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Abstract

The ferro-rotational order !, whose order parameter (OP) is an axial vector invariant under
both time reversal (TR) and spatial inversion (SI) operations, is the last remaining category of
ferroics to be observed after the ferroelectric, ferromagnetic, and ferro-toroidal orders. This order
has become increasingly popular in many new quantum materials, especially in complex oxides
13 and is considered responsible for a number of novel phenomena such as polar vortices 4, giant
magnetoelectric coupling °, and type-II multiferroics °. However, physical properties of the ferro-
rotational order have been rarely studied either theoretically or experimentally. Here, using high
sensitivity rotational anisotropy second harmonic generation (RA SHG), we have, for the first
time, exploited the electric quadrupole (EQ) contribution to the SHG to directly couple to this
centrosymmetric ferro-rotational order in an archetype of type-II multiferroics, RbFe(MoO4),.
Surprisingly, we have found that two types of domains with opposite ferro-rotational vectors
emerge with distinct populations at the critical temperature 7. ~195 K and gradually evolve to
reach an even ratio at lower temperatures. Moreover, we have identified the ferro-rotational order
phase transition as weak first order, and have revealed its conjugate coupling field as a unique
combination of the induced EQ SHG and the incident fundamental electric fields. Our results on
physical properties of a ferro-rotational order provide crucial knowledge for understanding and
searching for novel phases of matter built upon the ferro-rotational order. Further, these results
open the possibility of revealing unconventional centrosymmetric orders and identifying their

conjugate coupling fields with second order nonlinear optics.



The Landau theory of phase transitions ", one major cornerstone in condensed matter
physics research, introduces the concept of an OP, which attains a nonzero value below a phase
transition, and classifies emergent phases by the symmetries under which they are invariant. An
OP can be a scalar °, a vector , or a higher-rank tensor '° quantity that provides insight into the
microscopic origin of its associated phase transition. Among all the symmetry operations, TR and
SI symmetries are of particular importance. They categorize OPs into four groups based on even

3,11,12

(+) or odd (—) parity under TR and SI operations , and this classification guides the search

for new phases and their conjugate coupling fields '">!3.
Ferroics with vector OPs are a class of materials of particular interest, as two of the most

well-known ordered phases, ferroelectricity and ferromagnetism, belong to this family and couple

to the two most common fields, the electric (E ) and magnetic (§) fields, respectively. Within the

categorization framework based on OP parities under TR and SI operations, electric polarization
(13) and magnetization (M ), OPs for ferroelectricity and ferromagnetism, are TR+SI— (i.e., + —)

and — +, respectively, while the toroidal arrangements of electric (7 X ﬁ) 3 and magnetic (7 X M )
1114 dipoles, OPs for ferro-rotational and ferro-toroidal orders, are + + and — —, respectively, as
outlined in Fig. 1(a). In contrast to ferroelectricity and ferromagnetism, the search for ferro-
rotational and ferro-toroidal orders has been challenging because they are much rarer and the
conjugate fields to their OPs are not readily available. In fact, it was not until very recently that

the ferro-toroidal order was detected by optical SHG by exploiting its broken SI symmetry'' and

its conjugate field was determined to be E x B with hysteretic poling behaviors '2. Meanwhile, the
ferro-rotational order is known to be present in complex oxides with structural distortions of
uniform oxygen cage rotations '>>!57  but its symmetry properties, domain structures, and
conjugate field have remained elusive.

SHG is a process in which light frequency is doubled through its second order nonlinear
interactions with a material. It has so far been widely used to detect phases with broken SI
symmetry only in which the leading-order electric dipole (ED) contribution to SHG is allowed
11.18-23 Recently, the development of high sensitivity SHG makes it possible to detect SHG from
higher-order multipolar contributions, such as EQ, in SI symmetry-preserved states >**’. However,
to our best knowledge, it has not yet been shown to reveal a phase transition of a centrosymmetric
order, such as the ferro-rotational order, using EQ SHG. (see EQ SHG measurement details in

Methods).



