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Abstract—TIn this paper, we study the impact of the presence of
byzantine sensors on the reduced-rank linear least squares (LS)
estimator. A sensor network with N sensors makes observations
of the physical phenomenon and transmits them to a fusion center
which computes the LS estimate of the parameter of interest.
It is well-known that rank reduction exploits the bias-variance
tradeoff in the full-rank estimator by putting higher priority on
highly informative content of the data. The low-rank LS estimator
is constructed using this highly informative content, while the
remaining data can be discarded without affecting the overall
performance of the estimator. We consider the scenario where
a fraction 0 < a < 1 of the N sensors are subject to data
falsification attack from byzantine sensors, wherein an intruder
injects a higher noise power (compared to the unattacked sensors)
to the measurements of the attacked sensors.

Our main contribution is an analytical characterization of the
impact of data falsification attack of the above type on the
performance of reduced-rank LS estimator. In particular, we
show how optimally prioritizing the highly informative content
of the data gets affected in the presence of attacks. A surprising
result is that, under sensor attacks, when the elements of the
data matrix are all positive the error performance of the low-
rank estimator experiences a phenomenon wherein the estimate
of the mean-squared error comprises negative components. A
complex nonlinear programming-based recipe is known to exist
that resolves this undesirable effect; however, the phenomenon
is oftentimes considered very objectionable in the statistical
literature. On the other hand, to our advantage this effect can
serve to detect cyber attacks on sensor systems. Numerical results
are presented to complement the theoretical findings of the paper.

I. INTRODUCTION

There is great interest in sensor signal processing with em-
phasis on energy efficient statistical procedures for estimation,
detection and classification. In order to meet the objective of
energy efficiency, the sensors deployed to make observations
of the physical phenomenon of interest are typically low-cost
with limited computational and communication capabilities,
making them vulnerable to cyber attacks. Thus, when sensors
are deployed in an adversarial environment where an attacker
has malicious intent of disabling or altering the decision-
making mechanism, they are subject to various kinds of
attacks such as spoofing attacks, man-in-the-middle attacks
or a combination of the two. While spoofing attacks falsify
the signals obtained from the physical phenomenon before
the sensing process, man-in-the-middle attacks are aimed at
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altering the sensor measurements before reaching the decision-
maker (for instance, a fusion center); see [1] for a survey on
data falsification attacks on IoT sensor networks. The attacked
sensors are commonly referred to as byzantine sensors and the
data from these sensors are called byzantine data [2]. In this
paper, we address the problem of parameter estimation using
the reduced-rank linear least squares (LS) method when the
sensor system comprises byzantine data.

Impact of byzantine sensors on standard inference proce-
dures like estimation and detection are widely reported in the
literature. For example, effects of data falsification attacks on
signal detection and some mitigation techniques can be found
in [3]-[6]. Sensor attacks on estimation systems have appeared
in [7]-[14], where different types of attacks and after-attack
estimation performance in large scale sensor networks are
analyzed. Countermeasures, which are fully independent of the
network topology, to sensor attacks on distributed parameter
estimation systems are suggested in [15], [16]. Performance
analysis and detection of byzantine data in cyber physical
systems (such as the Smart Grid) were studied in [17], [18].
However, to the best of our knowledge, byzantine attacks on
reduced-rank processing has not been investigated, and is the
subject topic of this paper.

Reduced-rank approach is a prominent technique in statis-
tical signal processing for dimensionality reduction and data
compression, wherein highly informative content of the data
is utilized, while the remaining data can be discarded without
affecting the performance of statistical inference [19]-[21].
A study of cyber attacks on reduced-rank systems is very
important to understand its implications on practical data
compression algorithms.

