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1. Introduction

In [4] we determined the exact complexity of the homeomorphic classification problem of all continua, i.e., 
connected compact metric spaces. In this paper we consider continua that are subspaces of finite-dimensional 
Euclidean spaces. The framework of our study is the descriptive set theory of equivalence relations, which 
we briefly review below. The reader could consult [6] for more details.

Let X, Y be standard Borel spaces and E, F be equivalence relations on X, Y , respectively. We say that 
E is Borel reducible to F , denoted E ≤B F , if there is a Borel function ϕ : X → Y such that for all x, y ∈ X, 
xEy ⇐⇒ ϕ(x)Fϕ(y). We say that E is strictly Borel reducible to F , denoted E <B F , if E ≤B F and 
F �B E. E is said to be Borel bireducible with F , denoted E ∼B F , if both E ≤B F and F ≤B E. If C is a 
class of equivalence relations and F ∈ C, we say that F is universal for C if for all E ∈ C, we have E ≤B F .
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Classification problems in mathematics can often be viewed as equivalence relations on standard Borel 
spaces. In continuum theory, for instance, let C([0, 1]N) be the space of all non-empty connected closed 
subsets of the Hilbert cube [0, 1]N . Then C([0, 1]N) can be viewed as the space of all continua since every 
continuum is homeomorphic to a subspace of the Hilbert cube. It is well-known that C([0, 1]N) is a standard 
Borel space. Thus the homeomorphic classification problem of all continua becomes an equivalence relation 
on the standard Borel space C([0, 1]N).

The notion of Borel reducibility becomes a way to talk about the relative complexity of classification 
problems. If E, F are classification problems with E <B F , then F is strictly more complex than E. On the 
other hand, if E ∼B F , then E and F are of the same complexity.

To determine the exact complexity of an equivalence relation we often use a benchmark equivalence 
relation, i.e., an equivalence relation that is easy to define and which shows up frequently in research. 
Another important way for an equivalence relation to become a benchmark is for it to be universal in 
a significant class of equivalence relations. For example, Zielinski in [10] showed that the homeomorphic 
classification problem for all compact metric spaces is Borel bireducible with a universal orbit equivalence 
relation arising from a Borel action of a Polish group. We showed in [4] that the classification problem of 
all continua is also Borel bireducible to this equivalence relation. Because the universal orbit equivalence 
relation is a well-known benchmark, we have thus determined the exact complexity of these classification 
problems.

The benchmark equivalence relation we use in this paper is the isomorphism relation of all countable 
graphs, which is also known as the graph isomorphism. Formally, let G be the space of all graphs (V, E) with 
V = N. Then G ⊆ 2N×N can be shown to be a standard Borel space. The graph isomorphism is thus an 
equivalence relation on G. It is well-known that the graph isomorphism is Borel bireducible to a universal 
orbit equivalence relation arising from a Borel action of the infinite permutation group S∞. Thus the graph 
isomorphism is sometimes also said to be S∞-universal (e.g. [2]).

In this paper we will consider the homeomorphic classification problem of all subcontinua of [0, 1]n, which 
we denote by Cn. In comparison, we will also consider the homeomorphic classification problem of all closed 
subsets of [0, 1]n, which we denote by Hn. In addition, we consider the following equivalence relation Rn

among all closed subsets of [0, 1]n. If A, B are closed subsets of [0, 1]n, then (A, B) ∈ Rn iff there is a 
homeomorphism f : [0, 1]n → [0, 1]n with f [A] = B.

One easily sees that C1 has only two equivalence classes. It is a folklore that both R1 and H1 are Borel 
bireducible with the graph isomorphism (we will give a proof later in this paper). When we compare the 
equivalence relations Cn, Hn and Rn in terms of Borel reducibility, it is obvious that Cn ≤B Hn, Hn ≤B Hn+1, 
and Cn ≤B Cn+1. In particular, the graph isomorphism is thus Borel reducible to all Hn. The following 
results are less obvious.

Theorem 1. The following hold for any n:

(1) Hn ≤B Cn+2;
(2) Rn ≤B Cn+2;
(3) Rn ≤B Rn+1.

It follows that the graph isomorphism is also Borel reducible to all Rn. Camerlo, Darji, and Marcone 
showed in [2] that the graph isomorphism is Borel reducible to C2, and hence to all Cn for n ≥ 2. Our main 
result of the paper is the following.

Theorem 2. For any n ≥ 2, the graph isomorphism is strictly Borel reducible to each of Cn, Hn, and Rn.
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In particular, Theorem 2 tells us that it is impossible to assign a countable graph (or any countable 
structure) as a complete homeomorphic invariant for a finite-dimensional continuum if the dimension is at 
least 2.

2. Preliminaries

Our standard references for notation and terminology are [8] and [6].
Recall that a Polish space is a separable, completely metrizable topological space. A standard Borel space

is a pair (X, B), where X is a set and B is a σ-algebra of subsets of X, such that B is the σ-algebra 
generated by some Polish topology on X. If (X, B) is a standard Borel space we refer to elements of B as 
Borel sets. As usual, if (X, B) is a standard Borel space and the collection B is clear from the context, we 
will say that X is a standard Borel space. It is natural to view any Polish space as a standard Borel space.

If X and Y are standard Borel spaces, a function f : X → Y is Borel (measurable) if for any Borel 
B ⊆ Y , f−1(B) ⊆ X is Borel.

Given any Polish space X, the Effros Borel space F(X) is the space of all non-empty closed subsets of 
X with the σ-algebra generated by the sets of the form

{F ∈ F(X) : F ∩ U �= ∅},

where U ⊆ X is open. It is a standard Borel space.
Given any Polish space X, let C(X) be the subspace of F(X) consisting of all connected compact subsets 

of X. Then C(X) is again a standard Borel space.
We can regard Hn and Rn to be equivalence relations on F([0, 1]n) and Cn an equivalence relation on 

C([0, 1]n).
For our constructions and proofs we will need the following basic notation and terminology in continuum 

theory. For unexplained notation and terminology our standard reference is [9].
Let X be a connected topological space. An element x ∈ X is a cut-point of X if X −{x} is disconnected. 

