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1. Introduction

In [4] we determined the exact complexity of the homeomorphic classification problem of all continua, i.e.,
connected compact metric spaces. In this paper we consider continua that are subspaces of finite-dimensional
Euclidean spaces. The framework of our study is the descriptive set theory of equivalence relations, which
we briefly review below. The reader could consult [6] for more details.

Let X,Y be standard Borel spaces and F, F' be equivalence relations on X, Y, respectively. We say that
E is Borel reducible to F', denoted E <p F', if there is a Borel function ¢ : X — Y such that for all z,y € X,
2By < ¢(x)Fp(y). We say that F is strictly Borel reducible to F, denoted F <p F, if E <p F and
F fg E. FE is said to be Borel bireducible with F', denoted E ~g F, if both E <g Fand F <g E.IfCisa
class of equivalence relations and F' € C, we say that F' is universal for C if for all E € C, we have £ <p F.
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Classification problems in mathematics can often be viewed as equivalence relations on standard Borel
spaces. In continuum theory, for instance, let C([0, 1]N) be the space of all non-empty connected closed
subsets of the Hilbert cube [0, 1]N. Then C([0,1]N) can be viewed as the space of all continua since every
continuum is homeomorphic to a subspace of the Hilbert cube. It is well-known that C([0, 1]N) is a standard
Borel space. Thus the homeomorphic classification problem of all continua becomes an equivalence relation
on the standard Borel space C([0, 1]V).

The notion of Borel reducibility becomes a way to talk about the relative complexity of classification
problems. If E, F' are classification problems with £ <g F', then F is strictly more complex than E. On the
other hand, if £ ~pg F, then E and F are of the same complexity.

To determine the exact complexity of an equivalence relation we often use a benchmark equivalence
relation, i.e., an equivalence relation that is easy to define and which shows up frequently in research.
Another important way for an equivalence relation to become a benchmark is for it to be universal in
a significant class of equivalence relations. For example, Zielinski in [10] showed that the homeomorphic
classification problem for all compact metric spaces is Borel bireducible with a universal orbit equivalence
relation arising from a Borel action of a Polish group. We showed in [4] that the classification problem of
all continua is also Borel bireducible to this equivalence relation. Because the universal orbit equivalence
relation is a well-known benchmark, we have thus determined the exact complexity of these classification
problems.

The benchmark equivalence relation we use in this paper is the isomorphism relation of all countable
graphs, which is also known as the graph isomorphism. Formally, let G be the space of all graphs (V, E) with
V = N. Then G C 2¥%N can be shown to be a standard Borel space. The graph isomorphism is thus an
equivalence relation on G. It is well-known that the graph isomorphism is Borel bireducible to a universal
orbit equivalence relation arising from a Borel action of the infinite permutation group S.,. Thus the graph
isomorphism is sometimes also said to be Soo-universal (e.g. [2]).

In this paper we will consider the homeomorphic classification problem of all subcontinua of [0, 1]™, which
we denote by C,,. In comparison, we will also consider the homeomorphic classification problem of all closed
subsets of [0,1]™, which we denote by H,,. In addition, we consider the following equivalence relation R,
among all closed subsets of [0,1]". If A, B are closed subsets of [0,1]", then (A4, B) € R, iff there is a
homeomorphism f : [0,1]™ — [0, 1]™ with f[A] = B.

One easily sees that C; has only two equivalence classes. It is a folklore that both R; and H; are Borel
bireducible with the graph isomorphism (we will give a proof later in this paper). When we compare the
equivalence relations C,,, H,, and R,, in terms of Borel reducibility, it is obvious that C,, <p H,,, H,, <p H, 41,
and C, <p C,y1. In particular, the graph isomorphism is thus Borel reducible to all H,,. The following
results are less obvious.

Theorem 1. The following hold for any n:

(1) Hn SB Cn+2;
(2) Rn SB Cn+2;
(3) Rn SB Rn+1-

It follows that the graph isomorphism is also Borel reducible to all R,. Camerlo, Darji, and Marcone

showed in [2] that the graph isomorphism is Borel reducible to Cs, and hence to all C,, for n > 2. Our main
result of the paper is the following.

Theorem 2. For any n > 2, the graph isomorphism is strictly Borel reducible to each of C,,H,, and R,,.
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In particular, Theorem 2 tells us that it is impossible to assign a countable graph (or any countable
structure) as a complete homeomorphic invariant for a finite-dimensional continuum if the dimension is at
least 2.

2. Preliminaries

Our standard references for notation and terminology are [8] and [6].

Recall that a Polish space is a separable, completely metrizable topological space. A standard Borel space
is a pair (X,%), where X is a set and B is a o-algebra of subsets of X, such that % is the o-algebra
generated by some Polish topology on X. If (X, B) is a standard Borel space we refer to elements of 9B as
Borel sets. As usual, if (X, B) is a standard Borel space and the collection B is clear from the context, we
will say that X is a standard Borel space. It is natural to view any Polish space as a standard Borel space.

If X and Y are standard Borel spaces, a function f : X — Y is Borel (measurable) if for any Borel
BCY, f~1(B) C X is Borel.

Given any Polish space X, the Effros Borel space F(X) is the space of all non-empty closed subsets of
X with the o-algebra generated by the sets of the form

(FeF(X): FnU # 0},

where U C X is open. It is a standard Borel space.

