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Abstract

Magnetic fields play vital roles in intracluster media (ICMs), but estimating their strengths and distributions from
observations is a major challenge. Faraday rotation measures (RMs) are widely applied to this task, so it is critical
to understand inherent uncertainties in RM analysis. In this paper, we seek to characterize those uncertainties given
the types of information available today, independent of the specific technique used. We conduct synthetic RM
observations through the ICM of a galaxy cluster drawn from a magnetohydrodynamic cosmological simulation in
which the magnetic field is known. We analyze the synthetic RM observations using an analytical formalism based
on commonly used model assumptions, allowing us to relate model physical variables to outcome uncertainties.
Despite the simplicity of some assumptions, and unknown physical parameters, we are able to extract an
approximate magnitude of the central magnetic field within an apparently irreducible uncertain factor of ≈3.
Principal, largely irreducible, uncertainties come from the unknown depth along the line of sight of embedded
polarized sources, the lack of robust coherence lengths from area-constrained polarization sampling, and the
unknown scaling between ICM electron density and magnetic field strength. The RM-estimated central magnetic
field strengths span more than an order of magnitude including the full range of synthetic experiments.

Unified Astronomy Thesaurus concepts: Intracluster medium (858); Galaxy clusters (584); Extragalactic magnetic
fields (507); Polarimetry (1278)

1. Introduction

The hot, diffuse media of galaxy clusters (intracluster media,
ICMs) are magnetized (e.g., Carilli & Taylor 2002) and very
likely turbulent (e.g., Schuecker et al. 2004; Sanders et al.
2011; Miniati & Beresnyak 2015; Vazza et al. 2018, 2017).
The strength and structure of the magnetic fields play central
roles in determining the turbulent and thermodynamical
properties of the ICMs. For instance, these properties may
control the scale and isotropy of transport processes such as
viscosity and thermal conduction, even if the magnetic,
Maxwell stresses are insignificant on cluster scales. Magnetic
fields or their induced anisotropic transport characteristics can
stabilize structures such as cold fronts (e.g., Zuhone et al. 2010)
or lead to instabilities that, for example, influence cluster
thermal structure (e.g., Parrish et al. 2012). ICM magnetic
fields also control the acceleration and transport of relativistic
particles within the ICMs (e.g., Brunetti & Jones 2014). For
these reasons, much effort has gone into observational
estimates of ICM magnetic field properties. As discussed
below, there are key physical properties of the field and of the
accompanying thermal plasma that are not well constrained
observationally, and therefore lead to irreducible uncertainties
in the structure and strength of the derived magnetic fields. It is
the goal of this paper to characterize the most important
uncertainties in this process.

Cluster magnetic fields reveal themselves through the diffuse
synchrotron emission found in a good many clusters (such as
giant radio halos, e.g., Feretti et al. 2012; Brunetti &
Jones 2014) and through the Faraday rotation of linearly

polarized radio emission propagating through the ICM. Fara-
day rotation is based on circular birefingence, in which the
plane of polarization of a linearly polarized signal rotates along
the line of sight by an amount that is proportional to the square
of the wavelength of the radiation and to the integral electron
along the line of sight (i.e., Δf=RM×λ2). The constant of
proportionality, the rotation measure (RM), is determined by
the integral along the line of sight of the plasma electron
density, ne, times the projection of the vector magnetic field
onto the line of sight, BP; namely over path length ℓ,

ò= -ℓ n s B s dsRM 812 rad m , 1
ℓ

e
0

2( ) ( ) ( ) ( )

where ne is expressed in units of cm
−3, BP is in units of μG, and

the differential line of sight path, ds, is in units of kpc. We
assume, going forward, that foreground RM contributions
(e.g., Galactic) have been removed and that we can ignore
extraneous modifications to the ICM due, for example, to
active galactic nucleus (AGN) outflows.
RM analyses of ICMs have been applied extensively, using

polarized synchrotron sources embedded in the cluster (e.g.,
Taylor & Perley 1993; Feretti et al. 1999; Eilek & Owen 2002;
Govoni et al. 2006, 2017; Taylor et al. 2006; Guidetti et al.
2008, 2010; Laing et al. 2008; Vacca et al. 2012) as well as
multiple unresolved polarized sources behind galaxy clusters.
(e.g., Clarke et al. 1999; Feretti et al. 1999; Bonafede et al.
2010) RM measurements have typically suggested maximum
magnetic field strengths at cluster centers ∼1–15 μG, with
strengths steadily decreasing outward. Several recent
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magnetohydrodynamic (MHD) cosmological simulation stu-
dies (e.g., Donnert et al. 2009; Xu et al. 2012) have obtained
evolved cluster magnetic field distributions that are relatively
insensitive to the model details for the seed fields, and that are
qualitatively consistent with the reported observations.

So far, however, neither the simulated nor the RM-based
“observed” field distributions provide the sufficiently robust
information needed to constrain ICM physics and evolution. In
this paper we aim to examine some of the factors that limit the
accuracy of ICM RM studies, specifically targeting limitations
coming from inherent, irreducible uncertainties in such
analyses. In order to do this we have adopted a simple analytic
approach that cleanly exposes such limitations. We emphasize
at the start that our intent is not to promote any particular
analysis method, but to identify inherent model and physical
uncertainties that seem to restrict accuracy to something close
to an order of magnitude.

Application of Equation (1) to establish the magnetic field
distribution along a given line of sight within an ICM is, in fact,
not straightforward. First, it requires that one isolate the
electron density distribution, ne(l), from the magnetic field
distribution. That can often be done reasonably well in clusters
by modeling thermal X-ray measurements. A more serious
issue is revealed by the fact that measured ICM RM
distributions are patchy and irregular, often including RMs of
both signs, telling us that the magnetic fields are disordered.
Thus, BP contributions to Equation (1) are stochastic; a
statistical analysis is mandated. In practice one usually tries
to estimate the dispersion of the magnetic field strength
distribution, σB,P.

On the reasonable and common assumption that the ICM
magnetic field averaged over large volumes is isotropically
disordered by turbulence with some magnetic field coherence
scale, Lcoh=ℓ, with ℓ the full path length, an ensemble of
statistically independent lines of sight lead to á ñ RM 0 while

the RM dispersion, s = á ñ - á ñ  á ñRM RM RMRM
2 2 2∣ ∣ .

More to the point of the exercise,
s sµ = á ñ - á ñ  á ñ  á ñB B B B 3BRM ,

2 2 2 2
    . In the

idealized case of a homogeneous medium, and independent
lines of sight, s µ L ℓRM coh . There are many related metrics
in the literature for magnetic field characteristic scales, as
outlined in the Appendix. These include, for example, the
magnetic field autocorrelation length, LB, (Enßlin & Vogt 2003)
and the so-called integral scale of the magnetic field, Lint, which
is the power-spectrum-weighted mean length associated with
the magnetic field variations (Cho & Ryu 2009). Each has been
applied in the literature to model associated RM distributions in
MHD turbulence. For an isotropic, homogeneous, turbulent
magnetic field the two lengths are simply related by Lint=2LB.
If we choose a characteristic scale, Λ=(3/2) LB=(3/4) Lint,
then the relation between σRM and σB,P conveniently takes the
familiar normalization in Equation (1); namely (e.g., Lawler &
Dennison 1982; Tribble 1991; Feretti et al. 1995; Felten 1996)

s s s= L = L
L

n ℓ n
ℓ

812 812 , 2e B e BRM , ,¯ ¯ ( ) 

where the units are as in Equation (1). We will adopt this
common convention below. We also need to clarify the
difference between Λ, the projected, 2D-observable RM
coherence length and 3D magnetic field structures, which are
not directly observable. In fact, as noted by Enßlin & Vogt

(2003), even for an isotropic magnetic field in a homogeneous
medium, the 3D magnetic field correlation length is not a direct
proxy for Λ in Equation (2). Furthermore, note from the
beginning that, unless the various lines of sight sample regions
with uncorrelated magnetic fields, so include separations >Λ,
but regions with similar electron densities, the calculated RM
dispersion measure from Equation (2) is not identical to σRM
among different lines of sight. This equivalence cannot be
taken for granted in observational analyses based on sparse RM
information (e.g., Murgia et al. 2004).
There are a number of important challenges in applying

Equation (2) to actual data; these lead to limitations in the
accuracy with which we can characterize the magnetic field
strengths in clusters. These challenges include:

1. the inhomogeneous and anisotropic magnetic field
structure in realistic ICMs, as illuminated in MHD cluster
formation simulations;

2. the unknown position of cluster-embedded polarized
sources along the line of sight through the ICM;

3. the unknown scaling between magnetic field and thermal
plasma density—the latter, in turn, must be modeled
using X-ray or microwave observations;

4. the incomplete sampling coming from limited availability
of polarized emissions of appropriately large scales;

5. for sight lines penetrating the core, the bulk of the
emission comes from a very small number of high
emissivity regions, so the sampling of independent field
regions is reduced;

6. the unknown radial dependence of characteristic spatial
scales in the ICM turbulence;

7. the fact that σRM and Λ are inherently statistical
quantities, with distributions that can only be sampled,
but not fully measured; Newman et al. (2002) have
argued that the inherent uncertainties in their estimation
are comparable to their magnitudes;

8. modification of the local magnetic field and density
structure by radio lobe interactions with the ICM, as
discussed briefly below.

