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INVERTING SPECTROGRAM MEASUREMENTS VIA ALTASED WIGNER
DISTRIBUTION DECONVOLUTION AND ANGULAR SYNCHRONIZATION

MICHAEL PERLMUTTER, SAMI MERHI, ADITYA VISWANATHAN, MARK IWEN

ABsTRACT. We propose a two-step approach for reconstructing a signal x € C¢ from subsampled short-time
Fourier transform magnitude (spectogram) measurements: First, we use an aliased Wigner distribution de-
convolution approach to solve for a portion of the rank-one matrix Xx*. Second, we use angular syncrhoniza-
tion to solve for X (and then for x by Fourier inversion). Using this method, we produce two new efficient
phase retrieval algorithms that perform well numerically in comparison to standard approaches and also
prove two theorems, one which guarantees the recovery of discrete, bandlimited signals x € C¢ from fewer
than d STFT magnitude measurements and another which establishes a new class of deterministic coded
diffraction pattern measurements which are guaranteed to allow efficient and noise robust recovery.

1. INTRODUCTION

The phase retrieval problem, i.e., reconstructing a signal from phaseless measurements, is at the core of
many scientific breakthroughs related to the imaging of cells [46], viruses [44], and nanocrystals [15], and also
advances in crystallographic imaging [28], optics [48], astronomy [18], quantum mechanics [16], and speech
signal processing [2, 24]. As a result, many sophisticated algorithms, which achieve great empircal success,
have been developed for solving this problem in applications throughout science and engineering (see [19,
21, 24] for widely used examples). Motivated by the success of these methods, the mathematical community
has recently began to study the challenging problem of designing measurement masks and corresponding
reconstruction algorithms with rigorous convergence guarantees and noise robustness properties (see, e.g.,
the work of Balan, Candés, Strohmer, and others [1, 2, 13, 25]). In this paper, we aim to extend the
mathematical analysis of phaseless measurement maps and noise-robust reconstruction algorithms to include
a broad class of phaseless Gabor measurements such as those that are utilized in, e.g., ptychographic imaging
[14, 17, 40, 41].

Specifically, we will develop and analyze several algorithms for recovering (up to a global phase) a signal
x € C? from the magnitudes of its inner products with shifts of masks that are locally supported in either
physical space or Fourier space. The local support of these masks in physical space corresponds to the use
of concentrated beams in ptychographic imaging to measure small portions of a large sample, whereas the
local support of these masks in Fourier space simulates the recovery of samples belonging to a special class
of deterministic coded diffraction patterns (CDP).

Following [33, 34], we will assume that we have a family of measurement masks, or windows, mg, my, ..., mg_1 €

©4 such that for all k, the nonzero entries of either my or my are contained in the set [§]o for some fixed
d < g, where for any integer n > 0, we let

o = {0,1,...,n — 1}

denote the set of the first n nonnegative integers. Let L be an integer which divides d, and let Y’ : C¢ —
[0,00)K*E be the matrix-valued measurement map defined by its coordinate functions

Vi g = Y{ (%) = |(Seamme, ) |* + Nj, 4, (1.1)

for k € [K]o and ¢ € [L]y, where a := £, Sy is the circular shift operator on € defined for y € €% and ¢ € Z
by

(Sey)j = Y((j+£) mod d)> (1.2)

Key words and phrases. Phase Retrieval, Spectrogram Measurements, Short-Time Fourier Transform (STFT), Wigner Dis-
tribution Deconvolution, Angular Synchronization, Ptychography.
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and N’ = (N H é> Ko tell) € RE XL represents an arbitrary perturbation due to, e.g., measurement noise
"/ k€[K]o,L€[L]o

or imperfect knowledge of the masks my.
Our goal is to reconstruct x from these measurements. It is clear that Y’(x) = Y’/ (e!?x) for all ¢ € R, so
at best we can hope to reconstruct x up to a global phase, i.e., up to the equivalence relation

x ~ %" if x = e!*x’ for some ¢ € R.

Algorithms 1 and 2, presented in Section 4, will accomplish this goal in the special case where the masks
my, are obtained by modulating a single mask m. Specifically, we let m € C%, and for k € [d]y we let

myg = ka (13)

where W), is the modulation operator given by
2wijk

(Wrm); :=e 4 m;. (1.4)

As we will see, assuming that our masks have this form will allow us to recover x, even when the shift size a
is strictly greater than one. Towards this end, we let Y : € — [0, 00)9*? be the matrix-valued measurement
map defined by its coordinate functions

Yie = Yio(x) = [(SeWym, x)|* + Ny, (1.5)

where analogously to (1.1), N = (Ng ¢)o<ke<d—1 represents an arbirtrary perturbation. We note that Y is
the special case of Y where K = L = d and the masks my have the form (1.3). For positve integers, K and
L which divide d, we let

d d 2d d d d 2d d
— K], =40, —,—,...,d— —= d —=[L]y=10—,—,...,d— =
FT[ ]0 { ’F?’ P?7 ) FT}’ an L[ ]O { 7L7L7 ) L}?
and we let Y 1, be the K x L partial measurement matrix obtained by restricting Y to rows in % (K], and

4 L), so that the (k, £)-th entry of Yy 1, is given by
(Yr,L)ke =Y ¢

£d .
KL

columns in
(1.6)

Similarly, we let Nk 1 be the K x L matrix obtained by restricting N to rows and columns in % [K], and
d
7 [Ll -

Letting wy, = k% so that (Yx 1)k,e = Yo, ¢, We note that

2mifawy, 2
(YK,L)k,E = |<X> S@akam>|2 + ka,fa = ’<X7 e l;i : ka S@am>‘ + ka,fa = |<X, ka S@am>|2 + ka,éa-
(1.7)
Therefore, Y ;, forms a matrix of STFT magnitude measurements. Furthermore, when K = d and wy, = k,
(1.5) also encompasses a large class of masked Fourier magnitude measurements (i.e., CDP measurements)
of the form

(Vi) e = |(% W Stam)[* + Ny ¢ = | (Fa Diag(m') %), [ + (Nk.£), g » (1.8)
where m’, := Sy, m and F} is the d x d discrete Fourier transform matrix whose entries are defined by
—2omijk
(Fd)j,k =e¢ 4 . (19)

Measurements similar to (1.8) are considered in, e.g., the recent works by Candés and others [3, 10, 11, 25].
However, their masks are usually generated randomly, whereas we will consider deterministically designed
mask constructed as shifts of a single base mask m.

Our method for recovering x is based on a two-step approach. Following the example of, e.g., [2, 13],
we can lift the nonlinear, phaseless measurements (1.1) to linear measurements of the Hermitian rank-one
matrix xx*. Specifically, it can be shown that

Yk/,@(x) = <XX*7 Sgamkmk*SZa> + Nl;,l’

where the inner product above is the Hilbert-Schmidt inner product. Restricting, for the moment, to the
case a = 1 (i.e. L = d) and assuming that the nonzero entries of my are contained in the set [§]o for all k, one
can see that every matrix G € span ({Symymy*S} : £ € [d]o, k € [K]o}) will have all of its nonzero entries



PHASE RETRIEVAL FROM SPECTROGRAM MEASUREMENTS 3

concentrated near the main diagonal. Specifically, we have G;; = 0 unless either |i —j| < dor [i —j| > d—6
Therefore, letting Ts : C4*¢ — ©9X9 be the restriction operator given by
Gij if|i—j|<(501‘ |i—j|>d—(5

0 otherwise ’

T5(G)ij = {
we see

Yél(x) = (xx*, Symymy *S;) +N’/€’e = (T5(xx*), Semyemy *S;) + Nl/c-,lv (k,0) € [K]op x [d]o-

Our lifted, linearized measurements are therefore given by Y ,(x) = A(Tg(XX*))(k ot Ny, where A :
T5(C4*4) — CK*4 is defined by
(AX)) (,0) = (X, Seomyemy ™ Sj)  for  (k,€) € [K]o x [d]y and X € T5(C9). (1.10)

As a result, one can approximately solve for x up to a global phase factor by (i) evaluating A~* on Y/ ,(x)
in order to recover a Hermitian approximation X, to T5(xx*), and then (i7) applying a noise robust angular
synchronization method (e.g., see [45, 47]) to obtain an estimate of x from X.. See [33, 34| for further details.

The following theorem summarizes previous work using this two-stage approach for the case where the
nonzero entries of the masks my are contained in the set [0]y for all k € [K]o.

Theorem 1 (See [33, 34]). For x € C¢, let min |x| == mino<j<q ||, and set K = 26 — 1 and L = d so
that a = 1 in (1.1). There exists a practical nonlinear reconstruction algorithm that takes in measurements
Yy o(x) for all (k,€) € [K] x [d] and outputs an estimate X, € C? that always satisfies

2
; R < il ) (d N’ di /x| N’ 1.11
qsen[%)lgn] |x —e*x|, < C (min|x|2 5 k|N'||p+C KN || g (1.11)

Here > 0 is the condition number of the linear map A in (1.10) and C € RY is an absolute universal
constant.