Given any Polish space X, let C(X) be the subspace of F(X) consisting of all connected compact subsets
of X. Then C(X) is again a standard Borel space.

We can regard H,, and R,, to be equivalence relations on F([0,1]") and C,, an equivalence relation on
e(lo, 7).

For our constructions and proofs we will need the following basic notation and terminology in continuum
theory. For unexplained notation and terminology our standard reference is [9].

Let X be a connected topological space. An element x € X is a cut-point of X if X —{z} is disconnected.
If « is not a cut-point of X, it is a non-cut point of X. Cut-points are preserved by homeomorphisms, but
not necessarily by continuous maps.

If X is a topological space and =,y € X, a path from z to y is a continuous function f : [0,1] — X
such that f(0) =z and f(1) = y. When there is no danger of confusion, we also refer to the graph of such
an f as a path. Define x ~ y iff there is a path from = to y, for any x,y € X. Then ~ is an equivalence
relation, and its equivalence classes are the path-components of X. X is path-connected if it has only one
path-component, or equivalently, if there is a path from x to y for any =,y € X.

Let X be a path-connected space. We call an element © € X a path-cut-point if X — {x} is no longer
path-connected. Note that path-cut-points are also preserved by homeomorphisms.

3. Comparing C,,, H,, and R,,

We establish in this section the results comparing various homeomorphism problems in terms of Borel
reducibility. We will use two constructions in [4] and [10] for coding a closed subset (or a sequence of closed
subsets) of a compact metric space into the homeomorphism type of a continuum. We briefly describe these
two constructions first.

3.1. The construction of I(X, A)

Let X be a compact metric space and A C X be a closed subspace containing all isolated points of
X. Let Dx 4 be the collection of D C X x (0,1] which is a nonempty set of isolated points so that
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D—-D = Ax{0}. If D € Dx 4 and A # (), then the set D is necessarily countably infinite. For any
D € Dx,a let I(X,A;D) = X x {0} UD. Being a closed subspace of X x [0,1], I(X,A;D) is still a
compact metric space. From [4] and [10], we know that Dy 4 is not empty, and that all the I(X, A; D) are
homeomorphic as D € Dy 4 varies. Thus, we simply write I(X, A) for any I(X,A; D) for D € Dx 4. If A
is empty, we let I(X, A) = I(X, A; D) where D is a singleton.

It now follows that I(X, A) is a coding space for the homeomorphism type of pairs (X, A) where X is a
compact metric space and A C X is a closed subspace.

Proposition 3.1 ([//). Let X,Y be compact metric spaces, and A C X and B C 'Y be closed subspaces
containing all isolated points of X and Y, respectively. Then the following are equivalent:

(i) (X, A) =2 (Y, B), i.e., there is a homeomorphism f: X — Y with f[A] = B.
(ii) I(X,A) and 1(Y, B) are homeomorphic.

3.2. The construction of J(X, A)

Let X be a compact metric space. We define the fan space Fx of X as the quotient of X x [0, 1] by the
equivalence relation ~ defined as

(2,5) ~ () <= (2,8) = (y,t) or s =t = 1.

The point [(z,1)]~ in Fx is a distinguished point; we denote it by ax and call it the apex. X can be viewed,
again in a canonical way, as a subspace of F'x.
Fx is obviously compact. We note that it can be given a canonical metric:

dr((z,s), (y,1)) = 2[s — t| + (1 — max{s, t})p(z, y),

where p < 1 is a compatible metric on X. Fx is also clearly a path-connected space: for every point (z, s)
there is a canonical path P from (z, s) to ax, namely,

P(1)=(z,s+7(1—s)) for 7 € [0,1].

Therefore F'x is a path-connected continuum.
Next we code pairs (X, A). Given a compact metric space X and a closed subspace A C X, define F'(X, A)
as a subspace of the fan space Fx:

F(X,A)={[(z,s)]~ € Fx : s=0orz € A}
Alternatively, we consider the equivalence relation ~ defined above, restricted to the space
(X x{0}) U (4 % [0,1]).

F(X, A) is again the quotient space given by ~.

There is again a canonical homeomorphic copy of X in F(X, A), namely X x {0}, and a canonical
homeomorphic copy of Fa in F(X, A). It is easy to see that if X is (path-)connected, then so is F(X, A).

The next coding space J(X, A) is based on the space I(X, A). Write I(X, A) = X U D, where D is the
set of all isolated points in I(X, A). Note that D = D U A. We define

J(X,A) = F(I(X, A),D).
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Proposition 3.2 ([/]). Let X, Y be continua without cut-points and A, B be closed subspaces of X, Y respec-
tively. Then the following are equivalent:

(i) (X, 4)

( (Y, B).
(i) J(X, A

and J(Y, B) are homeomorphic.

R

3.3. Comparing C,, and H,

In this subsection we compare the complexities of C,, and H,,. It is obvious that C,, <p H,, H,, <p H, 11,
and C,, <p C,41. Our objective is to show that H,, <p C,,;2 for all n. These results can be summarized in
the following diagram (Fig. 1), where a Borel reducibility claim E <p F is represented by an arrow F — F":

Hl\l_‘r\\lﬁfj\
Cy Co Cs

Fig. 1. Reductions between H,, and C,,.

Theorem 3.3. H,, <p C,42 for alln > 1.