The contribution of RM variations local to an embedded
radio galaxy, as opposed to RM variations that characterize the
unperturbed ICM, is an open issue. Guidetti et al. (2011, 2012),
for example, reported anistropic RM patterns associated with
several cluster AGNs, implying, they argued, influence of the
AGNs on the RM distribution. Rudnick & Blundell (2003)
argued that the RM distributions observed in front of several
embedded cluster sources showed biases suggesting influence
from plasma entrained within the emitting radio lobes. Enßlin
et al. (2003) argued, however, that those biases were not
statistically robust. On the theoretical front, Huarte-Espinosa
et al. (2011) conducted synthetic RM observations of MHD
simulations of high-powered, FR II AGN jets driven into a
model ICM with an initially isotropic, random magnetic field,
and found that the jet interactions modified the RM statistics in
ways that biased the inferred magnetic field values upward by
as much as 70%. The complex issue of physical modification of
the local ICM interacting with a radio source is beyond the
scope of this paper and not addressed.
It is the purpose of this paper to use extensions of

Equation (2) to explore and quantify many of these
uncertainties. Our approach is to carry out synthetic RM
measurements of a magnetized ICM extracted from a high-
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resolution MHD cosmological simulation (see Mendygral et al.
2012 and references therein). The usefulness of such synthetic
observations from cosmological simulations is demonstrated,
e.g., by Xu et al. (2012). In our case, the simulated cluster
magnetic field evolved from an initially weak but uniform field
seeded at high redshift (z=20). Since the cluster and its
magnetic field formed dynamically according to the current
cosmological paradigm, there are no artificial biases that would
influence our analysis other than what result from finite
numerical resolution in the magnetic field distribution and
omission of ICM radiative or conductive cooling and galaxy
feedback. Those details are largely irrelevant to the exercise at
hand, which primarily aims to establish the reliability of
estimations for existing ICM magnetic fields using standard
RM methods.

We report two complementary sets of analysis experiments.
In the first experiments, we obtain and analyze results for a
fully sampled background polarized screen, which offers the
optimal information potentially available to an observer. We
also analyze a fully sampled screen placed halfway along the
line of sight through the cluster (the “mid-plane” experiment),
in order to confirm assumed scaling relations. In the second set
of experiments, we examine and compare results based on RM
measurements for discrete sets of finite-sized, polarized
sources, embedded as passive objects in the cluster. We refer
to these sources as “masks” in our analysis.

We note that some recent methods (Vacca et al. 2012;
Govoni et al. 2017) of estimating intracluster magnetic field
properties from observed RMs use Monte Carlo simulations
and a Bayesian analysis with an assumed power-law distribu-
tion of magnetic field fluctuations. This approach offers distinct
advantages by characterizing some, although not all, of the
uncertainties associated with the above issues. We will discuss
these further in the context of our findings in Section 5.1.

The outline of the remainder of our paper is as follows: in
Section 2, we describe the physical properties of our simulated
cluster and its ICM, along with beta-law fits for the electron
density and magnetic field distributions for use in modeling
analysis of the synthetic RM observations. In Section 3 we
outline the procedures for translating the RM statistics for a
fully sampled background screen into ICM magnetic field
properties. Magnetic field estimates derived from discrete
polarized patches (both “mid-plane masks” and “background
masks”) for RM measurements are presented in Section 4.
Further discussion of analysis issues is presented in Section 5,
while our conclusions are outlined in Section 6. In the
Appendix, we discuss the expected relationships between RM
and magnetic field coherence lengths and our methods for
estimating these.

2. The Test Cluster Properties

2.1. ICM Evolution

The ICM used in our study is the diffuse baryonic
component of the 1.5×1014Me cluster g676 (Dolag et al.
2009; Stasyszyn et al. 2013) extracted at a redshift of z≈0
from a very high-resolution ΛCDM cosmology simulation
(h=0.7, ΩM=0.3, and ΩΛ=0.7). The simulation was
carried out with an MHD implementation of the
SPH GADGET-3 code (Dolag & Stasyszyn 2009). The
magnetic field in that cluster developed from a uniform,
primordial field of strength 10−11 G at z=20. For our study

here we mapped and centered the evolved cluster ICM and, to
allow continued, short-term dynamical evolution mentioned in
Section 4, applied a spherical approximation to the total
gravitational potential onto a 1Mpc3 Cartesian grid (called “the
cluster analysis box” below) of uniform resolution with
Δx=Δy=Δz=1 kpc. Details of the g676 cluster and the
brief simulation extension that produced the data we used can
be found in Mendygral et al. (2012) and references therein,
used for the study of jet propagation. This cluster was chosen
for its lack of recent mergers (the last major merger occurred
7 Gyr prior to the epoch of our RM experiments) and a
relatively relaxed morphological appearance, based on synth-
etic thermal X-ray observations (Mendygral et al. 2012).
Despite this rather long period devoid of major disruptions

and the relatively relaxed morphology, the g676 ICM at z≈0
still contains significant dynamical features; in particular, there
are large-scale “sloshing” motions due to gravitational interac-
tions with subhalos, with flow velocities approaching the
cluster sound speed (cs≈650 km s−1), so Mach∼1. The
sloshing velocity field is evident in Figure 5 of Mendygral et al.
(2012). Spiral density and magnetic field structures expected
from the sloshing (e.g., Ascasibar & Markevitch 2006) are
obvious in Figure 1 of the present paper. Small, isolated density
clumps visible in Figure 1 reveal subhalos present in the
original cluster formation simulation. Figure 6 in Mendygral
et al. (2012) provides a synthetic X-ray image of this cluster
along the same axis at approximately the same time. Although
the cluster is somewhat aspherical in that image, the sloshing
structures visible in our Figure 1 are not obvious.

2.2. Spherically Modeled Distributions

While the various deviations from spherical symmetry
outlined above are natural and relate to the dynamical state
of the cluster, they are not dominant, and for this RM model
study we follow the standard practice of constructing
symmetric averages for the density and magnetic field
distribution. Existing asymmetries will, of course, contribute
largely irreducible errors to the RM analyses, although on
scales of order the cluster core size, both electron density and
magnetic field distributions are actually reasonably spherically
symmetric and, in the latter case, reasonably isotropic. Based
on spherical averages, the core of the g676 ICM has a radius
»r 40 kpcc , central mass density r ~ - -10 g cm25 3

(ne∼4×10−2 cm−3), temperature kT≈ 1.6 keV, and pres-
sure » ´ - -P 2 10 dyne cmg

10 3.
The spherically averaged ICM mass density at r=500 kpc

is r ~ ´ - -3 10 g cm28 3, so this radius very roughly corre-
sponds to R500. The g676 ICM is modestly turbulent with core
turbulent velocities ∼50 km s−1 (Zhuravleva et al. 2011).
These properties correspond to core turbulent pressures <1%
of the total pressure. Outside the core, turbulent velocities
increase to ∼100 km s−1, but still contribute <5% of the total
pressure. The cluster magnetic field has values locally as large
as 12 μG in some strong central filaments visible in Figure 1,
but field strengths more typically fall into a range
B∼0.5–4 μG. The rms core field strength is ≈2 μG,
corresponding to a magnetic pressure in the cluster core

~ ~- -P P10 dyne cm 0.1%B g
13 3 . Thus, the central plasma

βp=Pg/PB∼103. Field strengths decrease outward, so that
B∼0.1 μG near r∼500 kpc, producing a magnetic pressure
that is again ∼0.1%Pg. Evaluating Equation (1) while assuming
BP∼B∼2 μG and L∼2×40 kpc as uniform values
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through the core would produce RM∼4000 rad m−2 as a
fiducial RM. The analogous result in the cluster outskirts would
be roughly two orders of magnitude smaller. Disorder in the
magnetic field then reduces the observed RM values from these
estimates by factors of a few within the core and by much
larger factors over the full cluster (Figure 5).

Spherically averaged ICM characteristics, represented as
functions of cluster radius, r, and in projection functions of
projected radius, a, are a standard approach to cluster RM
analysis, and underlie our modeling as well. Of course, this
overlooks real ICM structures that limit the comparisons
between the standard models and the physical ICM. As we set
up this basic model, we stress that the specific ICM properties
of this cluster are not themselves central to our subsequent,
analysis-based conclusions, since the task is to explore
uncertainties in analysis outcomes. That is, the underlying
questions being explored have to do with the uncertainties
inherent in the observational analysis methods to recover the
actual cluster properties, whatever they may be. It is also
important to note that the model parameters described below
are only used to interpret the data; the cluster simulation is not
based on such symmetry assumptions.

2.2.1. ICM Electron Density

For analysis modeling purposes we express the electron
density radial distribution, ne(r), in terms of a spherical beta-
law profile (Cavaliere & Fusco-Femiano 1976),

=

+
b

n r
n

1

, 3e
e

r

r

,0

2

c

c
3
2⎡

⎣⎢
⎤
⎦⎥( )

( ) ( )

where ne,0 is the central electron density, rc is the ICM core
radius, and βc represents the galaxy–gas velocity dispersion
ratio in the cluster, which is nominally assumed spherically
symmetric and isothermal. We display in the upper left panel of
Figure 2 the spherically averaged profile of ne(r), as well as the
best fit to Equation (3). The core radius in the fit is rc=41 kpc,
while βc=0.75. Both are consistent with observed properties
of real ICMs (e.g., Vikhlinin et al. 2006).