Furthermore, it is possible to choose masks mg, my, ..., mas_o such that k < 48 (see [33]), and it is also
possible to construct a single mask m € C? such that if my = Wk% m, then k = O(62) for the measurements

that appear in (1.5) (see [34]). Also, if |N'||F is sufficiently smalll, the algorithm mentioned above is
guaranteed to require just O (52dlogd+ 53d) total flops to achieve (1.11) up to machine precision.

Note that (1.11) guarantees that the algorithm in [33]| referred to by Theorem 1 exactly inverts (up
to a global phase) the measurement map in (1.1) for all nonvanishing x in the noiseless setting (i.e., when
IN|lF = 0). Furthermore, the error between the recovered and original signal degrades gracefully with small
amounts of arbitrary additive noise, and when ¢ < d the algorithm runs in essentially FFT-time. Indeed, a
thorough numerical evaluation of this method has demonstrated it to be significantly more computationally
efficient than competing techniques when, e.g., 6 = O(logd) (see [33]). While the the first term of the error
bound obtained in Theorem 1 exhibits quadratic dependence in d, we note that the main results of [32]
imply, at least heuristically, that polynomial dependencies on d are actually unavoidable in any upper bound
like (1.11) when the masks are locally supported. As a result, both (1.11) as well as the new error bounds
developed below generally must exhibit such polynomial dependences on d.

1.1. Main Results. One of the main drawbacks of Theorem 1 is that it only holds for shifts of size a = 1,
i.e., when L = d. In real ptychographic imaging applications, however, the equivalent of our parameter a
will in fact often at least 0.49, with § being moderately large. Therefore, we will consider recovery scenarios
where both K and L are strictly less than d in (1.6), and consider classes of x and m for which we can
still guarantee noise-robust recovery results. This motivates our first new result, which allows us to recover
bandlimited signals.

Theorem 2 (Convergence Gaurantees for Algorithm 2). Let x,m € C¢ with supp (X) C [v], and supp (m) C
(0], and let

Lo = min
[p|<y—1,
l[g|<o—1

> 0. (1.12)

Fy (I?l o SPE>

q
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Assume that v <20—1<d, L =2y—1, K =2)—1, and also that K and L divide d. Furthermore, suppose
that the phaseless measurements (1.6) have noise dominated by the norm of x so that

2
INk.LllF < Blx]3 (1.13)
for some B > 0. Then Algorithm 2 in Section 4 outputs an estimate X, to x with relative error

(1+2v2)8 &

L=

min < , (1.14)
$€[0,27] HXHQ Oy W) v KLps
where W € C?~1%7 s the partial Fourier matriz with entries Wik = e~ TUTEE nd ™ singular value

oy (W). Furthermore, if | Nk 1||F is sufficently small, then Algorithm 2 is always guaranteed to require at
most O (KLlog(K L) + 6% 4 log([|X]|oc)7?) total flops to achieve (1.14) up to machine precision.

As mentioned earlier, Theorem 2 allows us to recover x even when K and L are both strictly less than
d. Indeed, the total number of measurements, KL = O(v4) is independent of the sample size d (though it
does exhibit dependence on the parameters, v and §, and it also requires that § > ~/2). Nonetheless, the
fact that Algorithm 2 exhibits robustness to arbitrary noise indicates that one can use it to quickly obtain a
low-pass approximation to a sufficiently smooth x € €¢ using fewer than d STFT magnitude measurements.
We also note that Proposition 2, stated in Section 4, shows that locally supported masks m with ps > 0 are
relatively simple to construct.

Our second result utilizes the connection between CPD measurements and STFT magnitude measurements
(see (1.7) and (1.8)) to provide a new class of deterministic CPD measurement constructions along with an
associated noise-robust recovery algorithm. Unlike previously existing deterministic constructions (see, e.g.,
Theorem 3.1 in [10]) the following result presents a general means of constructing deterministic CDP masks
using shifts of a single bandlimited mask m.

Theorem 3 (Convergence Gaurantees for Algorithm 1). Let x,m € C¢ with supp (m) C [p],, for some
p < d/2. Let min |X| := ming<n<g—1|Zn| > 0, and let

g = min |Fy (ﬁqospﬁ) > 0. (1.15)

|p|<v—1
lg|<p—1

q

Fiz an integer k € [2, p] and assume that L = p+x—1 divides d. Then, when K = d, Algorithm 1 in Section
4 will output X, an estimate of x, such that

4 A7 %l IV, s ||IN.
min |x — emerQ <C— | ”500 | di”f + C’—Zl [Na.L ]l (1.16)
$€[0,27) L2 p1k2 - min [X| Ls M1

for some absolute constants C,C" € R*. Furthermore, if | Na,r|F is sufficently small, then Algorithm 1 is
always guaranteed to require just O (d(p + k2) log d) total flops to achieve (1.16) up to machine precision.

When k = p = 2, Theorem 3 guarantees that 3d CDP measurements suffice in order to recover any signal
x with a nonvanishing discrete Fourier transform in the noiseless setting as long as p1 > 0. Analogously to
Proposition 2, Proposition 1, also stated in Section 4, provides a straightforward way to construct masks
with py > 0. For general x and p, Theorem 3 shows that one can reconstruct signals x using O(dp) CPD
measurements based on windows with Fourier support p in just O (delog d) -time when || N||  is sufficiently
small. We also note that in addition to the theoretical guarantees provided by Theorems 2 and 3, Section 5
demonstrates that both Algorithm 1 and 2 are fast, accurate, and robust to noise in practice as well.

1.2. Related Work. The connections between theoretical time-frequency analysis and phaseless imaging
(e.g., ptychography) have been touched on in the physics community many times over the past several
decades. As noted well over two decades ago in [41] and later in [14], continuous spectrogram measurements
can be written as the convolution of the Wigner distribution functions of the specimen x and the probe m.
Furthermore, [17] has pointed out that this allows one to recover the specimen of interest if enough samples
are drawn so that the Heisenberg boxes sufficiently cover the time-frequency plane. In this work, we use
similar ideas formulated in the discrete setting to efficiently invert the types of structured lifted linear maps
A as per (1.10) that appear in [33, 34], and use angular synchronization approaches to recover the signal x up
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to a global phase. Specifically, we produce two new, efficient algorithms for inverting discrete spectrogram
measurements that are provably accurate and robust to arbitrary additive measurement errors.

In [7], Bendory and Eldar prove results similar to some of those summarized in Theorem 1 in the case
there a = 1 and || N’||r = 0, and they also demonstrate numerically that their algorithms are robust to noise.
In this paper, we prove noise-robust recovery results, where we allow a > 1. However, we make additional
assumptions about either the support of m or the supports of m and X. We also note the very recent and
excellent work of Rayan Saab and Brian Preskitt [39] as well as that of Melnyk, Filbir, and Krahmer [35]
which both prove results similar to Theorem 2. As in Theorem 2, the results of [35, 39] can guarantee
recovery with shift sizes a > 1. Their results primarily differ from Theorem 2 in that they don’t used Wigner
Distribution Deconvolution (WDD) based methods. As a result, they consider different classes of masks and
signals than we do.

Other related work includes that of Salanevich and Pfander [38, 42] which builds upon the work of Alexeev
et al. [1] to establish noise robust recovery results for Gabor frame-based measurements. Their noise robust
approach has similar characteristics to the approach taken here with the primary differences being that they
require additional measurements beyond those provided by shifts and modulations of a single mask (see, e.g.,
equation (8) in [38]), and in some sense utilize the reverse of the approach taken here: Instead of first solving
a linear system to obtain an approximation of (a portion of) xx*, and then using angular synchronization
to obtain an approximation to x, the methods of [38, 42] instead first use angular synchronization methods
to obtain frame coefficients of x, and then reconstruct x using the recovered frame coefficients.

The rest of the paper is organized as follows. In Section 2, we establish necessary notation and state
a number of preliminary lemmas. Then, in Section 3, we establish several discrete and aliased variants of
WDD, some of which can be used when the mask m is locally supported in physical space, and others for
when m is locally supported in Fourier space. In Section 4, we prove Theorems 2 and 3 which provide
recovery guarantees for our proposed methods and also state propositions which describe ways to design
masks so that the assumptions of these theorems are valid. Finally, in Section 5, we evaluate our algorithms
numerically and show that they are fast and robust to additive measurement noise.

