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Abstract—In this paper, we study the impact of the presence of
byzantine sensors on the reduced-rank linear least squares (LS)
estimator. A sensor network with N sensors makes observations
of the physical phenomenon and transmits them to a fusion center
which computes the LS estimate of the parameter of interest.
It is well-known that rank reduction exploits the bias-variance
tradeoff in the full-rank estimator by putting higher priority on
highly informative content of the data. The low-rank LS estimator
is constructed using this highly informative content, while the
remaining data can be discarded without affecting the overall
performance of the estimator. We consider the scenario where
a fraction 0 ≤ α ≤ 1 of the N sensors are subject to data
falsification attack from byzantine sensors, wherein an intruder
injects a higher noise power (compared to the unattacked sensors)
to the measurements of the attacked sensors.

Our main contribution is an analytical characterization of the
impact of data falsification attack of the above type on the
performance of reduced-rank LS estimator. In particular, we
show how optimally prioritizing the highly informative content
of the data gets affected in the presence of attacks. A surprising
result is that, under sensor attacks, when the elements of the
data matrix are all positive the error performance of the low-
rank estimator experiences a phenomenon wherein the estimate
of the mean-squared error comprises negative components. A
complex nonlinear programming-based recipe is known to exist
that resolves this undesirable effect; however, the phenomenon
is oftentimes considered very objectionable in the statistical
literature. On the other hand, to our advantage this effect can
serve to detect cyber attacks on sensor systems. Numerical results
are presented to complement the theoretical findings of the paper.

I. INTRODUCTION

There is great interest in sensor signal processing with em-

phasis on energy efficient statistical procedures for estimation,

detection and classification. In order to meet the objective of

energy efficiency, the sensors deployed to make observations

of the physical phenomenon of interest are typically low-cost

with limited computational and communication capabilities,

making them vulnerable to cyber attacks. Thus, when sensors

are deployed in an adversarial environment where an attacker

has malicious intent of disabling or altering the decision-

making mechanism, they are subject to various kinds of

attacks such as spoofing attacks, man-in-the-middle attacks

or a combination of the two. While spoofing attacks falsify

the signals obtained from the physical phenomenon before

the sensing process, man-in-the-middle attacks are aimed at

altering the sensor measurements before reaching the decision-

maker (for instance, a fusion center); see [1] for a survey on

data falsification attacks on IoT sensor networks. The attacked

sensors are commonly referred to as byzantine sensors and the

data from these sensors are called byzantine data [2]. In this

paper, we address the problem of parameter estimation using

the reduced-rank linear least squares (LS) method when the

sensor system comprises byzantine data.

Impact of byzantine sensors on standard inference proce-

dures like estimation and detection are widely reported in the

literature. For example, effects of data falsification attacks on

signal detection and some mitigation techniques can be found

in [3]–[6]. Sensor attacks on estimation systems have appeared

in [7]–[14], where different types of attacks and after-attack

estimation performance in large scale sensor networks are

analyzed. Countermeasures, which are fully independent of the

network topology, to sensor attacks on distributed parameter

estimation systems are suggested in [15], [16]. Performance

analysis and detection of byzantine data in cyber physical

systems (such as the Smart Grid) were studied in [17], [18].

However, to the best of our knowledge, byzantine attacks on

reduced-rank processing has not been investigated, and is the

subject topic of this paper.

Reduced-rank approach is a prominent technique in statis-

tical signal processing for dimensionality reduction and data

compression, wherein highly informative content of the data

is utilized, while the remaining data can be discarded without

affecting the performance of statistical inference [19]–[21].

A study of cyber attacks on reduced-rank systems is very

important to understand its implications on practical data

compression algorithms.

Identification of the highly informative content in data can

be achieved by exploiting the fundamental distortion-variance

tradeoff in the statistical procedure employed [22]. For ex-

ample, it has been shown that for the linear LS parameter

estimation problem, rank reduction introduces bias into the

otherwise unbiased LS estimator while decreasing its variance

[22, Chapter 9]. The sum of squared-bias plus variance is

smaller than the variance of the unbiased estimator, thereby

improving the overall mean-squared error (mse) performance.

The bias-variance tradeoff is exploited by arranging the dot

products of each singular vector of the data matrix and the



observation vector in the decreasing order of their norms,

thus prioritizing highly informative data. The reduced-rank LS

estimator is then constructed using only the most informative

(i.e., large vector-norm) eigenvectors and discarding the rest.