At this point it is useful to emphasize that observable
measures generally correspond to integrals along lines of sight;
that is, they represent projections. We generally cannot
determine 3D quantities directly, but depend on modeling
projections. In a spherically symmetric model the relevant

positional variable is the projected radius from the cluster
center, a, rather than the spherical coordinate, r. It is necessary,
for example, to distinguish between σB(r), an intensive 3D
quantity, and σRM(a), a projected quantity. We may, in
principle, be successful in determining σRM(a) from observa-
tions, but must model the projection to estimate σB(r). In this
context and an isothermal ICM approximation, the projected
electron density squared, S ane

2( ) provides a convenient proxy
for the (observable and projected) thermal X-ray surface
brightness distribution as a function of a. With a beta-law
density profile model

S =

+
b +

a
C

1

4n
a

r

2 3e

c

c

2
1
2⎡

⎣⎢
⎤
⎦⎥( )

( ) ( )

where ò p b b= = G - G
¥

C n r dr n2 3 1 2 3e e c c0
2

,0
2( ) ( ) ( )

is the square of the electron density integrated along the line of
sight through the cluster center. The upper right panel in
Figure 2 shows radial profiles of the projected, azimuthally
averaged electron density-squared distribution along the three
principal axes of our grid along with the beta-law model curve
determined by Equation (4) using the azimuthally averaged
electron profile shown in the upper left panel of the figure.
Deviations in the projected squared density fit to Equation (4),
coming especially from the spherical asymmetries noted above,
are as large as 15% near the cluster center, but less than 5% at
projected distances beyond the core radius.
Note that in order to derive empirical estimates for the

central magnetic field, the values of ne,0, βc, and rc must first be
derived from X-ray observations (real or synthetic, as described
above).

2.2.2. ICM Magnetic Field

We assume any foreground (e.g., Galactic) RM has been
removed, so that the integral in Equation (1) is along the line of
sight from the near edge of the cluster to the polarized emission
of an embedded source or to the far edge of the cluster for a
background source. For the best case scenario, we also assume
no other contributions to the RM, e.g., from the immediate
environment of the embedded source, or along the post-cluster
path to a background source. Although there are several long
magnetic filaments related to ICM sloshing motions in the g676
cluster, for modeling purposes, we assume the magnetic field is

Figure 1. Grayscale volume renderings of the g676 ICM along the z-axis showing (left) log of electron number density ( ´ ´- - - - n4 10 cm 4 10 cme
4 3 2 3) and

(right) log of the magnetic field strength ( m m B0.5 G 10 G∣ ∣ ). The volume rendered spans ∼1 Mpc. The cluster was extracted from an MHD cosmological
simulation (see the text for details).
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locally disordered and isotropic. This is a good assumption as
long as RMs can be averaged over sufficiently large scales. As
seen in the lower right panel of Figure 2, the magnitude of the
mean vector magnetic field, á ñB∣ ∣, is an order of magnitude

smaller than the rms field strength, á ñB2 or its dispersion σB.
In practice, effective isotropy will be valid provided the RM
observations relate to volumes comparable to or larger in size
than the cluster core or, as it turns out, equivalently, than the
correlation length of the magnetic field, as established below.
However, observations of individual radio galaxies may not
cover sufficiently large scales for this assumption to apply; over
smaller scales the á ñB∣ ∣ within the observed volume can remain
large compared to σB, while the observed estimate for σRM will
be too small to provide reliable information about the physical
dispersion in the local magnetic field strength, σB.

A different modeling issue arises on scales larger than the
core radius. Since the characteristic strength of the magnetic
field (e.g., σB) decreases systematically with distance from the
cluster core, as noted in the previous subsection, this behavior
must be included for effective modeling. Such a decrease with
distance is expected generally in clusters, except where local
activity (e.g., AGN jets) may have recently injected a large
amount of magnetic flux. The cluster-scale variation in the
magnetic field strength has been commonly expressed in terms

of a scaling relation between the magnetic field strength and the
ICM density (e.g., Dolag et al. 2001; Ryu et al. 2008; Kunz
et al. 2011). There are several plausible physical arguments for
such a dependence. For instance, flux freezing of a tangled
magnetic field during compression would yield

µ µ µ- -B ℓ V ne
2 2 3 2 3, where V∼ℓ3 is the volume contain-

ing the magnetic flux. Accounting for work done on a
disordered field by the ICM during adiabatic compression
would yield B∝V−1 ∝ ne while, alternatively, assuming
during compression that the magnetic energy maintains a fixed
ratio with turbulent energy would lead to µB ne

1 2. Rather
than assume a particular scaling choice, in this paper we will
consider s µ hnB e , with 1/2η1. Various MHD cluster
formation simulations have shown results roughly consistent
with such scalings (e.g., Dolag et al. 2005; Vazza et al. 2018).
In general, RM observers would not know η a priori and

would, therefore, have to estimate η based on theoretical
considerations or simulation results. In cases where there are
extensive RM data, one can attempt to estimate η by comparing
the radial dependence of σRM to the radial dependence of ne
(e.g., Dolag et al. 2001; Guidetti et al. 2008; Bonafede et al.
2010; Govoni et al. 2017). However, the ability to do this
depends on the unknown distribution of polarized sources
along the line of sight, the assumption of an unchanging

Figure 2. Global properties of the g676 plasma and magnetic field distributions. (Upper left) Spherically averaged electron density, á ñne , as a function of radius, r, in
cluster g676 (triangles) with beta-law profile fit by Equation (3) (solid curve), (upper right) azimuthally averaged projected electron density squared,Sne

2, as a function
of projected distance, a, along the analysis grid principal axes (x) with azimuthal average beta-law profile fit by Equation (4) overlaid, (lower left) magnetic field
strength dispersion, σB, vs. á ñne along with a fit to s µ á ñhnB e , and (lower right) σB as a function of radius (x) with the solid line representing a fit using Equation (5).
The mean vector magnetic field magnitude, á ñB∣ ∣, is also shown vs. radius. Note that the bins are logarithmically spaced, so represent larger averaging volumes at
larger radii.
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coherence scale, and the lack of any local effects around the
embedded radio galaxies. For g676, since we have full
knowledge of B, we can actually determine an approximate
value of η as follows. First, we calculate á ñn re( ) and σB(r)
within spherical shells of fixed thickness and uniform
logarithmic spacing in r, then compute a least-squares fit for
log σB(r) versus log á ñn re( ) within the cluster. The result,
shown in the lower left panel of Figure 2, produces η=0.5,
with a central, core magnetic field strength disper-
sion, s m= 1.9 GB,0 .

Using such a density scaling, along with the beta-law density
profile model in Equation (4), we can express the spherically
averaged magnetic field strength dispersion as a function of
radius, r, by

s
s

=

+
hb

r

1

, 5B
B

r

r

,0

2

c

c
3
2

⎜ ⎟⎛
⎝

⎞
⎠( )

( ) ( )

where βc and rc are obtained from the electron density
distribution as described in the previous subsection. The radial
profile of σB for g676 is shown in the lower right panel of
Figure 2 along with a least-squares fit to Equation (5) allowing
both η and σB,0 to vary. As expected from the excellent fits for
the beta-law density form and the previously established log σB
versus log ne form, the best-fit parameters in g676 are
consistent again with σB,0=1.9 μG and η=0.5.

3. Estimating the Magnetic Field Distribution from the RM
Distribution

3.1. The Basic Model

The previous section outlined the actual 3D magnetic field
and electron density distributions in our simulated test cluster,
g676, and described beta-law model, spherically symmetric
radial fits for those distributions. The observational challenge is
to recover the (spherically averaged) magnetic field properties
as a function of radius, r, in a cluster from an observed
distribution of RM, which is a 2D, projected quantity. In
particular, the objective is to obtain estimates for σB(r) and then
σB,0 from the RM dispersion, σRM(a), as a function of projected
radius, a. If the magnetic field is disordered and isotropic,
Section 1 showed that this problem reduces to obtaining
reliable measures for the RM dispersion, σRM(a) along with an
estimate of the magnetic field coherence length, Λ(r), within
the cluster, and assuming some value or range for η. We
emphasize that, in practice, one cannot directly determine Λ(r),
which is a property of the 3D magnetic field, but must rely on
estimating the projected RM coherence length, Λ(a) and
modeling a connection between these lengths. Generally, if the
magnetic field is isotropic, the magnetic field and RM power
spectra are proportional (e.g., Enßlin & Vogt 2003). Thus, it is
possible, in principle, to derive the shape of the magnetic field
power spectrum from the RM distribution (e.g., Murgia et al.
2004; Guidetti et al. 2008; Laing et al. 2008; Vacca et al. 2012;
Govoni et al. 2017). In this work we do not attempt to
determine any specific form of the magnetic power spectrum.
Rather, we rely on the simple assumption,
Λ(a)≈Λ(r)=(3/4)Lint(r=a).

To summarize, the procedure we used in this work to
estimate from observations the rms value of the magnetic field
strength at the cluster center, σB,0, is to:

1. determine the central density ne,0, and βc and rc from
X-ray observations;

2. estimate σRM(a) and fit it to a beta-law model in order to
estimate the central σRM,0;

3. determine an estimated value for the RM coherence
length, Λ, and make an assumption about whether it is a
constant or a function of cluster radius;

4. assume a value for the magnetic field density scaling
parameter, η;

5. derive from these inputs σB,0, as outlined below.