2. NOTATION AND PRELIMINARY RESULTS
For x := (xg,...,7q-1)T € C?, we let
supp (x) == {n € [d]o : z, # 0}

denote the support of x, where, as in Section 1, [d]p = {0,1,...,d — 1}. We let Rx := X denote the reversal
of x about its first entry, i.e.,

(Rx)n:-%n ‘= Z—n mod d fOI‘OS’I’LSd—l,

and we recall from (1.2) and (1.4) the circular shift and modulation operators given by (S¢x),, = Z(¢4n)mod d
2wikn

and (Wyx),, = xz,e”d . In order to avoid cumbersome notation, if n is not an element of [d]y, we will write
Z,, in place of &, mod 4. For x € C?, we define the Fourier transform of x by

d—1
~ _ 2mink
Ty = (Fax), = Zazne 4
n=0
where as in (1.9), Fy € C%*4 denotes the dx d discrete Fourier transform matrix with entries (Fa)jp = P

k
for 0 < j,k < d—1. For x,y € C? and ¢ € [d],, we define circular convolution and Hadamard (pointwise)
multiplication by

d—1
(X*ay), =Y Tnyr-n, and (x0y), =z,

n=0

and we define their componentwise quotient 3 and componentwise absolute value |x| by

(X> = and x|, = |2,
Y/ n Yn

For a matrix M, we let M}, denote its k-th column, and let ||M||r denote its Frobenius norm. When
proving the convergence of our algorithms, we will use the fact that, up to a reorganization of the terms, a
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banded d x d matrix, whose nonzero entries are contained within x entries of the main diagonal is equivalent
to a (2k — 1) x d matrix whose columns are the diagonal bands of the square, banded matrix. Towards this
end, if 2k — 1 < dand M = (My_g,..., My, ... M_1) is a (26 — 1) x d matrix with columns indexed from
1 —k to k — 1 so that column zero is the middle column, we let Co,_1(M) be the banded d x d matrix with
entries given by

Mjp—; if|j—kl<korl|j—kl>d—k

. (2.1)
0 otherwise

(Con1 (M) = {

for j,k € [d]o. By construction, the columns of M are the diagonal bands of Ca,—1(M) with the middle
column M lying on the main diagonal. For example, in the case where x = 2,

ap,—1 ao,o ap,1 ap,0 Qo1 e 0 ap,—1
ai,—1 ai,0 a1 ai,—1 aipo a1 0
Cs =
ad—2,-1 Qd—2,0 Qd—2,1 0 ad—2,-1 Q4—2,0 Qd—2,1
ad—1,-1 QAd—1,0 Qad—-1,1 ad—1,1 0 ad—1,—-1 Qd—1,0

Below, we will state a number of lemmas, some of which are well known, which we will use in the proofs of
our main results. Proofs are provided in the appendix. Our first lemma summarizes a number of properties
of the discrete Fourier transform and the operators above.

Lemma 1. For all x € C? and ¢ € [d),,,

The following lemma is the discrete analogue of the convolution theorem.
Lemma 2. (Convolution Theorem) For all x,y € C%,
Fi'(Xoy) =x*ay,
and
(Fax) *a (Fay) = dFq(x0y).

In much of our analysis, we will have to consider the Hadamard product of a vector with a shifted copy
of itself. The next three lemmas will be useful when we need to manipulate terms of that form.

Lemma 3. Let x € C¢, and let a,w € [d],. Then,

(Fa(x08,%)), = %ei (Fd (§ o S_ai))w .
Lemma 4. Let x € C%, and let o € Z. Then,
Fy (i o s_ai) — R(Fy(x 0 S.X)).
Lemma 5. Let x,y € C¢, and let {,k € [d],. Then,
((x o S_gy) *q (§ ° Sﬁ))k - ((x 0 S_1X) *q (y ° S,ﬁ))e .
For a positive integer s which divides d, we introduce the subsampling operator

Z,:C? 5 Ct,
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defined by

(Zsx),, = xns for n € {d} )
Slo

The following lemma shows that taking the Fourier transform of a subsampled vector produses an aliasing
effect.

Lemma 6. (Aliasing) Let s be a positive integer which divides d. Then for x € C% and w € [%}0’
1 s—1
Fa (Z, ) ~%"% ..
(Fe(z) g

3. ALIASED WIGNER DISTRIBUTION DECONVOLUTION FOR FAST PHASE RETRIEVAL

As in Section 1, we let x € C? denote an unknown quantity of interest and let m € C% denote a known
measurement mask, and consider measurements Y3 ¢ of the form (1.5). By (1.7), we see we may write Yy ¢
as a noisy windowed Fourier magnitude measurement of the form
2

+ Nie, for0<k<d—-1. (3.1)

d—1

_ 2mink
E TnMp—® d

n=0

Yie=

Let y, and n, denote the ¢-th columns of the measurement matrix Y = (Y% ¢)o<k ¢<a—1 and the noise matrix
N = (Ng.e)o<k,e<d—1 respectively, and, as in Section 1, let Yk 1, be the K x L partial measurement matrix
obtained by restricting Y to rows in & [K], and columns in £ [L], so the the entries of Yx 1 are given by
(1.6), and let N, be the analogous matrix obtained by restricting N to rows and columns in % [K], and
4 (L],

Our goal is to recover x (up to a global phase) from these measurements with an error that may be
bounded in terms of the magnitude of the noise N. Our method will be based on the following result that
is an aliased and discrete variant of the Wigner Distribution Deconvolution (WDD) approach presented in
the continuous setting by Chapman in [14]. Together with Lemmas 9, 10, and 11, it will allow us to recover
portions of the rank one matrices xx* and XX*.

Theorem 4. Let Yk j be the K x L partial measurement matriz defined in (1.6), and let Ng 1 be the
corresponding partial noise matrixz. Let Y and N be the L x K matrices defined by

Y= F YL Ff and N:=F,NE FE.
Then for any w € [K], and o € [L],,

(o
|
—
SN
|
=

I3k
€
|
N
N

(Fd <§ o S““E))w_m (Fd (r?l o Sa_uﬁ))w_m + Now (3.2)

i
i
<
~
Il
=}

|
—
S

|

o | =

®
A

M‘

|
—

@ 2ri(lL—a)(w=rK)/d (Fd ()Ac o SgL,OE)) (Fg(mo S,_rxm)),; _,, + N’a,w (3.3)

r=0 ¢=0 work
d_14d_q
KL 5 < : ~ = ~7
_ KL ML= = B)/d (B (x 0. S, X)) _,1 (Fd (m o Sa_ng>) F Now  (34)
=0 =0 work
KL i -
= 7 (Fd (XOSW_T‘KX))(X—ZL (Fd (mOSw—rKﬁ))gL_a‘i’Na,w,- (35)
r=0 (=0

To aid in the readers understanding, before proving Theorem 4, we will first give a short proof of the
following lemma which is the special case of (3.5) where K = L = d. It is the direct analogue of Chapman’s
WDD approach as formulated in the continuous setting in [14].

Lemma 7. Let Y be the d x d measurement matriz with entries defined as in (3.1) and let N be the
corresponding noise matriz. Then, the w-th column of Y = FdYTFdT is given by
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Y, =d-F;(x05,%)o0R(F;(moS,m))+ N,, (3.6)
where N = FdNTFdT.

The Proof of Lemma 7. As noted in (3.1), we may write y; as the STFT of x with window S_,m. Therefore,
by Lemma 1, parts 5 and 8, we see that for any ¢ € [d],,

ye = |Fa(x o0 S_m)|* + 1
o ((x o S_ym) #g4 (§ o sﬁ)) + . (3.7)

Thus, taking a Fourier transform of y, and applying Lemma 1, part 1, yields

(Faye), = d ((X o S_ym) *q (§ ° SZE))_W + (Fane),, -
and so, by Lemma 5,

(Faye), = d ((x 0 8,%) *a (rh o S_wﬁ))z + (Fme),, - (3.8)
Since (Fuye), = (FaY)w,e, taking the transpose of the above equation implies

(VTF]),, =d((xe Su%) xa (o S-uim)) +(NTF]),, .

Therefore, the w-th columns of YT FT and NTET satisfy

(YTF), = d(x0 S.%) 4 (FaoS_uim) + (NTFY)

so, taking the Fourier transform of both sides and applying Lemmas 2 and 4 yields
(FiYTFY), = dFy(x 0 S.%) o Fy (ﬁl ° S_WE) + (FaNTE])

=dF;(x05,X)o R(F;(moS,m))+ (FdNTFUClF)w :

Recalling that Y = FdYTFdT and N = FdNTFdT completes the proof. O
The following lemma applies analysis similar to the previous lemma to subsampled column vectors using

Lemma 6.

Lemma 8. For ( € [d], and w € [K],,

1

(Fezy v0) =K z (0 S 2 (00 Sore—ii) ), + (FiZg ()

Proof. As in the proof of Lemma 7, the /! columns of the Y and N satisfy
2

Ve =|Fq(x0S_ym)|
= Fy ((xo S_em) *4 (§o Seﬁ)> + 7.

Therefore, subtracting 7, from both sides, taking the Fourier transform, applying Lemma 6, and then using
(3.8) we see

=

~1
(FK (Z% (ye — W)))w kK (Fa(ye =) —_ri

ﬁ
i
N ©

1 ((x 0 Sy rkX) *4q (ﬁl o STK_WE))E

I
=
=

(=)

d
Z

=K Z ((x 08,—rkX) *q (ﬁl o STK_ME))Z .
r=0

The lemma follows from the linearity of the Fourier transform and of the subsampling operator Z a. O
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Now we shall prove Theorem 4.

