

Observed Q and Gravitationally-Small Antenna Behavior of a Binary Black Hole Radiator

Christopher G. Daniel Jr., Kathryn L. Smith, and Thomas P. Weldon

Department of Electrical and Computer Engineering

University of North Carolina at Charlotte

Charlotte, NC, USA

Abstract—Recent theoretical advances have provided an analytical expression for the Q of gravitationally-small sources of gravitational radiation, along lines similar to the Wheeler-Chu limit for electrically-small antennas. This paper presents the first published results using this new theory to analyze the Q of a black-hole inspiral, using observed transient gravitational wave data from the GW170608 black-hole merger. Despite the astronomical scale of a radiation source comprised of two black holes having upwards of 7 solar masses each, the GW170608 binary black hole is shown to be a gravitationally-small high- Q radiator at the very low frequencies of the gravitational waves.

I. INTRODUCTION

The first direct observation of gravitational waves was made on September 14, 2015 by LIGO (Laser Interferometer Gravitational-Wave Observatory) from a merging binary system of black holes producing gravitational-wave event GW150914 [1]. Early investigations in [2] suggested that neutron-star gravitational-wave sources were gravitationally small (size $\ll \lambda/\pi$) and should exhibit a gravitational Q , similar to the electromagnetic Q of electrically-small antennas [3]. More recent theoretical results in [4] provided an analytic expression for the Q of gravitational sources, and provided the observed Q for a binary neutron-star gravitational-wave source. In this paper, we show results for the observed Q of the GW170608 binary black-hole gravitational-wave source [5]. Despite the considerably larger masses of the black holes, the GW170608 binary black-hole source is shown below to be gravitationally small and to have high Q .

The following results are the first published data that presents a binary black-hole inspiral as a gravitationally-small source for gravitational radiation. Earlier results were for a binary neutron star, and given the significantly larger masses of black holes, it was unclear whether binary black holes would be gravitationally-small radiators. In the following, the changing size of the radiation source during inspiral provides the first observed Q for a binary black hole over a range of gravitationally-small dimensions. Beyond these fundamental results, the gravitationally-small high Q characteristics raise the question of what antenna engineering techniques may be applied to improve gravitational-wave receivers.

II. THEORY OF GRAVITATIONAL Q

Recently, in [4] we derived an analytic expression for the Q of a gravitational-radiation source, along the lines of the Chu limit of electromagnetic radiation sources [3]. In the case of

electromagnetic antennas, the Chu limit is $Q \approx 1/(ka)^3$ for $ka \ll 1$, where $k = 2\pi f_0/c = 2\pi f_0/(3 \times 10^8)$, and a is the radius of the sphere enclosing the antenna [3]. In the case of gravitational waves, we have shown the Q of a gravitational source to be [4]

$$Q = \frac{20m_1^7 G}{m_2 c^2 (m_1 + m_2)^5} \left(\frac{(ka_s)^{-7}}{2a_{min}} - \frac{(ka_s)^{-5} c^2 (m_1 + m_2)^2}{8m_1^3 G} \right), \quad (1)$$

where the gravitational constant $G = 6.7 \times 10^{-11} \text{ N}\cdot(\text{m}/\text{kg})^2$. For the case of GW170608 [5], the masses are $m_1 = 2.4 \times 10^{31} \text{ kg}$ and $m_2 = 1.4 \times 10^{31} \text{ kg}$, and a_{min} is the final radius of the orbit around the barycenter at coalescence. From prior theoretical results in [4], a_{min} at coalescence can be found from the gravitational-wave frequency at coalescence using

$$a_s = \left(\frac{m_1^3 G}{\omega_{orb}^2 (m_1 + m_2)^2} \right)^{1/3}, \quad (2)$$

where a_s is radius of the orbit around the barycenter, $\omega_{orb} = 2\pi f_{orb} = \pi f_{gw}$ is the orbital frequency in rad/s, and f_{gw} is the gravitational-wave frequency in Hz. Then, for the 531.5 Hz average peak GW strain frequency from [6] that occurs near coalescence [7], the value of a_{min} in (1) is calculated from (2) to be $a_{min} \approx 60 \text{ km}$.