To estimate the theoretical central RM dispersion, σRM,0, for
our cluster we average RM and RM2 azimuthally with respect
to the cluster center as functions of projected cluster radius, a,
and calculate s = á ñ - á ña RM RMa aRM

2 2( ) ∣ ∣ . Assuming an
isotropic magnetic field along with beta-law radial electron
density and magnetic field models, we integrate through the full
cluster to obtain from Equation (5) the actual, theoretical radial
RM dispersion distribution. Following Dolag et al. (2001), with
a fixed Λ=Λ0 within the cluster and observational path
lengths through the cluster, ℓ?Λ0, this would give
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3

2

1

4
( ) and σRM,0 is the

central RM dispersion. Note also that for Equation (6) to be
consistent with σRM values determined from observations that
will be used in practice to estimate σB, the observational
distribution of RM sight lines must span projected scales
significantly exceeding Λ0.
Figure 3 displays the RM distributions in g676 (at 1 kpc

resolution) obtained using a polarized screen with a 100%
covering factor behind the cluster, viewed alternately along the
three analysis grid axes. We can now use the central RM
dispersion, σRM,0, in Equation (6) to derive the central
magnetic field dispersion, σB,0, in Equation (5) for constant
Λ=Λ0 by the relation
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The rms variation in magnetic field as a function of radius σB,r
then follows from Equation (5).
We point out in the Appendix that Lint(r) (and therefore Λ

(a)) actually increases with radius in our test cluster or, as a
conveniently simple alternative expression, decreases with
spherically averaged mean density (or for Λ(a), projected mean
density). If we adopt the scaling relation suggested in
Section 2, namely Lint ∝ ne

−η/2, we can model the projected
RM coherence scale, Λ(a), as

L = L +
b h
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where Λ0, now refers to Λ(a=0). Equation (6) then becomes
slightly modified to

s
s

=
+

aa
1

, 9
a

r

RM
RM,0

2

c

2⎡
⎣⎢

⎤
⎦⎥( )

( ) ( )

6

The Astrophysical Journal, 888:101 (16pp), 2020 January 10 Johnson et al.



where a h b a hb= + - = -1 c c2
3

2

3

4

1

4 1
3

8
( ) . For characteris-

tic parameters βc∼3/4, η∼1/2, the difference between α2

and α1 is roughly 10%. σRM,0 can still be obtained using
Equation (7), provided Λ0 is found from Equation (8) and α2

replaces α1 in the Γ function arguments. The latter substitution
leads to a small renormalization of the rhs of Equation (7)
(<3% for the above characteristic βc, η). On the other hand, we
note that, in the case of g676, Λ(a) varies by a factor of 3

between a=rc and a=10rc, so including the variation of Λ
with radius in fitting for σRM,0 can significantly change the
estimates of σB,0.
We emphasize again that the above relationships assume

both that the magnetic field itself is reasonably isotropic, so that
á ñ á ñB B2 2(∣ ∣)  , and that the RM values used in computing

σRM broadly sample independent parts of the RM distribution.
If the RM distribution is not well sampled on large enough
scales (Λ), then even for an isotropic magnetic field the
measured properties will lead to á ñ ~ á ñRM RM2 2( ) . In
particular, it is critical to include lags, Da∣ ∣, between sampling
points that satisfy D La∣ ∣ . Murgia et al. (2004) show the
dependence of sá ñRM RM as a function of the utilized sampling
space. In the case where the sampling region is too small, the
estimated σRM (= á ñ - á ñRM RM2 2 will generally be reduced,
so will lead to underestimates for σB,0 through Equation (7).
As noted above, both βc and rc in such an analysis are

established observationally from the X-ray surface brightness
distribution. From synthetic X-ray observations of our
simulated cluster we found in Section 2.2 values of
βc=0.75 and rc=41 kpc. The remaining parameters in our
RM models are σRM,0, η, and Λ0. We defer discussion of
estimates for Λ0 to the following subsection. The central RM
dispersion, σRM,0 is obtained from observations by fitting an
empirical RM distribution to Equation (6) (or alternatively
Equation (9), if Λ is a function of radius).
The η parameter needed in Equation (10) comes from

interpreting the fitted slope as α1 for a fixed RM coherence
length, Λ(a)=Λ0, or as α2, if the RM coherence length
follows Equation (8). For reference we recall here that in
Section 2 we obtained η=0.5 from the 3D density and
magnetic field distributions in our cluster. Using βc=3/4 and
η=1/2 as nominal parameters, the exponents in
Equations (6), (8), and (9) become
a b h= » = »23 16 1.44, 9 32 0.28c1

3

4
and

a = »83 64 1.302 respectively. Outside the cluster core,
where a/rc?1 the theoretical RM dispersion would scale
with projected radius as σRM∝(a/rc)

−2.9 for constant Λ.
Including the previously outlined density scaling for Λ would
lead to Λ(a)∝(a/rc)

0.56 and σRM(a)∝(a/rc)
−2.6. These are

rather strong radial scalings, especially for the RM dispersion.
One obvious consequence that we address in the next
subsection is that measurements depending on σRM that include
the cluster core will be dominated by contributions from
the core.
In preparation for the discussion below, we also point out the

sensitivity of solutions for σB,0 to the η parameter. That
sensitivity comes through its presence in the RM distribution
shape parameters, α1,2 in Equations (6) and (9). In particular, as
η decreases, both α1,2 decrease, so the radial variation in σRM is
reduced. Thus, given values of σRM at finite radii, a, smaller η
lead to smaller values for σRM,0 and thus smaller values for
σB,0.
Finally, for convenience, we rewrite Equation (7) in terms of

approximate values for the g676 cluster. In particular,
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Figure 3. RM map of the projected central 200 kpc of the g676 ICM obtained
by integrating through the whole extracted analysis box (1 Mpc length) along
the z-axis (top), y-axis (middle), and x-axis (bottom). The colorbar unit
is -rad m 2.
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All our analysis fits below assume a central electron density,
n0=4×10−2 cm−3 and cluster core radius, rc=41 kpc.

4. RM Experiments Using Discrete Regions

In the previous section, to obtain a “theoretical” distribution
for σRM we assumed that data were available from a well-
sampled background polarized screen spanning the entire
cluster. This is not achievable in practice, so we conducted a
series of experiments restricting those conditions in ways that
mimic common experience. In each case, we generated a finite
set of discrete background regions (patches), each with their
own values of projected radius, òa A a dA1i i i( ) with Ai

the area of an individual patch. For each patch, there was an
associated “measured” á ñRMi and sRM i, .

In Section 4.1 we will look at fully sampled background
screens, using discrete regions in the form of annuli
surrounding the cluster center. Although the cluster is then
still fully sampled, the discretization of the RM information can
introduce problems, as discussed below. In Section 4.2 we will
use rectangular masks of various sizes placed at different
locations along the line of sight, to approximate RM
observations of individual radio galaxies embedded in the
cluster.

In order to reduce “pixelation” issues associated with the
1 kpc3 discrete voxel size of the MHD simulation that produced
the ICM being modeled, all subsequent 2D images presented
below are averaged over 2×2 pixels, for an effective
observing resolution of 2kpc. This is still sufficient to sample
the RM structure, but does impose a fine scale cutoff, for
example, to a structure function analysis we carried out on
synthetic RM data (Figure 4).

4.1. Discrete Background Screens

Here we assume the observer can sample RMs on discrete
background screens. Rather than the full sampling available in
our “theoretical” RM scenario in Section 3, discrete patches do

not necessarily allow full sampling of the RM distribution. The
coverage depends on how the patches/screens are constructed.
Information can be lost that may or may not influence the
estimation of σRM,0. Most important in this is the maximum
length of the available lag vectors, Da∣ ∣, since without large
lags, D La∣ ∣ , all the RM values within a patch will be
correlated. In that case, á ñ ~ á ñRM RM2 2 within each patch,
even if the underlying magnetic field is disordered and isotropic
on scales beyond Lint≈Λ. Then σRM will be reduced from its
true, physical value needed to estimate σB properly.
For these experiments we first create ideal background

patches in the form of annuli around the cluster center,
uniformly spaced in alog i with the minimum ai placed
somewhat inside the projected core radius. We explored the
consequences of varying ring thicknesses, δa, and found
converged results so long as δa�10 kpc. Thus, we limit our
discussion to the illustrative δa=10 kpc case. Note that, due
to the logarithmic spacing, there is some overlap in the annuli
at the smallest radii, and gaps between the rings at the largest
radii.
The two panels of Figure 5 summarize results of the