Identification of the highly informative content in data can
be achieved by exploiting the fundamental distortion-variance
tradeoff in the statistical procedure employed [22]. For ex-
ample, it has been shown that for the linear LS parameter
estimation problem, rank reduction introduces bias into the
otherwise unbiased LS estimator while decreasing its variance
[22, Chapter 9]. The sum of squared-bias plus variance is
smaller than the variance of the unbiased estimator, thereby
improving the overall mean-squared error (mse) performance.
The bias-variance tradeoff is exploited by arranging the dot
products of each singular vector of the data matrix and the



observation vector in the decreasing order of their norms,
thus prioritizing highly informative data. The reduced-rank LS
estimator is then constructed using only the most informative
(i.e., large vector-norm) eigenvectors and discarding the rest.
Sensor attacks could be aimed at disrupting this ordering
mechanism which will directly impact the selection of highly
informative content of the data.

To model the attack on the sensor system, we consider
the scenario where a fraction 0 < o« < 1 of the N sensors
are under cyber attack. The sensors make observations of the
physical phenomenon and transmit them to a fusion center,
which computes the LS estimate of the unknown parameter.
In our attack model, the attacker intentionally injects a higher
noise power to the measurements of the byzantine sensors,
while those of the unattacked sensors are corrupted by the
usual measurement noise. In practice, this is the case when an
intruder deliberately injects a higher noise power to selected
sensors to disrupt the operation of the network.

When the network of sensors is under attack, the reduced-
rank LS estimator gets affected in the following manner.
Firstly, the optimal value of the number of eigenvectors of the
data matrix required to construct the reduced-rank estimator is
different from the unattacked case. Though this consequence
is expected, it is not clear to what extent an attack alters
the number of eigenvectors; thus a proper characterization
is necessary and is provided in this paper. Secondly, the
aforementioned ordering (or “selection”) principle gets af-
fected. In other words, the measure of “informativeness” of
the eigenvectors of the data matrix gets altered. Therefore,
the highly informative eigenvectors may not get selected in
the list of eigenvectors used to construct the reduced-rank
LS estimator, resulting in suboptimal utilization of the bias-
variance tradeoff. This effect is also not unexpected. Again,
we provide a formal description of this phenomenon.

Our most important observation is that, the error per-
formance of the low-rank estimator get affected in a very
unexpected manner. As shown in the sequel, even in the
absence of attacks, it is not possible to directly evaluate the
mse of the reduced-rank estimator. Instead, an estimate of mse
is obtained which takes into account the bias introduced into
the estimator. When the network is attacked in the fashion
described above, and when the elements of the data matrix are
all positive, the mse estimate comprises negative components,
which is quite misleading to assess the performance of the
estimator. In the statistical literature, there exists a procedure
proposed by Thomson, Jr. (see [23]) based on nonlinear pro-
gramming theory to resolve this undesirable effect of negative
components in the estimate of a function. However, in the
context of cyber attacks, we can take advantage of this effect
to detect the presence of attacks on the sensor system. We
demonstrate our theoretical findings via computer experiments.

The rest of the paper is organized as follows. In Section II,
we derive the structure of the reduced-rank LS estimator in the
presence of byzantine sensors. Computer-based experimental
results and ensuing discussion are in Section III. Concluding
remarks and future directions are provided in Section IV.

II. CHARACTERIZATION OF THE REDUCED-RANK LS
ESTIMATOR WITH BYZANTINE SENSORS

For sake of clarity and completeness, we first present an
overview of the reduced-rank LS estimator in Section II-A. In
Section II-B, the attack model is introduced and the reduced-
rank LS estimator with byzantine sensors is developed.

A. Overview of reduced-rank LS estimator

Consider a sensor network with N sensors deployed for
parameter estimation in a region of interest. Let H denote
a N x p data matrix and z denote the N x 1 vector of
observations made by the N sensors in the network. The
sensor measurements are transmitted to the fusion center
which aims to recover a p x 1 parameter 6 from z by solving
the set of linear equations z = H 6 + w, where w denotes the
N x 1 noise vector assumed to follow a Gaussian distribution
with mean 0 and variance o2. For simplicity, assume the
channel between the sensors and the fusion center to be
noiseless. Letting & = H#, the LS estimate of x is given by
# = H(HTH) 'H"z assuming the matrix inverse exists,
where (-)T denotes the transpose operator. The mse of the
estimator & is po2.