The Proof of Theorem 4. Noting that Y ; is obtained by subsampling the rows and columns of Y, we see
that the ¢-th column of Yy ; — Nk 1, is given by

(Yo = Nkp), = (Z% (Ye% - W%)) :
Therefore, applying Lemma 8 we see

((YK,L — Ng,p)" F§) Fx (Yxrn — Ni.n)),

(Fx
(Fic (2 (o2 =),

L,w o

4_1q

=K Z ((X 0 Sw—rkX) *q4 (ﬁl o S,«K,wﬁ)%i
r=0 L
=K Z% S (x0Sy—rKX) *q (IﬁOSTK,wE)

o

r=

Thus, the w-th column of (Y 1 — NK,L)T FL is given by
41

((YK,L — Ner)” Fg)w =K 2y [ Y (k080 ru®) %4 (ﬁl ° STK_ME>

r=0

Taking the Fourier transform of both sides and applying Lemmas 6, 2, and 4 we see that

(FL Yk, — Nk.,1) qug)a,w = (FL ((YK,L - NK,L)T Fg) )

[e3

d4_14d_q
KL K L - _ _
=== (Fi (x0 Sy i)y, (Fa (0 Src—omm))
r=0 ¢=0
d4_14d4_1q
KL K L
= a (Fa (x08u—rkX))y_gr (Fa(moSy,_pxkm)),
r=0 (=0

for all o € [L],.
Using the linearity of the Fourier transform and the definitions of ¥ and N completes the proof of (3.5).
(3.2), (3.3), and (3.4) follow by using Lemma 3 to see that
1 . _
(Fd (X [¢] Sweri))asz = ECB_QT”I(@L_O‘)(W_TK)/d (Fd (ﬁ [¢] SgL,aﬁ)) ,
w—rK
and )
(Fg(moS,_,xgm)),, ., = E(BQmi(ZL—a)(w—rK)/d (Fd (rﬁ o SQ—ZLE)) -
O

3.1. Solving for Diagonal Bands of the Rank-One Matrices. We wish to use Theorem 4 to solve for
diagonal bands of the rank-one matrix xx*. In the case where K = L = d, one can use (3.6) to see that for
w € [d]o

1
d

(EYTET), N 1 (FNTED),
T~ o =\ | g4 T~ 4 =\
Fy (m o S_wm) d Fy (m o S_wm>

However, in general, the right-hand side of (3.2)-(3.5) are linear combinations of multiple terms and
therefore, it is not as straightforward to solve for these diagonal bands. In this subsection, we present several
lemmas which make different assumptions on the spatial and frequency supports of x, m, and m and identify
special cases where these sums reduce to a single nonzero term. In these cases, we will then be able to solve

for diagonal bands of either xx* or XX* by formulas similar to the one above. We will use Lemmas 9 and 10
in the proofs of Theorems 2 and 3. We state Lemma 11 in order to demonstrate that Wigner deconvolution

XoS5,X= F(;l
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approach can also be applied to the setting considered in [33]. We will provide the proof of Lemma 10. The
proofs of Lemmas 9 and 11 are nearly identical.

The first lemma in this section assumes that x is bandlimited and the spatial support of m is contained
in an interval of length 4. It allows us to recover diagonal bands of the rank-one matrix XX*.

Lemma 9. Let x,m € C¢ with supp(X) C [v], and supp(m) C [8],. Let K and L divide d, and let Yi, 1,
be the K x L partial measurement matriz defined as in (1.6) and let Ni 1, be the corresponding subsampled
noise matriz. As in the statement of Theorem 4, let

?:FLYK,LFg and N:FLNK7LF[7;-
Then for any o € [L], and w € [K],,

_ KpRDMED = _
T = o o (0K (a—tL) (Fd (ﬁ o SM_(@)) (Fy(m o Sy_pic)),y o + Now
r=0 (=0 work
KL _ — -
TS (o) (o)
r=0 (=0 wmr w=r

Moreover, if K =0 —1+k forsome2<k<dand L=~v—1+¢& for somel <{<~v,and if 0 <w<rk-—1
or K—rk—1<w<K-land0<a<{—1orL—§(+1<a<L-—1, the sum above collapses to only one
term, so that

%(Fd<§os_a§>) (Fd(ﬁloSaE>) +Na7w fo<a<é—-land0<w<k-1
_ %(Fd(ﬁoS_a§>) K(Fd(r?loSaE)) K+Na,w fo0<a<é—-landd<w<K-1
Yoo = /{ - A .

% (Fd (QOSL_QQ)) (Fd (rﬁosa_Lﬁl)> + Now ifvy<a<L-1and0<w<k-—1

B (Fa(%081-0%))  (Fa(MoSasm))  +Naw ify<a<l-landd<w<K-1

The next lemma is similar to the previous one, but replaces the assumptions that m has compact spatial
support and that x is bandlimited and with the assumption that m is bandlimited. It allows us to recover
diagonals of xx*.

Lemma 10. Let x,m € C%and assume supp(m) C [p],. Let L divide d, let Yy, be the d x L partial
measurement matriz defined as in (1.6), and let Ng 1, be the corresponding partial noise matriz. As in the
statement of Theorem 4, let

Y = F Yy FT and N = F Ny F7.
Then for any o € [L], and w € [d],,,

d
41

Yoo = é 3 (Fd (ﬁ o SgL_ﬁ))w (Fd (ﬁl o Sa_uﬁ))w + N (3.9)
£=0

Moreover, if L = p+r—1 for some 2 < k < p, then for allw € [d], and all o such that either 0 < o < k—1
or p < a<L-—1, the sum above reduces to a single term and

_ 5 (Fa(%08-0%)) (Fu(MoSam)) +Naw,  #0<a<k-—1
L (R (%050-%)) (Fu(MoSorm)) +Now #p<a<i-1
Proof. (3.9) follows from Theorem 4 by setting K = d in (3.2). To prove the second claim, we note that by
the assumption that supp (m) C [p],, m o S,_¢rm = 0 unless
la = (L] < p. (3.10)
IfL=p—1+k,and 0 < a <k —1, this can only occur if £ = 0. Indeed, if £ > 1 then
a—tL<a—-L<k—-1-(p—14+K)=—p,

and if ¢ < —1, then
a—lL>a+L>L=p—14+Kk2>p.
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Therefore, all other terms in the above sum are zero, and the right-hand side of (3.9) reduces to the desired
result. Likewise, if p < o < L — 1, then (3.10) can only hold when ¢ = 1. O

As in Lemma 9, the following lemma assumes that the spatial support of m is contained in an interval
of length § and allows us to recover diagonals of XX*. However, it differs in that it assumes that L = d, but
does not assume that that x is y-bandlimited.

Lemma 11. Let x,m € C? with supp (m) C [0]g- Let K divide d, let Yi 4 be the K x d partial measurement
matriz defined as in (1.6), and let Nk 4 be the corresponding subsampled noise matriz. As in the statement
of Theorem 4, let

Y = FyYgaFE and N = FyNg FF.
Then for any o € [d], and w € [K],,

<4 _1

~ Kk = — R — ~

oo 55 (R(505-))_, (u(mes®)) 45
#-1 B

=K Y (Fi(x0Su_rkX)), (Fa(mo Sy_rxM))_, + No.

r=0

Moreover, if K =90 — 1+ k for some 2 < k <9, and if either 0 <w < k—1o0rd <w < K —1, then for all
a € [d],, the sum above reduces to only one term and

- K (Fy(x08,%)), (Fi(moS,m))_, + N, fO0<w<k—1
K (Fy(x08, X)), (Fi(moS, gm)) , + Naw, if6<w<K-1'

Remark 1. For convenience, in Lemmas 9, 10, and 11 we have assumed that the support of m, m or X,
were contained in the first p, d, or v entries. However, inspecting the proofs we see these results remain valid
if these intervals are replaced with any other intervals of the same length.

4. RECOVERY GUARANTEES

In this section, we will present two algorithms which allow us to reconstruct x from our matrix of noisy
measurements Y 5, and prove Theorems 2 and 3, presented in the introduction, which guarantee that these
algorithms converge. Before providing the proofs of these theorems, we will first state two propositions which
show that it is possible to design masks in such a way that the mask dependent constants p; and uo are
nonzero. For proofs of these propositions, please see the appendix.

Proposition 1. Let m € C¢ be bandlimited with supp (M) C [p],, so that its Fourier transform may be
written as

P 16 i0,_ T
m:(aoe O ap 1@ 1,0,...,0)

for some real numbers ag,...,a,-1. As in (1.15), let

)

41 = min ’Fd (ffl o SZ,E> q

lpI<k—1
q€ld],
for some 2 < k < p. If
|ao| > (p— 1) |asl, (4.1)
and
la1| = |ag| = -+ = |ap—1] >0, (4.2)
then pu; > 0.