δa=10 kpc annular rings viewed along the three primary grid
axes. The top panel shows measured σRM(ai) values plus fits to
the form in Equation (9) for variable Λ allowing η as a free
parameter (see Table 1 for fitting summaries).
We checked whether the annuli have adequately sampled the

largest scales of the RM fluctuations by examining the ratio
sá ñRM RM∣ ∣ , which in reality should be small. The computed

values for each annulus are shown in the bottom panel of
Figure 5. The median sá ñ ~RM 0.2RM∣ ∣ . Even with the
apparent scatter, the values are small enough that the associated
σRM still represent reasonably appropriate measures for an
isotropically disordered magnetic field behavior.
Table 1 provides an analysis summary from the annular

background screen experiment. Results are given both for
constant Λ=Λ0 and radially varying (Λ=Λ(a)). In each case
fits are shown with fixed (preset) value of the magnetic field
density scaling parameter, η=0.5 and also with η as a free
fitting parameter. These estimates for Λ0 using annular
background screens are consistent with what we found from
the full background screen in the previous section, for the same
assumptions. The results in Table 1 show that if we fix η, then
we get a range of only 10%–20% in the values derived for σB,0
from the various projections. (Note, however, that the average
for σB,0 in the fixed Λ case is off by a factor of 1.6.) We see
further that if η is allowed to vary in the fitting, estimates of
σB,0 will span a range ≈3. Thus, with full RM coverage and
independent knowledge of η it is possible to derive estimates of
the magnetic field strength only within a range ≈3.
The strong relationship that exists between the derived σB,0

and η from these solutions is illustrated in Figure 6. This arises
from the sensitivity of σRM(a) to η through the α1,2 shape
parameter in Equation (6) or Equation (9). Smaller η leads to
smaller α1,2, which makes the form of σRM(a) “stiffer.” Thus,
for example, a fit to σRM(a) in Equation (9) using η=0.5
increases between a/rc=5 and a/rc=0 by a factor of 4
larger than it does using η=0. An additional contribution to
the η dependence of σB,0 in Equation (10), when Λ varies with
cluster radius, comes from the η dependence of Λ(a) itself in
Equation (8). This important degeneracy between the magnetic
field model parameters has been extensively discussed in the
literature (e.g., Murgia et al. 2004; Guidetti et al. 2008;

Figure 4. Second-order structure functions of the measured RM distributions
for the g676 ICM across the full, (1 Mpc)2 analysis box seen down the z-axis
(red), y-axis (green), and x-axis (blue).
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Bonafede et al. 2010; Vacca et al. 2012). In general, higher σB0
correlate with higher η.

Thus, even estimates using near-perfect RM coverage are not
reliable to better than a range of 3 unless η is assumed correctly
within an unmeasurable range of values. Looking more closely
at the variable-Λ fits in Figure 6, we see that there is little
change from the derived value of σB,0 compared to the fixed Λ
case, although η increases by ∼0.1–0.2. If η were to be held
fixed in the fits, however, as we suggest below, then the
assumption of a variable Λ(a) can result in a factor of up to 2
decrease in σB,0.

We performed an additional test of the robustness of the
annular sampling procedure by placing the polarized screens at
the mid-plane, instead of behind the cluster. We again viewed
the screens along the three principal grid axes from both
directions. When the computed σRM,0 values for each mid-
plane experiment were renormalized by a factor 2 to adjust
for the shorter path (factor 1/2) to the mid-plane, σB,0 estimates
were consistent with those for the above annular background
screens within the statistical uncertainties. This good match
was possible because paths through half the cluster still
incorporate multiple RM coherent lengths and, just as
important, we know the actual path to the screens. The rescaled
mid-plane annular ring screen partition σB,0 values are shown
in Figure 6 with mid-plane identifications.
To examine whether these results were dependent on the

specific use of annuli, we repeated the experiment by breaking
up the background screen into a set of square patches. As long
as the square patches were larger than Λ0 (∼20 kpc), the
average derived values of σB,0 were consistent with the actual
values, although with larger scatter between the different
projections than the annular results, which spanned scales
L0 . When the square patches were smaller than Λ0, the

derived σB,0 values were consistently too small (a factor of 2
for 12 kpc boxes), consistent with expectations. As noted
earlier, the value of sá ñ RM 1i RM i,∣ ∣ provided a good
indicator that the larger scales of RM variations were not
being adequately sampled by the 12kpc boxes, since they are
smaller than the actual magnetic field coherence length.

4.2. Embedded Masks

To approximate the type of information available from RM
observations of cluster-embedded radio galaxies, we conducted
a series of experiments using rectangular “masks” that provide
a sparse but observationally realistic sampling of the cluster
RM distribution. The first type of experiment simply sampled
the RM distribution of rectangular masks placed randomly
along and at right angles to the line of sight at different
projected positions within the cluster. The second type of
experiment looked at the RM distribution along the lines of
sight to a central radio galaxy that was actually evolved by
MHD simulation within this ICM. We defer to a subsequent
study the RM consequences from physical displacement of
adjacent ICM. Here we simply insert a 2D mask into the
undisturbed ICM that matches the silhouette of the radio
galaxy.
Our analysis of these embedded masks was similar to those

discussed above. Statistics from synthetic RM observations
were computed across individual masks to determine values for
σRM(ai), with ai the mean projected cluster radius of each mask.
The ensemble σRM(a) distributions from the masks were then
fit to Equation (9) to find σRM,0. They were also incorporated
into a second-order RM structure function (Equation (12) in the
Appendix) to find Λ(a). Then Λ(a) as represented in
Equation (8) was used to estimate Λ0. σRM(ai) errors were
assigned for the purposes of finding σRM,0, including a
statistical component~

N

1

dof
, where Ndof represents the number

of independent observing beams across a mask plus a constant
-5 rad m 2 component representing the uncertainty in the

measurement of σRM. Although somewhat arbitrary, most
observations would have uncertainties at least this large These
two error components were added in quadrature to get the total
error used. Finally, Equation (10), renormalized by a factor 2

Figure 5. Distributions and fits to the background screen σRM for (upper panel)
logarithmically spaced, circular annuli of projected radius, a, (10 kpc thickness)
for views along each principal axis of the (1 Mpc)3g676 analysis box; see
Table 1 for fitting summaries. Lower panel: normalized means sá ñRM RM∣ ∣
corresponding to σRM results in the upper panel. Statistical errors for the annuli
data points are symbol sized or smaller.
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to account for the assumed mid-plane location, was used to
translate σRM,0 and Λ0 into σB,0.

4.2.1. Embedded Passive Masks

In this experiment, we randomly distributed multiple
polarized, rectangular planar masks within our cluster, with
the mask normals aligned to the line of sight. Individual
rectangular masks had variable aspect ratios. Their side lengths
ranged between 5 and 50 kpc representing the extent of typical
RM maps of cluster galaxies, e.g., Vacca et al. (2012). Their
average extent, ≈20 kpc, was comparable to the RM coherence
length in the cluster core, Λ0≈17 kpc, but smaller than the
cluster core radius, rc≈40 kpc.

The randomly distributed, rectangular mask experiments
involved ensembles of three, eight and 14 masks. Figure 7
illustrates an example synthetic RM observation from the eight-
mask experiment as they appear along the z-axis. RM
distributions were obtained for each mask ensemble projected

along all three grid principal axes from both directions (so a
total of six views). To derive σRM,0, we assumed the masks to
be in the cluster mid-plane, although in fact they existed at
random displacements with respect to that plane. Averaged
over all views, the sources are centered around the mid-plane.
Figure 8 presents the σRM statistics for the eight random

embedded mask RM distribution shown in Figure 7 along with
curves representing two fits of Equation (9) to the data. The
solid curve includes η as a fitting parameter, so that the shape
parameter, α2, of σRM(a) is part of the fit. It is obvious in this
case that the available data are simply inadequate to obtain a
meaningful value for η as part of the fitting effort. The best-fit
value, η=−0.37, is unphysical, while the accompanying value
for σRM,0≈152 rad m−2 is only about one-fifth the values of
∼700 rad m−2 obtained from the background screen. The
dashed curve in Figure 8 represents a fit to the same random
mask RM data, but with fixed η=0.5, matching the physically
determined value in this cluster. The associated estimate for
s = -400 rad mRM,0

2 is an improvement, but still only about
60% the expected value.
We restrict our remaining analysis of the random mask

experiments to the physically established η=0.5 (along with a
radially dependent Λ(a) represented in Equation (8)). Table 2
summarizes those experiments. It lists the áL ñ0 and sá ñRM,0

Table 1
Statistical RM Estimates of the ICM Magnetic Field Using Background Screens

áL ñ0 sá ñB,0

s
sá ñ

range B

B

,0

,0( ) sá ñB0

s
sá ñ

range B

B

,0

,0( ) há ñ range(η)
(kpc) (μG) (μG)

Fixed η=0.5 Fitted η

Λ=Λ0 Λ=Λ0

BG annuli 22 3.33 0.96–1.07 2.15 0.62–1.70 0.38 0.31–0.50
Λ=Λ(a) Λ=Λ(a)
BG annuli 16 1.96 0.94–1.06 2.30 0.61–1.72 0.51 0.41–0.67

Note. Averages and errors are calculated including all three viewing directions for a given experiment. The η parameter defines the scaling s µ hnB e . The assumed
form for Λ(a) is given in Equation (8). The σB,0 values on the left of the table assumed η=0.5, while σB,0 values on the right correspond to the associated, fitted há ñ,
with central electron density, n0=4×10−2 cm−3 and ICM core radius, rc=41 kpc. The fit to the actual 3D magnetic field in the cluster yields s m= 1.9 GB0

and η=0.5.

Figure 6. Empirically estimated σB,0 and η using σRM calculated from mid-
cluster (five-point symbols) and background (three-point symbols) annular
screens. Constant coherence scale Λ solutions are green, while density-
dependent Λ solutions are red. The black circular point marks the actual, 3D
g676 global magnetic field properties.