Sensor attacks could be aimed at disrupting this ordering

mechanism which will directly impact the selection of highly

informative content of the data.

To model the attack on the sensor system, we consider

the scenario where a fraction 0 ≤ α ≤ 1 of the N sensors

are under cyber attack. The sensors make observations of the

physical phenomenon and transmit them to a fusion center,

which computes the LS estimate of the unknown parameter.

In our attack model, the attacker intentionally injects a higher

noise power to the measurements of the byzantine sensors,

while those of the unattacked sensors are corrupted by the

usual measurement noise. In practice, this is the case when an

intruder deliberately injects a higher noise power to selected

sensors to disrupt the operation of the network.

When the network of sensors is under attack, the reduced-

rank LS estimator gets affected in the following manner.

Firstly, the optimal value of the number of eigenvectors of the

data matrix required to construct the reduced-rank estimator is

different from the unattacked case. Though this consequence

is expected, it is not clear to what extent an attack alters

the number of eigenvectors; thus a proper characterization

is necessary and is provided in this paper. Secondly, the

aforementioned ordering (or “selection”) principle gets af-

fected. In other words, the measure of “informativeness” of

the eigenvectors of the data matrix gets altered. Therefore,

the highly informative eigenvectors may not get selected in

the list of eigenvectors used to construct the reduced-rank

LS estimator, resulting in suboptimal utilization of the bias-

variance tradeoff. This effect is also not unexpected. Again,

we provide a formal description of this phenomenon.

Our most important observation is that, the error per-

formance of the low-rank estimator get affected in a very

unexpected manner. As shown in the sequel, even in the

absence of attacks, it is not possible to directly evaluate the

mse of the reduced-rank estimator. Instead, an estimate of mse

is obtained which takes into account the bias introduced into

the estimator. When the network is attacked in the fashion

described above, and when the elements of the data matrix are

all positive, the mse estimate comprises negative components,

which is quite misleading to assess the performance of the

estimator. In the statistical literature, there exists a procedure

proposed by Thomson, Jr. (see [23]) based on nonlinear pro-

gramming theory to resolve this undesirable effect of negative

components in the estimate of a function. However, in the

context of cyber attacks, we can take advantage of this effect

to detect the presence of attacks on the sensor system. We

demonstrate our theoretical findings via computer experiments.

The rest of the paper is organized as follows. In Section II,

we derive the structure of the reduced-rank LS estimator in the

presence of byzantine sensors. Computer-based experimental

results and ensuing discussion are in Section III. Concluding

remarks and future directions are provided in Section IV.

II. CHARACTERIZATION OF THE REDUCED-RANK LS

ESTIMATOR WITH BYZANTINE SENSORS

For sake of clarity and completeness, we first present an

overview of the reduced-rank LS estimator in Section II-A. In

Section II-B, the attack model is introduced and the reduced-

rank LS estimator with byzantine sensors is developed.

A. Overview of reduced-rank LS estimator

Consider a sensor network with N sensors deployed for

parameter estimation in a region of interest. Let H denote

a N × p data matrix and z denote the N × 1 vector of

observations made by the N sensors in the network. The

sensor measurements are transmitted to the fusion center

which aims to recover a p× 1 parameter θ from z by solving

the set of linear equations z = Hθ+w, where w denotes the

N × 1 noise vector assumed to follow a Gaussian distribution

with mean 0 and variance σ2. For simplicity, assume the

channel between the sensors and the fusion center to be

noiseless. Letting x , Hθ, the LS estimate of x is given by

x̂ = H(HTH)−1HTz assuming the matrix inverse exists,

where (·)T denotes the transpose operator. The mse of the

estimator x̂ is pσ2.

The reduced-rank estimator of x denoted by x̂r is con-

structed using only r < p most informative singular vectors

of H , while discarding the rest [22, Chapter 9]. Let ui for

i = 1, . . . , p denote the p singular vectors of H obtained

by eigenvalue decomposition of H . If these singular vectors

are ordered such that ‖uT
(1)z‖

2 ≥ · · · ≥ ‖uT
(r)z‖

2 ≥

· · · ≥ ‖uT
(p)z‖

2, where u(i) denotes the ith most informative

eigenvector and ‖(·)‖ denotes the norm of a vector, then

the reduced-rank LS estimator can be constructed using only

r most informative singular vectors [u(1), . . . ,u(r)], while

[u(r+1), . . . ,u(p)] can be discarded. The value r is obtained

as a solution to an optimization problem exploiting the bias-

variance tradeoff. The reduced-rank LS estimator has a vari-

ance lesser than pσ2 but with non-zero bias that is tolerable.