Proposition 2. Let m € C? be a compactly supported mask with supp (m) C [4],, given by

10 105 T
m = (aoe“ 0, a5_1@"° 1,0,...,0)
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Algorithm 1 Wigner Deconvolution and Angular Synchronization for Bandlimited Masks
Inputs

(1) d x L noisy measurement matrix Yy, € R*L with entries

2

d
YdL +<Nd;L)k,€7 ke [d]o,ée E[L]O

2mink
E M, ZL(E d

(2) Bandlimited mask m € (Cd with supp (m) C [p], for some p < 4.
Steps

(1) Let k=L—p+1,and for 1 — k < a < k — 1 estimate Fy <§05a§) by

P(FaYarli) fl—-k<a<o0

~ = LF;(moS_,m

Fy (x o Sax) ~ dQ(;’d(Yd,LFLT)L),a ' .
m fl<a<rk-1

(2) Invert the Fourier transforms above to recover estimates of the (2x — 1) vectors X o S,X.

(3) Organize these vectors into a banded matrix, Cax—1 (Yax—1) as described in (4.7) (see also (2.1)).
(4) Hermitianize the matrix above: Ca,—1 (Yaz—1) < % (Cgﬁ_l (Ya—1) + Cox—1 (Yg,g_l)*).
(5) Estimate |X| from the main diagonal of Ca,—1 (Ya,—1).
(6) Normalize Cy,—1 (Ya24x—1) componentwise to form )72,.;_1.
(7) Compute vy the leading normalized eigenvector of )725_1.

Output
Xe = F(;lﬁe, an estimate of x, where X, is given componentwise by

(%) = 1/ (Cont (Vano1)); (va);

for some real numbers ag, ...,as—1. As in (1.12), let

o = min |Fy (ffl o Spﬁ>
[p]<y—1 q
lq|<6—1
for some 1 <~y <26 —1. If
lao| > (6 — 1) [as], (4.3)
and
la1| > lag| > -+ > |ag-1] > 0, (4.4)
then us > 0.

We will now prove Theorem 3, which we restate below for the convenience of the reader.

Theorem 3 (Convergence Gaurantees for Algorithm 1). Let x,m € C¢ with supp(m) C [p],, for some
p < d/2. Let min |X| :== ming<n<g—1|Zn| > 0, and let

p1 = min
lp|<y—1
lgl<p—1
Fiz an integer k € [2, p] and assume that L = p+ Kk —1 divides d. Then, when K = d, Algorithm 1 in Section
4 will output x., an estimate of x, such that

> 0. (1.15)

Fy <ff1 o Spﬁ)

q

"2 |R]| o [ Na.L d>

C/ [ Na.zll

M1

.;.»-A e

min ||x—<13 er2<C

1.16
$€[0,2n] L2pyk2 - min %) (1.16)

for some absolute constants C,C" € R*. Furthermore, if ||Na.r|F is sufficently small, then Algorithm 1 is
always guaranteed to require just O (d(p + K?%)log d) total flops to achieve (1.16) up to machine precision.
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The Proof of Theorem 3. Let x,m € C¢, supp (m) = [p],, and let k = L — p + 1. Then by Lemma 10, if
0< B <k-—1,then

o= @ (FYarFD), @ (FaNarFf),

Fq (XOSQBX) e N Y A —

L, (ﬁl o sﬂﬁl) L, (ﬁl o sﬁﬁl)

)

and therefore

~ ~ 2 FyNg FL d2 FyYy FF
XoS_gX+ —F;! @ = @
L Fy(mosm)) F Fy (o Ssm)

Substituting o = —f3, we see

N ~ d? FyNg L F[)_ d? FaYa L FL)

R0 SuR+ —F; ! % = F;! % (4.5)

Fi(mos..m)) F Fy (oS o)
for all 1 — x < a < 0. Likewise, for p < g < L — 1,
_ 2 FdeVLFT d2 FdY,LLFT
X0 Sy X+ —F; ! ( L)ﬂ =R ( L)/i :
L Fd (IYIOSg,Lr/fl) L Fd (I/I\IOSb,LI/fl)

S0, since L = p+ k — 1, substituting a = L — g implies

o o= d? FyNa . Fl), _ d? FyYq FL),

X0 S,X + de—l ( L)ia =—r;! FXarli)y o (4.6)

Fy (ffl o S,aﬁ) L Fy (fﬁ ) S,QE)
foralll<a<k-—1.

In order to write the equations above in a compact form, we will construct three d x 2k — 1 matrices,
Xon_1,Nok_1, and Y5,_1. As in Section 2, for notatational convenience, we will index the columns of these
matrices from —k + 1 to k — 1 so that column zero is the middle column. For —x +1 < a < sk — 1, we let
the a-th column of X5, 1 be the diagonal band of xX* which is a terms off of the main diagonal, i.e.

(XQKfl)OZ =Xo Saia

and we define the columns of Ny, and Ya,_1 by

FyNg L F§
i (et ) it —nr1<aso
(N2n—1)oz: ‘ _; 5
21 (((FaNarFL),
Th | Fmesm) ) flsasr-1
and .
FaYa L F
Lt Fw¥aifi) o) 4 pi1<a<o

Fa(foS_,m)

(Yz2x-1)a d—;Fd‘l U;i?;ig@g;) nent : (4.7)
By construction, (4.5) and (4.6) imply
Yor—1 = Xox1+ Nox_1. (4.8)
Using the fact %Fd is unitary, we see
||N2/<571||iﬂ < d: . 1%
L d H1
< N2 (4.9)
Lpg & o
where g is as in (1.15). Let H : C4*¢ — C9*? be the Hermitianizing operator
H(M) = M+ M (4.10)

2 )
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Hermitian, (4.8) implies -
Con—1 (Xox—1) = H (Cox—1 (Yor—1)) = H (Cox—1 (Nax—1)) -
Let sgn : C — C be the signum function,

=, if 0
sgn(z) :_{zy 1 Z7é ’

and note that ||H(M)||r < ||M||F. Since operator Cs,—1 defined in (2.1) is linear and Co,_1 (Xo,—1) is

ifl, z=0
and let X1 and Ya,_1, be the (componentwise) normalized versions of Ca,,—1 (Xa2,—1) and H (Cax—1 (Yar-1)),
respectively, i.e.,
)?2;@—1 = sgn (Cox—1 ((X2x-1))), and 372;<—1 = sgn (HCo—1 ((Yar-1))),
and note that

- (H ((Car—1 (Yar-1))));
(Y%—l) . =sgn ((H (Cor—1 (YQR—l)))j,k) = sgn au (4.11)
Gk ‘(025—1 (X2k-1)); 1
For all j and k, we have that
1 1
_— . A~ 2'
‘(Cgﬁfl (XZ'{*l))j,k‘ IIllIl|X|
Therefore, we can apply (4.11) and the fact that for all zq, 25 € C,
z9 z9 z9 z9
= —sgn | — || = | == —sgn(22)| < |sgn(z1) — —
2o ()| = [ s e < pmten - 2]
to see
Xope — (Voo
(Ror) = (Fouca) |
~ H (Capy (Y
_ (X%il) e (H (Cox—1 (Y2n-1))), 1
5 ’(021171 (X2k-1)); k‘
< ()}2%7 ) B (H (Cor—1 (Yan-1))), (H (Cor—1 (Y2n-1))), 1 - (H (Cor—1 (Y2n-1)));
| (Cont Kz | || [(Cont (Xaw1)) |(Can1 (Xan1));
o), - GO D
3ok ‘(szq (X2m71))j,k‘
|(H (Car (Na-1))),.4
’(CZK—l (in—l))j’k‘
2
— 2 |(H(Cony (Nge ). | 412
< o e | (Cont (Naw)) (4.12)
for all j, k € [d]o. Thus, by (4.9) and the fact that H)}%_IHF = /(2k — 1) d, we see that
~ =~ 2
Vawot = Koo € s I1H (Canr (N
[Fnms = Kona]|, < g 18 (Cons (Vo) 1
2
< — _
= min |§‘2 ||N2/<6 1||F
2 d?
< ——||N,
< e T Nesle
d3/2||N,
<o LWl v e

p1 min X2V KL



PHASE RETRIEVAL FROM SPECTROGRAM MEASUREMENTS 15

Therefore, by Corollary 2 of [33], we have

; d*?|Nyr|r d3
. o i¢ ,
min SN (X) — e "sgn (v < C—i
$€[0,27] H g ( ) g ( 1)H2 — I min |§‘2 /l{L K2
d*||Na,z||lF

7 LY2p,£5/2 min X2’

(4.13)

where I% is the vector of true phases of X, and vy is the lead eigenvector of 372&—1-
As in Algorithm 1, define X, by

(%e); = 1/ (Can1 (Vaw-1)),, - s (va),
for j € [d]o. Lemma 3 of [34] implies that

1% = %el |12, < CllNan-1llso,
and so

18] = Relll, < Cv/dlNan -1l < CVANow i llr-

Therefore, by (4.9), we see

¢err[})ivr21ﬂ] H)Ac — ewﬁe’b = ¢€H[})i7r21ﬂ] |||§| osgn (X) — [X.| o @?sgn ()?S)H2

< min ([%]0 sen (2) - %] o o*sem (%), + |18 0 s () — (| o e sem () ).