If x is not a cut-point of X, it is a non-cut point of X. Cut-points are preserved by homeomorphisms, but 
not necessarily by continuous maps.

If X is a topological space and x, y ∈ X, a path from x to y is a continuous function f : [0, 1] → X

such that f(0) = x and f(1) = y. When there is no danger of confusion, we also refer to the graph of such 
an f as a path. Define x ∼ y iff there is a path from x to y, for any x, y ∈ X. Then ∼ is an equivalence 
relation, and its equivalence classes are the path-components of X. X is path-connected if it has only one 
path-component, or equivalently, if there is a path from x to y for any x, y ∈ X.

Let X be a path-connected space. We call an element x ∈ X a path-cut-point if X − {x} is no longer 
path-connected. Note that path-cut-points are also preserved by homeomorphisms.

3. Comparing Cn, Hn and Rn

We establish in this section the results comparing various homeomorphism problems in terms of Borel 
reducibility. We will use two constructions in [4] and [10] for coding a closed subset (or a sequence of closed 
subsets) of a compact metric space into the homeomorphism type of a continuum. We briefly describe these 
two constructions first.

3.1. The construction of I(X, A)

Let X be a compact metric space and A ⊆ X be a closed subspace containing all isolated points of 
X. Let DX,A be the collection of D ⊆ X × (0, 1] which is a nonempty set of isolated points so that 
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D − D = A × {0}. If D ∈ DX,A and A �= ∅, then the set D is necessarily countably infinite. For any 
D ∈ DX,A let I(X, A; D) = X × {0} ∪ D. Being a closed subspace of X × [0, 1], I(X, A; D) is still a 
compact metric space. From [4] and [10], we know that DX,A is not empty, and that all the I(X, A; D) are 
homeomorphic as D ∈ DX,A varies. Thus, we simply write I(X, A) for any I(X, A; D) for D ∈ DX,A. If A
is empty, we let I(X, A) = I(X, A; D) where D is a singleton.

It now follows that I(X, A) is a coding space for the homeomorphism type of pairs (X, A) where X is a 
compact metric space and A ⊆ X is a closed subspace.

Proposition 3.1 ([4]). Let X, Y be compact metric spaces, and A ⊆ X and B ⊆ Y be closed subspaces 
containing all isolated points of X and Y , respectively. Then the following are equivalent:

(i) (X, A) ∼= (Y, B), i.e., there is a homeomorphism f : X → Y with f [A] = B.
(ii) I(X, A) and I(Y, B) are homeomorphic.

3.2. The construction of J(X, A)

Let X be a compact metric space. We define the fan space FX of X as the quotient of X × [0, 1] by the 
equivalence relation ∼ defined as

(x, s) ∼ (y, t) ⇐⇒ (x, s) = (y, t) or s = t = 1.

The point [(x, 1)]∼ in FX is a distinguished point; we denote it by αX and call it the apex. X can be viewed, 
again in a canonical way, as a subspace of FX .

FX is obviously compact. We note that it can be given a canonical metric:

dF ((x, s), (y, t)) = 2|s − t| + (1 − max{s, t})ρ(x, y),

where ρ < 1 is a compatible metric on X. FX is also clearly a path-connected space: for every point (x, s)
there is a canonical path P from (x, s) to αX , namely,

P (τ) = (x, s + τ(1 − s)) for τ ∈ [0, 1].

Therefore FX is a path-connected continuum.
Next we code pairs (X, A). Given a compact metric space X and a closed subspace A ⊆ X, define F (X, A)

as a subspace of the fan space FX :

F (X, A) = {[(x, s)]∼ ∈ FX : s = 0 or x ∈ A}.

Alternatively, we consider the equivalence relation ∼ defined above, restricted to the space

(X × {0}) ∪ (A × [0, 1]).

F (X, A) is again the quotient space given by ∼.
There is again a canonical homeomorphic copy of X in F (X, A), namely X × {0}, and a canonical 

homeomorphic copy of FA in F (X, A). It is easy to see that if X is (path-)connected, then so is F (X, A).
The next coding space J(X, A) is based on the space I(X, A). Write I(X, A) = X ∪ D, where D is the 

set of all isolated points in I(X, A). Note that D = D ∪ A. We define

J(X, A) = F (I(X, A), D).
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Proposition 3.2 ([4]). Let X, Y be continua without cut-points and A, B be closed subspaces of X, Y respec-
tively. Then the following are equivalent:

(i) (X, A) ∼= (Y, B).
(ii) J(X, A) and J(Y, B) are homeomorphic.

3.3. Comparing Cn and Hn

In this subsection we compare the complexities of Cn and Hn. It is obvious that Cn ≤B Hn, Hn ≤B Hn+1, 
and Cn ≤B Cn+1. Our objective is to show that Hn ≤B Cn+2 for all n. These results can be summarized in 
the following diagram (Fig. 1), where a Borel reducibility claim E ≤B F is represented by an arrow E → F :

H1 H2 H3 · · ·

C1 C2 C3 · · ·

Fig. 1. Reductions between Hn and Cn.

Theorem 3.3. Hn ≤B Cn+2 for all n ≥ 1.

The rest of this subsection is devoted to a proof of Theorem 3.3.
Given any non-empty closed subset A ⊆ [0, 1]n, consider

Ã := J(A, A) = FI(A,A).

Arbitrarily fix a countable set DA ∈ DA,A. Then I(A, A) = DA = (A ×{0}) ∪DA. For notational simplicity, 
we denote the apex of FI(A,A) by a∗.

Note that Ã is a quotient space of [0, 1]n+2. In the next lemma, we show that it can be embedded as a 
subspace of [0, 1]n+2.

Lemma 3.4. Ã is homeomorphic to a subspace of [0, 1]n+2.