The reduced-rank estimator of x denoted by z, is con-
structed using only r < p most informative singular vectors
of H, while discarding the rest [22, Chapter 9]. Let u; for
i = 1,...,p denote the p singular vectors of H obtained
by eigenvalue decomposition of H. If these singular vectors
are ordered such that [luf)z|* > > lufyzl? >
R Hu(l;))zHQ, where w(;) denotes the i™ most informative
eigenvector and ||(-)|| denotes the norm of a vector, then
the reduced-rank LS estimator can be constructed using only
r most informative singular vectors [w(y),..., U], while
[W(r41), -+, U(p)] can be discarded. The value 7 is obtained
as a solution to an optimization problem exploiting the bias-
variance tradeoff. The reduced-rank LS estimator has a vari-
ance lesser than po? but with non-zero bias that is tolerable.

B. Presence of byzantine sensors in the network

When the sensor system is under attack, the optimal value of
r is altered, i.e., the minimum number of eigenvectors required
to construct the reduced-rank estimator is now different from
the unattacked case. Furthermore, since the ordering of eigen-
vectors gets affected, highly informative eigenvectors may
not get selected in the list [w(),...,u(] used to construct
the reduced-rank LS estimator. These will in turn impact the
complexity of the prior model and increases the sensitivity of
the estimator to measurement errors.

In our attack model, we assume a fraction 0 < o < 1 of
the N sensors to be byzantine sensors. The fusion center is
assumed to have prior knowledge of the fraction of sensors
under attack, however, the exact identity of the attacked
sensors is unknown. In order to degrade system performance,
the byzantine sensors could employ varying strategies. In the
attack model considered in this paper, a byzantine sensor
deliberately injects higher noise power into its measurements,
and thereby its observations are much more corrupted than



the measurements made by the honest sensors. If the attacker
has full control of «, the estimation scheme can potentially be
completely disrupted. We write, for : = 1,..., N,

{yi = h;0 + w; ;, ¢ honest sensor 0

x; = h;0 4+ w2 ;, 1 byzantine sensor,

where wy; ~ N(0,0%?) and wa; ~ N(0,03) are both
independent and identically distributed and are independent of
each other. We assume that 03 > o7 to signify that byzantine
sensors’ observations are (deliberately) much noisier than the
measurements of the honest sensors. The distributions of z;
and y; are given by

{yi ~ N (h;6,0%)

The observations collected at the fusion center are denoted
by the N x 1 vector z = [z1, ..., zn], where

x;, with probability o 3)
z; =
y;, with probability 1 — a.
Therefore, we can write
z = a(HO+ws)+ (1 —a)(HO+ w)

= aHO+aws + (1 —a)HO+ (1 — a)wy
= H0+(1—a)w1+aw2. (4)
=z ~ N(HO,[(1-a)’0] +a’d3]Iy). (5)

For notational simplicity, let us write

z=q+mn, ©)

where ¢ = H6O and n = (1 — a)w; + aws.

The least squares estimates of the parameter 0, the signal
z and noise n in the presence of attacks are denoted by 0, &
and n, respectively. These are given by

6 = (H'H)'H"z, (7
G = HH'H) 'H"'z, (8)
n = [Iy—HH"H)'H )y, )

and are unique if the inverse of H'™ H exists. The estimators 0,
q and n are linear transformations on the multivariate normal
random vector y, governed by the following distributions:

6 ~ N (6,[(1— )0 +a?03)(H"H) ™),
G ~ N(H6,[(1-a) oi+a’c3|HH"H) 'H"),

f ~ N(On,[(1 - )0} +?o3][In — H(H"H) 'H")).