B. Presence of byzantine sensors in the network

When the sensor system is under attack, the optimal value of

r is altered, i.e., the minimum number of eigenvectors required

to construct the reduced-rank estimator is now different from

the unattacked case. Furthermore, since the ordering of eigen-

vectors gets affected, highly informative eigenvectors may

not get selected in the list [u(1), . . . ,u(r)] used to construct

the reduced-rank LS estimator. These will in turn impact the

complexity of the prior model and increases the sensitivity of

the estimator to measurement errors.

In our attack model, we assume a fraction 0 ≤ α ≤ 1 of

the N sensors to be byzantine sensors. The fusion center is

assumed to have prior knowledge of the fraction of sensors

under attack, however, the exact identity of the attacked

sensors is unknown. In order to degrade system performance,

the byzantine sensors could employ varying strategies. In the

attack model considered in this paper, a byzantine sensor

deliberately injects higher noise power into its measurements,

and thereby its observations are much more corrupted than



the measurements made by the honest sensors. If the attacker

has full control of α, the estimation scheme can potentially be

completely disrupted. We write, for i = 1, . . . , N ,
{

yi = hiθ + w1,i, i honest sensor

xi = hiθ + w2,i, i byzantine sensor,
(1)

where w1,i ∼ N(0, σ2
1) and w2,i ∼ N(0, σ2

2) are both

independent and identically distributed and are independent of

each other. We assume that σ2
2 > σ2

1 to signify that byzantine

sensors’ observations are (deliberately) much noisier than the

measurements of the honest sensors. The distributions of xi

and yi are given by
{

yi ∼ N
(

hiθ, σ
2
1

)

xi ∼ N
(

hiθ, σ
2
2

)

,
(2)

The observations collected at the fusion center are denoted

by the N × 1 vector z = [z1, . . . , zN ], where

zi =

{

xi, with probability α

yi, with probability 1− α.
(3)

Therefore, we can write

z = α(Hθ +w2) + (1− α)(Hθ +w1)

= αHθ + αw2 + (1− α)Hθ + (1− α)w1

= Hθ + (1 − α)w1 + αw2. (4)

⇒ z ∼ N
(

Hθ, [(1− α)2σ2
1 + α2σ2

2 ]IN
)

. (5)

For notational simplicity, let us write

z = q + n, (6)

where q = Hθ and n = (1− α)w1 + αw2.

The least squares estimates of the parameter θ, the signal

z and noise n in the presence of attacks are denoted by θ̂, x̂

and n̂, respectively. These are given by

θ̂ = (HTH)−1HTz, (7)

q̂ = H(HTH)−1HTz, (8)

n̂ = [IN −H(HTH)−1HT]y, (9)

and are unique if the inverse of HTH exists. The estimators θ̂,

q̂ and n̂ are linear transformations on the multivariate normal

random vector y, governed by the following distributions:

θ̂ ∼ N
(

θ, [(1− α)2σ2
1 + α2σ2

2 ](H
TH)−1

)

,

q̂ ∼ N
(

Hθ, [(1− α)2σ2
1 + α2σ2

2 ]H(HTH)−1HT
)

,

n̂ ∼ N
(

0N , [(1− α)2σ2
1 + α2σ2

2 ][IN −H(HTH)−1HT]
)

.

From (10) it can be seen that q̂ is an unbiased estimator of

q. The squared error q̂Tq̂ ∼ [(1 − α)2σ2
1 + α2σ2

2 ]χ
2
p, where

χ2
p denotes the central Chi squared distribution with p degrees

of freedom. The central Chi squared distribution is the result

of the sum of squares of p independent zero mean Gaussian

random variables. The mse of the estimator q̂ is E[(q̂−q)2] =
p[(1− α)2σ2

1 + α2σ2
2 ].

In reduced-rank processing, we will seek to achieve a

smaller mse than pσ2 albeit at the price of nonzero mean.