Proof. We construct a Ã′ ⊆ [0, 1]n+2: first embed I(A, A) = (A ×{0}) ∪DA into [0, 1]n+2 as (A ×{(0, 0)}) ∪
(DA × {0}) (called the “floor” points); then add an arbitrary point a′ ∗ ∈ [0, 1]n+1 × (0, 1], and connect all 
the “floor” points to a′ ∗ by straight lines. The set Ã′ is obviously a subset of [0, 1]n+2, and all the points in 
Ã′ can be uniquely written as

(1 − λ)x + λa′ ∗

for some x ∈ I(A, A) × {0} and λ ∈ [0, 1]}.
Define π : Ã → Ã′ by π(x, λ) = (1 − λ)x + λa′ ∗ for x ∈ D, λ ∈ [0, 1]. Then π is a continuous bijection, 

and thus a homeomorphism. �
Next we state a topological property that separates points of DA × {0} from the other points in Ã.

Lemma 3.5. Let p ∈ Ã. Then p ∈ DA × {0} iff the following topological property holds for p:
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p is a non-cut point, and for all open neighborhood V of p, there exists an open subset U ⊆ V such that 
p ∈ U and U is path-connected.

Proof. Note that all the points in DA ×{0} are non-cut points. In fact, if (x, 0) ∈ DA ×{0}, then Ã−{(x, 0)}
is still path-connected, since all points in Ã − {(x, 0)} are path-connected to a∗. To show the second part 
of the property for p = (x, 0) ∈ DA × {0}, fix an arbitrary open neighborhood of (x, 0), say V . Since 
x ∈ DA is an isolated point in the space DA = I(A, A), there exists some ε > 0 so that the open set 
U := {x} × [0, ε) ⊆ V . U is clearly path-connected.

All the points in {(x, r) : x ∈ DA, r ∈ (0, 1]} are cut-points, so they do not satisfy the displayed property.
Finally, for the rest of points (x, r) ∈ Ã, where x ∈ A × {0}, r ∈ [0, 1], there is a sequence of points 

{xi}i∈N from DA converging to x. Then, for every open neighborhood M of x and ε ∈ (0, 1), the basic open 
set V := M × [0, ε) is not connected, as V contains infinitely many disjoint components {xi} × [0, ε) for 
some i ∈ N. �

We are now ready to prove Theorem 3.3. Suppose A, B are non-empty closed subsets of [0, 1]n, and Ã, B̃
are constructed as above, with a∗ and b∗ as their respective apexes. Moreover, assume that f̃ : Ã → B̃ is a 
homeomorphism. By Lemma 3.5, we have

f̃(DA × {0}) = DB × {0},

hence f̃(A × {0}2) = B × {0}2. Therefore, A, B are homeomorphic to each other.
On the other hand, suppose f : A → B is a homeomorphism. With the same argument as in the proof 

of Proposition 3.1, we can extend f into a homeomorphism f ′ : DA → DB such that f ′ �A×{0}= f . Then 
we can extend f ′ further to f̃ by sending a∗ to b∗, and (x, λ) ∈ DA × [0, 1) to (f ′(x), λ) ∈ DB × [0, 1). 
f̃ : Ã → B̃ is clearly one-to-one, onto and continuous. Since both Ã and B̃ are compact metric spaces, the 
continuity of f̃ implies homeomorphism.

Thus we have shown that A, B are homeomorphic iff Ã, B̃ are homeomorphic. It is straightforward to 
verify that A �→ Ã as a map from F([0, 1]n) to C([0, 1]n+2) is Borel. Thus A �→ Ã witnesses that Hn ≤B Cn+2.

3.4. Comparing Cn and Rn

In this subsection we prove Rn ≤B Cn+2 for all n. Since [0, 1]n is a continuum without cut-points for all 
n ≥ 2, a direct application of Proposition 3.2 gives that for all n ≥ 2 and closed subsets A, B ⊆ [0, 1]n, we 
have

(A, B) ∈ Rn ⇐⇒ ([0, 1]n, A) ∼= ([0, 1]n, B)
⇐⇒ J([0, 1]n, A), J([0, 1]n, B) are homeomorphic.

Similarly to Lemma 3.4, the path-connected spaces J([0, 1]n, A), J([0, 1]n, B) can be embedded as subspaces 
of [0, 1]n+2. Therefore, we have Rn ≤B Cn+2 for all n ≥ 2. Now the only case left is when n = 1, which we 
address below.

Theorem 3.6. R1 ≤B C3.

The rest of this subsection is devoted to a proof of Theorem 3.6. We show again that for non-empty closed 
subsets A, B ⊆ [0, 1], A, B are homeomorphic iff J([0, 1], A), J([0, 1], B) are homeomorphic. The proof of the 
forward implication is identical to the proof of Proposition 3.2 (and is straightforward and easy anyway). 
We only consider the other direction.
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Suppose f̃ : J([0, 1], A) → J([0, 1], B) is a homeomorphism. We verify that

f̃([0, 1] × {0}2) = [0, 1] × {0}2,

and

f̃(A × {0}2) = B × {0}2.

Let a∗ and b∗ be the apexes of J([0, 1], A) and J([0, 1], B) respectively. We first identify a unique topo-
logical property for a∗.

Lemma 3.7. In J([0, 1], A), a∗ is the unique cut-point such that J([0, 1], A) − {a∗} has infinitely many 
path-components.

Proof. It is easy to see that a∗ is a cut-point such that J([0, 1], A) − {a∗} has infinitely many path-
components. In fact, for each x ∈ DA, {x} × [0, 1) is a path-component in J([0, 1], A) − {a∗}. To see 
that other points do not satisfy this topological property, we consider them case by case:

• For all (x, λ) ∈ J([0, 1], A), where x ∈ DA and λ ∈ (0, 1), J([0, 1], A) − {(x, λ)} has exactly two 
path-components.