Figure 7. RM map for eight randomly distributed, embedded but passive
“source” screens viewed down the z-axis of the g676 analysis box. The
projected cluster center is in the middle of the view. Individual source projected
distances from the near box face, ai, range from ∼70 to ∼250 kpc. The
colorbar unit is -rad m 2.
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values obtained from six combined views of each embedded
source ensemble and associated representative estimates for
sá ñB,0 along with ranges of these values for different views after
trimming the two most extreme values from the calculation.
This provides a very conservative estimate of the uncertainties.
Several points are clear. All of the experiments produce σRM
estimates (and consequently σB,0 estimates) that are both highly
uncertain and significantly reduced from correct values for this
ICM. Similar to our full-screen experiments with square box
partitions (Section 4.1), this results from the fact that these
masks are too small to sample independent portions of the RM
distribution adequately. Accordingly, the ratio sá ñ á ñRM RM∣ ∣ is
simply too large to allow reliable translation of σRM into σB
through Equation (10).

The results in Table 2 from the eight-source experiments are
no better than from the three-source experiments. This
demonstrates that the undersampling within each patch of the
larger-scale fluctuations, rather than their limited number, is the
critical limitation. Additional scatter is introduced in this
experiment because the masks are not actually at the assumed
fixed mid-plane location.

4.2.2. Embedded Central AGN Jet-formed Cavity Masks

In another set of experiments we measured the foreground
RMs in front of the cavities produced in numerical simulations
where intermittent bipolar AGN jets were injected at the center
of the cluster (run g676 in Mendygral et al. 2012). The use of
intermittent jets, with a 50% duty cycle, resulted in distinct,
“fat” cavities with axial ratios of ∼2:1. In the experiments we

describe here, we used those AGN simulations only to define
the silhouette of the two cavities; the ICM for our purposes was
exactly the same as in our previous experiments, with no
central AGN. The cavity silhouettes thus define our “masks”
within which to measure RMs. They evolved in time, with a
greatest extent of approximately 120kpc on each side. At each
of two times, 79 and 92Myr, we used the corresponding ICM,
evolved without the presence of the radio galaxy; in this way
our results reflect only the time-dependent behavior of the
ICM, without the influence of the radio galaxy. Analysis of the
RM structure with the actual jet-modified ICM will be
discussed in a future work. The orientation of the jet axis
was arbitrarily set to ≈45° from the z-axis of the analysis grid,
and the mask planes included the major axis of each cavity and
the joint normal to that axis and the line of sight. We observed
the bipolar masks bidirectionally along all three analysis grid
axes, and from two arbitrary directions normal to the jet axis
(so eight views in total) at each time. Figure 9 shows RM
distribution maps of the masks viewed along the z-axis at the
two times mentioned above.
For the RM analysis, we partitioned each projected mask

into annular sectors centered on the position of the AGN at the
cluster center. We present the results utilizing the radially
dependent Λ(a) in Equation (8) with η=0.5. In the translation
of σRM,0 to σB,0 both sides of the AGN structure were assumed
to be in the mid-plane of the cluster, so that a renormalization
factor 2 was applied to Equation (10). In actuality, for views
down the grid axes, the distance along the line of sight varied
across the mask, but in a way which the average line of sight
was approximately equivalent to the mid-plane line of sight.
Those details turn out not to be particularly important,
compared to the differences in RMs from the different viewing
angles.
Table 3 lists the values for sá ñB,0 averaged over all eight

views, as well as the range in s sá ñB B,0 ,0 for the individual
views. Once again the two most extreme values of σB,0 were
excluded from each range. At both observation times, the mean
value, sá ñB,0 , comes within roughly 10% of the associated
physical σB,0 of the cluster. This is a consequence of the masks
covering spatial scales significantly larger then Λ0. Although
the averages are quite accurate, the individual derived values
σB,0 span more than a factor of two. This reflects the fact that
the ICM is not, in reality, statistically homogeneous, even on
scales larger than Λ0, with distinct features such as the
magnetic filaments evident in Figure 1. Different views
therefore can yield quite different estimates of σB,0.

5. Discussion

The most important finding from these studies is that the
strength of the central magnetic field can only be determined to
within a range of ∼3 even in the ideal, practically unrealistic
case of a fully sampled background of RMs. In any more
realistic situations, with very partial sampling, estimates of the
central field strength are much more uncertain, ranging up to a
factor of 30 in our experiments. The critical factors leading to
these uncertainties are as follows.
(a) ICM inhomogeneity. The richness of magnetic field

structures, even in clusters that have not experienced a recent
significant merger, is evident in Figure 1. In an ideal world,
these real inhomogeneities would become statistically incon-
sequential on large enough scales. In practice, clusters will
have inhomogeneities that span scales as large as the cluster

Figure 8. RM statistics from the passive, “embedded source” screens shown in
Figure 7. Two fits for σRM(a) as described in Section 4.2 are shown. The solid
(red) curve includes η as a free parameter, while the dashed (blue) curve fixes
η=0.5. The intercept of the latter fit (off scale) is s = -400 rad mRM,0

2. The
derived values for σB,0 are then obtained using Λ0=32 kpc, taken from the
structure functions of the associated RM distribution, assuming, rc=41 kpc,
n0=0.0378 cm−3. Error bars on the individual measurements are under-
estimated, based on an optimistic assumption of the number of independent
points in each mask; however, the actual scatter among them is much larger
than any statistical uncertainties, and arise from the actual variations along the
different lines of sight to the mask.
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itself due to the ongoing intermittent accretion along filaments,
etc. We studied the influence of these inhomogeneities on σB,0
determination by viewing the cluster from different directions
under a range of circumstances. These included the ideal of a
fully sampled polarized background screen spanning the
cluster, and the more realistic case of sparse sampling. When
averaging over multiple, individual experiments in a class, an
accurate value of σB,0 can sometimes be recovered (e.g., 10%–

20%), although this commonly involves the unrealistic

assumption that the physical parameters that characterize the
distribution, η and Λ0, are well-determined. Even then, any
individual experiment will typically yield a value within a
range of no less than a factor ≈3.
(b) Magnetic field, density scaling. The derived σB,0 is

sensitive to the magnetic field density scaling parameter, η
( µ hB ne ). While MHD cluster formation simulations show that
there can be a characteristic scaling, s µ hnB e , in practice, η
cannot be determined accurately from observations. Fitting for
η depends on subtle shape differences in the profile of σRM(a),
as described in Equations (6) and (9). Even for fully sampled
background screens, allowing η to vary in fitting leads to a
large range in derived σB,0 as seen in Figure 6. The problem is
greatly exacerbated for sparse sampling similar to that available
from actual observations. In that case, the shape of σRM(a) is
poorly constrained, and the unknown position along the line of
sight of a source (see point d) adds a further large
complication. Since many simulations indicate that η≈0.5,
our experiments suggest that assuming that value, or something
similar, may yield the most accurate estimates of σB,0.
(c) RM coherence length. Using Equations (2) and 10, the

magnetic field estimates scale as the assumed value of L . We
estimated Λ from the RM structure function, identifying the
scale, ΛSF, at which the slope of the structure function first
reached zero from small scales as Λ. In the ideal case of the
mid-plane screen experiments, we found a range of∼25% in Λ,
which therefore makes only a minor contribution to the error
budget. Randomly placed embedded source experiments have
more limited sampling, and the range of derived ΛSF and
estimated central cluster value Λ0 is 10–30 kpc. But since σB,0
depends only on L , this has relatively modest impact
compared to a or b. We note that while this procedure was
successful in the current experiment, one can envisage other
magnetic field configurations, such as very flat magnetic power
spectra, where only the minimum scale is accessible, and a
different way of utilizing the RM structure function would be
needed (e.g., Laing et al. 2008).
(d) Line-of-sight uncertainties. Since the positions of

individual, embedded sources along the line of sight are
unknown and unknowable (except for cluster center sources),
the application of Equation (2) must be based on some
assumption. In our derivations, we assumed that all RMs were
integrated through the entire cluster or, for our mid-plane
experiments, half the cluster. For a large enough sample of
sources with RMs, the mid-plane would be a good approx-
imation. However, as each individual source contributes to the
measurements η and Λ(a), the assumption of a mid-plane
location can lead to large uncertainties and even apparent non-
physical behaviors (e.g., a derived negative fit for η). In the best
case, where we fix η and the Λ(a) behavior, Table 2 shows that

Table 2
Statistics for Randomly Embedded Masks

áL ñ0 sá ñRM,0

s
sá ñ

trimmed RM,0

RM,0
( ) sá ñB,0

s
sá ñ

trimmed B

B

,0

,0( )
(kpc) (rad m−2) (μG)

Three sources 16 526 0.71–1.2 1.5 0.73–1.2
Eight sources 21 462 0.74–1.2 1.2 0.75–1.2

Note. Averages include all six viewing directions for a given experiment. σB,0 is computed from σRM,0 using Equations (10) and (8), with η=0.5, L = áL ñ0 0 , central
electron density, n0=4×10−2 cm−3, ICM core radius, rc=41 kpc, and assuming the sources are all in the cluster mid-plane. Trimmed ranges exclude the two most
extreme values, so would represent 67% probabilities if the distributions were Gaussian. Full ranges for these experiments and those reported in Table 3 were typically
an order of magnitude or more.