The rest of this subsection is devoted to a proof of Theorem 3.3.
Given any non-empty closed subset A C [0, 1]", consider

A = J(A,A) = FI(A,A)~

Arbitrarily fix a countable set Da € Da 4. Then I(A, A) = Da = (A x {0})U D 4. For notational simplicity,
we denote the apex of Fy4 4) by a*.
Note that A is a quotient space of [0,1]"2. In the next lemma, we show that it can be embedded as a

subspace of [0,1]"+2.

Lemma 3.4. A is homeomorphic to a subspace of [0,1]"12.

Proof. We construct a A’ C [0, 1]"+2: first embed I(A, A) = (A x {0})U D, into [0,1]**2 as (A x {(0,0)}) U
(D4 x {0}) (called the “floor” points); then add an arbitrary point a’* € [0,1]*"! x (0, 1], and connect all

n+2

the “floor” points to a’* by straight lines. The set A’ is obviously a subset of [0, 1]"*2, and all the points in

A’ can be uniquely written as
(1—Nx+ Xd*
for some = € I(A, A) x {0} and X € [0,1]}.
Define 7 : A — A’ by n(x,\) = (1 — Nz + Aa’* for z € D, \ € [0,1]. Then 7 is a continuous bijection,
and thus a homeomorphism. 0O

Next we state a topological property that separates points of D4 x {0} from the other points in A.

Lemma 3.5. Let p € A. Then p € Dy x {0} ff the following topological property holds for p:
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p s a non-cut point, and for all open neighborhood V' of p, there exists an open subset U C V such that
p € U and U is path-connected.

Proof. Note that all the points in D4 x {0} are non-cut points. In fact, if (x,0) € D4 x {0}, then A—{(z,0)}
is still path-connected, since all points in A — {(z,0)} are path-connected to a*. To show the second part
of the property for p = (x,0) € D4 x {0}, fix an arbitrary open neighborhood of (z,0), say V. Since
x € D4 is an isolated point in the space Ds = I(A, A), there exists some ¢ > 0 so that the open set
U:={z} x[0,e) C V.U is clearly path-connected.

All the points in {(z,7) : © € Dg,r € (0,1]} are cut-points, so they do not satisfy the displayed property.

Finally, for the rest of points (z,7) € A, where 2 € A x {0},r € [0,1], there is a sequence of points
{z;}ien from Dy converging to z. Then, for every open neighborhood M of z and € € (0, 1), the basic open
set V := M x [0,¢€) is not connected, as V' contains infinitely many disjoint components {x;} x [0,¢€) for

some 7 € N. O

We are now ready to prove Theorem 3.3. Suppose A, B are non-empty closed subsets of [0, 1], and A B
are constructed as above, with a* and b* as their respective apexes. Moreover, assume that f: A — B is a
homeomorphism. By Lemma 3.5, we have

f(Da x {0}) = Dp x {0},

hence f(A x {0}2) = B x {0}2. Therefore, A, B are homeomorphic to each other.

On the other hand, suppose f : A — B is a homeomorphism. With the same argument as in the proof
of Proposition 3.1, we can extend f into a homeomorphism f’ : D4 — Dpg such that f’ lax{oy= f. Then
we can extend f’ further to f by sending a* to b*, and (z,\) € D4 x [O 1) to (f'(x),\) € Dg x [0,1).
f A — B is clearly one-to-one, onto and continuous. Since both A and B are compact metric spaces, the
continuity of f implies homeomorphism.

Thus we have shown that A, B are homeomorphic iff A, B are homeomorphic. It is straightforward to
verify that A — A as a map from F([0,1]") to C([0,1]"*?) is Borel. Thus A — A witnesses that H, <p C,,;2.

3.4. Comparing C,, and R,

In this subsection we prove R,, <g C, 12 for all n. Since [0, 1]™ is a continuum without cut-points for all
n > 2, a direct application of Proposition 3.2 gives that for all n > 2 and closed subsets A, B C [0, 1]™, we
have

( :
0,1]™, A), J(]0,1]™, B) are homeomorphic.

Similarly to Lemma 3.4, the path-connected spaces J([0,1]", A), J(]0,1]™, B) can be embedded as subspaces
of [0, 1]"*2. Therefore, we have R,, <p C,, 12 for all n > 2. Now the only case left is when n = 1, which we
address below.

Theorem 3.6. R; <p Cs.

The rest of this subsection is devoted to a proof of Theorem 3.6. We show again that for non-empty closed
subsets A, B C [0,1], A, B are homeomorphic iff J([0,1], A), J([0, 1], B) are homeomorphic. The proof of the
forward implication is identical to the proof of Proposition 3.2 (and is straightforward and easy anyway).
We only consider the other direction.
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Suppose f J([0,1], A) — J([0,1], B) is a homeomorphism. We verify that

F(10,1] x {0}?) = [0,1] x {0},

and
F(Ax {0}2) = B x {0}

Let a* and b* be the apexes of J([0,1], A) and J([0, 1], B) respectively. We first identify a unique topo-
logical property for a*.

Lemma 3.7. In J([0,1], A), a* is the unique cut-point such that J([0,1],A) — {a*} has infinitely many
path-components.