• For all (x, 0) ∈ J([0, 1], A), where x ∈ DA, we have that (x, 0) is a non-cut point.
• For all (a, 0, 0) ∈ J([0, 1], A), where a ≥ max{A} or a ≤ min{A}, J([0, 1], A) − {(a, 0, 0)} has at most 

three path-components.
• For all (a, 0, λ) ∈ J([0, 1], A), where min A < a < max A and λ < 1, we have that (a, 0, λ) is a non-cut 

point. �
A similar argument show that b∗ is the unique cut-point in J([0, 1], B) such that J([0, 1], B) − {b∗} has 

infinitely many path-components. Thus f̃ sends a∗ to b∗. If we remove a∗, b∗ from their respective spaces, 
then f̃ sends each path-component in the domain to some path-component in the codomain.

Lemma 3.8. Assume A �= {0} and A �= {1}. Then in the space J([0, 1], A) − {a∗}, there are two non-
homeomorphic types of path-components:

(i) {x} × [0, 1), where x ∈ DA;
(ii) ([0, 1] × {0}2) ∪ (A × {0} × [0, 1)).

Proof. For each x ∈ DA, Λx = {x} × [0, 1) is a path-component of J([0, 1], A) − {a∗}. Each of these 
components satisfies both of the following topological properties:

• There is a unique non-cut point in Λx, namely (x, 0);
• For every cut-point p ∈ Λx, Λx − {p} has exactly two path-components.

Now Δ = ([0, 1] × {0}2) ∪ (A × {0} × [0, 1)) is also a path-component. If the interior of A is non-empty, 
then there are infinitely many non-cut points in Δ. Assume that the interior of A is empty. If A contains 
an element a ∈ (0, 1), then Δ − {(a, 0, 0)} has at least three path-components. If A does not contain any 
element in (0, 1), then A = {0, 1} by our assumptions that A is non-empty and yet A �= {0} and A �= {1}. 
In this case, Δ has no non-cut points. �
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For the rest of the proof, we assume without loss of generality that A, B �= {0}, {1}. Then f̃ sends 
each path-component {x} × [0, 1), x ∈ DA to some {y} × [0, 1), y ∈ DB , and sends the path-component 
([0, 1] × {0}2) ∪ (A × {0} × [0, 1)) to ([0, 1] × {0}2) ∪ (B × {0} × [0, 1)). Since (x, 0) is the unique non-cut 
point in {x} × [0, 1) for all x ∈ DA, and similarly, (y, 0) is the unique non-cut point in {y} × [0, 1) for all 
y ∈ DB , we have

f̃(DA × {0}) = DB × {0}.

Hence, we also have f̃(DA × {0}) = DB × {0}, which implies that f̃(A × {0}2) = B × {0}2.
We still need to show that f̃([0, 1] × {0}2) = [0, 1] × {0}2. Recall that J([0, 1], A) is the union of DA ×

{0} ∪DA ×(0, 1] ∪ [0, 1] ×{0}2, where the apex a∗ ∈ DA ×(0, 1]. Consider the spaces J([0, 1], A) −(DA ×{0})
and J([0, 1], B) − (DB × {0}). f̃ must send the component containing a∗ to the component containing b∗, 
i.e.

f̃(DA × (0, 1]) = DB × (0, 1].

Thus, we have shown f̃([0, 1] × {0}2) = [0, 1] × {0}2.

3.5. Comparing Rn and Rn+1

In this subsection we compare the complexities among Rn for n ≥ 1. We will use the well-known fact 
that for all n ≥ 1, if f : [0, 1]n → [0, 1]n is a homeomorphism and B = ∂[0, 1]n is the set of all boundary 
points, then f [B] = B.

Theorem 3.9. Rn ≤B Rn+1 for all n ≥ 1.

Proof. For a closed A ⊆ [0, 1]n, we define Â ⊆ [0, 1]n+1 by first embedding a rescaled copy of [0, 1]n on the 
boundary of [0, 1]n+1 and then forming a cylinder set off the rescaled copy of A:

Â := [13 ,
2
3 ]n × {0} ∪ 1

3(A + �1) × [0,
1
3 ],

where

1
3(A + �1) = {(1

3a0 + 1
3 , . . . ,

1
3an−1 + 1

3) : (a0, a1, . . . , an−1) ∈ A}.

We verify that (A, B) ∈ Rn iff (Â, B̂) ∈ Rn+1. First assume f̂ : [0, 1]n+1 → [0, 1]n+1 is a homeomorphism 
such that f̂ [Â] = B̂. Since f̂ maps the boundary of [0, 1]n+1 onto itself, and note that Â ∩ ∂[0, 1]n+1 =
[ 1

3 , 23 ]n × {0}, f̂ maps [ 1
3 , 23 ]n × {0} onto itself. Thus f̂ induces a homeomorphism f : [0, 1]n → [0, 1]n. More 

specifically, for any x ∈ [0, 1]n, f(x) = f̂(1
3 (x + �1), 0). Meanwhile, we have

f̂

[
1
3(A + �1) × (0,

1
3 ]

]
= 1

3(B + �1) × (0,
1
3 ]

as these are the interior points of [0, 1]n+1 in Â and B̂, respectively. By taking closures, we get,

f̂

[
1
3(A + �1) × {0}

]
= 1

3(B + �1) × {0}.

Therefore, f [A] = B.
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Conversely, let f : [0, 1]n → [0, 1]n with f [A] = B. It is enough to define an autohomeomorphism f ′ on 
[0, 1]n such that f ′[[ 1

3 , 23 ]n] = [ 1
3 , 23 ]n and f ′[ 1

3 (A + �1)] = 1
3 (B + �1). Assuming such an f ′ is defined, then 

let f̂(x, t) := (f ′(x), t) for all x ∈ [0, 1]n and t ∈ [0, 1], and f̂ would be an autohomeomorphism of [0, 1]n+1

with f̂ [Â] = B̂.
Consider the case when n = 1, whereas there are two cases depending on the orientation of f . If f is 

order-preserving, then define

f ′(x) =

⎧⎨⎩
1
3 [f(3x − 1) + 1], if x ∈ [ 1

3 , 2
3 ],

x, if x ∈ [0, 1
3 ) ∪ ( 2

3 , 1].