As depicted in Fig. 1(b), RbFe(MoOs),, an archetype of type-II multiferroic materials

predicted to host a ferro-rotational order &15:16.28.29

, consists of stacks of FeOg octahedra sharing
vertices with MoQy tetrahedra. It undergoes a structural phase transition at 7. ~195 K with
octahedra (tetrahedra) rotating counterclockwise (clockwise) about the ¢ axis for domain type I
and vice versa for domain type II. The point group of the room temperature phase of RbFe(MoQO4),
is known to be 3m, while that for the low temperature structural phase is likely to be 3 but with a
couple of other options including 3m and 32 '983 (see sample growth details in Methods).
Furthermore, the physical properties of this low temperature structural phase have been hardly
explored.

We first establish the EQ contribution to the SHG from the centrosymmetric phase of
RbFe(MoO4)2 at room temperature. In order to access all nonzero second order susceptibility
tensor elements, we performed RA SHG measurements /2% (¢) at room temperature in all four
polarization combination channels, namely P/S;, — P/Sgyut, in the oblique incidence geometry
(Fig. 2(b)), where P/S;y, /oy stands for the polarization of incoming/reflected (in/out) light being
parallel/normal (P/S) to the light scattering plane. Given that the room temperature bulk point

group 3m contains SI symmetry, there can be no leading-order ED contribution to 12%(¢), and

the next highest order contribution, EQ, must be considered, which is
P (2w) = i B (@)0Ey(w) (D
Qualitatively, the four patterns in Fig. 2(a) all exhibit a three-fold rotational (C3) symmetry and
three mirror planes at 90°, 210° and 330°, which is consistent with 3m. Quantitatively, the RA
SHG patterns can be well fitted with the 12% (¢p) functions derived from the EQ SHG process under
3m, in which
LB 5im—Poue (@) < (C1 + Co5in(3¢))% + (C3 + Cy sin(3¢))*
I8 510 (@) ¢ (C5 cOS(3))? (2)
with C; , 3 4 5 being linear combinations of )(fj%l, the EQ SHG susceptibility tensor elements (see

Supplementary Section 1). We further rule out the possibilities of surface ED SHG and electric
field induced SHG (EFISH) (see Supplementary Section 2), and therefore identify the bulk EQ
SHG under centrosymmetric 3m as being responsible for the SHG measured at room temperature.

Having determined the EQ origin of the SHG from RbFe(Mo0Q4), at room temperature, we

proceed to perform RA SHG measurements in the normal incidence geometry to select a subset of
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iji , tensor elements. Figure 2(b) shows two RA SHG patterns taken with incoming and reflected

light polarizations in parallel and crossed configurations at normal incidence. Like the oblique
incidence results, both patterns possess the Cs axis and the three mirror planes which are enforced
by the bulk point group 3m. In addition, the simulated functions for the normal incidence geometry

are significantly simplified from those of the oblique incidence geometry to

Izarallel ,high (d)) = (nyzy COS(3¢))2
Icross ,high (¢) - (nyzy Sln(3¢))2 (3)
where only one tensor element )(5323, is selected out. This allows us to uniquely extract the value

of nyzy and track its evolution with varying temperatures, which motivates us to use the normal
incidence geometry to investigate the temperature dependence.

Figure 3(a) shows the RA SHG patterns taken in the parallel channel of the normal
incidence geometry at selected temperatures decreasing from 200 K to 80 K. The evolution of
these patterns clearly demonstrates a phase transition occurring at a 7. between 200 K and 190 K,
as evidenced by both the sudden appearance of a nonzero background in the RA SHG patterns and
the start of the rotation of the RA SHG patterns away from the mirror planes of the high
temperature phase.

