the RED algorithms will
be discussed in the “CE for RED” section.

Understanding PnP through CE

The success of the PnP methods described raises impor-
tant theoretical questions. For example, in the case of PnP
ADMM, if the plug-in denoiser f is not the proximal map
of any regularizer ¢, then it is not clear what cost function is
being minimized (if any) or whether the algorithm will even
converge. Similarly, in the case of RED, if the plug-in denois-
er f is not the MMSE denoiser fmmse, then RED no longer
solves the MAP-KDE problem, and it is not clear what RED
does solve or whether a given RED algorithm will even con-
verge. In this section, we show that many of these questions
can be answered through the consensus equilibrium (CE)
framework [18], [22], [24], [25]. We start by discussing CE for
the PnP approaches from the “Prox-Based PnP” section and
follow with a discussion of CE for the RED approaches from
the “Regularization by Denoising” section.

CE for prox-based PnP

Let us start by considering the PnP ADMM algorithm (13).
Rather than viewing (13) as minimizing some cost function,
we can view it as seeking a solution, (Xpnp, Zpnp), t0

(34a)
(34b)

Xpmp = h(fpnp — Upnp; n)
Xpnp = f(Xpup + Upnp),

which, by inspection, must hold when (13) is at a fixed
point. Not surprisingly, by setting xx = xx-1 in the PnP
FISTA algorithm (14), it is straightforward to show that it,
too, seeks a solution to (34). It is easy to show that the PnP
PDS algorithm [17] seeks the same solution. With (34), the
goal of the prox-based PnP algorithms becomes well de-
fined! The pair (34) reaches a consensus in that the denois-
er f and the data-fitting operator h agree on the output
Xpnp. The equilibrium comes from the opposing signs on
the correction term “pnp: the data-fitting subtracts it, while
the denoiser adds it.

By viewing the goal of prox-based PnP as solving the
equilibrium problem (34), it becomes clear that other solvers
beyond ADMM, FISTA, and PDS can be used. For example,

it was shown in [25] that the PnP CE condition (34) can be
achieved by finding a fixed point of the system

=QG-DHQF - Dz (35)
1

= _[hGzisn) - j(Z1+Z2)

_[Zz]’ Fo= f@2) I nd 6@= %(zﬁzz). 0

The paper [25] actually considers the CE among N > 1 agents,

whereas here, we consider the simple case of N =2 agents.

There exist many algorithms to solve (35). For example, one

could use the Mann iteration

2600 = (1= )2k +y2G — DQF — Dz, withy € (0,1),
37

when J is nonexpansive. [25] also shows that this fixed
point is equivalent to the solution of ¥ (z) = G(z), in which
case Newton’s method or other root-finding methods could
be applied.

The CE viewpoint also provides a path to proving the con-
vergence of the PnP ADMM algorithm. Sreehari et al. [14]
used a classical result from convex analysis to show that suf-
ficient conditions for convergence are that 1) f is nonexpan-
sive, that is, | f(x) — f(»)| <|x — y| for any x and y, and 2)
f(x) is a subgradient of some convex function, that is, there
exists ¢ such that f(x) € 9¢p(x). If these two conditions are
met, then PnP ADMM (13) will converge to a global solution.
Similar observations were made in other recent studies, such
as [24]. That said, Chan et al. [15] showed that many practical
denoisers do not satisfy these conditions, and so they designed
a variant of PnP ADMM in which 7 is decreased at every
iteration. Under appropriate conditions on f and the rate of
decrease, this latter method also guarantees convergence,
although not exactly to a fixed point of (34) because 7 is no
longer fixed.

Similar techniques can be used to prove the convergence of
other prox-based PnP algorithms. For example, under certain
technical conditions, including nonexpansiveness of f, it was
established [18] that PnP FISTA converges to the same fixed
point as PnP ADMM.