Proof. It is easy to see that a* is a cut-point such that J([0,1],A) — {a*} has infinitely many path-
components. In fact, for each @ € D4, {x} x [0,1) is a path-component in J([0,1],4) — {a*}. To see
that other points do not satisfy this topological property, we consider them case by case:

o For all (z,A) € J([0,1],A), where z € D4 and A € (0,1), J([0,1],4A) — {(x, )} has exactly two
path-components.

o For all (z,0) € J([0,1], A), where & € D 4, we have that (z,0) is a non-cut point.

o For all (a,0,0) € J([0,1], A), where a > max{A} or a < min{A4}, J([0,1], A) — {(a,0,0)} has at most
three path-components.

o For all (a,0,) € J([0,1], A), where min A < a < max A and A < 1, we have that (a,0, \) is a non-cut
point. O

A similar argument show that b* is the unique cut-point in J([0, 1], B) such that J([0,1], B) — {b*} has
infinitely many path-components. Thus f sends a* to b*. If we remove a*,b* from their respective spaces,
then f sends each path-component in the domain to some path-component in the codomain.

Lemma 3.8. Assume A # {0} and A # {1}. Then in the space J([0,1],A) — {a*}, there are two non-
homeomorphic types of path-components:

(i) {z} x[0,1), where x € Dy;
(i) ([0,1] x {0}*) U (A x {0} x [0,1)).

Proof. For each © € Dy, A, = {z} x [0,1) is a path-component of J([0,1], A) — {a*}. Each of these
components satisfies both of the following topological properties:

e There is a unique non-cut point in A,, namely (x,0);
o For every cut-point p € A, A, — {p} has exactly two path-components.

Now A = ([0,1] x {0}?) U (A x {0} x [0,1)) is also a path-component. If the interior of A is non-empty,
then there are infinitely many non-cut points in A. Assume that the interior of A is empty. If A contains
an element a € (0,1), then A — {(a,0,0)} has at least three path-components. If A does not contain any
element in (0,1), then A = {0,1} by our assumptions that A is non-empty and yet A # {0} and A # {1}.
In this case, A has no non-cut points. 0O
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For the rest of the proof, we assume without loss of generality that A, B # {0},{1}. Then f sends
each path-component {z} x [0,1),2 € D4 to some {y} x [0,1),y € Dp, and sends the path-component
([0,1] x {0}*) U (A x {0} x [0,1)) to ([0,1] x {0}?) U (B x {0} x [0,1)). Since (x,0) is the unique non-cut
point in {z} x [0,1) for all x € D4, and similarly, (y,0) is the unique non-cut point in {y} x [0,1) for all
y € Dp, we have

f(DA x {0}) = Dp x {0}.

Hence, we also have f(D4 x {0}) = Dp x {0}, which implies that f(A x {0}?) = B x {0}2.

We still need to show that f([0,1] x {0}2) = [0,1] x {0}2. Recall that J([0,1], A) is the union of D4 x
{0}UD4 x(0,1]U[0, 1] x {0}2, where the apex a* € D4 x (0, 1]. Consider the spaces J([0, 1], A) — (D x {0})
and J([0,1],B) — (Dp x {0}). f must send the component containing a* to the component containing b*,
ie.

f(DA x (0,1]) = Dp x (0,1].
Thus, we have shown f([0,1] x {0}2) = [0,1] x {0}2.
3.5. Comparing R, and Ry, 41

In this subsection we compare the complexities among R,, for n > 1. We will use the well-known fact
that for all n > 1, if f:[0,1]" — [0,1]™ is a homeomorphism and B = 9[0,1]™ is the set of all boundary
points, then f[B] = B.

Theorem 3.9. R,, <p R,,4+1 for alln > 1.

Proof. For a closed A C [0,1]", we define AcC [0,1]"+! by first embedding a rescaled copy of [0,1]™ on the
boundary of [0,1]"*! and then forming a cylinder set off the rescaled copy of A:

1 2 1

3l X {0} U (A +T) x [0, 5],

A=z,

where

1 - 1 1 1 1
g(A—’_ 1) = {(gao + ga'“agan—l + g) : (G‘Oaal?"'aan—l) € A}

We verify that (A, B) € Ry, iff (A, B) € Ry41. First assume f : [0,1]""1 — [0,1]" " is a homeomorphism
such that f[A ] = B. Since f maps the boundary of [O 1]"+! onto itself, and note that A N 9[0,1]"+! =
(3, 2] x {0}, f maps [3, 2] x {0} onto itself. Thus f induces a homeomorphism f : [0,1]" — [0, 1]". More
specifically, for any x € [0,1]", f(z) = f(3(x +1),0). Meanwhile, we have

~

- 1 1 - 1

—(A+1 0,-]| ==-(B+1 0, =

Flyas x| = 5@+ 0 x0.3)
as these are the interior points of [0,1]"*! in A and §7 respectively. By taking closures, we get,

fB(A—l—l) {0}] S(B+1)x {0},

Therefore, f[A] = B.
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Conversely, let f:[0,1]™ — [0,1]™ with f[A] = B. It is enough to define an autohomeomorphism f’ on
[0,1]™ such that f'[[%,2]"] = [3,2]" and f/[3(A + N = (B + T). Assuming such an f’ is defined, then

~

let f(z,t) := (f'(z),t) for all z € [0,1]" and ¢ € [0,1], and f would be an autohomeomorphism of [0, 1]+
with f[A] = B.
Consider the case when n = 1, whereas there are two cases depending on the orientation of f. If f is

order-preserving, then define

, HfBz—-1)+1), ifzeld, 2]
fi(x) = _ o
, ifzxel0,3)U(5,1].