We first identify unequivocally the point group of the RbFe(MoQOs)> low temperature
phase, which until now has been debated because it is challenging for infrared spectroscopy and
x-ray diffraction *° to distinguish the subtle differences between point groups 3m, 32, and 3. The
3m point group is immediately disqualified because the departure of the RA patterns from the
mirror planes at room temperature indicates the absence of mirror symmetries below 7c. The non-
centrosymmetric 32 point group can also be reliably ruled out, because the SHG intensity remains
nearly unchanged across 7. instead of increasing by orders of magnitude as it would be expected
from the ED contribution allowed in a system with broken SI symmetry. A comparison of the
simulated RA SHG patterns for 3m and 32 (Fig. 3(c)) with our experimental observation further
serves to rule out these two point groups, as the simulated results show perfect alignments with
the three mirror planes while the experimental result does not. Thus, the only possible point group
left for the low temperature phase of RbFe(MoOs), is 3, which breaks the three mirrors while
preserving the SI and C3 symmetries. The bulk EQ SHG under 3 scales as

I;Eg)rallel,Dl((p) = xxzx Sln(3¢) + nyzy COS(3¢))2 (4)
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which accounts for the rotation, but not the nonzero background of the RA SHG patterns below
T..

We next prove the presence of two types of domains in RbFe(MoOa)> at low temperatures
by analyzing the nonzero background in the RA SHG patterns that appears below 7c. As the

I orauer,p1 (¢) pattern rotates counterclockwise by an angle

§ = gtan‘1 <%> ()
Xyyzy

its broken-mirror-related counterpart is expected to rotate clockwise by the same angle §, yielding
a functional form of

Bérauerp2($) = (“Xixsx SINBD) + Ky, c0S(3)) (6)
These two functions correspond to the two types of domains with opposite ferro-rotational vectors,
where the FeOs octahedra rotate counterclockwise and clockwise, respectively, as depicted in Fig.
1(b) for 7'< T¢. The nonzero background, which cannot be accounted for by either individual type
of domains, can be well explained by a weighted linear superposition of contributions from both
types of domains,

Larauerion(®) = A g anerp1 () + (1 = A) - I qner,02 (@) (7)
where A4 is the weight of one type of domains. Figure 3(b) shows one example of the RA SHG
pattern at 170 K well fitted by this weighted domain averaged model. The data indicates a ferro-

rotational domain size much smaller than our SHG probe beam diameter of 50 um.
We now are ready to explore the temperature dependence of )(f,?zx, )(5323,, domain weight

A, and the RA SHG pattern rotation angle § with best fits of the domain averaged model to the RA
SHG patterns at every temperature measured between 80 K and 210 K to the domain averaged

model. As shown in Fig. 4(a), )(f,?zx jumps from zero to a finite value at 7. ~195 K and gradually
grows larger before saturating at lower temperatures, suggesting this structural phase transition is
of weak first order character and )(f,?zx is, to the lowest order approximation, linearly proportional
to the ferro-rotational OP. In contrast, X)lf)?zy in Fig. 4(b) is present above T¢, experiences a sharp
spike at T¢, and decreases slowly below 7.. The temperature dependence of domain populations in
Fig. 4(c) suggests that the two types of domains show up with uneven populations at 7c and

converge to equal populations with decreasing temperature. Lastly, the RA SHG rotation angle &,



shown in Fig. 4(d), exhibits a jump from 0° to 10° at 7. and gradually approaches its maximum of
20° at lower temperatures, mimicking )(f,?zx.

At this point, we have used EQ SHG for the first time to reveal a ferro-rotational order in
RbFe(Mo04),, by unambiguously identified its centrosymmetric point group 3, revealing its two
types of domains, and showing its temperature dependences. In the following, we will use
phenomenological Landau theory to first explain the coupling between the EQ SHG fields and this
+ + ferro-rotational OP, and then to understand the temperature dependence of the EQ SHG
susceptibility tensor elements. To begin, because the point group 3 of the ferro-rotational order is
a subgroup of 3m, its OP therefore transforms as the A, g Symmetry of 3m. Under the plane wave

approximation, the radiated EQ SHG fields in the normal incidence geometry are expressed as:

2 2w 2 wLw
() (P0) (=0 g (25 )
Ey Pyerr —2EPEY WY\(EL)? - (EP)

y
(8)
where Ey, (w) (Ey/,(2w)) is the incident fundamental (radiated SHG) electric fields, and k, is

the wave vector of the incident electric fields. From this, we find that )(ffzx and
k, (E,?“’ (E®)? — E29 (EJ‘,")Z — ZE,?’EJ‘;’EJE“’) share the same symmetry, both transforming as the
A,y symmetry of 3m. It now becomes clear that a proper combination of the induced EQ SHG

fields and the incident fundamental electric fields, such as k, (E,%w(E;;))Z —E,%w(E;’)Z —

2EPEY Eﬁ“’) above, has the same symmetry as the ferro-rotational order OP, and therefore forms

a conjugate coupling field to the OP. It is worth noting that this is the lowest order combination of
the polar vector field combination to achieve the same symmetry as the ferro-rotational OP, and it
at least requires the EQ SHG process to observe the ferro-rotational order in RbFe(MoO4)..

In order to capture the temperature dependence of the EQ SHG susceptibility tensor
elements, we start by expanding the Landau free energy in terms of the ferro-rotational order OP,
1, as

F(T) = Fo(T) + a(T = Te)n? + pn* +yn® 9)
where ¢ > 0, f < 0, and y > 0 are constants near 7. for the small n near the weak first order
phase transition 33!, Minimizing this free energy yields a functional form for the temperature

dependence of 1 of



0, T>T,

T) =
n(0) \[a+b T,—T, T<T.

(10)
h _ B _ a _ B> 31 : 1 h EQ . lik
where a = — =, b= P™ and Ty = 30y + T, °'. From Equation (8), we learn that y,.,,,, just like

1, obeys the A, symmetry of 3m, while )(5323, is of the A;; symmetry. We therefore can expand

the two tensor elements as

E
Xrmex = @17 + agn® + - (11)
)(5323, = ay + an® + asn* ... (12)

and arrive at their expected temperature dependences with which the raw data in Fig. 4(a) and (b)
are well fit. These fits give T, = 194.54+ 0.9 K and T; = 199.6 + 2.1 K. Subsequently, the
temperature dependence of § in Fig. 4(d) is also nicely explained.

In conclusion, we have here presented our symmetry-resolved and temperature-dependent
SHG study on a TR+SI+ ferro-rotational order in RbFe(MoQ4),. Unlike conventional SHG which
relies on the ED contribution from broken SI symmetry, we have exploited the EQ SHG process
to monitor this SI symmetry-preserved phase transition and unequivocally determined the
symmetry point group 3 for this centrosymmetric ferro-rotational ordered phase below 7. in
RbFe(Mo0O4),. We have successfully revealed the presence of two types of ferro-rotational order
domains with opposite OP vectors and shown their uneven population right below 7. evolving to
even at lower temperature. Furthermore, we identified the conjugate coupling field, a proper
combination of the induced EQ SHG and the incident fundamental electric fields, for this + +
axial vector OP, and tracked the temperature dependence of the OP through the EQ SHG
susceptibility tensor elements and the domain populations through the domain averaged model.
The identification of this last remaining vector-type OP in ferroic orders its conjugate coupling
fields is of crucial importance for understanding and searching for novel phases built upon ferro-
rotational orders, such as the type-II multiferroic order developed in RbFe(MoOs); at even lower

temperature '>232,

Moreover, our work also introduces the possibility of using second order
nonlinear optical measurements to probe inversion symmetric novel phases of matter, and
showcases an example of evaluating conjugate fields for unconventional OPs whose coupling

fields are not easily identifiable.



Methods

Growth of RbFe(Mo0QOy); single crystals. Single crystals of RbFe(MoQ4), were synthesized by
spontaneous crystallization from the flux melt method as described in Ref. [16]. Powders of (Alfa
Aesar, 5N purity) Rb,CO3, Fe;O3; and MoOs were thoroughly mixed in the molar ratio of 2:1:6.
The homogenized mixture was heated in a platinum crucible at 1100 K for 20 h in air and was
cooled at a rate of 2K/h to 900 K followed by subsequent faster cooling at 5K/h to room
temperature. Transparent light-yellow to light-green hexagonal platelet crystals of typical
dimensions of 3x3x0.1 mm® were readily separated from the flux for experiments by dissolving

in warm water.