From prior results in [4], the size parameter ka_s in (1) is

$$ka_s = \frac{2m_1}{c} \left(\frac{\omega_{orb} G}{(m_1 + m_2)^2} \right)^{1/3}. \quad (3)$$

Lastly, f_{gw} is estimated from a curve-fit to the well-known form of the frequency chirp of a binary inspiral [4]

$$\frac{1}{f_{gw}} = \frac{8\pi}{125^{1/8}} \left(\frac{G^{5/3} m_1 m_2}{c^5 (m_1 + m_2)^{1/3}} t' \right)^{3/8}, \quad (4)$$

where $t' = -t$ is the time before coalescence. Taking the natural logarithm,

$$\ln(f_{gw}) = 3.72 - 3\ln(t')/8, \quad (5)$$

for the foregoing masses m_1 and m_2 .

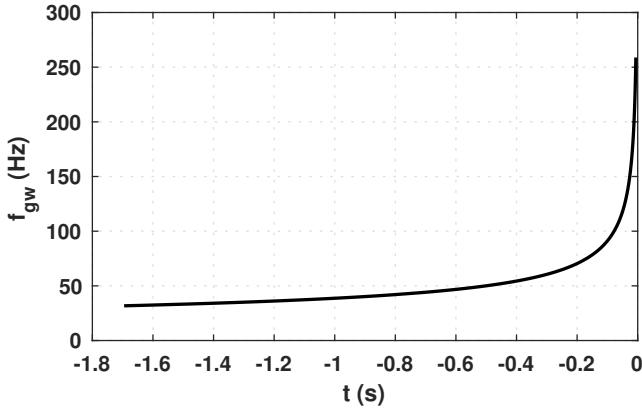


Fig. 1. Observed gravitational wave frequency f_{gw} in Hz for binary black-hole inspiral GW170608 as a function of time before coalescence. Solid black curve is observed gravitational wave frequency f_{gw} estimated from the time-frequency map in [5]. Coalescence is at $t = 0$.

III. OBSERVED GRAVITATIONAL Q FOR GW170608

The gravitational wave GW170608 observed by LIGO in June 2017 was caused by the inspiral and merger of a binary black hole [5]. Fig. 1 shows observed gravitational wave frequency f_{gw} in Hz, as estimated from the LIGO-Hanford time-frequency map in [5]. The gravitational-wave frequency of Fig. 1 was estimated with a log-log fit to (4) using the time-frequency map published in [5], resulting in a curve-fit of $\ln(f_{gw}) = 3.655 - 0.3725 \ln(t')$, for f_{gw} from approximately 32 Hz to 259 Hz. This result is in good agreement with the theoretical relation of (5), with 1.75% error for the constant term, and 0.67% error for the slope term.

Fig. 2 shows the observed gravitational wave size parameter $k a_s$ in radians as determined by (3), using the gravitational-wave frequency f_{gw} shown in Fig. 1. Importantly, the black-hole radiator remains gravitationally small during inspiral with $k a_s$ changing from $k a_s \approx 0.27$ to $k a_s \approx 0.54$. As the frequency increases in Fig. 1, $k a_s$ in Fig. 2 also increases, in

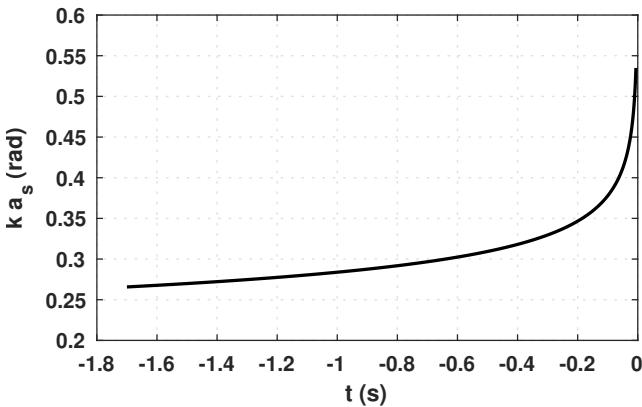


Fig. 2. Observed $k a_s$ in rad for binary black-hole inspiral GW170608 as a function of time before coalescence. Solid black curve is observed gravitational wave size parameter $k a_s$ computed from the observed gravitational wave frequency f_{gw} in Fig. 1. Coalescence is at $t = 0$.