CE for RED

Just as the prox-based PnP algorithms can be viewed as seek-
ing the CE of (34), it was shown in [22] that the proximal
gradient and ADMM-based RED algorithms seek the CE
(./x\red, Zl\red) of

Xred = h(/x\red - il\red; 77) (383)

Xred = ((1 + )I - f) (Fred + Birea), (38b)

where h was defined in (12), and L is the algorithmic param-
eter that appears in (32). (The parameter L also manifests in
ADMM RED, as discussed in [22].) Because (38) takes the
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same form as (34), we can directly compare the CE conditions
of RED and prox-based PnP.

Perhaps a more intuitive way to compare the CE conditions
of RED and prox-based PnP follows from rewriting (38b)
as Xred = f(Xred) + LUred, after which the RED CE condi-
tion becomes

(39a)
(39b)

Yred = h(}\red - Zl\red; f])
/x\red = f(/x\red) + Lil\red,

which involves no inverse operations. In the typical case of
L =1, we see that (39) matches (34), except that the cor-
rection ured is added after denoising in (39b) and before
denoising in (34b).

Yet another way to compare the CE conditions of RED and
prox-based PnP is to eliminate the red variable. Solving (39a)
for Ured gives

Wred = %AH( y— AFred), (40)
which mirrors the expression for wpnp. Then, plugging % red
back into (39b) and rearranging, we obtain the fixed-point
equation

/x\red = f(/x\red) + %AH()’ - A/x\red), (41)
or, equivalently,
%AH (AT red — y) = f(Fred) — Frea, (42)

which says that the data-fitting correction [i.e., the left side of
(42)] must balance the denoiser correction [i.e., the right side
of (42)].

The CE framework also facilitates the convergence analy-
sis of RED algorithms. For example, using the Mann iteration,
it was proven in [22] that, when f is nonexpansive and L > 1,
the PG RED algorithm converges to a fixed point.

Demonstration of PnP in MRI

Parallel cardiac MRI

‘We now demonstrate the application of PnP methods to paral-
lel cardiac MRI. Because the signal x is a cine (i.e., a video)

rather than a still image, there are relatively few options avail-
able for sophisticated denoisers. Although algorithmic denois-
ers, such as BM4D, have been proposed, they tend to run very
slowly, especially relative to the linear operators A and A",
For this reason, we first trained an application-specific CNN
denoiser for use in the PnP framework. The architecture of the
CNN denoiser, implemented and trained in PyTorch, is shown
in Figure 2.

For training, we acquired 50 fully sampled cine data sets
with high signal-to-noise ratio (SNR) from eight healthy vol-
unteers. Thirty-three of those were collected on a 3-T scan-
ner, and the remaining 17 were collected on a 1.5-T scanner.
(The 3-T scanner was a Magnetom Prisma Fit, and the 1.5-T
scanner was a Magnetom Avanto, both from Siemens Health-
ineers in Erlangen, Germany.) Of the 50 data sets, 28, seven,
seven, and eight were collected in the short-axis, two-, three-,
and four-chamber views, respectively. The spatial and tempo-
ral resolutions of the images ranged from 1.8 to 2.5 mm and
from 34 to 52 ms, respectively. The image sizes ranged from
160 X130 to 256 x 208 pixels, and the number of frames
ranged from 15 to 27. For each of the 50 data sets, the refer-
ence image series was estimated as the least-squares solution
to (1), with the sensitivity maps S; estimated from the time-
averaged data using ESPIRIT.