If π is order-reversing, then let

f ′(x) =

⎧⎨⎩
1
3 [f(3x − 1) + 1], if x ∈ [ 1

3 , 2
3 ],

1 − x, if x ∈ [0, 1
3) ∪ ( 2

3 , 1].

For n ≥ 2, we define f ′ in two steps. In the first step, let φ(x) = 1
3 (f(3x − �1) + �1). Then φ is an auto-

homeomorphism of [ 1
3 , 23 ]n with φ[ 1

3 (A +�1)] = 1
3 (B +�1). It remains to extend φ to an autohomeomorphism 

f ′ of [0, 1]n such that f ′|[ 1
3 , 2

3 ]n = φ.
By recentering and rescaling, our problem is now topologically equivalent to that of extending a given 

autohomeomorphism on

B1/3 := {(x0, . . . , xn−1) ∈ Rn : ||(x0, . . . , xn−1)|| ≤ 1
3}

to an autohomeomorphism on

B1 := {(x0, . . . , xn−1) ∈ Rn : ||(x0, . . . , xn−1)|| ≤ 1}.

At this point we switch to spherical coordinates. Thus

B1 = {(r, α1, . . . , αn−1) : r ∈ [0, 1], α1, . . . , αn−2 ∈ [0, π], αn−1 ∈ [0, 2π)}.

The given autohomeomorphism φ on B1/3 must send boundary points to boundary points, that is, for all 
α1, . . . , αn−1,

φ(1
3 , α1, . . . , αn−1) = (1

3 , α′
1, . . . , α′

n−1)

for some α′
1, . . . , α′

n−1. Let π denote the projection map π(r, α1, . . . , αn−1) = (α1, . . . , αn−1). Now we can 
define f ′ as

f ′(r, α1, . . . , αn−1) =

⎧⎨⎩φ(r, α1, . . . , αn−1), if r ≤ 1
3 ,

(r, π ◦ φ( 1
3 , α1, . . . , αn−1)), if r > 1

3 .

f ′ is clearly a continuous bijection on B1, and thus a homeomorphism. �
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The following diagram (Fig. 2) summarizes our results in the last two subsections regarding Cn and Rn:

R1 R2 R3 · · ·

C1 C2 C3 · · ·

Fig. 2. Reductions between Cn and Rn.

4. The graph isomorphism and the complexity of Cn, Hn and Rn

4.1. Comparing the graph isomorphism to H1 and R1

The graph isomorphism is a benchmark equivalence relation that arises often in the study of classification 
problems in mathematics, in particular in topology. For example, in [3] it was shown that the homeomorphic 
classification of all zero-dimensional compact metric spaces is Borel bireducible with the graph isomorphism. 
In fact, the proof shows that the graph isomorphism is in particular reducible to the homeomorphism 
relation of the closed zero-dimensional subspaces of [0, 1]. Thus it follows that the graph isomorphism is 
Borel reducible to H1. Another example is the result from [2] that the graph isomorphism is Borel reducible 
to the homeomorphism relation of 2-dimensional dendrites. It follows that the graph isomorphism is Borel 
reducible to C2.

The following theorem combines results of Friedman and Stanley [5] and Becker and Kechris [1], and 
further justifies the ubiquity of the graph isomorphism and its status as a benchmark equivalence relation.

Theorem 4.1. The following equivalence relations are Borel bireducible with each other:

(i) The graph isomorphism, i.e., the isomorphism relation of all countable graphs;
(ii) The isomorphism relation of all countable linear orderings;
(iii) The isomorphism relation of all countable L-structures, where L is any countable language with at least 

one n-ary relation symbol where n ≥ 2;
(iv) A universal equivalence relation for the class of all isomorphism relations of countable L-structures, 

where L varies over all countable languages;
(v) A universal equivalence relation for the class of all orbit equivalence relations that arise from a Borel 

action of the infinite permutation group S∞.

For unexplained terminology we refer the reader to [6].
When an equivalence relation or a classification problem is Borel reducible to the graph isomorphism, it 

means that one can assign a countable graph, a kind of countable structure, as a complete invariant for the 
equivalence classes. Conversely, if an equivalence relation is classifiable by any kind of countable structures, 
then by (iv) it can also be classified by countable graphs.

That H1 and R1 are Borel bireducible with the graph isomorphism is essentially folklore. For example, in 
Hjorth [7] the fact that R1 is Borel reducible to the graph isomorphism is left as an exercise, Exercise 4.13. 
Here we sketch some proofs for the convenience of the reader.

Theorem 4.2. Both H1 and R1 are Borel bireducible with the graph isomorphism.

Proof. A Borel reduction from the graph isomorphism to H1 was given in [3], where it was shown that the 
graph isomorphism is Borel reducible to the homeomorphism relation of closed zero-dimensional subsets 
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of [0, 1]. Here we sketch a proof that H1 is Borel reducible to the graph isomorphism. In fact, we define a 
special kind of countable structure and show that H1 can be classified by these countable structures. Then 
it follows from Theorem 4.1 that H1 is Borel reducible to the graph isomorphism.

Given a closed A ⊆ [0, 1], we consider its connected components. Note that each connected component of 
A is either a singleton or a closed interval (of positive length). Since each closed interval contains an open 
interval, there can be only countably many connected components of A that are intervals. Let PA be the 
set of all connected components of A that are closed intervals. Then PA is a countable set. Let QA be the 
set of all clopen subsets of A. Then QA is a countable Boolean algebra. Let

SA = (QA, PA, ⊆)

where ⊆ is the relation between an element of PA and an element of QA. Then SA is a countable structure 
encoding A.

