

Comparison of Electromagnetic Antenna Chu Limit and Q of Gravitational Radiators

Thomas P. Weldon

*Dept. of Electrical and Computer Eng.
University of North Carolina at Charlotte
Charlotte, NC, 28223 USA
tpweldon@uncc.edu*

Kathryn L. Smith

*Dept. of Electrical and Computer Eng.
University of North Carolina at Charlotte
Charlotte, NC, 28223 USA
kathryn.smith@uncc.edu*

Abstract—Direct observations by the Laser Interferometer Gravitational-Wave Observatory (LIGO) since 2015 have corroborated general relativity predictions of gravitational-wave phenomena. Following this, an analytic expression has been found for the Q of gravitational quadrupole radiators, where Q was shown to be a function of the physical size of the gravitational-wave source. This new result is similar to the electromagnetic Chu limit, where the Q of electrically-small antennas is limited by the physical size of an antenna. In this paper, initial observations and comparisons are made between gravitational Q and electromagnetic Q over a range of physical parameters. The results illustrate a number of similarities and differences between gravitational Q and electromagnetic Q.

Index Terms—gravitational waves, waves, Antenna theory, Q measurement

I. INTRODUCTION

Since the first observation of gravitational-wave event GW150914 in September of 2015, data collected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has provided direct confirmation of the existence of gravitational waves [1], [2]. Within the past year, a new analytic expression for the Q (quality factor) of gravitational-wave sources was found, where the Q of gravitational quadrupoles was shown to depend on the physical size of the source [3]. This new result for gravitational wave phenomena was inspired by the Chu limit (or Wheeler-Chu limit) for gravitationally-small antennas [4]–[6]. Given these new theoretical results, this paper provides initial comparisons between the theoretical Q of gravitationally-small gravitational quadrupole radiation sources and the more than 50-year-old Chu-limit for the theoretical Q of electrically-small antennas.

In the following section, the theory of gravitational quadrupole Q is reviewed along with a brief review of the Chu limit and theoretical Q of electrically small antennas. Important differences between gravitational Q and electromagnetic Q are noted. The subsequent section provides initial comparisons of results for illustrative examples of gravitational quadrupole Q and electrically-small antenna Q plotted over a range of parameter values. The results illustrate several notable differences between gravitational Q and electromagnetic Q.

This material is based upon work supported by the National Science Foundation under Grant No. 1731675.

II. THEORY

Before reviewing the Chu limit for the Q of electrically-small antennas, we first review the Q of gravitationally-small ($\text{size} \ll \lambda$) gravitational quadrupoles. In particular, we consider gravitational quadrupoles formed by two masses m_1 and m_2 in circular orbit about a barycenter C as illustrated in Fig. 1. As the masses orbit each other, gravitational waves are emitted with luminosity $\mathcal{L} = 32(m_1 + m_2)^5 \nu^2 G^4 / (5d_s^5 c^5)$ for two orbiting masses m_1 and m_2 in kg, with $\nu = m_1 m_2 / (m_1 + m_2)^2$, and where G is the gravitational constant $6.7 \times 10^{-11} \text{ N} \cdot (\text{m/kg})^2$ [2], [7], [8].

For the scenario of Fig. 1, the Q of a gravitational quadrupole source of gravitational waves has been shown to be [3]

$$Q_g = \frac{20m_1^7 G}{c^2 m_2 (m_1 + m_2)^5} \left[\frac{(k_g a_g)^{-7}}{2a_{\min}} - \frac{(k_g a_g)^{-5} c^2 (m_1 + m_2)^2}{8m_1^3 G} \right], \quad (1)$$

where a_g of Fig. 1 is the larger orbital radius in meters, c is the speed of light in vacuum, $k_g = 2\pi f_g / c$ is the gravitational wavenumber, f_g is the gravitational wave frequency in Hz, and a_{\min} is the final radius of the larger orbit around the barycenter at coalescence [3]. Lastly, note that orbital radius a_g corresponds to the radius of a sphere that would enclose the physical dimensions of the quadrupole comprised of the orbiting masses.

By comparison, the electromagnetic Chu-limit Q of an electrically-small antenna is [5]

$$Q_{em} = \frac{1}{k_{em} a_{em}} + \frac{1}{(k_{em} a_{em})^3} \quad \text{for } k_{em} a_{em} \ll 1, \quad (2)$$

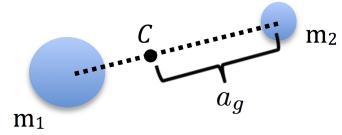


Fig. 1. Gravitational quadrupole consisting of two masses m_1 and m_2 in orbit around barycenter C , with larger orbital radius being a_g .

where $k_{em} = 2\pi f_{em}/c$ is the electromagnetic wavenumber, f_{em} is the electromagnetic wave frequency in Hz, and a_{em} is the radius of a sphere that would enclose the antenna. Thus, the foregoing size parameter $k_g a_g$ in (1) of a sphere that would enclose the gravitational radiation source is analogous to the size parameter $k_{em} a_{em}$ in (2) for an electrically-small antenna.

By comparing (1) with (2), we may observe several key differences between the theoretical Q of gravitational and electromagnetic radiation sources. First, the gravitational Q_g varies as $(k_g a_g)^{-7}$ for $k_g a_g \ll 1$, whereas the electromagnetic Q_{em} can be seen to vary as $(k_{em} a_{em})^{-3}$ for $k_{em} a_{em} \ll 1$. Second, the gravitational Q_g also depends on additional physical parameters of the system, including m_1 , m_2 , and a_{min} , whereas Q_{em} for electrically-small antennas only depends on $k_{em} a_{em}$. In addition, an example below is used to show that gravitational Q_g also depends on the ratio of the two masses m_1 and m_2 that comprise the gravitational quadrupole.