This corresponds to a bias-variance tradeoff. Towards this

end, we first express (7) - (9) in terms of the SVD of

the matrix H which is given by H = UHΓHV T
H , where

UH = [u1, . . . ,up] ∈ R
N×p and VH = [v1, . . . ,vp] ∈ R

p×p

are orthogonal matrices, and ΓH = diag [γ1, . . . , γp] ∈ R
p×p

is a diagonal matrix comprising the singular values γ1 ≥
· · · ≥ γp. Thus, the estimators are governed by the following

distributions:

θ̂ ∼ N
(

θ, [(1− α)2σ2
1 + α2σ2

2 ]VHΓ
−2
H V T

H

)

, (10)

q̂ ∼ N
(

Hθ, [(1− α)2σ2
1 + α2σ2

2 ]UHUT
H

)

, (11)

n̂ ∼ N
(

0N , [(1− α)2σ2
1 + α2σ2

2 ]
[

IN −UHUT
H

])

.(12)

The full-rank estimator q̂ will be replaced by a low-rank

estimator:

q̂r , UrU
T
r z, (13)

where the N × r matrix Ur = [u(1), . . . ,u(r)] is obtained by

discarding (p − r) orthogonal vectors that comprise UH and

u(j) denotes the j th “ordered” orthogonal vector which is not

necessarily the j th vector. The notion of ordering will become

clearer as we proceed.

The estimation error (q − q̂r) ∼ N(q − qr, [(1 − α)2σ2
1 +

α2σ2
2 ]UrU

T
r ), where (q−qr) = b denotes the bias of the LS

estimator. The mse of the reduced-rank estimator q̂r is denoted

by mse(r), and is given by

mse(r)= E
{

[q − q̂r]
T[q − q̂r]

}

= E
{

[qTq − qTq̂r − q̂T
r q + q̂T

r q̂r]
}

= E
{

qTq
}

− E
{

qTq̂r
}

− E
{

q̂T
r q

}

+ E
{

q̂T
r q̂r

}

= qTq − qTqr − qT
r q + E

{

q̂T
r q̂r

}

= qTq − qTqr − qT
r q + E

{

zTUrU
T
r UrU

T
r z

}

= qTq − qTqr − qT
r q

+E
{

(q + n)TUrU
T
r (q + n)

}

= qTUHUT
Hq − qTUrU

T
r q − qTUrU

T
r q

+E
{

qTUrU
T
r q + qTUrU

T
r n

+nTUrU
T
r q + nTUrU

T
r n

}

= qTUHUT
Hq − qTUrU

T
r q − qTUrU

T
r q

+qTUrU
T
r q + E

{

nTUrU
T
r n

}

= qTUHUT
Hq − qTUrU

T
r q + E

{

nTUrU
T
r n

}

= qTUHUT
Hq − qTUrU

T
r q + tr

[

E
{

nUrU
T
r nT

}]

(i)
=

p
∑

j=r+1

‖uT
(j)q‖

2 + r[(1 − α)2σ2
1 + α2σ2

2 ], (14)

where (i) follows from the fact that the trace of an idempotent

matrix is equal to the rank of the matrix. Note that, we still

need to find an optimal r that produces a lesser mse for the

estimator q̂r compared to that of q̂. The following theorem

asserts that such an r indeed exists and can be uncovered by

adding an appropriate bias to the estimator q̂r.

Theorem 1: Consider the linear model in (6) and the

reduced-rank LS estimator given by (13). There exists an



r = r∗ given by

r∗=argmin
r





⌊

p
∑

j=r+1

‖uT
(j)z‖

2

+ (2r − p)[(1− α)2σ2
1 + α2σ2

2 ]

⌉



(15)

that minimizes the mse between q and q̂r. Since r is integer-

valued, r∗ is obtained by rounding off to the nearest integer,

and the subspace can be found using a combinatorial search.

Theorem 1 provides a full characterization of the impact of

byzantine sensors on the rank reduction process.

Proof: The central idea in proving Theorem 1 hinges on

the fact that rank reduction is beneficial when the mse of the

estimator q̂r is smaller than that of the full-rank estimator

q̂. Secondly, deriving an estimator for mse(r) (due to the

presence of the unknown quantity q) brings into light the

ordering principle that is perhaps the most important outcome

of rank reduction, and it is this ordering principle which the

intruder tries to disrupt.