RA SHG measurements. In the RA SHG measurement with the oblique (normal) incidence
geometry, the reflected SHG intensity is recorded as a function of the azimuthal angle ¢ between
the scattering plane (electric polarization) and the in-plane crystalline axis. In this experiment, the
incident ultrafast light source was of 800 nm wavelength, 40 fs pulse duration and 200 kHz
repetition rate, and was focused onto a 50 um diameter spot on the sample with a fluence of ~ 0.25
mJ/cm?. The intensity of the reflected SHG was measured with a single photon counting detector.

All thermal cycles were carried out with a base pressure better than 5x 10”7 mbar.

Data availability
The datasets generated and/or analyzed during the current study are available from the

corresponding author on reasonable request.
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Figure 1. Categorizing ferroic orders with vector order parameters. a, A summary of the four vector
OPs classified by their parities under TR and SI operations. Here + indicates even parity and — indicates
odd parity. The yellow background highlights the ferro-rotational OP. b, The crystal structure of
RbFe(Mo0Os), as viewed along the ¢ axis, both above and below the structural phase transition temperature
T.. Two types of domains are expected below T, corresponding to counterclockwise and clockwise

rotations of the FeOg octahedra.
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Parallel

Figure 2. Identifying the bulk EQ contribution to the room temperature SHG. Polar plots of room
temperature (7' =290 K) RA SHG patterns fitted with the functional forms derived from the bulk EQ SHG
susceptibility tensor under point group 3m, a, at oblique incidence in all four polarization combination
channels, namely P/Six — P/Sou, and b, at normal incidence in both the parallel and crossed polarization
channels. Open circles indicate the raw RA SHG data and the solid curves are for the bulk EQ SHG fits.
The crystalline axes a, b are defined in Fig. 1b, labeled here in Pi, — Pou and omitted for the rest. The three
vertical mirror planes in 3m are indicated by the three dashed radial lines in every plot. All data sets are

plotted on the same intensity scale, normalized to a value of 1 corresponding to 22 fW.
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Figure 3. Tracking the temperature dependence of the ferro-rotational order. a, Polar plots of the RA
SHG data in the parallel channel of the normal incidence geometry at selected temperatures above and
below T.. The rotation of each pattern away from the room temperature vertical mirror at 90° is highlighted
by blue shading. The pattern above T. is fitted to the bulk EQ SHG under 3m, and the patterns below 7. are
fitted to a weighted two-domain averaged model of the bulk EQ SHG under 3. All data sets are plotted on
the same intensity scale, normalized to a value of 1 corresponding to 22 fW. b, An example of fitting the
RA SHG pattern at 170 K, below T, with a weighted average of contributions from both types of domains
in Fig. 1b. The individual patterns (orange) from the two domains rotate counterclockwise and clockwise,
respectively, and their contributions to the total RA SHG are indicated as the coefficients, 0.4 and 0.6,
respectively. The solid and empty petals represent the phases for the SHG electric fields. ¢, Polar plots of
the simulated RA SHG patterns under point groups 3m (green) and 32 (purple).
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Figure 4. Resolving the temperature dependence of fitting parameters. Temperature dependence of EQ
SHG susceptibility tensor elements a, )(f,?zx and b, )(5323,, ¢, the weight of both domains, and d, the rotation

of the RA SHG pattern for a single domain, §. The open circle (a), square (b), triangle (c), and diamond (d)
are unique fit values from the RA SHG data at varying temperatures. The orange solid lines in (a), (b), and
(d) are best fit to the Landau theory based functional forms for these parameters. The error bars stand for

one standard error in fitting the RA SHG data with the domain averaged model.
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S1.  Simulations of the bulk EQ SHG under 3m in the oblique incidence geometry