If 7 is order-reversing, then let
P £ UG R A TR O
xTr) =
1—z, ifz €10,%)U(3,1].

For n > 2, we define f’ in two steps. In the first step, let ¢(z) = %(f(3x — 1) 4 1). Then ¢ is an auto-
homeomorphism of [£, 2]" with ¢[3(A+ 0] = (B+ 1). It remains to extend ¢ to an autohomeomorphism
1! of [0,1]™ such that f’h%,%}n = ¢.

By recentering and rescaling, our problem is now topologically equivalent to that of extending a given

autohomeomorphism on

}

Wl =

Biys = {(z0,...,xn-1) €ER™" : [[(w0, ..., 2pn_1)|| <
to an autohomeomorphism on
By :={(x0,...,2n-1) ER"™ : ||(zo, ..., Tn-1)|| <1}
At this point we switch to spherical coordinates. Thus
By ={(r,aq,...,an_1) : 7 €1[0,1],01q,...,0n_2 € [0,7],ap_1 € [0,27)}.

The given autohomeomorphism ¢ on Bj,3 must send boundary points to boundary points, that is, for all

Qp,...,0p_1,
1 1
¢(§,a1,...,an_1) = (5,0/1,---,0‘;71)
for some of,...,al _;. Let m denote the projection map = (r,a1,...,a,—1) = (a1,...,0,_1). Now we can
define f’ as
: 1
. o(ryan, ... an_1), if r < 3,
f (Taalv"'aanfl) = 1 . 1
(rmog(z,1,...,ap-1)), ifr> 3.

f' is clearly a continuous bijection on By, and thus a homeomorphism. O
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The following diagram (Fig. 2) summarizes our results in the last two subsections regarding C,, and R,,:

a \\
Cl C2 C3

Fig. 2. Reductions between C,, and R,,.

4. The graph isomorphism and the complexity of C,,, H,, and R,,
4.1. Comparing the graph isomorphism to Hy and Ry

The graph isomorphism is a benchmark equivalence relation that arises often in the study of classification
problems in mathematics, in particular in topology. For example, in [3] it was shown that the homeomorphic
classification of all zero-dimensional compact metric spaces is Borel bireducible with the graph isomorphism.
In fact, the proof shows that the graph isomorphism is in particular reducible to the homeomorphism
relation of the closed zero-dimensional subspaces of [0,1]. Thus it follows that the graph isomorphism is
Borel reducible to H;. Another example is the result from [2] that the graph isomorphism is Borel reducible
to the homeomorphism relation of 2-dimensional dendrites. It follows that the graph isomorphism is Borel
reducible to Cs.

The following theorem combines results of Friedman and Stanley [5] and Becker and Kechris [1], and
further justifies the ubiquity of the graph isomorphism and its status as a benchmark equivalence relation.

Theorem 4.1. The following equivalence relations are Borel bireducible with each other:

(i) The graph isomorphism, i.e., the isomorphism relation of all countable graphs;

(ii) The isomorphism relation of all countable linear orderings;

(iii) The isomorphism relation of all countable L-structures, where L is any countable language with at least
one n-ary relation symbol where n > 2;

(iv) A universal equivalence relation for the class of all isomorphism relations of countable L-structures,
where L varies over all countable languages;

(v) A universal equivalence relation for the class of all orbit equivalence relations that arise from a Borel
action of the infinite permutation group Sso.

For unexplained terminology we refer the reader to [6].

When an equivalence relation or a classification problem is Borel reducible to the graph isomorphism, it
means that one can assign a countable graph, a kind of countable structure, as a complete invariant for the
equivalence classes. Conversely, if an equivalence relation is classifiable by any kind of countable structures,
then by (iv) it can also be classified by countable graphs.

That Hy and Ry are Borel bireducible with the graph isomorphism is essentially folklore. For example, in
Hjorth [7] the fact that Ry is Borel reducible to the graph isomorphism is left as an exercise, Exercise 4.13.
Here we sketch some proofs for the convenience of the reader.

Theorem 4.2. Both Hy and Ry are Borel bireducible with the graph isomorphism.

Proof. A Borel reduction from the graph isomorphism to Hy; was given in [3], where it was shown that the
graph isomorphism is Borel reducible to the homeomorphism relation of closed zero-dimensional subsets
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of [0,1]. Here we sketch a proof that Hy is Borel reducible to the graph isomorphism. In fact, we define a
special kind of countable structure and show that H; can be classified by these countable structures. Then
it follows from Theorem 4.1 that H; is Borel reducible to the graph isomorphism.