— @f%{% (|[1R] o sgn (%) — %] 0 e*sgn (Xe)]|,) + || R = [Re ||,

< [1X|l o <¢err[})ir21ﬂ ||sen (%) — e*’sgn (§6)||2> + Cy/d||Nak—1] g

- . - ; - d3
< =1 (min s (2) — s )], ) + Oy S Il

Together with (4.13) this yields

 ea d* 1%l IV, a2 [N,
min HX—‘BerHQ <C J| ||OO§|| 'd,L/\Hg‘ + v ” d,L”F'
$€(0,27] Lz py k2 min [X| L 1

(1.16) now follows from the fact that ||X||2 = V/d||x]|2 for all x € C. O

Theorem 2, restated below, provides recovery guarantees for Algorithm 2 under the assumptions that m
is compactly supported in space and that x is bandlimited. The proof is somewhat similar to the proof
of Theorem 3 but uses Lemma 9 in place of Lemma 10 and uses the Lemma 8 of [33] during the angular
synchronization step.

Theorem 2 (Convergence Gaurantees for Algorithm 2). Let x,m € C¢ with supp (X) C [v], and supp (m) C
(0], and let

Fy (ffl o Spﬁ)

Lo = min
[p|<v—1,
lg|<s—-1

Assume that v <20 —1<d, L=2y—1, K =25 —1, and also that K and L divide d. Furthermore, suppose
that the phaseless measurements (1.6) have noise dominated by the norm of x so that

2
[Nk.llr < Blx (1.13)
for some B > 0. Then Algorithm 2 in Section 4 outputs an estimate X, to x with relative error
x|,

(1+2v2)B @2
min < )
gelo2n  [|xll, oy (W) VKLps

> 0. (1.12)
q

(1.14)
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Algorithm 2 Wigner Deconvolution and Angular Synchronization for Bandlimited Signals

Inputs
(1) K x L noisy measurement matrix, Yy, € RE*L with entries

d—1 2
Z _ 27rx'mékK
TpmMm LE d
nittn—f2
n=0

+ (NK,L)]ij k € ? [K]O 76 S Z [L}O .
(2) Compactly supported mask m € C<.
(3) Integers ¢ and +, such that supp (m) C [0],, supp (X) C [7],, and v <25 —1 < d.

(YK7L)I€,E =

Steps
(1) Ensure L=2y—1and K =26 — 1.
(2) Estimate (Fd (ﬁo Sa§))6 for |o| <vy—1and |3 <d—1 by

43 (FLYEYLF;;),QW )

KL (Fi(mos_o)) —y<a< L S<w< —
KL (Fy(moS_om))_ ifl-y<a<0and1-d<w< -1
F YT FT

i(LK;L K);w“( ifl-y<a<0and 0<w<4§—1

~ = KL (Fd(mos,am)) < < < <

(Fd (X ° SQX)) ~ 43 (FLY;LF};) “ .
« a” N 7 P/L—aw 3 < <~ _5< < _
KL (Fd(r?los_arﬁ))w fl<a<y—landl-90<w<-1
@ (FLYELFR) e
KL =" <a<~vy-— <w<§—
KL (Fy(moS_am))_ fl<a<y—land0<w<d—1

(3) Organize the (26 — 1)-(2y — 1) values of (Fd (5& o SU§)>B for [o| <d—1and |8] < v—1in amatrix

V € C29-Ux(27=1) a5 gpecified in (4.15).
(4) BEstimate A ~ W1V € C*27=1 where

_2mi(j—8+1)k

Wp=e a , for je(20 —1],,k €[]y,
wh=w*w) 'w* e -1,
0 0 |§0|z 30@ o ToBya
0 e T1Zo |21 | T1Z9
A=

0 e 5?772%“/*3 ‘55772‘2 §W72§W*1 e 0

~ = ~ = ~ 2

Ty—1T0 e Ly—1Ty—2 ‘1‘7_1‘ 0 tee 0

(5) Reshape W'V, into an estimate G € C?*7 of the rank-one matrix

2ol 305?% ToTa 0 BoTy
L 2170 |3 172 o BBy
X[ 1)y X' 1, =

By1Z0 By1Z1 ByaBy o [Byal?

(6) Hermitianize the matrix G above: G <~ £ (G + G*).
(7) Compute A1, the largest eigenvalue of G, and v, its associated normalized eigenvector.

Output
Xe = Filﬁe, an estimate of x, where X, is given componentwise by

(%), = {mwnj, i€ hlo.

0, otherwise.
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_ . . . . . . _2mi(j—8+1)k .
where W € C2°~1X7 s the partial Fourier matriz with entries W, = @ d and v singular value

oy (W). Furthermore, if | Nk i||F is sufficently small, then Algorithm 2 is always guaranteed to require at
most O (KLlog(KL) + 6% 4 log(||X[«c)7?) total flops to achieve (1.14) up to machine precision.

The Proof of Theorem 2. Analogously to the proof of Theorem 3, we apply Lemma 9 with £ =~ and kK = §
to the cases where y < < L—-1,0<8<~v—-1,d<v<K-1,and 0 <v <§ —1, and then substitute,
a=L—-0,a=—-0,w=v— K, and w = v, to see that

(1) ifl—y<a<0and 1 -6 <w < —1, then

d3 (FLN}T{W,LFII(W),QMJFK

A _ 3 (F YT7 FT),a_w
(Fd (XOSQX))W—FE (Fd (ﬁ\los_aﬁ)) _d LYtk wH+K

"KL (1, (mos.m))

w

(2)ifl—-vy<a<0and 0 <w < §—1, then
_ & (FeNgo Fi) . a3 (FLY{ L Ff)
(Fi(z05.5)) + & = /
w KL (Fd (ﬁlo s_aﬁl))

—o,w

"KL (1, (mos.m))

w

w

B)ifl<a<y—land1—-4§ <w< -1, then

d3 (FLN17{17LF§)L_(X7(U+K

. = 5 (FLYiE L FF) e
(Fd (:)cosax))w+ﬁ (Fd (ﬁlos-aﬁ)) _d LYgt'i);, +K

"KL (5 (mosom)) |

w

w

4)ifl<a<y—land 0 <w<4§—1, then
~ = d3 (FLNIIJQLF%)L—QW d3 <FLYI€LF;;)L—QOJ
(Fd(xoSax)) + — —— = — ——.
o KL(p(fosiam)) KL (Fi(foS, am))
We will write the above equations in matrix form, with rows indexed from 1 —¢ to 6 — 1 and columns indexed
from 1 —~vtovy—1,as

T+U=V, (4.14)
where T is (20 — 1) x (2y — 1) matrix with entries defined by

T = (Fd (ﬁ ° Sﬁ)) ,

w

and the entries of U and V are given by

T T
d73 (FLNK7LFK),(3(@)7V(W) and V. _
KL (P (oS .m)) ’

T T
d3 (FLNK7LFK)B(O‘)7V(W) (4 15)
KL ~ = ’ '
(Fd (m o S_am))

w

Uoz,w =
with
- fl-9<w<-1

() wH+K ifl-6<w< -1
v(w) =
L—a if0<w<é§—1,

d —
w fo<w<do—1, and  B(a) {

forl—y<a<y—1,1-§ <w < §—1. Let us be as in (2). Then, by the same reasoning as in (4.9), we see
2
& ||FeNi Ll

U <
oKL %
db 9
= mLKHNK,LHF
2
ds 9
= KL INk.oll%- (4.16)

Furthermore, for all @ and w such that |a| <y —1 and |w| < § — 1,

~y—1
~ = _27\’{1([)71./\ —_
T = (Fd (XoSax)> = E @ ¢ TpTpia-
w
n=0
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Therefore, we see T = W A, where W € C(29=1*7 is the Vandermone matrix are given below by
i _2mi(=841)1 _2mi(=6+1)-(v=1) 7
1 e d d
zﬂ'-(71)-1 27\—;1»(;1)-(771)
1 e~ 4 I
W=1|1 1 1 , (4.17)
_ 2mi-l-1 _2mi-l-(y—1)
1 e d e d
) 21'ri1».(571)»1 27ri‘(5;1)-(771)
1 e a — I
and A € C7*(7=1) is the partial autocorrelation type matrix
~ 12 ~ = o~ =<
0 0 |l‘0| Tox1 1‘03%/,1
o~ = —~ 12 o~ =
O 1o |ZL'1| X1 0
A= : . :
0 oo ByoT |Zy—2]® Ty_oT 0
y—2+4y—3 y—2 y—2+Ly—1
o~ = o~ = —~ 2
Ty—-1T0 Ly—1Ty—2 |.’L‘,Y,1| 0 s 0

Therefore, by (4.14) we have
WA4+U=V.