We have simulated the functional forms for the bulk EQ SHG under the point group 3m in the

oblique incidence geometry, using

1*(¢) = |Aéi(2w))(fj%(¢)éj(w)3k(w)éz(w)|21“’1“’ (S1)

where A is a constant determined by the experimental geometry, [ is the intensity of the incident
beam, € is the polarization of the incoming fundamental or outgoing SHG light, and )(5% () is

the bulk EQ susceptibility tensor transformed into the rotated frame of the scattering plane. The
nonzero independent elements of the tensor in the unrotated frame of the crystal are deduced by
applying the point group 3m and degenerate SHG permutation symmetries. This reduces
)(521 (¢ = 0) to 11 nonzero independent elements
XXXX = YYyYyYy = Yyyxx + yxxy + yxyx;
YYXX = XXYY = YXXY = XYYX; YXYX = Xyxy;
XXZZ = YYZZ = XZZX = YZZY; ZZXX = ZZYY = ZXXZ = ZYYZ,
VYYZ = —YXXZ = —XYXZ = —XXYZ = YZYY = —YZXX = —XZYyX = —XZXY;
YYZY = —YXZX = —XYZX = —XXZY; ZYYY = —ZYXX = —ZXYX = —ZXXY;
XZXZ = YZYZ; ZXZX = ZYZY;

ZZZZ; (S2)

Combining Equations (S1) and (S2), we obtain the functional forms for all four polarization

combination channels as follows, taking I* and 9, as unities:

52 _p, .. (@) = cos?6 {sinze[)(zyzycosze + (=2X42yy + X2222)Sin?0

+ )(Zyyycosesinesin(Bd))]z
+ [(2Xxxyy + Xxyxy — 2Xyy22)€0S20SIN0 + Xyy,5in°0
+ (Xyyzycos0 — ZnychosesinZG)sin(ng)]2}
(S3)
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. N 2
IE°_p, (@) = cosze[)(xyxysme - )(yyZyCOSHSm(Bcp)]

+ sin20|x,y,yc0s0 — )(ZyyysinOSin(Bcp)]z

(54)
3250 @) = [(Xy2y005%0 = 2ty c0s05in?6)cos (3¢)]

(S5)
129, ($) = [tyyzycosfcos3)]°

(S6)

where 0 is the incident angle (8 = 0 for normal incidence). Equations (S3-6) are then short

written into the forms in Equation (2) of the main text.
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S2.  Simulations of the electric field induced SHG under 3m in the oblique incidence

geometry

We have simulated the functional forms for the electric field induced SHG (EFISH) under 3m in

the oblique incidence geometry, using

129(¢) = |Aé;Qw)xim (¢)éj(w)§k=zéz(w)|21“’1“’ (87)

Comparing to Equation (S1), we see here that the gradient along k = x, y, z component has been

replaced by the DC electric field E that is normal to the sample surface, i.e., k = z.

Using Equations (S2) and (S7), we obtain the functional forms for the EFISH in all four

polarization combination channels as follows, taking I and E =z as unities:

(o) = [)(Zyzycoszé?siné? + Xzzzzsin?’é?]z

m_Pout

+ [cos20(—2xyy,Sin0 + )(yyzycosesin(3¢))]2

(S8)
IE9_p, () = (XzyzySinG)? + (Xyyzyc0s0sin(3¢))?
(S9)
Pm_sout (d)) [nyZyCOSZHCOS(3¢))]2
(S10)
Sm_sout (d)) [nyzycos(3¢)]2
(S11)

where 6 is the same incident angle defined in Equations (S3-6). In contrast to Equation (S4) for
the Si, — Pout EQ SHG, which has alternating SHG lobes in its polar plot, Equation (S9) expects
six even lobes in the S;,, — Py, EFISH polar plot. In Figure S1, the EQ SHG model clearly fits the
experimental data better than the EFISH model for the S;,, — Py, RA SHG at room temperature

due to these alternating peak intensities.
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—— EQ SHG model = —— EFISH model

Figure S1. Bulk EQ SHG vs EFISH. Fitting the room temperature RA SHG data in the S;;, — P, channel
using the bulk EQ SHG (red) and EFISH (blue) models.
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