From (10) it can be seen that g is an unbiased estimator of
q. The squared error g*g ~ [(1 — a)?0f + a?03]x2, where
X127 denotes the central Chi squared distribution with p degrees
of freedom. The central Chi squared distribution is the result
of the sum of squares of p independent zero mean Gaussian
random variables. The mse of the estimator g is E[(§—q)?] =
pl(1 = a)?of + a?o3].

In reduced-rank processing, we will seek to achieve a
smaller mse than po? albeit at the price of nonzero mean.

This corresponds to a bias-variance tradeoff. Towards this
end, we first express (7) - (9) in terms of the SVD of
the matrix H which is given by H = UyT'yV;, where
Uy = [ul,...,up] € RN*P and Vi = [vl,...,'vp] € RP>P
are orthogonal matrices, and I'y = diag [y1,. ..,y € RP*?
is a diagonal matrix comprising the singular values v; >
--+ > 7. Thus, the estimators are governed by the following
distributions:

>

~ N(0,[(1 — )’ + 03| VaT Vi) (10)
~ N (H6,[(1 - a)’c] + a*03lUxUy) , (11)
~ N (0n,[(1 - a)of + a®03] [In — UnUy]) .(12)

S Q

The full-rank estimator g will be replaced by a low-rank
estimator:

¢ =U.U, z, 13)

where the N x r matrix U, = [u(q), ..., u(] is obtained by
discarding (p — r) orthogonal vectors that comprise Uy and

u(;) denotes the 4™ “ordered” orthogonal vector which is not

necessarily the j vector. The notion of ordering will become
clearer as we proceed.

The estimation error (¢ — G,.) ~ N(q — q,,[(1 — a)?0? +
a?a3)U,UY), where (q — q,) = b denotes the bias of the LS
estimator. The mse of the reduced-rank estimator g, is denoted
by mse(r), and is given by

mse(r)=E {[q — ¢,]"[q — 4,]}

=E{ld"a—q"G — G a+d 4]}
=E{q"q} -E{q"¢:} ~E{q'q} +E{4 G, }
=q'q-q"¢.—q q+E{4 ¢}
=q'q-q"q, — ¢ qa +E{Z"UU'UU' 2}
=q"q-q"¢,—q'q

+E{(g+n)TUU" (g +n)}
=q"'UyU}q-q"UU'q—q"U,U'q

+E {qTUTU;Fq +q"U,U™n

+n'U, U q+n"U, U n}
=q"UyU}q—q"UU q—q"UU'q

+q"U, U q +E {n"U,U'n}
=q'UnUgkq—q"'U,U q+E{n"U,U'n}
=q"'UnUgjq—q"'UU q+t [E{nUU'n"}]

P

(1)

= 3 uyal® + 71— )’} + 23],
j=r+1

(14)

where (i) follows from the fact that the trace of an idempotent
matrix is equal to the rank of the matrix. Note that, we still
need to find an optimal r that produces a lesser mse for the
estimator ¢, compared to that of q. The following theorem
asserts that such an 7 indeed exists and can be uncovered by
adding an appropriate bias to the estimator g,.

Theorem 1: Consider the linear model in (6) and the
reduced-rank LS estimator given by (13). There exists an



r =r" given by

P
r*=arg mrin LZ Hu(Tj)zH2
j=r+1

+ (2r — p)[(1 — @)?0? + 03] | |(15)

that minimizes the mse between g and g,. Since r is integer-
valued, r* is obtained by rounding off to the nearest integer,
and the subspace can be found using a combinatorial search.

Theorem 1 provides a full characterization of the impact of
byzantine sensors on the rank reduction process.

Proof: The central idea in proving Theorem 1 hinges on
the fact that rank reduction is beneficial when the mse of the
estimator g, is smaller than that of the full-rank estimator
g. Secondly, deriving an estimator for mse(r) (due to the
presence of the unknown quantity q) brings into light the
ordering principle that is perhaps the most important outcome
of rank reduction, and it is this ordering principle which the
intruder tries to disrupt.