W has full rank since it is a Vandermonde matrix with distinct nodes, and therefore since 26 — 1 > =, it has
a left inverse given by W1 = (W*W) ™' W*. Thus,
WiV =4+ W'y,
and so, by (4.16)
WiV — Al =[[wiu]|,
Wl U1 e
1 d3
< — [INk.Lll
Omin (W) KL‘LLQ B
where 0, (W) is the minimal singular value of W.
Let P : C"*(7=1) — CY*7 be a reshaping operator, such that if M = (Mi—y, ..., My,...,My_1) is a
v X (27 — 1) matrix,

IN

(4.18)

(P(M))j = M;j—i (4.19)
for 0 <i4,5 <y —1 so that
P =Rl R, = | o0 T e
Ty 1o Ty1T1 Ty 1Ta Zy_1]?

and let G = H(P(WTV)), where H is the Hermitianizing operator defined in (4.10). (1.13) and the fact
that [|X[|2 = V/d||x]|2 for all x € C?, imply that [N r|» < g ||5€||§, so the fact that P(A) = X[ [,), X*[y),
is Hermitian, together with (4.18) implies

HG - x| Mo x| Mo”p = ”H(P(WTV)) - H(P(A))HF

< HWTV - AHF
1 d3

< N

S i (W) VicEa Vet
B d? ~

< %13 -

N Omin (W) \Y% KL,LLQ
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By Lemma 8 of [33], if A; is the lead eigenvalue of G and v; is an associated normalized eigenvector, then

pn IR = el = i [ %1y, = VI,
_(+2v9)p & s
- Omin (W) vV KL'LLQ 2
(1.14) follows by taking the inverse Fourier transform of both sides. O

5. NUMERICAL EXPERIMENTS

We now present numerical experiments which demonstrate the robustness and efficiency of the proposed
algorithms and provide comparisons to existing phase retrieval methods. These results were generated using
the open source BlockPR MATLAB software package (freely available at [31]) on a desktop computer (iMac,
2017) with an Intel® Core™i7-7700 (7'} generation, quad core) processor, 16GB RAM, and running macOS
High Sierra and MATLAB R2018b. In all of our plots, each data point was obtained by averaging the results
of 100 trials.

Unless otherwise stated, we used i.i.d. mean zero complex Gaussian random test signals with measurement
errors modeled using a (real) i.i.d. Gaussian noise model. We will report both the signal to noise ratio (SNR)
and reconstruction error in decibels (dB) with

ZkK=1 Z(L=1 |(x, SEka>|4
Do?

: 0, _ (2
SNR (dB):1010g10< ming [[e*"x, XI2>’

) , Error (dB) = 10log;, ( e
2

where x, X, 02 and D := K L denote the true signal, recovered signal, (Gaussian) noise variance, and number
of measurements respectively.

We will present selected results comparing the proposed formulation against other popular phase retrieval
algorithms such as PhaseLift [13] (implemented as a trace-regularized least-squares problem using the first
order convex optimization package TFOCS [5, 6|, Hybrid Input-Output/Error Reduction (HIO+FER) alter-
nating projection algorithm [4, 20|, and Wirtinger Flow [12]. We note that more accurate results using
PhaseLift may be obtained using other solvers and software packages (such as CVX [22, 23]), albeit at a
prohibitively expensive computational cost. For the HIO+ER algorithm, the following two projections were
utilized: (i) projection onto the measured magnitudes, and (ii) projection onto the span of these measure-
ment vectors. The initial guess was set to be the zero vector, although use of a random starting guess did not
change the qualitative nature of the results. As is common practice, (see, for example, [20]) we implemented
the HIO+ER algorithm in blocks of twenty-five HIO iterations followed by five ER iterations in order to
accelerate the convergence of the algorithm. To minimize computational cost while ensuring convergence,
the total number of HIO+ER iterations was limited to 600 (see Figure 5.1).

5.1. Empirical Validation of Algorithm 1. In Algorithm 1, whose convergence is guaranteed by Theorem
3, we assume that our measurements are obtained using a bandlimited mask with supp (m) C [p]o. To
demonstrate the effictiveness of this algorithm, we performed numerical experiments on the following two
types of masks:

ay ~U(0,1), (Random Mask) (5.1)

N {(1 +0.5ay) @®™if k € [p|o
myg =

0 otherwise

where (0, 1) denotes an i.i.d uniform random distribution on the interval [0, 1], and

et ke [Pl
my = { V2r—1 a:=max (4,(p—1)/2). (Exponential Mask) (5.2)
0 otherwise

The exponential mask in (5.2) is closely related to the deterministic masks first introduced in [34]. The
mask-dependent constant 1 (see (1.15) in Theorem 3) for the random mask, with d = 60 and p = 8 (and
averaged over 50 trials), was 2.858 x 10~!. The behavior for other choices of d and p was similar. For
the exponential mask, this constant was 2.267 x 1072. The qualitative and quantitative performance of the
algorithm was similar with both families of masks.

L(HIO,ER) = (z,y) indicates that every z iterations of the HIO algorithm was followed by v iterations of the ER algorithm.
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Error vs Iteration Count (HIO+ER, 30dB noise)

0ra
—e— (HIO,ER) = (15,15)
. —— (HIO,ER) = (20,10)

5h (HIO,ER) = (25,5) |]

Reconstruction Error (dB)
o

30 L . I L .
0 200 400 600 800 1000 1200
No. of iterations

FIGURE 5.1. Selection of HIO+ER iteration parameters?

We performed experiments with both Algorithm 1, as presented in Section 4, and also with a modified
version which uses a post-processing procedure to obtain improved accuracy. The modified algorithm replaces
Steps (5) and (7) of Algorithm 1 (referred to as Diag. Mag. Est. and Norm. Ang. Sync. in Figure 5.2a)
with the eigenvector based magnitude estimation procedure (Eig. Mag. Est.) in Section 6.1 of [33], and the
graph Laplacian based angular synchronization method (Graph Ang. Sync.) described in Algorithm 3 of
B. Preskitt’s dissertation [39]. As seen in Figure 5.2a, which plots the reconstruction error at various noise
levels with d = 255, L = 15, and a random mask constructed as in (5.1) with p = 8, these changes offered
improved reconstruction accuracy.

Robustness to Measurement Noise, d = 255, 15d measurements
T T T :

Robustness to Measurement Noise, d ~ 256
T T T T T

10 T T 10 T
——L=19
-0~ L=23
of or L=27]]
a —o--L =31
—~ | | ~ L N |
%-10 % 10 .\\ .
8 8 R
5 -20 - 1 520 F .
= =
=] =l
2 S
£ -30 [ £ -30 - .
= =
2 2
w 1]
g -40r 1 §-40f 1
3 3
~ ~
.50 |-|—+—Diag. Mag. Est., Norm. Ang. Sync. So N .50 ]
-+ Diag. Mag. Est., Graph Ang. Sync. S
Eig. Mag. Est., Norm. Ang. Sync. ‘o \’0
-60 |=0- Eig. Mag. Est., Graph Ang. Sync. 1 -60 [ S T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
SNR (dB) SNR (dB)

(A) Reconstruction accuracy for Algorithm 1 with and (B) Reconstruction accuracy vs. number of shifts L for
without modifications to Steps (5) and/or (7). Algorithm 1 (w/ mod. Steps (5),(7)).

FIGURE 5.2. Evaluating the performance of Algorithm 1 for various parameter choices

Figure 5.2b demonstrates the importance of the number of shifts L. As expected, the reconstructions using
larger L (which entails using more measurements, each corresponding to greater overlap between successive
masked regions of the specimen) offered improved accuracy. In order to ensure that L divides d, we varied
the value of d ~ 256 slightly for different values of L. As in Figure 5.2a, we used random masks, constructed
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Robustness to Measurement Noise, d = 60, 15d measurements ) Execution Time
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FIGURE 5.3. Evaluating the robustness and efficiency of Algorithm 1 (and Theorem 3)

as in (5.1), with p = 8. We observe that for larger values of L, performance improved by about 10dB. We
also note that, in practice, a suitable value of L can be chosen depending on whether the proposed method
is used as a reconstruction procedure or as an initializer for another algorithm.

In Figure 5.3a, we compare the performance of the proposed method to other popular phase retrieval
methods. Reconstruction errors for recovering a signal of length d = 60 using L = 15 shifts and a random
mask with p = 8 are plotted for different levels of noise. We see that the proposed method performs well
in comparison to the other algorithms, and even nearly matches the significantly more expensive algorithms
such as PhaseLift which are based on semidefinite programming (SDP). We note that the Wirtinger Flow
method is sensitive to the choice of parameters and iteration counts. We used fewer total iterations (150
at 10dB SNR) at higher noise levels and more iterations (4500 at 60dB) at lower levels in order to ensure
that the algorithm converged to the level of noise. We are not aware of any methodical procedure for setting
the various algorithmic parameters when utilizing the (local) measurement constructions considered in this
paper. We also note that, of the algorithms considered, Algorithm 1 is the only one that has a theoretical
convergence guarantee which applies to this class of spectrogram-type measurements.

Figure 5.3b plots the corresponding execution time for the various algorithms as a function of the problem
size d. In this case, random masks were chosen with p = [1.25log, d| along with L = p + [p/2] — 1 shifts.
The figure confirms the essentially FFT—time computational cost of Algorithm 1. Furthermore, it also shows
that while the post-processing procedure of modifying steps (5) and (7) does increase the computational
cost of the algorithm, it does not increase it drastically.? In particular, even with these modifications,
the proposed method provides best—in—class computational efficiency, and is significantly faster than the
HIO+ER, Wirtinger Flow, and PhaseLift algorithms.