Figure 9. RM maps of the embedded, passive bipolar AGN masks viewed
down the grid z-axis at t=79 Myr (top) and t=92 Myr (bottom). Colorbar
units are rad m−2. The AGN jets are active at the lower time, but inactive at the
upper time. Details of the mask construction are in the text.

Table 3
Fits from Passive AGN Masks

áL ñ0 sá ñB,0

s
sá ñ

trimmed B

B

,0

,0( )
(kpc) (μG)

t=79 Myr 16 1.95 0.72–1.7
t=92 Myr 16 1.80 0.63–1.5

Note. Each sá ñB,0 is derived from RM data along eight viewing directions using
the same fitting parameters as for values in Table 2. The physical 3D ICM
magnetic field properties evolved to the observation time 79 Myr (92 Myr)
were σB,0=1.79 μG, η=0.41 (σB,0=1.60 μG, η=0.39). See Table 2 notes
regarding trimmed values.
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a range of 3 in the fit for the trimmed σB,0 can be achieved. The
variations contain contributions from both cluster inhomogene-
ities and the assumption that the sources were all at mid-plane,
when actually they were sampling only the path length
appropriate to their 3D position in the cluster and the particular
projected view.

5.1. Comparison to Current Cluster Analyses

One of the best data sets for cluster RM analysis comes from
Hydra A, the central radio source in a cool core cluster, mapped
by Taylor & Perley (1993), and further analyzed by Vogt et al.
(2005) and Vogt & Enßlin (2005). The latter work presents a
Bayesian analysis of the northern lobe of the source, which
extends ∼40 kpc from the center, comparable to the inner core
radius of the X-ray distribution. They derive the magnetic field
power spectrum, finding a portion with slope ~ 5

3
, a

characteristic RM coherence length of ∼5kpc, and a central
field strength of 7±2 μG . Although they describe these errors
as reflecting the systematic uncertainties in the distance along
the line of sight (reflected in the inclination of the radio source)
and in the range in acceptable values of η from 0.1 to 0.8,
results are only reported holding one or the other of these
parameters fixed. Their equivalent Λ0 is held fixed, and since
the full spatial resolution is only utilized over ∼20kpc,
because of signal-to-noise concerns, there is no information
available on any radial variation in the coherence length.
However, the most important shortcoming of this analysis is
that it applies only to the northern lobe. The southern lobe was
explicitly excluded from this analysis because it has different
RM properties, with a much stronger RM power spectrum,
leading to RM values reaching ∼12,000 rad m−2, with
associated strong depolarization. A later analysis of HydraA,
including both lobes and assuming that the lobes had created
cavities in the surrounding medium, was performed by Laing
et al. (2008). The latter authors find (a) less gas, (b) a different
preferred value for η, (c) a magnetic field autocorrelation length
twice as high, and (d) a central magnetic field strength 2.5×
higher than in Vogt & Enßlin (2005). The characterization of
the central magnetic field strength with high accuracy in Vogt
& Enßlin (2005) therefore does not reflect the uncertainties that
are present, as shown in this paper, in the modeling of the
magnetic field in this cluster.

Vacca et al. (2012) use a different type of analysis to
measure the magnetic power spectrum in A2199. Their
approach is also Bayesian, and involves comparing a range
of simulations with the observed RM distributions of 3C338, a
central radio galaxy with RM measurements extending over
�40 kpc. The maximum fluctuation scale is only approxi-
mately characterized at 35±28 kpc, which is expected given
the limited RM sampling available. They explicitly show the
sensitivity of the central magnetic field strength to the
maximum scale, as we also discuss here. Their final estimates
of η are from 0.4 to 1.4, and a central magnetic field strength of
2.7–20.7. This large range is consistent with the results of our
experiments.

A study of A194 using RM observations from the Sardinia
Radio Telescope and the VLA are presented by Govoni et al.
(2017). They use a Bayesian-type analysis based on 3D
simulations assuming a power-law magnetic field spectrum,
while utilizing both the RM distribution and fractional
polarization information. They find η=1.1±0.2, a maximum
scale of 64±24 kpc, and a central magnetic field of

1.5±0.2μG. Their polarization information extends over
260kpc, so we would expect the variations in the field to be
very well sampled. However, the observed RM distribution has
a mean value of 15.2 rad m−2 with σRM=14.4 rad m−2. In this
case, sá ñ á ñRM RM∣ ∣ is not small, as required by the analytical
modeling described above, and only a Monte Carlo-type
analysis such as performed by Govoni et al. (2017) can be
used. In A194, most of the polarized emission comes from
3C40B, associated with a luminous galaxy in the cluster core,
so the position along the line of sight is reasonably well
constrained. Remaining uncertainties, such as discussed in the
Govoni et al. (2017) analysis, include possible non-power-law
magnetic field distributions and/or cavities produced by the
radio galaxy lobes (e.g., Laing et al. 2008).
In summary, we find that existing derivations of cluster fields

from RM observations reflect the same kinds of fundamental
uncertainties that underlie our analysis. In some published
observational analyses, the derived central field strengths are
reported with uncertainties consistent with our findings, while
in other cases, the extent of the uncertainties is not adequately
addressed, and may be seriously underestimated.

6. Conclusions

The derivations of central magnetic field strengths in clusters
of galaxies are subject to a number of important uncertainties.
From a physical standpoint, cluster magnetic fields are likely to
be statistically inhomogeneous, being influenced by distur-
bances due to the continuing growth and evolution of the
cluster, even when no major cluster encounters have occurred
recently. Then, even in this “best case” situation, a specific
“central field value” may not be appropriate or adequate to
address key science questions associated with the ICM. This
needs to be evaluated on a case-by-case basis.
Using as a test base the known magnetic field distribution in

a relatively quiescent cluster formed during cosmological
simulations, we have found that magnetic field determinations,
even in the perfect but unrealizable case of a fully sampled RM
distribution, are limited to a range of ∼3. In the case of actual
observations of real clusters, several practical, irreducible
limitations can cause estimates of the central field strengths to
span at least an order of magnitude. These limitations include
the unknown scaling of magnetic field strength with ICM
electron density, RM sampling limitations that lead to under-
estimates of the magnitude of RM fluctuations, and possible but
unknown variations of magnetic field structure scales with
distance from the cluster center. These limitations in obtaining
fits to these model parameters and the desired magnetic field
strengths are amplified by uncertainties such as the unknown
positions along the line of sigh of polarized sources used to
determine RMs. It will thus always be necessary to introduce
both physical and sampling assumptions into any derivations of
cluster fields. It is important that all such assumptions are
clearly stated, and that the uncertainties in those assumptions
be reflected in the final derived values.
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computation time allowing us to run some of our simulations.
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1211595, AST-1714205, NASA grant NNX09AH78G and the
Minnesota Supercomputing Institute for Advanced Computa-
tional Research. We thank Jean Eilek and Robert Laing for
useful discussions pertaining to this work. We also thank an
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the presentation of this paper.

Appendix

In this Appendix, we outline some issues surrounding the
use of the RM coherence length (Λ0 and Λ(a)) needed for the
derivation of σB. For a magnetic field that is isotropically
disordered through turbulence, there will be some effective RM
coherence scale along a line of sight of length ℓ, where Λ=ℓ.
It has been shown that for an isotropic, turbulent field
distribution the length Λ needed in Equation (2) can be
expressed in terms of the magnetic field autocorrelation length,
ΛB, as Λ=(3/2) LB (Enßlin & Vogt 2003) or alternatively in
terms of the so-called integral length Cho & Ryu (2009) as

ò
ò

L = = =L L
P k k dk

P k dk

3

2

3

4

3

4
. 11B

B

B
int

( )

( )
( )

These relationships are related, and depend only on isotropy
of the magnetic field and a well-defined magnetic field power
spectrum. In Equation (11) PB(k) is the 1D power spectrum of
the 3D, isotropic magnetic field, with the wave number, k,
defined without the usual 2π factor.

The numerical factors 3/4 and 3/2 connecting Λ to Lint and
LB reflect somewhat different weights that turbulent magnetic
field fluctuations contribute to the specific statistical length
measures. Indeed, a number of authors have emphasized in
realistic models of RM properties associated with disordered
magnetic fields that while Λ ∝ LB (or similarly Λ ∝ Lint),
L ¹ LB (or similarly L ¹ L int).

In practice, Λ must be estimated from the RM distribution’s
2D characteristic coherence scale. The observed RM distribu-
tion is a projected rather than a local measure. Although the
projected RM Λ is related to the 3D magnetic field measure,
L r( ), it is not generally equivalent. As pointed out above and
emphasized by Enßlin & Vogt (2003), in a homogeneous
isotropic magnetic field setting Λ can be directly related to the
magnetic field correlation length, LB, by the RM distribution
power spectrum (see also Vogt & Enßlin 2003), which can, in
principle, be established from observations. However, obtain-
ing both LB and Λ in this way is a complex and difficult
procedure in practice, especially with restricted RM sampling
(Vogt & Enßlin 2005). So a more common strategy has been to
assume for modeling purposes a magnetic field power
spectrum, usually a power law with inner and outer scales
(e.g., Murgia et al. 2004; Huarte-Espinosa et al. 2011). On the
other hand, MHD simulations reveal that magnetic field
distributions evolved through the turbulent dynamo from a
weak seed field are poorly represented by power-law power
spectra (e.g., Cho & Ryu 2009; Porter et al. 2015). That is also
apparently the case for the magnetic fields that evolve in
clusters formed in cosmological simulations (e.g., Xu et al.
2011; Wittor et al. 2016), which certainly is the case for the
simulated cluster we use in these experiments (Section 2,
Figure 10). Consequently, we apply in our work here a
relatively simpler approach to estimating σB that does not
require assumptions about or computation of power spectra. In
particular, as discussed immediately below, we estimate a
projected RM coherence length from the second-order RM
structure function, ΛSF, and associate that length with Λ in

Equation (2) when deriving magnetic field distribution proper-
ties (Section 3.1).