We added zero-mean, complex-valued independent and
identically distributed Gaussian noise to these “noise-free”
reference images to simulate noisy images with an SNR of
24 dB. Using a fixed stride of 30 X 30 X 10 pixels, we decom-
posed the images into patches of size 55 X 55 X 15 pixels. The
noise-free and corresponding noisy patches were assigned
as output and input to the CNN denoiser, with the real and
imaginary parts processed as two separate channels. All 3D
convolutions were performed using 3 X 3 X 3 kernels. There
were 64 filters of size 3 X 3 X 3 X 2 in the first layer, 64 filters
of size 3 X3 X3 X 64 in the second through fourth layers, and
two filters of size 3 X3 X3 X 64 in the last layer. We set the
minibatch size to four and used the Adam optimizer with a
learning rate of 1x 10~ over 400 epochs. The training pro-
cess was completed in 12 h on a workstation equipped with
a single NVIDIA graphic processing unit (GPU), a GeForce
RTX 2080 Ti.

For testing, we acquired four fully sampled cine data sets
from two different healthy volunteers, with two image series
in the short-axis view, one image series in the two-chamber

3D 1y Retuls 3P LylreLuls| 3P
Conv Conv Conv

Noisy Patch

—> ReLU —»> —> ReLU —>|

3D 3D
Conv

7

Denoised Patch

Conv

FIGURE 2. The architecture of the CNN-based cardiac cine denoiser operating on spatiotemporal volumetric patches. ReLU: rectified linear unit; Conv.: convolution.
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view, and one image series in the four-chamber view. The
spatial and temporal resolutions of the images ranged from
1.9 to 2 mm and from 37 to 45 ms, respectively. For the four
data sets, the space-time signal vector, x, in (2) had dimen-
sions of 192 X 144 X 25, 192 X 144 x 25, 192 X 166 X 16, and
192 X 166 X 16, respectively, with the first
two dimensions representing the number

convex optimization problem (3). For L + S, the low-rank plus
sparse method by Otazo et al. [29] was used. The regulariza-
tion weights for CS-UWT, PnP-UWT, CS-TV, and L + S were
manually tuned to maximize the reconstruction SNR (rSNR)
(defined as | x|*/ | ¥ — x| where x is the true image and X
is the estimate) for data set 3 at R =10. For
LASSI, we used the authors’ implementa-

of pixels and the last dimension represent- The S"CCES_S of I_’“P tion at https:/gitlab.com/ravsal9/lassi, and
ing the number of frames. The data sets were methods raises important we did our best to manually tune all avail-
retrospectively downsampled at acceleration theoretical questions. able parameters.

rates, R, of 6, 8, and 10 by using pseudoran- Many of these questions The rSNR values are summarized in
dom sampling [26]. A representative sampling can he answered through Table 1. For all four data sets and three

pattern used to undersample one of the data
sets is shown in Figure 3. The data were com-
pressed to C =12 virtual coils for faster com-
putation. The measurements were modeled as
described in (1), with the sensitivity maps, S;, estimated from the
time-averaged data using ESPIRIT.

For compressive MRI recovery, we used PnP ADMM from
(2) with f as the CNN-based denoiser described previously;
we will refer to the combination as PnP-CNN. We employed
a total of 100 ADMM iterations, and in each ADMM itera-
tion, we performed four steps of CG to approximate (12), for
which we used ¢? =1=7. We compared this PnP method to
three CS-based methods: CS—undecimated wave transform
(UWT), CS-total variation (TV) (note that sometimes UWT
and TV are combined [1]), and low-rank plus sparse (L + S) as
well as PnP-UWT and the transform-learning (see the over-
view [32] in this issue) method called low-rank and adaptive
sparse signal (LASSI) [27].

For PnP-UWT, we used PnP FISTA from (14) with f
implemented as fia given in (17), that is, bFISTA. A 3D, sin-
gle-level Haar undecimated wavelet transform was used as ¥
in (17). For CS-TV, we used a 3D finite-difference operator for
¥ in the regularizer ¢(x)=A|W¥x|i, and for CS-UWT, we
used the aforementioned UWT instead. For both CS-TV and
CS-UWT, we used monotone FISTA [28] to solve the resulting

framework.