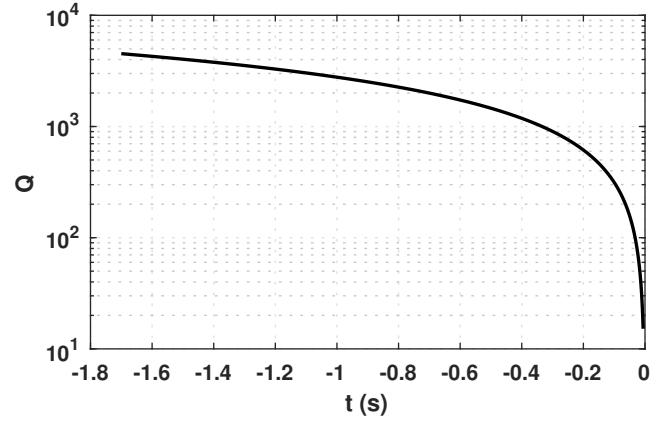


Fig. 3. Observed Q for the binary black-hole inspiral GW170608 as a function of time before coalescence. Solid black curve is the observed Q computed from the value of $k a_s$ in Fig. 2. Coalescence is at $t = 0$.

accordance with $k a_s$ being proportional to $\omega_{orb}^{1/3} = (\pi f_{gw})^{1/3}$ from (3). During inspiral, the increase in $k a_s$ while orbital radius a_s is decreasing seems counterintuitive, but this is caused by the frequency f_{gw} increasing faster than the orbital radius decreases.

Fig. 3 shows the observed Q of GW170608 computed from (1) using the observed value of $k a_s$ from Fig. 2. Here, Q decreases as both f_{gw} and $k a_s$ increase. The Q of the gravitational-wave source varies from a maximum of $Q \approx 4520$ at $t \approx -1.7$ s to $Q \approx 15$ near coalescence. It is an open question whether antenna engineering concepts such as the Chu limit and electrically-small antennas can be applied to improve the design of gravitational-wave detectors and to increase understanding of gravitational waves. Nevertheless, the observed Q in Fig. 3 would seem to suggest there may yet be untapped opportunity in applying electrically-small antenna engineering methods to gravitational-wave problems.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science Foundation under Grant No. 1731675.

REFERENCES

- [1] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy *et al.*, “Properties of the binary black hole merger GW150914,” *Phys. Rev. Lett.*, vol. 116, p. 241102, Jun. 2016.
- [2] T. P. Weldon, “Measured and field-based theoretical Q of gravitationally-small gravitational antennas,” in *2018 IEEE Antennas and Propag. Soc. Int. Symp. (APSURSI)*, Jul. 2018, pp. 69–70.
- [3] D. F. Sievenpiper, D. C. Dawson, M. M. Jacob, T. Kanar *et al.*, “Experimental validation of performance limits and design guidelines for small antennas,” *IEEE Trans. Antennas Propag.*, vol. 60, no. 1, pp. 8–19, Jan. 2012.
- [4] T. P. Weldon, “Theoretical and observed quality factor of gravitational quadrupoles,” *Phys. Rev. D*, vol. 98, p. 124044, Dec. 2018.
- [5] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese *et al.*, “Gw170608: Observation of a 19 solar-mass binary black hole coalescence,” *The Astrophysical Journal Letters*, vol. 851, no. 2, p. L35, 2017.
- [6] LIGO document G1702257-v3, GW170608 factsheet. [Online]. Available: <https://dcc.ligo.org/LIGO-G1702257/public>
- [7] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy *et al.*, “Observation of gravitational waves from a binary black hole merger,” *Phys. Rev. Lett.*, vol. 116, p. 061102, Feb. 2016.