Given a closed A C [0, 1], we consider its connected components. Note that each connected component of
A is either a singleton or a closed interval (of positive length). Since each closed interval contains an open
interval, there can be only countably many connected components of A that are intervals. Let P4 be the
set of all connected components of A that are closed intervals. Then P4 is a countable set. Let () 4 be the
set of all clopen subsets of A. Then Q4 is a countable Boolean algebra. Let

G4 =(Qa,Pa, Q)

where C is the relation between an element of P4 and an element of Q@ 4. Then & 4 is a countable structure
encoding A.
More formally, let L be the language

{Q7P7U’ ﬂ? C7®’[7 g}

where Q and P are unary relation symbols, U, N, ¢, (0, I are symbols to express that Q is a Boolean algebra,
and C is a relation symbol. In order for the class of L-structures to form a standard Borel space, we consider
the following axioms in addition to those describing that @ is a Boolean algebra:

o Vz(Q(z)V P(z)) A =(Q(z) A P(z))
e Vz,y (x Cy — P(z) AQ(y))

We claim that closed subsets A, B C [0, 1] are homeomorphic iff &4, &g are isomorphic. First, if A, B
are homeomorphic, then the homeomorphism gives rise to an isomorphism between 4 and g, which
also sends P4 to Pp and preserves the relation C. Thus there is an isomorphism between G 4 and G&p.
Conversely, suppose there is an isomorphism ¢ between & 4 and Gp. Then ¢ gives a bijection between Py
and Pp, as well as a bijection between @4 and Qp. By the Stone duality, the bijection between Q4 and
@p gives rise to a bijection ¥ between the dual space of @ 4 and the dual space of @p. These dual spaces
correspond to the connected components of A and B respectively. Now the bijection between P4 and Ppg,
together with the C relation, ensure that i) sends each element of P4 to an element of Pg. Thus 1 induces
a homeomorphism between A and B.

Next we sketch a proof that Ry is Borel reducible to the graph isomorphism. We again define a countable
structure as a complete invariant. Given a closed subset A C [0, 1], we define a structure

Ta={Va,Ua, <}

where V} is the set of all maximal open intervals contained in the complement of A in [0, 1], U4 is the set of
all maximal open intervals contained in A, and < compares all intervals in U4 U V4 in their natural order.
Formally, our language L’ consists of unary relation symbols U and V and a binary relation symbol <, and
the L’-structures we consider satisfy the following axiom in addition to the axioms of linear order for <:

o Vo (V(2) VU (z)) A=(V(z) ANU(2))
We claim that for closed subsets A, B C [0, 1], there is an order-preserving homeomorphism f : [0,1] — [0, 1]

with f[A] = B iff T4, T g are isomorphic. First, if there is an order-preserving homeomorphism f : [0,1] —
[0,1] with f[A] = B, then f[Va] = Vg, flUa] = Up, and f preserves the order < for elements of V4 U Uj.
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Thus f induces an isomorphism from T4 to Tp. Conversely, if ¢ is an isomorphism from T4 to Tp,
then ¢ induces an order-preserving homeomorphism on [0,1] that sends A = [0,1] — J(Ua U V4) to
0B =[0,1] — J(Up U VB). Since ¢ also sends V4 and Vp, this homeomorphism sends A to B.

To deal with the orientation of the homeomorphism we modify the construction of the countable structure
as follows. Given a closed subset A C [0,1], we let A* = {1 — 2 : € A} and

My ={%4,%a~}.

That is, 94 is essentially an unordered pair of countable structures that encodes both A and its order-
reversing copy A*. It is obvious that for closed A, B C [0,1], (A, B) € Ry iff M4, Mp are isomorphic.
Formally, we encode the isomorphism of unordered pairs by the space of ordered pairs equipped with the
action of Zy x S2. Since Zo x S2, is topologically isomorphic to a closed subgroup of S, it follows from
Theorem 4.1 that the orbit equivalence relation is Borel reducible to the graph isomorphism.

Finally we show that the graph isomorphism is Borel reducible to R;. For this we will actually assign to
each countable linear ordering R a zero-dimensional closed subset Ar C [0, 1] as complete invariant. The
objective is to define Ag so that T4, from the construction above will be isomorphic to R. Then R — Ap
will be a Borel reduction from the isomorphism relation of all linear orderings to Ry, and by Theorem 4.1
this gives a Borel reduction from the graph isomorphism to R;. Without loss of generality, assume R is
infinite. To construct Apg, first enumerate the elements of R non-repeatedly as x,, for n > 1. Inductively
define an open interval I,, = (an, b,) C [0, 1] as follows. Let

(0, %), if z1 is the least element,

I ={(3,1), if o is the largest element,
(3,2), otherwise.
Assume all I; = (a4, b;) for i < n have been defined. If z; is the greatest among {x1,...,z,_1} with z; < z,,
and x; is the least among {z1,...,2,—1} with z, < z;, then we let
B b;, if there is no z € R with z; < x < x,,,
" %bi + %aj, otherwise,

and

n —

b _{aj, if there is no x € R with =, <z < z;,

%bi + %aj, otherwise.
If z; does not exist, then we let

{07 if x,, € R is the least element,
Qp =

aj, otherwise.

b {aj, if there is no z € R with =, < z < x;
n =

aj, otherwise.

Similarly, if «; does not exist, then let

{bi, if there is no x € R with z; < z < x,
an =

%bi + %, otherwise.
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b — {1, if z,, € R is the largest element,

%bi + %, otherwise.

Eventually, let Agr = [0,1] —J,,>; In. Each interval I,, is a maximal open interval in the complement of Ag.
Our construction guarantees that Ag has empty interior, and so it is zero-dimensional. O

4.2. Reducing turbulence into Co and Ro

It follows from results in the previous subsections that the graph isomorphism is Borel reducible to all
C, (n > 2), H,, and R,. In this final subsection we show that for n > 2, C,, H,, and R,, are not Borel
reducible to the graph isomorphism. This means that these problems are strictly more complex than the
graph isomorphism.