The estimator g, ~ N(q,,[(1 — a)?0? + o?02|U,UY),
where g, = U,U' q is the projection of q onto the span of
U,U. The rank reduction procedure will reduce the variance
of the estimator of g whenever

p[(1 — a)?0? + 0] >

P
> llufyall® + (1 - a)’of + o?03),
j=r+1

(16)

which suggests that the optimum choice of the rank 7 is
r*=arg min mse(r)

T

L a7
. T 12 2 2 2 2
—argmin| Y [[ufqll® +r[(1 - a)’0? + 0% |
Jj=r+1

However, since the signal vector g £ HO is unknown, we
replace mse(r) with its estimate to solve the setup in (17).

Towards this end, we first estimate the bias b using the
following statistic:

b= (UyU} - UU)) 2

18
~N (b, [(1-— oz)zaf + azag](UHUITI - UTU;F)) . (18)
The mse of the estimator b is given by
E{[b —b]"[b—b]} = E{b"b—b"b—bTb+b"b}
W E{HTbY — b7
W [[(1 - a)?02 + 23| (Un UL
_UTU;‘I‘)]
= [(1 —a)?of +a?03]l(p—r), (19)

where (ii) and (ii¢) follow from (18). From (19), we see that

E{b"b} = [(1 — a)?0? + a?c2|(p—7) + b"b (20)

which implies that the estimator bTh must be corrected by
—[(1 — @)?0% + a?03](p — r) to be an unbiased estimator of
bTh. This leads to the following estimator for mse(r):

mse(r) = bTb — (1 —a)%0? +a?02](p —7)

+r[(1—a)’o} +a’03] (21
=b"b+ (2r —p)[(1 — a)?0? + 25).
The optimum choice of r is, therefore, given by
r* = arg min mse(r)
=" argmin ||u(Tj)z||2
" j=r+1 (22)
+@r=p)(1—a)’oi +a’o3] | |,

where (iv) follows from (18). This proves Theorem 1. [ |

Solving (22) numerically provides the optimal 7*. Once r*
is obtained, the reduced-rank estimator is obtained by discard-
ing (p — r*) columns in the matrix Uy = [u1,...,up] €
RY*P and is given by g~ 2 U, ng, whose sum of
squared-bias plus variance is smaller than the variance of
the unbiased estimator § = H(HTH)~'H"z given by (8).
From (22), we see that the eigenvectors of Uy should be
ordered such that [lufyz|* > - > [ul2[® = - >
Hu(l;))zHQ, and the dominant r eigenvectors should be used
to construct the rank—r projector U, UL

It is clear that the attack parameters « and oy control
prioritizing the data and the number of eigenvectors used to
construct the reduced-rank estimator. Equation (22) fully char-
acterizes the impact of byzantine sensors on rank reduction
which is the main objective of this paper. To complement the
theoretical findings, in the next section we will show using
computer experiments the impact of a on the performance
of the reduced-rank estimator g,-. Of particular interest is
the variation of r* with «, i.e., the numerical evaluation of
(22) and the variation of mse(r) with « given by (21). We
will also show the variations of 7* and mse(r) with the
strength of the attack governed by oz. When a = 0, we
get the unattacked reduced-rank LS estimator presented in
[22, Chapter 9]. In practice, the fusion center might not have
perfect prior knowledge of the fraction o of byzantines in
the network. It is, however, possible to learn « over a fixed
duration of time if the attacked sensors transmit continuously
to the fusion center; see, for example, [6, Appendix A] for a
treatment of this topic.

III. NUMERICAL RESULTS AND RELATED DISCUSSION

For computer experiments, we consider a linear system with
data matrix H comprising N = 500 rows and p = 200
columns. The noise variance at the unattacked sensors is
02 = 1. In the first experiment, we vary the fraction o of
attacked sensors between 0 and 1, and calculate the optimal
reduced-rank r* numerically by solving the optimization setup
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Fig. 2: Variation of r* with o2 for different values of a.

in (22). The variation of r* with « is shown in Fig. 1 for
different values of the standard deviation of the noise at the
attacked sensors. It can be seen how the byzantine attack
affects rank selection - as more sensors are being attacked,
fewer eigenvectors, which are highly informative, get selected
for constructing the low-rank estimator.