The estimator q̂r ∼ N(qr , [(1 − α)2σ2
1 + α2σ2

2 ]UrU
T
r ),

where qr = UrU
T
r q is the projection of q onto the span of

UrU
T
r . The rank reduction procedure will reduce the variance

of the estimator of q whenever

p[(1− α)2σ2
1 + α2σ2

2 ] >
p

∑

j=r+1

‖uT
(j)q‖

2 + r[(1 − α)2σ2
1 + α2σ2

2 ], (16)

which suggests that the optimum choice of the rank r is

r∗=argmin
r

mse(r)

=argmin
r

⌊

p
∑

j=r+1

‖uT
(j)q‖

2 + r[(1 − α)2σ2
1 + α2σ2

2 ]

⌉

.
(17)

However, since the signal vector q , Hθ is unknown, we

replace mse(r) with its estimate to solve the setup in (17).

Towards this end, we first estimate the bias b using the

following statistic:

b̂ =
(

UHUT
H −UrU

T
r

)

z

∼ N
(

b, [(1 − α)2σ2
1 + α2σ2

2 ](UHUT
H −UrU

T
r )

)

.
(18)

The mse of the estimator b̂ is given by

E{[b̂− b]T[b̂− b]} = E{b̂Tb̂− b̂Tb− bTb̂+ bTb}
(ii)
= E{b̂Tb̂} − bTb

(iii)
= tr

[

[(1 − α)2σ2
1 + α2σ2

2 ](UHUT
H

−UrU
T
r )

]

= [(1 − α)2σ2
1 + α2σ2

2 ](p− r), (19)

where (ii) and (iii) follow from (18). From (19), we see that

E{b̂Tb̂} = [(1− α)2σ2
1 + α2σ2

2 ](p− r) + bTb (20)

which implies that the estimator b̂Tb̂ must be corrected by

−[(1− α)2σ2
1 + α2σ2

2 ](p− r) to be an unbiased estimator of

bTb. This leads to the following estimator for mse(r):

m̂se(r) = b̂Tb̂− [(1− α)2σ2
1 + α2σ2

2 ](p− r)

+ r[(1 − α)2σ2
1 + α2σ2

2 ]

= b̂Tb̂+ (2r − p)[(1− α)2σ2
1 + α2σ2

2 ].

(21)

The optimum choice of r is, therefore, given by

r∗ = argmin
r

m̂se(r)

(iv)
= argmin

r





⌊

p
∑

j=r+1

‖uT
(j)z‖

2

+ (2r − p)[(1− α)2σ2
1 + α2σ2

2 ]

⌉



 ,

(22)

where (iv) follows from (18). This proves Theorem 1.

Solving (22) numerically provides the optimal r∗. Once r∗

is obtained, the reduced-rank estimator is obtained by discard-

ing (p − r∗) columns in the matrix UH = [u1, . . . ,up] ∈
R

N×p, and is given by q̂r∗ , Ur∗U
T
r∗z, whose sum of

squared-bias plus variance is smaller than the variance of

the unbiased estimator q̂ = H(HTH)−1HTz given by (8).

From (22), we see that the eigenvectors of UH should be

ordered such that ‖uT
(1)z‖

2 ≥ · · · ≥ ‖uT
(r)z‖

2 ≥ · · · ≥

‖uT
(p)z‖

2, and the dominant r eigenvectors should be used

to construct the rank−r projector UrU
T
r .

It is clear that the attack parameters α and σ2 control

prioritizing the data and the number of eigenvectors used to

construct the reduced-rank estimator. Equation (22) fully char-

acterizes the impact of byzantine sensors on rank reduction

which is the main objective of this paper. To complement the

theoretical findings, in the next section we will show using

computer experiments the impact of α on the performance

of the reduced-rank estimator q̂r∗ . Of particular interest is

the variation of r∗ with α, i.e., the numerical evaluation of

(22) and the variation of mse(r) with α given by (21). We

will also show the variations of r∗ and mse(r) with the

strength of the attack governed by σ2. When α = 0, we

get the unattacked reduced-rank LS estimator presented in

[22, Chapter 9]. In practice, the fusion center might not have

perfect prior knowledge of the fraction α of byzantines in

the network. It is, however, possible to learn α over a fixed

duration of time if the attacked sensors transmit continuously

to the fusion center; see, for example, [6, Appendix A] for a

treatment of this topic.