Phase Encoding

Frames

Frequency Encoding

FIGURE 3. Two different views of the 3D sampling pattern used to
retrospectively undersample one of the four test data sets at R=10. The
undersampling was performed only in the phase-encoding direction, and
the pattern was varied across frames. In this example, the number of
frequency encoding steps, phase encoding steps, and frames are 192,
144, and 25, respectively.

acceleration rates, PnP-CNN exhibited
the highest rSNR with respect to the fully
sampled reference. Also, compared to the
CS methods and PnP-UWT, which uses a
more traditional denoiser based on soft-thresholding of UWT
coefficients, PnP-CNN was better at preserving anatomical
details of the heart (Figure 4). The performance of PnP-UWT
was similar to that of CS-UWT. Figure 1 plots normalized
mean-squared error (NMSE) as a function of the number of
iterations for the CS and PnP methods. Because the CS meth-
ods were implemented with CPU computation and the PnP
methods were implemented with GPU computation, a direct
runtime comparison was not possible. We did, however, com-
pare the per-iteration runtime of PnP ADMM for two different
denoisers: the CNN and UWT-based fi described previously
in this section.

When the CNN denoiser was replaced with the UWT-based
[, the per-iteration runtime changed from 2.05 to 2.1 s, imply-
ing that the two approaches have very similar computational

Table 1. The rSNR (dB) of MRI cardiac cine recovery from four test
data sets.

Cs- PnP- PnP-
Acceleration UWT  CSTV  L+$S LASSI  UWT CNN
Data Set 1 (Short Axis)
R=46 30.10 29.03 30.97 27.09 30.18 31.82
R=8 2850 2735 29.65 2591 2860 31.25
R=10 2694 2578 2829 2498 27.06 30.46
Data Set 2 (Short Axis)
R=6 2923 2827 2973 2587 2929 30.81
R=8 27.67 26.65 2823 2454 2775 30.17
R=10 26,12 2511 2689 23.61 2622 29.21
Data Set 3 (Two Chamber)
R=6 27.33 2638 27.83 2497 2738 29.36
R=8 25.63 24.63 2630 2352 2569 28.50
R=10 2422 2324 2493 2251 2428 27.49
Data Set 4 (Four Chamber)
R=6 3041 29.63 30.62 27.62 30.60 32.19
R=8 28.68 2776 29.00 2633 2894 31.42
R=10 27.09 2618 27.60 2524 27.37 30.01

Bold indicates the winning method.
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Reference

PnP-CNN

-

FIGURE 4. Results from the cardiac cine data set 1 at R = 10. (a) A representative frame from the fully sampled reference and various recovery methods.
The green arrow points to an image feature that is preserved only by PnP-CNN and not by other methods. (b) The error map x 6. (c) The temporal frame
showing the line drawn horizontally through the middle of the image in (a), with the time dimension along the horizontal axis. The arrows point to the

movement of the papillary muscles, which are more well defined in PnP-CNN.

costs. The extended version of this article [10] shows the results
of experiments that investigate the effect of /7 on the final
NMSE and the convergence rate. Overall, final NMSE varies
less than 0.5 dB for o*/n €[0.5,2] for all
four data sets and all three acceleration

We evaluated PnP using the ADMM algorithm with a
learned DnCNN [9] denoiser. To accommodate complex-val-
ued images, DnCNN was configured with two input and two
output channels. The denoiser was then
trained by using only the central slices of

rates, and the convergence rate is nearly the Vinat _PIIP allm'ﬂa!:nes the 3-T scans without fat suppression from
same. The extended version also explores have in common is the training set, comprising a total of 267
the use of CG versus GD when solving (12) that they recover the slices (i.e., <1% of the total training data).
in PnP ADMM. The results suggest that signal by iteratively The training-noise variance and the PnP

one to four inner iterations of either method
are optimal; more inner iterations slows the
overall convergence time. The results in
this section, although preliminary, high-
light the potential of PnP methods for MRI
recovery of cardiac cines. By optimizing the
denoiser architecture, the performance of PnP-CNN may be
further improved.