More formally, let L be the language

{Q, P, ∪, ∩, c, ∅, I, ⊆}

where Q and P are unary relation symbols, ∪, ∩, c, ∅, I are symbols to express that Q is a Boolean algebra, 
and ⊆ is a relation symbol. In order for the class of L-structures to form a standard Borel space, we consider 
the following axioms in addition to those describing that Q is a Boolean algebra:

• ∀x (Q(x) ∨ P (x)) ∧ ¬(Q(x) ∧ P (x))
• ∀x, y (x ⊆ y −→ P (x) ∧ Q(y))

We claim that closed subsets A, B ⊆ [0, 1] are homeomorphic iff SA, SB are isomorphic. First, if A, B
are homeomorphic, then the homeomorphism gives rise to an isomorphism between QA and QB, which 
also sends PA to PB and preserves the relation ⊆. Thus there is an isomorphism between SA and SB. 
Conversely, suppose there is an isomorphism ϕ between SA and SB . Then ϕ gives a bijection between PA

and PB, as well as a bijection between QA and QB . By the Stone duality, the bijection between QA and 
QB gives rise to a bijection ψ between the dual space of QA and the dual space of QB. These dual spaces 
correspond to the connected components of A and B respectively. Now the bijection between PA and PB, 
together with the ⊆ relation, ensure that ψ sends each element of PA to an element of PB. Thus ψ induces 
a homeomorphism between A and B.

Next we sketch a proof that R1 is Borel reducible to the graph isomorphism. We again define a countable 
structure as a complete invariant. Given a closed subset A ⊆ [0, 1], we define a structure

TA = {VA, UA, <}

where VA is the set of all maximal open intervals contained in the complement of A in [0, 1], UA is the set of 
all maximal open intervals contained in A, and < compares all intervals in UA ∪ VA in their natural order. 
Formally, our language L′ consists of unary relation symbols U and V and a binary relation symbol <, and 
the L′-structures we consider satisfy the following axiom in addition to the axioms of linear order for <:

• ∀x (V (x) ∨ U(x)) ∧ ¬(V (x) ∧ U(x))

We claim that for closed subsets A, B ⊆ [0, 1], there is an order-preserving homeomorphism f : [0, 1] → [0, 1]
with f [A] = B iff TA, TB are isomorphic. First, if there is an order-preserving homeomorphism f : [0, 1] →
[0, 1] with f [A] = B, then f [VA] = VB , f [UA] = UB , and f preserves the order < for elements of VA ∪ UA. 



12 C. Chang, S. Gao / Topology and its Applications 267 (2019) 106876
Thus f induces an isomorphism from TA to TB. Conversely, if ϕ is an isomorphism from TA to TB , 
then ϕ induces an order-preserving homeomorphism on [0, 1] that sends ∂A = [0, 1] −

⋃
(UA ∪ VA) to 

∂B = [0, 1] −
⋃

(UB ∪ VB). Since ϕ also sends VA and VB , this homeomorphism sends A to B.
To deal with the orientation of the homeomorphism we modify the construction of the countable structure 

as follows. Given a closed subset A ⊆ [0, 1], we let A∗ = {1 − x : x ∈ A} and

MA = {TA,TA∗}.

That is, MA is essentially an unordered pair of countable structures that encodes both A and its order-
reversing copy A∗. It is obvious that for closed A, B ⊆ [0, 1], (A, B) ∈ R1 iff MA, MB are isomorphic. 
Formally, we encode the isomorphism of unordered pairs by the space of ordered pairs equipped with the 
action of Z2 � S2

∞. Since Z2 � S2
∞ is topologically isomorphic to a closed subgroup of S∞, it follows from 

Theorem 4.1 that the orbit equivalence relation is Borel reducible to the graph isomorphism.
Finally we show that the graph isomorphism is Borel reducible to R1. For this we will actually assign to 

each countable linear ordering R a zero-dimensional closed subset AR ⊆ [0, 1] as complete invariant. The 
objective is to define AR so that TAR

from the construction above will be isomorphic to R. Then R �→ AR

will be a Borel reduction from the isomorphism relation of all linear orderings to R1, and by Theorem 4.1
this gives a Borel reduction from the graph isomorphism to R1. Without loss of generality, assume R is 
infinite. To construct AR, first enumerate the elements of R non-repeatedly as xn for n ≥ 1. Inductively 
define an open interval In = (an, bn) ⊆ [0, 1] as follows. Let

I1 =

⎧⎪⎪⎨⎪⎪⎩
(0, 1

3 ), if x1 is the least element,
(2

3 , 1), if x1 is the largest element,
(1

3 , 2
3 ), otherwise.

Assume all Ii = (ai, bi) for i < n have been defined. If xi is the greatest among {x1, . . . , xn−1} with xi < xn, 
and xj is the least among {x1, . . . , xn−1} with xn < xj , then we let

an =
{

bi, if there is no x ∈ R with xi < x < xn,
2
3bi + 1

3aj , otherwise,

and

bn =
{

aj , if there is no x ∈ R with xn < x < xj ,
1
3bi + 2

3aj , otherwise.

If xi does not exist, then we let

an =
{

0, if xn ∈ R is the least element,
1
3aj , otherwise.

bn =
{

aj , if there is no x ∈ R with xn < x < xj

2
3aj , otherwise.

Similarly, if xj does not exist, then let

an =
{

bi, if there is no x ∈ R with xi < x < xn,
2b + 1 , otherwise.
3 i 3
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bn =
{

1, if xn ∈ R is the largest element,
1
3bi + 2

3 , otherwise.

Eventually, let AR = [0, 1] −
⋃

n≥1 In. Each interval In is a maximal open interval in the complement of AR. 
Our construction guarantees that AR has empty interior, and so it is zero-dimensional. �
4.2. Reducing turbulence into C2 and R2

It follows from results in the previous subsections that the graph isomorphism is Borel reducible to all 
Cn (n ≥ 2), Hn, and Rn. In this final subsection we show that for n ≥ 2, Cn, Hn, and Rn are not Borel 
reducible to the graph isomorphism. This means that these problems are strictly more complex than the 
graph isomorphism.

In [7], Hjorth developed a theory of turbulence for exactly this type of question. He defined a notion of 
turbulent actions and showed that if an action of a Polish group is turbulent, then the orbit equivalence 
relation is not Borel reducible to the graph isomorphism (or to the isomorphism of countable structures). 
He gave an example of a homeomorphism problem of compact metric spaces which is not Borel reducible to 
the graph isomorphism. Unfortunately, his examples are infinite-dimensional. In the following we will adapt 
Hjorth’s construction to create 2-dimensional continua. This will show the following main result.