III. ILLUSTRATIVE EXAMPLES AND COMPARISON

To illustrate the differences between theoretical gravitational quadrupole Q_g and theoretical Q_{em} of electrically small antennas, several examples are plotted in Fig. 2. In this plot, the horizontal axis represents ka for the cases of $k_{em} a_{em}$ or $k_g a_g$, as appropriate. The lower dashed curve shows theoretical Q_{em} of electrically small antennas from (2), while the two upper curves illustrate two different cases of gravitational Q_g from (1).

As expected, the lower dashed curve showing theoretical Q_{em} of electrically-small antennas increases by a factor of 10^3 as $k_{em} a_{em}$ decreases from 0.1 to 0.01. In contrast, the middle solid curve shows that gravitational Q_g increases by a factor of $\approx 10^7$ as $k_g a_g$ decreases from 0.1 to 0.01, where equal masses of $m_1 = m_2 = 2.9 \times 10^{30}$ kg were used (similar to the total binary neutron star mass in GW170817), with $a_{min} \approx 29$ km [7], [9].

Lastly, gravitational Q_g not only depends on total mass $m_1 + m_2$, but also depends on the distribution of the mass between the two orbiting objects. This is illustrated in the upper dot-dashed curve in Fig. 2 using the same total mass as the solid curve, but with $m_1 = 3m_2$. As before, the dot-dashed curve shows that Q_g increases by a factor of $\approx 10^7$ as $k_g a_g$ decreases from 0.1 to 0.01, since the dashed curve is essentially parallel to the solid curve. Despite the equal total mass for both cases, at $ka = 0.1$ the value of $Q_g \approx 7.6 \times 10^6$ with $m_1 = 3m_2$ is approximately 38 times larger than the value $Q_g \approx 2 \times 10^5$ with $m_1 = m_2$.

IV. SUMMARY

The theoretical Q_g for gravitationally-small gravitational radiation sources is compared to the theoretical Q_{em} for electrically-small antennas. Most significantly, the Q of small gravitational and electromagnetic sources both strongly depend on physical size of the radiation source. However, the power laws differ significantly, with gravitational Q_g being proportional to $(k_g a_g)^{-7}$, and with electrically-small antenna Q_{em} being proportional to $(k_{em} a_{em})^{-3}$. In addition, gravitational

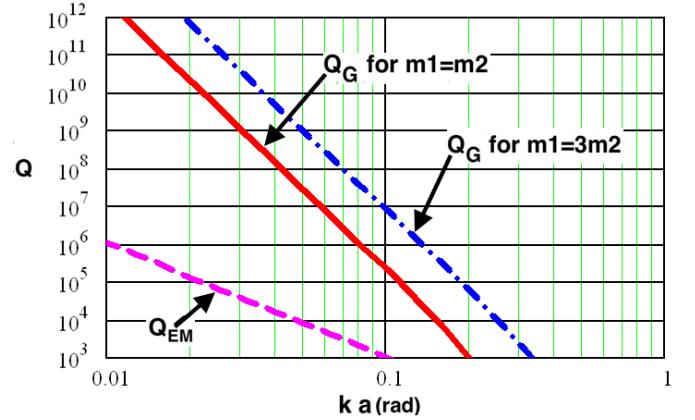


Fig. 2. Q as a function of size parameter ka . Lower dashed curve is theoretical Q_{em} as a function of $k_{em} a_{em}$ for electrically-small antennas. Middle solid curve is theoretical gravitational Q_g as a function of $k_g a_g$ for equal masses of $m_1 = m_2 = 2.9 \times 10^{30}$ kg. Upper dot-dashed curve is theoretical gravitational Q_g as a function of $k_g a_g$ for $m_1 = 3m_2$, and having the same total mass as for the solid curve.

Q_g is shown to be affected by the ratio m_2/m_1 of the two masses in orbit. Plots of several examples illustrate the differences between gravitational and electromagnetic Q . Lastly, it remains to be seen whether the additional degrees of freedom, such as dependence of Q_g on the ratio m_2/m_1 , can be used to provide insights for improving the design of gravitational detectors or sources.

REFERENCES

- [1] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, and et al., "Properties of the binary black hole merger GW150914," *Phys. Rev. Lett.*, vol. 116, p. 241102, Jun. 2016.
- [2] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and et al., "The basic physics of the binary black hole merger GW150914," *Annalen der Physik*, vol. 529, no. 1-2, p. 1600209, Jan. 2017.
- [3] T. P. Weldon, "Theoretical and observed quality factor of gravitational quadrupoles," *Phys. Rev. D*, vol. 98, p. 124044, Dec. 2018.
- [4] L. J. Chu, "Physical limitations of omni-directional antennas," *Journal of Applied Physics*, vol. 19, no. 12, pp. 1163–1175, 1948.
- [5] D. F. Sievenpiper, D. C. Dawson, M. M. Jacob, T. Kanar, S. Kim, J. Long, and R. G. Quarfoth, "Experimental validation of performance limits and design guidelines for small antennas," *IEEE Trans. Antennas Propag.*, vol. 60, no. 1, pp. 8–19, Jan. 2012.
- [6] H. Wheeler, "Fundamental limitations of small antennas," *Proc. of the IRE*, vol. 35, no. 12, pp. 1479–1484, Dec. 1947.
- [7] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, and et al., "Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A," *The Astrophysical Journal Letters*, vol. 848, no. 2, p. L13, 2017.
- [8] L. E. Kidder, "Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit," *Phys. Rev. D*, vol. 77, p. 044016, Feb. 2008.
- [9] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, and et al., "GW170817: observation of gravitational waves from a binary neutron star inspiral," *Phys. Rev. Lett.*, vol. 119, p. 161101, Oct. 2017.