In the next experiment, we demonstrate the behavior of the
variation of r* with the standard deviation oy of the noise
at the attacked sensors. The results are shown in Fig. 2, for
different fractions of sensors under attack. The variation of r*
with o9 is similar to that noticed in Fig. 1. The variation of
the error performance of the low-rank estimator for different
fractions of sensors attacked can be seen in Fig. 3. As we
showed in the previous section, it is not possible to evaluate
mse(r) due to its dependence on the signal vector g, which
is unknown. We, therefore, replace mse(r) with its estimate
mse(r), which depends on the estimate of the bias b given by
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Fig. 3: The problem of negative estimates of mse components
when the elements of H are all positive.
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Fig. 4: The problem of negative estimates of mse components
when the elements of H are all positive.

(18). Expectedly, the error metric mse(r) grows significantly
for increasing values of «v. This is the case when there are no
restrictions on the sign of the coefficients of the linear system
given by (6), i.e., the elements of H.

The surprising result is the effect of the byzantine attacks
on the estimate mse(r) of the mse of the low-rank estimator
when the elements of H are all positive. For this case,
when we plot mse(r) as a function of the fraction « of
attacked sensors, for different values of the attack parameter
o9, we observe negative components of mse(r) as shown
in Fig. 4. In the statistical literature, this unusual behavior
has been reported for the estimates of variance, see [23] and
references therein for example. The negative components of
estimates is considered to be highly objectionable, and there
have been efforts to alleviate this effect. In [23], results from



nonlinear programming theory have been employed to resolve
the problem of negative components in the estimates of the
variance parameter. From the fusion center’s standpoint, this
effect can be viewed as an advantage in detecting cyber attacks
on the sensor system.

IV. REMARKS

In this paper, we consider the problem of cyber attacks on
the reduced-rank linear least squares estimator. A fraction «
of the total N sensors in the network is under a cyber attack.
The intruder intentionally injects a higher noise power to the
attacked sensors. We demonstrated that, as a consequence of
this type of attack, optimal rank selection is affected. Further,
the most informative eigenvectors of the data matrix may
not get chosen to construct the low-rank estimator. These
two effects have a direct impact on the error performance
of the low-rank estimator. As shown by the experimental
results, the major consequence of sensor attacks appears in
the form of negative components in the estimates of the mse
of the low-rank estimator which misleads the assessment of
the performance of the estimator.

Experimental results clearly indicate that if the intruder
has full control of the fraction v of byzantine sensors, he
can potentially disrupt the reduced-rank processing to the
extent of making it useless. On the other hand, if the fusion
center is able to detect the identity of byzantine sensors,
the resulting impact could be minimized. For example, if
the fusion center can accurately estimate the noise variance
of the received samples, then it can possibly recognize the
attacked sensors because of their higher noise power and
adapt the rank selection procedure in a manner to alleviate
the effect of attacks. However, this comes at the price of
higher number of sensor measurements required to estimate
the noise variance o3. Another approach would be to consider
a sequence of K measurements at each sensor, which supplies
N K measurements to the fusion center. As reported in [10],
for K — oo and N — oo, it is possible to ascertain the
number of sensors under attack. Extending the results of [10]
to reduced-rank processing opens several avenues of research.

For future research, we will also consider the scenario
where the sensor network faces different types of attacks. This
could, for example, correspond to the situation where several
intruders attack different subsets of sensors; the intruders
inject different noise powers to each subset of sensors. The
effect of such multiple attacks on rank selection, ordering of
eigenvectors and error performance of the low-rank estimator
will provide useful insights.
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