Theorem 4.3. C2 is not Borel reducible to the graph isomorphism.

Since C2 ≤B H2, the same conclusion holds for H2. It will be obvious from our construction that it can be 
used to obtain the same conclusion for R2. The rest of this subsection is devoted to a proof of Theorem 4.3.

Let G = ZN . G is a Polish group under the product topology and the product group structure. Let 
G0 = {�x = (xn) ∈ G : xn/n → 0}. G0 is a subgroup of G. We equip G0 with a topological structure given 
by the complete metric:

d(�x, �y) = sup
n

|(xn − yn)/n|.

Then G0 becomes a Polish group. Consider the action of G0 on G by translation +:

�g · �x = (gn) + (xn) = (gn + xn)

for �g = (gn) ∈ G0 and �x = (xn) ∈ G. The equivalence classes of the orbit equivalence relation are exactly 
the cosets of G0 in G.

Lemma 4.4 ([7]). The action of G0 on G is turbulent. Consequently, the coset equivalence relation of G0 on 
G is not Borel reducible to the graph isomorphism.

To complete the proof it suffices to show that the coset equivalence relation of G0 on G is Borel reducible 
to C2. For notational simplicity we will be working with [−1, 1] × [0, 1] rather than [0, 1]2. We will define a 
Borel reduction map F : G �→ C([−1, 1] × [0, 1]) such that, for all �x, �y ∈ G, �x − �y ∈ G0 iff F (�x), F (�y) are 
homeomorphic.

We first describe a preliminary construction and fix some notation. We define closed rectangles Rn,k

inside [0, 1]2 for n ≥ 1 and k ∈ Z. Fix an order-preserving homeomorphism f : R → (0, 1) so that f(0) = 1
2 , 

then Rn,k is the rectangle with the vertices
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(0, 1
2 )

R1,0

R1,−1

R1,1

R1,−2

R1,2

R1,−3

R2,0

R2,−1

R2,1

R2,−2

Fig. 3. The rectangles Rn,k for n ≥ 1 and k ∈ Z.(
1

2n + 1 , f(k + 1
n

)
)

,

(
1

2n
, f(k + 1

n
)
)

,(
1

2n + 1 , f( k

n
)
)

, and
(

1
2n

, f( k

n
)
)

.

Fig. 3 illustrates this construction.
We use ∂Rn,k and Ro

n,k to denote the boundary and the interior of Rn,k, respectively.
For any n ≥ 1 and k, l ∈ Z, define a homeomorphism σn,k,l : Rn,k → Rn,k+l by σn,k,l(a, f(b)) =

(a, f(b + l/n)) for a ∈ [1/(2n + 1), 1/2n] and b ∈ [k/n, (k + 1)/n].
We are now ready to define the map F . Given �x = (xn) ∈ G, let

F (�x) = I0 ∪
⋃

n≥1
(I�x

n ∪ C�x
n)

where I0 := [−1, 0] × {1/2} ∪ {0} × [0, 1], and for each n ≥ 1,

I�x
n := the closure of (Rn,xn+1 ∪

⋃
k �=xn+1

∂Rn,k),

and

C�x
n =

{(
1

2n + 1 + λ
, f(xn + 1/2

n
(1 − λ) + xn+1 + 1/2

n + 1 λ)
)

: λ ∈ [0, 1]
}

.

The closed set F (�x) consists of three parts: a T-shaped path-component I0, a sequence of “stripes” (I�x
n), 

and a sequence of curved line segments (C�x
n) connecting the neighboring stripes. Fig. 4 illustrates this 

construction, and Fig. 5 gives a better local view of the n-th and the (n + 1)-st stripes.
Note that F (�x) thus constructed is a continuum with two path-components as follows:

• I0, where there are exactly three non-cut points within the path component.
•

⋃
(I�x

n ∪ C�x
n), where there are infinitely many non-cut points.
n≥1
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Fig. 4. The construction of F (�x).

Rn,xn−1

Rn,xn

Rn,xn+1

Rn,xn+2

Cn

Cn−1

Cn+1

I�x
nI�x

n+1

Fig. 5. The “stripes” I�x
n and I�x

n+1.

For one direction of the proof, suppose �x − �y ∈ G0, i.e. |xn − yn|/n → 0 as n → ∞. We show that there 
exists a homeomorphism between F (�x) and F (�y). Actually, we prove a stronger result by constructing an 
autohomeomorphism ϕ on [−1, 1] × [0, 1] with ϕ(F (�x)) = F (�y).

We define an autohomeomorphism σ on (0, 1)2:

• On the stripes I�x
n for n ≥ 1, we let σ|Rn,k

= σn,k,yn−xn
for all k ∈ Z;
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• In the domains of the form (
1

2n + 2 ,
1

2n + 1

)
× (0, 1)

where n ≥ 1, we let

σ

(
1

2n + 1 + λ
, f(z)

)
=

(
1

2n + 1 + λ
, f(z + (yn − xn)(1 − λ)

n
+ (yn+1 − xn+1)λ

n + 1 )
)

,

for all λ ∈ (0, 1) and z ∈ R;
• In the domain [1/2, 1) × (0, 1), we let

σ

(
1

1 + λ
, f(z)

)
=

(
1

1 + λ
, f(z + (y1 − x1)λ)

)
for all λ ∈ (0, 1] and z ∈ R. Here, σ is compatible with σ|R1,k

previously defined on the set {1/2} ×(0, 1).

Note that σ[I�x
n ] = I�y

n, σ[C�x
n] = C�y

n, and that σ is continuous everywhere in (0, 1)2. By the assumption that 
|xn − yn|/n → 0 as n → ∞, we have that for p ∈ (0, 1)2,

d(p, σ(p)) → 0

as p → ∂[0, 1]2. Hence the above σ uniquely extends to an autohomeomorphism ϕ of [0, 1]2 so that ϕ(p) = p

for p ∈ ∂[0, 1]2. Now further extending this ϕ by an identity on [−1, 0] × [0, 1] (and in particular an identity 
on I0), we obtain an autohomeomorphism of [−1, 1] × [0, 1] with ϕ[F (�x)] = F (�y).