III. NUMERICAL RESULTS AND RELATED DISCUSSION

For computer experiments, we consider a linear system with

data matrix H comprising N = 500 rows and p = 200
columns. The noise variance at the unattacked sensors is

σ2
1 = 1. In the first experiment, we vary the fraction α of

attacked sensors between 0 and 1, and calculate the optimal

reduced-rank r∗ numerically by solving the optimization setup
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Fig. 1: Variation of r∗ with α for different values of σ2.
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Fig. 2: Variation of r∗ with σ2 for different values of α.

in (22). The variation of r∗ with α is shown in Fig. 1 for

different values of the standard deviation of the noise at the

attacked sensors. It can be seen how the byzantine attack

affects rank selection - as more sensors are being attacked,

fewer eigenvectors, which are highly informative, get selected

for constructing the low-rank estimator.

In the next experiment, we demonstrate the behavior of the

variation of r∗ with the standard deviation σ2 of the noise

at the attacked sensors. The results are shown in Fig. 2, for

different fractions of sensors under attack. The variation of r∗

with σ2 is similar to that noticed in Fig. 1. The variation of

the error performance of the low-rank estimator for different

fractions of sensors attacked can be seen in Fig. 3. As we

showed in the previous section, it is not possible to evaluate

mse(r) due to its dependence on the signal vector q, which

is unknown. We, therefore, replace mse(r) with its estimate

m̂se(r), which depends on the estimate of the bias b̂ given by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 3: The problem of negative estimates of m̂se components

when the elements of H are all positive.

Fig. 4: The problem of negative estimates of m̂se components

when the elements of H are all positive.

(18). Expectedly, the error metric m̂se(r) grows significantly

for increasing values of α. This is the case when there are no

restrictions on the sign of the coefficients of the linear system

given by (6), i.e., the elements of H .

The surprising result is the effect of the byzantine attacks

on the estimate m̂se(r) of the mse of the low-rank estimator

when the elements of H are all positive. For this case,

when we plot m̂se(r) as a function of the fraction α of

attacked sensors, for different values of the attack parameter

σ2, we observe negative components of m̂se(r) as shown

in Fig. 4. In the statistical literature, this unusual behavior

has been reported for the estimates of variance, see [23] and

references therein for example. The negative components of

estimates is considered to be highly objectionable, and there

have been efforts to alleviate this effect. In [23], results from



nonlinear programming theory have been employed to resolve

the problem of negative components in the estimates of the

variance parameter. From the fusion center’s standpoint, this

effect can be viewed as an advantage in detecting cyber attacks

on the sensor system.

IV. REMARKS

In this paper, we consider the problem of cyber attacks on

the reduced-rank linear least squares estimator. A fraction α

of the total N sensors in the network is under a cyber attack.

The intruder intentionally injects a higher noise power to the

attacked sensors. We demonstrated that, as a consequence of

this type of attack, optimal rank selection is affected. Further,

the most informative eigenvectors of the data matrix may

not get chosen to construct the low-rank estimator. These

two effects have a direct impact on the error performance

of the low-rank estimator. As shown by the experimental

results, the major consequence of sensor attacks appears in

the form of negative components in the estimates of the mse

of the low-rank estimator which misleads the assessment of

the performance of the estimator.

Experimental results clearly indicate that if the intruder

has full control of the fraction α of byzantine sensors, he

can potentially disrupt the reduced-rank processing to the

extent of making it useless. On the other hand, if the fusion

center is able to detect the identity of byzantine sensors,

the resulting impact could be minimized. For example, if

the fusion center can accurately estimate the noise variance

of the received samples, then it can possibly recognize the

attacked sensors because of their higher noise power and

adapt the rank selection procedure in a manner to alleviate

the effect of attacks. However, this comes at the price of

higher number of sensor measurements required to estimate

the noise variance σ2
2 . Another approach would be to consider

a sequence of K measurements at each sensor, which supplies

NK measurements to the fusion center. As reported in [10],

for K → ∞ and N → ∞, it is possible to ascertain the

number of sensors under attack. Extending the results of [10]

to reduced-rank processing opens several avenues of research.

For future research, we will also consider the scenario

where the sensor network faces different types of attacks. This

could, for example, correspond to the situation where several

intruders attack different subsets of sensors; the intruders

inject different noise powers to each subset of sensors. The

effect of such multiple attacks on rank selection, ordering of

eigenvectors and error performance of the low-rank estimator

will provide useful insights.
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