Single-coil fastMRI knee data

In this section, we investigate recovery of 2D knee images
from the single-coil fastMRI data set [30]. This data set
contains fully sampled k-space data that are partitioned into
34,742 training slices and 7,135 testing slices. The Cartesian
sampling patterns from [30] were used to achieve acceleration
rate R=4.

calling a sophisticated
denoiser within a larger
optimization or inference

ADMM tuning parameter 6*/7 were man-
ually adjusted in an attempt to maxi-
mize rSNR.

PnP was then compared to the TV and
U-Net baseline methods described and con-
figured in [30]. For example, 128 channels
were used for the U-Net’s first layer, as recommended in [30].
We then trained three versions of the U-Net. The first version
was trained on the full fastMRI training set with random sam-
pling masks. (The full fastMRI training set includes 1.5-T and
3-T scans, with and without fat suppression, and an average of
36 slices per volume.) The second U-Net was trained on the
full fastMRI training set, but with a fixed sampling mask. The
third U-Net was trained with only the central slices of the 3-T
scans without fat suppression (i.e., the same data used to train
the DnCNN denoiser) and with a fixed sampling mask.

IEEE SIGNAL PROCESSING MAGAZINE | January 2020 |

Authorized licensed use limited to: Purdue University. Downloaded on May 06,2020 at 21:13:53 UTC from IEEE Xplore. Restrictions apply.



Table 2. The rSNR and SSIM for fastMRI single-coil fest data with R = 4.

Random Testing

Masks Fixed Testing Masks
rSNR (dB)  SSIM  rSNR(dB)  SSIM

CSTV 17.56 0.647 18.16 0.654
U-Net: Random training ~ 20.76 0.772  20.72 0.768
masks, full fraining data
U-Net: Fixed fraining 19.63 0.756  20.82 0.770
masks, full fraining data
U-Net: Fixed training 18.90 0732  19.67 0.742
masks, smaller training
data
PnP-CNN 21.16 0.758 2114 0.754

Bold indicates the winning method.

To evaluate performance, we used the central slices of
the nonfat-suppressed 3-T scans from the validation set,
comprising a total of 49 slices. The evaluation considered both
random sampling masks and the same fixed mask used for
training. The resulting average rSNR and
structured similarity index (SSIM) scores
are summarized in Table 2, which shows
that PnP-CNN performed similarly to the
U-Nets and significantly better than TV. In
particular, PnP-CNN achieved the highest
rSNR score with both random and fixed
testing masks, and the U-Net gave slightly
higher SSIM scores in both tests. Among
the U-Nets, the version trained with a fixed
sampling mask and full data gave the best
rSNR and SSIM performance when test-
ing with the same mask, but its performance dropped
considerably when testing with random masks. Meanwhile,
the U-Net trained with the smaller data performed signifi-
cantly worse than the other U-Nets with either fixed or ran-
dom testing masks. Although this latter U-Net used exactly
the same training data as the PnP-CNN method, it was not
competitive with PnP-CNN. Although preliminary, these
results suggest that 1) PnP methods are much less sensitive to
deviations in the forward model between training and testing
and 2) PnP methods are effective with relatively small train-
ing data sets.

Conclusions

PnP methods present an attractive avenue for compressive
MRI recovery. In contrast to traditional CS methods, PnP
methods can exploit richer image structure by using state-of-
the-art denoisers. To demonstrate the potential of such meth-
ods for MRI reconstruction, we used PnP to recover cardiac
cines and knee images from highly undersampled data sets.
With application-specific CNN-based denoisers, PnP was
able to significantly outperform traditional CS methods
and to perform on par with modern deep-learning methods
but with considerably less training data. The time is ripe

PnP was able to
significantly outperform
traditional GS methods
and to perform on par
with modern deep-
learning methods hut
with considerably less
training data.

to investigate the potential of PnP methods for a variety of
MRI applications.
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