For the converse direction, suppose π : F (�x) → F (�y) is a homeomorphism. We want to show that 
|xn − yn|/n → 0 as n → ∞. Since π maps each path-component of F (�x) to a path-component of F (�y), we 
have π[I0] = I0 and

π

⎡⎣ ⋃
n≥1

(I�x
n ∪ C�x

n)

⎤⎦ =
⋃

n≥1
(I�y

n ∪ C�y
n).

Next, we restrict our spaces to 
⋃

(I�x
n ∪ C�x

n) and 
⋃

(I�y
n ∪ C�y

n), respectively, in order to show that each I�x
n

must be mapped to I�y
n, and each C�x

n must be mapped to C�y
n.

Claim 1. For all n ≥ 1, π(I�x
n) = I�y

n and π(C�x
n) = C�y

n.

Proof of Claim: Note that for any �u ∈ G, 
⋃

C�u
n are exactly the set of all cut-points in 

⋃
(I�u

n ∪C�u
n). Therefore 

we must have

π
[⋃

C�x
n

]
=

⋃
C�y

n.

Note that for each �u ∈ G and n ≥ 1, C�u
n is a path-component of 

⋃
C�u

n . In fact, C�u
n can be topologically 

characterized as the unique path-component C of 
⋃

C�u
n so that F (�u) − C contains a path-component D

such that the set of all cut-points of D (i.e. 
⋃

i<n C�u
i ) has exactly n − 1 many path-components. It follows 

that for all n ≥ 1, π[C�x
n] = C�y

n.
Now each I�u

n can be topologically characterized inductively as follows. I�u
1 is the unique path-component 

of F (�u) − (C�u
1 )o without cut-points. For n > 1, I�u

n is the unique path-component of
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∂R1,k

bk+1

lk rk

bk

Fig. 6. The boundaries of the rectangle R1,k.

F (�u) −
(

C�u
n ∪

⋃
i<n

(C�u
i ∪ I�u

i )
)o

without cut-points. Thus for all n ≥ 1, π[C�x
n] = C�y

n. �
Claim 2. For all n ≥ 1 and k ∈ Z, π[∂Rn,k] = ∂Rn,k+yn−xn

and π[Rn,xn+1] = Rn,yn+1.

Proof of Claim: We only show the case when n = 1. The case n ≥ 2 is analogous. By the last claim, 
we know π[I�x

1 ] = I�y
1 and π[C�x

1 ] = C�y
1 . However, note that I�x

1 intersects C�x
1 at a unique point, namely 

p�x = (1/3, f(x1 + 1/2)). Similarly, I�y
1 ∩ C�y

1 = {p�y}, where p�y = (1/3, f(y1 + 1/2)). This implies that 
π(p�x) = p�y.

Before continuing, we introduce some additional notation. We think of the boundary of R1,k being divided 
into four parts: the “left” side will be denoted by lk, the “right” side by rk, and the “bottom” side by bk. 
See Fig. 6. With these, the “top” side of the boundary of R1,k is bk+1. p�x is on the side lx1 .

Now the set of all cut-points of I�x
1 − {p�x} consists of exactly lx1 ∪ rx1 , and each of lx1 and rx1 is a 

path-component of lx1 ∪ rx1 . Similarly, p�y is on the side ly1 , while ly1 , ry1 are the two path-components of 
the set of all cut-points of I�y

1 − {p�y}. This implies that π[lx1 ] = ly1 and π[rx1 ] = ry1 .
Note that I�x

1 − (lx1 ∪ rx1) contains exactly three components:

• bo
x1

, which contains only cut-points;
• R1,x1+1 ∪

⋃
k>x1+1 ∂R1,k, which contains only non-cut points;

•
⋃

k<x1
∂R1,k − bx1 , which contains both cut-points and non-cut points.

Moreover, R1,x1+1 consists of exactly the points p in I�x
1 such that any neighborhood of p contains a home-

omorphic copy of the upper half plane R × [0, +∞).
All of this analysis can be done similarly on the �y side. It follows that we must have π[bx1 ] = by1 , 

π[R1,x1+1] = R1,y1+1,

π[
⋃

k>x1+1

∂R1,k − bx1+2] =
⋃

k>y1+1

∂R1,k − by1+2,

and

π[
⋃

k<x1

∂R1,k − bx1 ] =
⋃

k<y1

∂R1,k − by1 .

Note that

⋃
∂R1,k − bx1+2 = lo

x1+2 ∪ ro
x1+2 ∪

⋃
∂R1,k,
k>x1+1 k>x1+2
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and lx1+2 and rx1+2 are the two path-components of the set of all cut-points of the above set. From this we 
get π[lx1+2 ∪ rx1+2] = ly1+2 ∪ ry1+2, π[bx1+3] = by1+3 and

π[
⋃

k>x1+2

∂R1,k − bx1+3] =
⋃

k>y1+2

∂R1,k − by1+3.

A repetition of the argument shows that π[∂R1,k] = ∂R1,k+y1−x1 for all k > x1 + 1.
A similar argument shows that π[∂R1,k] = ∂R1,k+y1−x1 for all k < x1. The claim is thus proved. �
Finally, we look back at the path-component I0 in F (�x) and in F (�y). We have π[I0] = I0. Notice that 

(0, 1/2) is a distinguished by the topological property that it is the unique cut-point in I0 so that removing 
it will result in three path-components. Therefore, π fixes the point (0, 1/2). From Claim 2 above, we have 
π(∂R�x

n,0) = ∂R�y
n,yn−xn

for all n ≥ 1. As n → ∞, ∂R�x
n,0 converges to the fixed point (0, 1/2), so we must 

have that ∂R�y
n,yn−xn

converges also to (0, 1/2). This implies that |yn − xn|/n → 0.
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