In [7], Hjorth developed a theory of turbulence for exactly this type of question. He defined a notion of
turbulent actions and showed that if an action of a Polish group is turbulent, then the orbit equivalence
relation is not Borel reducible to the graph isomorphism (or to the isomorphism of countable structures).
He gave an example of a homeomorphism problem of compact metric spaces which is not Borel reducible to
the graph isomorphism. Unfortunately, his examples are infinite-dimensional. In the following we will adapt
Hjorth’s construction to create 2-dimensional continua. This will show the following main result.

Theorem 4.3. Co is not Borel reducible to the graph isomorphism.

Since Co <p Hs, the same conclusion holds for Hs. It will be obvious from our construction that it can be
used to obtain the same conclusion for Ry. The rest of this subsection is devoted to a proof of Theorem 4.3.

Let G = ZN. G is a Polish group under the product topology and the product group structure. Let
Go ={Z = (zn) € G: x,/n — 0}. Gy is a subgroup of G. We equip Gy with a topological structure given
by the complete metric:

d(Z,§) = sup |(zn, — yn)/nl.
Then Gy becomes a Polish group. Consider the action of Gy on G by translation +:

G-Z=(gn) + (Tn) = (gn + 7n)

for § = (gn) € Go and & = (z,) € G. The equivalence classes of the orbit equivalence relation are exactly
the cosets of Gg in G.

Lemma 4.4 ([7]). The action of Gy on G is turbulent. Consequently, the coset equivalence relation of Go on
G is not Borel reducible to the graph isomorphism.

To complete the proof it suffices to show that the coset equivalence relation of Gy on G is Borel reducible
to Cy. For notational simplicity we will be working with [—1, 1] x [0, 1] rather than [0, 1]>. We will define a
Borel reduction map F : G — C([—1,1] x [0,1]) such that, for all Z,§ € G, & — § € Gy iff F(Z), F(¥) are
homeomorphic.

We first describe a preliminary construction and fix some notation. We define closed rectangles R, i
inside [0,1]? for n > 1 and k € Z. Fix an order-preserving homeomorphism f : R — (0,1) so that f(0) = 3,
then R, j is the rectangle with the vertices
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——————————————————————————— ATFT-F——F—~—~——————=—=—=— === === —

R1.2

— Ri

— Ri,0

T T T

Ry, 1

T T T T

- Ri,—2

Ry, _3

Fig. 3. The rectangles R, for n > 1 and k € Z.
1 k+1 1 k+1
(/D). ().

<2n1+1’f(fb)> , and (2111’f(7]2)> :

We use 0R,, ;, and th  to denote the boundary and the interior of R, x, respectively.

For any n > 1 and k,l € Z, define a homeomorphism ¢, 5; : Rpr — Ruk+i by onri(a, f(b) =
(a, f(b+1/n)) fora € [1/(2n+1),1/2n] and b € [k/n, (k + 1)/n].

We are now ready to define the map F. Given & = (z,) € G, let

Fig. 3 illustrates this construction.

F@) =Iu|JIiucs)

n>1

where Iy :=[—1,0] x {1/2} U {0} x [0, 1], and for each n > 1,

I% := the closure of (R, ,, 11 U U OR, 1),
k#x,+1

and

T 1 xn‘i’l/? xn+1+1/2 .

The closed set F(Z) consists of three parts: a T-shaped path-component Iy, a sequence of “stripes” (IZ),

and a sequence of curved line segments (CF) connecting the neighboring stripes. Fig. 4 illustrates this
construction, and Fig. 5 gives a better local view of the n-th and the (n + 1)-st stripes.
Note that F'(Z) thus constructed is a continuum with two path-components as follows:

e Iy, where there are exactly three non-cut points within the path component.
o U,>;(IZUCT), where there are infinitely many non-cut points.
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Fig. 4. The construction of F(&F).

I I,
Rn,zn+2
=1
3 Ry, [
Crn-1
Cn+1 c. Rn,mn—l
1 L]

Fig. 5. The “stripes” IZ and Ierl.

For one direction of the proof, suppose Z — § € Gy, i.e. |z, — yn|/n — 0 as n — co. We show that there
exists a homeomorphism between F(Z) and F(%). Actually, we prove a stronger result by constructing an
autohomeomorphism ¢ on [—1,1] x [0, 1] with o(F (%)) = F(¥).

We define an autohomeomorphism o on (0, 1)2:

« On the stripes IZ for n > 1, we let o|g, , = On ky,—a, for all k € Z;



16 C. Chang, S. Gao / Topology and its Applications 267 (2019) 106876

e In the domains of the form

1 1
1
(2n+2’2n+1> x(0.1)

where n > 1, we let

. ( 1 ,f(z)) _ ( 1 e+ (yn —2n)(1 = A) n (Yn+1 l’n+1))\)> 7

2n+ 14+ A 2n+ 1+ X\ n n+1

for all A € (0,1) and z € R;
e In the domain [1/2,1) x (0,1), we let

1 1
o (H—/\af(z)) = (H_—/\af(Z‘F (y1 — xl))\)>
for all A € (0,1] and z € R. Here, o is compatible with o|g, , previously defined on the set {1/2} x (0, 1).