A.1. Estimating Λ0 from RM Data

The central RM coherence length, Λ0, is probably the most
challenging observational measure needed to estimate σB,0.
Under the assumption of a power law for the magnetic field
(and RM) spectra, one can first optimize the fits to the slope
and inner and outer scales of the RM spectrum (e.g., Murgia
et al. 2004; Bonafede et al. 2010; Vacca et al. 2012). Then the
effective Λ that applies to Equation (2) is a fraction of the outer
scale used in the power law, with the exact value depending on
the slope of the power law.
This approach is not valid for non-power-law spectra, and

specifically not for the cosmology-derived cluster considered
here. We therefore adopt a different approach, estimating the
RM coherence length, Λ, from computed second-order
structure functions of the RM distribution over the observed
surface without assuming any particular form for the magnetic
field power spectrum.
The required structure function, DaS (∣ ∣), is given by

D = á - + D ña a a aS RM RM . 122(∣ ∣) ( ( ) ( )) ( )

where Da measures an offset, or “lag” relative to a specific a.
The results are then averaged over some specified area where
RMs are available. Meaningful estimates for Da aS ,( ∣ ∣) require
the averaging to be done over an area spanning scales larger
than Λ, which is also true for estimates of σRM, as discussed
above.
Mathematically, DaS (∣ ∣) is just twice the difference between

á ñaRM 2( ( )) and the RM autocorrelation,
á ´ + D ña a aRMRM( ) ( ) , over the defined area. Then

DaS (∣ ∣) should approach zero for small lags, while for Da∣ ∣
larger than the RM correlation length it should approach
á ñRM2 2( ) . For our simulated cluster, sá ñRM RM∣ ∣  for

Figure 10. Power spectrum of the kinetic energy (red) and magnetic energy
(blue) of the g676 ICM within the (1 Mpc)3 analysis box. The solid black line
represents a Kolmogorov spectrum, P(k)∝k−5/3. The broad magnetic power
spectrum turnover, k∼8–20 Mpc−1, represents scales k−1∼50–120 kpc.
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suitably large areas (see Figure 5), so DaS (∣ ∣) should approach
s´2 RM

2 for large Da∣ ∣. As detailed below, we designate the
length Da∣ ∣ on which DaS (∣ ∣) reaches its maximum as ΛSF,
which we then use as our estimate for Λ.

We should keep in mind, of course, that while our simulated
ICM provides information on the necessary scales, actual
cluster RM observations may not provide sufficient sampling,
and those approximations may not be meaningful. However,
attempts have been made to directly fit the observed structure
functions to high-quality RM images using the Hankel
transform (e.g., Laing et al. 2008).

The behavior of DaS (∣ ∣) computed using background
screens spanning our full (1Mpc)2analysis grid in the g676
cluster is shown in Figure 4. For each projection, DaS (∣ ∣)
increases from small scales, then plateaus near values

D ~ -aS 5000 10,000 rad m2 4(∣ ∣) – , corresponding to (cluster-
wide) s ~ -50 70 rad mRM

2– . Note that this value is an order of
magnitude below σRM,0, such as the values in Figure 5, because
it represents an average over the entire (1Mpc)2 grid, and is
dominated by the very weak fields far from the cluster center.
Nonetheless, the shape of DaS (∣ ∣) is a good representation of
the magnetic field structure, so can be used to estimate the
coherence length.

We define Da m∣ ∣ as the smallest lag for which
=D

D
0a a

a
d S

d

ln ,

ln

( ( ( ∣ ∣)))
( (∣ ∣)) , and justify this now as our estimated Λ.

Applied to the full (1Mpc)2 analysis box (Figure 4) from an
average of the three principal axis orientations, we would
obtain in this way D = L »a 25 kpcm∣ ∣ . A similar analysis of
the DaS (∣ ∣) distributions computed over (100 kpc)2 areas
centered on the cluster core results in a coherence
scale, D = L »a 20 kpcm∣ ∣ .

Equation (10) specifically requires an estimate of the central
coherence length, Λ0. So it is necessary to establish the
relationship between observationally derived Λ values over a
selected projected cluster area and the central Λ0. If we
assumed a constant Λ in evaluating the RM structure function
data using fully sampled regions spanning the entire (1Mpc)3

analysis box from cluster g676, we would obtain
Λ0=Λ≈25 kpc. The fully sampled core alone would yield
Λ0=Λ≈20 kpc. These two Λ0 estimates are similar enough
that, taken at face value, they would lead to estimates for σB
from Equation (6) differing by only roughly 10%. However,
that they do differ points back to the previously discussed issue
that the magnetic field integral length is not a constant value,
but increases with distance from cluster center (that is,
Lint=Lint(r), with dLint/dr>0). As pointed out previously,
this can have a substantial impact on the derivation of valid
estimates for σB,0, depending on how the estimates are made.

Specifically, our analysis in Section 2 of the 3D magnetic
field properties of g676 established that Λ=(3/4)
Lint≈17 kpc in the central 100 kpc3 box (so r∼50 kpc).
Since this (50 kpc)3 volume is roughly the size of the core, we,
therefore, obtain directly from the field itself (not via RM
measurements) the estimate Λ0≈17 kpc. On the other hand,
we similarly found Λ=(3/4)Lint≈40 kpc within the full
(1Mpc)3 box (so r∼500 kpc). That is an increase from the
core to the outskirts of the cluster of a factor ∼2.4, representing
a difference of ∼50% in the translation between σB,0 and σRM,0

in Equation (10). This enhanced impact comes from the fact
that the RM values depend on both the magnetic field
distribution and the electron density distribution. The latter
has a steep radial dependence (∼r−9/4 at large radii), which

leads to a strong central bias in RM contributions. Thus,
substantially better estimates for Λ0 should come from
application of the nonuniform model represented in
Equation (9) than from fixed values for Λ represented in
Equation (6).

A.2. Some Power Spectrum Issues

As emphasized in the discussion after Equation (2), the RM
dispersion, σRM, for a medium with an isotropically disordered
magnetic field scales over long paths as the square root of the
number of independent magnetic structures along the path, so
depends inversely on the square root of Λ, which scales with
the magnetic field integral and correlation lengths, Lint and LB,
according to Equation (11). As emphasized in the main body of
this paper, Λ can only be estimated observationally from
measurements of the RM distribution. We can, however, in our
current experiments compare those observational estimates to
the actual Lint of the 3D magnetic field. Figure 10 shows the 1D
magnetic field power spectrum, PB(k), inside our (1Mpc)3

analysis box (blue line). For comparison we also show the g676
ICM kinetic energy 1D power spectrum in the same volume
(red line), along with a k−5/3 line (black), representing the
slope of a Kolmogorov spectrum. Here, k=1 corresponds to a
length of 1 Mpc.
To facilitate our discussions below we note some additional

relevant properties of these power spectra. The kinetic energy
power spectrum in Figure 10 is very roughly consistent with
the k−5/3 form. However, as already pointed out, the broadly
peaked magnetic power spectrum is not at all well-represented
by a power law.
From the form of Equation (11) it is obvious that
~ -L kint peak

1 . Over the full (1Mpc)3 box, we therefore see from
Figure 10 that Lint∼50 kpc. Indeed, applying the power
spectrum in Figure 10 we obtain numerically Lint=54 kpc. On
the other hand, as mentioned previously, we generally expect
Lint to vary with the scales of ICM structures. For instance, flux
freezing during compression of a disordered magnetic field
would lead to µ µ µ- -L ℓ n Beint

1 3 1 2. The exact scaling
would depend on dynamical circumstances analogous to the
scaling for B itself. Nonetheless, we would expect from
dynamical “similarity” arguments that Lint would usually
increase toward the cluster outskirts (e.g., Shi et al. 2018).
As discussed in the main text, we express this behavior in terms
of a density scaling as a convenient proxy. We might guess a
generalization of our flux-freezing example to take a form
something like µ h-L neint

2. Since the scaling is weak, the
detailed form should not be critical, and this has the modeling
advantage of not adding free parameters to data fits. To test this
expectation in the g676 ICM magnetic field we computed
magnetic power spectra in nine additional cluster-centered
volumes spanning scales ranging from 100 to 900 kpc. Indeed
we found that Lint increased smoothly from Lint≈23 kpc in the
smallest box (essentially including only the cluster core) to the
aforementioned Lint≈54 kpc in the (1Mpc)3 box. The values
fit a tight correlation µ á ñ-L neint

1 4, as well (not shown), so
consistent with our guess that µ h-L neint

2. We find that the
results of our RM analysis are substantially improved if we
allow Lint to increase with distance from the cluster center using
this scaling compared to keeping Lint fixed throughout the
cluster. Such a radial dependence would be suggested by the
change in the derived slope of the power-law spectrum in
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A2255 as a function of distance from the cluster center (Govoni
et al. 2006).
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