Note that o[IZ] = I¥, o[CZ] = C¥, and that ¢ is continuous everywhere in (0,1)2. By the assumption that
|7 — yn|/m — 0 as n — oo, we have that for p € (0,1)2,

d(p,a(p)) — 0

as p — 0[0,1]2. Hence the above o uniquely extends to an autohomeomorphism ¢ of [0, 1]2 so that ¢(p) = p
for p € 9]0, 1)%. Now further extending this ¢ by an identity on [—1,0] x [0, 1] (and in particular an identity
on Iy), we obtain an autohomeomorphism of [—1,1] x [0, 1] with ¢[F(Z)] = F(%).

For the converse direction, suppose 7 : F(Z) — F(¥) is a homeomorphism. We want to show that
| — yn|/n — 0 as n — oco. Since m maps each path-component of F(Z) to a path-component of F (), we
have 7 [Iy] = Iy and

| Uuzuen| = Yatuch.

n>1 n>1

Next, we restrict our spaces to |J(IZ U CZ) and |J(I¥ U CF), respectively, in order to show that each IZ
must be mapped to I7, and each CZ must be mapped to C¥.

Claim 1. For alln > 1, n(I%) = I7 and n(C%) = CY.

Proof of Claim: Note that for any @ € G, |J C¥ are exactly the set of all cut-points in |J(IZUCH). Therefore
we must have

™ {UCS} = UC}{

Note that for each % € G and n > 1, C7 is a path-component of | JC¥. In fact, C¥ can be topologically
characterized as the unique path-component C of | JCO? so that F(i#) — C contains a path-component D
such that the set of all cut-points of D (i.e. |J,_,, C¥) has exactly n — 1 many path-components. It follows
that for all n > 1, 7[C%] = CF.

Now each I can be topologically characterized inductively as follows. I{ is the unique path-component
of F(i) — (Cf)° without cut-points. For n > 1, I¥ is the unique path-component of
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bry1

Ik aRl‘k Tk

b

Fig. 6. The boundaries of the rectangle Ry .

F(i) - (c s zf>)

i<n
without cut-points. Thus for all n > 1, 7[CZ] = CY. O
Claim 2. For alln > 1 and k € Z, m[ORn k] = ORp kty,—a, and T[Ry 5, +1] = Rny,+1-

Proof of Claim: We only show the case when n = 1. The case n > 2 is analogous. By the last claim,
we know w[If] = I}j and 7[CY] = C’? . However, note that I{ intersects C§ at a unique point, namely
p® = (1/3, f(z1 + 1/2)). Similarly, Il27 N C’ij = {p7}, where p¥ = (1/3, f(y1 + 1/2)). This implies that
m(p”) = p¥.

Before continuing, we introduce some additional notation. We think of the boundary of R; j, being divided
into four parts: the “left” side will be denoted by I, the “right” side by r, and the “bottom” side by by.
See Fig. 6. With these, the “top” side of the boundary of R j is bpt1. p® is on the side I, .

Now the set of all cut-points of I¥ — {pf} consists of exactly l;, U r,,, and each of [, and r,, is a

path-component of I, Ur,,. Similarly, p? is on the side l,,, while l,,,7,, are the two path-components of

Y19

the set of all cut-points of I{ — {p?}. This implies that 7[l,,,] = l,, and 7[ry,] =1y,
Note that I¥ — (I, Urs,) contains exactly three components:

o 0°

o, » Which contains only cut-points;

o Riu+1UUpsy, 41 OBk, which contains only non-cut points;
o Uk <2, OR1 j — by, , which contains both cut-points and non-cut points.

Moreover, R ., +1 consists of exactly the points p in I f such that any neighborhood of p contains a home-
omorphic copy of the upper half plane R x [0, +00).

All of this analysis can be done similarly on the § side. It follows that we must have m[b,,] = by,,
TRz, 41] = Riy,+1,

all U ORy ) — by 12] = U OR1k — by, 42,

k>x1+1 k>yi1+1
and
7T[ U 8R17k — bxl] = U 8R1,k — by1'
k<zy k<y1
Note that

U 0Rik—bei2 =12, ,Ur nU () ORuk,
k>xz1+1 k>xz1+2
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and [, 42 and 7., 1o are the two path-components of the set of all cut-points of the above set. From this we
get 7T[l901-i-2 U Tw1+2] = ly1+2 U Ty1 425 7.‘-[1)331-1‘3] = by1+3 and

7T[ U 6R1)k - bx1+3] = U 8R1,k — by1+3.
k>x142 k>y1+2

A repetition of the argument shows that m[OR1 ] = OR1 gy, —a, for all & > x; + 1.
A similar argument shows that 7[0R; ] = OR1 4y, —a, for all k < z;1. The claim is thus proved. O

Finally, we look back at the path-component Iy in F(Z) and in F(%). We have w[Iy] = Iy. Notice that
(0,1/2) is a distinguished by the topological property that it is the unique cut-point in Iy so that removing
it will result in three path-components. Therefore, 7 fixes the point (0,1/2). From Claim 2 above, we have
T(ORE ) = ORY for all n > 1. As n — oo, ORE ; converges to the fixed point (0,1/2), so we must
have that ORY

yYn —Tn

converges also to (0,1/2). This implies that |y, — z,|/n — 0.

sYn —Tn
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