5.2. Empirical Validation of a Lemma 11 Based Approach. We next provide numerical results val-
idating an approach based on Lemma 11 that applies the Wigner deconvolution method to the setting
considered in [33]. As in Theorem 2, we assume that supp(m) C [d]o, and we also add the assumption that
L = d. In this setting, we may apply Lemma 11 and then solve for diagonal bands of xx* in a manner analo-
gous to Algorithms 1 and 2. We then can recover x by applying the same angular synchronization procedure
as in Algorithm 1. We note that, because we are using Lemma 11 rather than Lemma 9, we do not need to
assume that x is bandlimited as we do in Theorem 2. As in Section 5.1, we conducted experiments with both
deterministicly constructed and randomly constructed masks, and found that we obtained similar results for

2The modified Step (7) uses MATLAB’s eigs command which can be computationally inefficient for this problem for large
d; we defer a more detailed analysis and more efficient implementations to future work
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both families of masks. The figures below use the exponential mask construction first introduced in [33],

efk/a .
= i k€ [do,

my = { V26-1 if k € [0o a :=max(4, (0 — 1)/2), (5.3)
0, otherwise,

and therefore allow us to directly compare the performance of the proposed method with the algorithm
introduced in [33]. The mask-dependent constant ps (see (1.12 in Theorem 2) for this mask, with d = 247
and § = 10, was 1.392 x 1072, with similar behavior for different choices of d and §. Figure 5.4a plots
the reconstruction error with d = 247, K = 19, 6 = 10, and m as in (5.3). Results with and without the
post-processing modifications described in Section 5.1 are provided, along with results from [33] with and
without the modified (see §6.1 in [33]) magnitude estimation and HIO+ER post-processing (60 iterations).

Robustness to Measurement Noise, d = 247, 19d measurements 10 Robustness to Measurement Noise, d ~ 256, K d measurements
——K =13
or 4 -0~ K=15
or ) K=17]
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= L 4
& 20 E 20 1
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2 30| 1 8
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~ 3
50 F g ~
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—o- from [33], Alg. 1
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—a— Lemma 11 (w/ Eig. Mag. Est., Graph Ang. Sync.) -60 | 1
70 ] I I i N | | | | | | |
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(A) Reconstruction accuracy with and without improved (B) Reconstruction accuracy vs. K, the number of Fourier
magnitude estimation/angular synchronization, and com- modes.
parison with results from [33].

FIGURE 5.4. Evaluating the performance of the Lemma 11 based approach

As can be seen in Figure 5.4, the post-processing procedure yields a small improvement of about 5-10dB
in the reconstruction error, especially at low noise levels. We observe that the Wigner deconvolution based
approach yields numerical performance which is comparable to [33] in the settings where the theoretical
guarantees of [33] are applicable, while also adding the additional flexibility of allowing shifts of length a > 1
under certain assumptions on either m or x as discussed in Theorems 2 and 3.

Next, we investigate the reconstruction accuracy as a function of K, the number of Fourier modes. Figure
5.4b plots reconstruction error in recovering a test signal for K = 13,15,17, and 19 respectively, with the
exponential masks defined as in (5.3) with § = 10. As in Figure 5.2b, we vary the signal length d slighlty, in
order to ensure that K divides d. As expected, the plot shows that reconstruction accuracy improves when
K increases, i.e., when more measurements are acquired.

For completeness, we include noise robustness and execution time plots comparing the performance of
the proposed method to the HIO+ER, PhaseLift, and Wirtinger Flow algorithms in Figures 5.5a and 5.5b
respectively. From Figure 5.5a, we see that the proposed method (both with and without the modified
magnitude estimation/angular synchronization procedures) performs well in comparison to HIO+ER and
the other algorithms across a wide range of SNRs. Furthermore, Figure 5.5b demonstrates the essentially
FFT—time computational cost of the method as well as the best-in-class computational efficiency when
compared to other competing algorithms.

5.3. Empirical Validation of Algorithm 2. We now provide numerical results validating Algorithm 2,
whose convergence is guaranteed by Theorem 2. We begin by noting that the Vandermonde matrix W defined
in (4.17) often has a large condition number which poses a challenge in the accurate evaluation of Step (4) in
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FIGURE 5.5. Evaluating the robustness and efficiency of the Lemma 11 based approach

Algorithm 2. One possible solution is to utilize the Tikhonov regularized solution A = (W*W +o2I) " 1W*V
(see [27] for example), where the regularization parameter o2 is chosen using a procedure such as the L-curve
method [26]. However, empirical simulations suggest that this procedure is not sufficiently robust to achieve
reconstruction accuracy up to the level of added noise. Therefore, we replace Steps (4)—(6) in Algorithm 2
by a modified non-stationary iterated Tikhonov method inspired by the work of Buccini et al. in [9], which
we detail in Algorithm 3. This procedure works by iteratively computing a Tikhonov regularized solution
to the equation in Step (4) of Algorithm 2; however, at each step, the solution is applied to the residual of
WA =V, with a geometrically decreasing regularization parameter. Buccini et al. showed that a similar
iterative procedure has benefits over traditional Tikhonov regularization for more standard linear systems.
While our problem setting is different, our empirical results suggest a similar benefit. We defer a more
detailed theoretical analysis to future work.

Figure 5.6 presents empirical evaluation of the noise robustness and computational efficiency of Algorithm
2 with the Modified Iterated Tikhonov Method of Algorithm 3. Figure 5.6a plots the reconstruction error
with signals of length d = 190, with frequency support of length v = 10, using (complex random) masks
with spatial support of length § = 48. We used K = 2§ — 1 Fourier modes and L = 2y — 1 shifts, and
utilized the following iterated Tikhonov parameters: ¢ = 0.8, N = 20, and «g chosen using the L-curve
method. We note that using standard Tikhonov regularization (Alg. 2 in Figure 5.6a) yields rather poor
results. An aggressive regularization parameter has to be chosen to surmount the ill-conditioning effects in
Step (4) of Algorithm 2. Consequently, even a few iterations of the HIO+FER algorithm performs better than
Algorithm 2. However, using the modified iterated Tikhonov procedure (Alg. 2 (w/ Alg. 3) in Figure 5.6a)
yields significantly improved results, with a clear improvement in noise robustness over even the HIO+FER
algorithm. Furthermore, Figure 5.6b plots the execution time as a function of the problem size for both
Algorithms 2 and 3. The plot confirms that the modified iterative Tikhonov procedure of Algorithm 3
does not impose a significant computational burden.?® Indeed, both Algorithms 2 and Algorithm 2 with the
Modified Iterated Tikhonov Method of Algorithm 3 are faster than the HIO+FER algorithm. We note that
more efficient implementations (involving fast computations of Vandermonde systems) of all the algorithms
in Figure 5.6b may be possible; we defer this to future research.

6. FUTURE WORK

In future work, one might develop variants of the algorithms presented here for two-dimensional problems
along the lines of [29]. Additionally, one might also develop variations of these algorithms for recovering

3We note that Step (1) of Algorithm 3 is computationally tractable since - is typically small, and that the matrix (W*W +
apq®I)~1W* in Step 2(c) can be pre-computed.
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Algorithm 3 Modified Non-Stationary Iterated Tikhonov Method with Geometrically Decaying
Regularization Parameters

Inputs

(1) Integers ¢ and =, such that supp (m) C [§], and supp (X) = o
) Vandermonde matrix W € C29=YX7 where W, ;, = o TS for j € [20 — 1]y, k € [7],-
) Matrix V € €2*=1D>x27=1 from Step (3) of Algorithm 2 and as specified in (4.15).
(4) Non-stationary iterated Tikhonov parameters ag and ¢ satisfying ap > 0 and 0 < ¢ < 1.
)

Iteration count .

(1) Initialize G € €7 and A € C7**7=1 to zero.
(2) For k+ 1to N do
(a) Compute a rank-one approximation G; € C7*7 of G:

Gy = muvy,

where 71 is the largest singular value of G and u; and v; are the corresponding left and right

singular vectors respectively.
(b) Let A € €7*(7=1 be the matrix such that P(A) = Gy and A; ; = 0 unless j—i < j < j—i+y—1,

where P is the reshaping operator defined in (4.19).
(¢) Apply Tikhonov regularization with decaying regularization parameter to the residual:

A A+ (WW + apd®I) W™ (V- WA)
current residual

(d) Obtain an updated estimate of G:
G = P(A),
(e) Hermitianize the matrix G: G < 3 (G + G*).

Output
An estimate of the matrix G € C7*7 to be utilized in Step (5) of Algorithm 2.

Robustness to Measurement Noise, d = 190,46 = 48,7 = 10 Execution Time (y =~ d/4,8 = 10)
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FIGURE 5.6. Empirical validation of Theorem 2 (Algorithm 2) and the Modified Iterated
Tikhonov Method of Algorithm 3
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compactly supported functions from sampled spectrogram measurements (see [36]) in the continuous setting.
Furthermore, another, perhaps less direct, extension of these works would be to attempt to apply the Wigner
distribution methods used here to the sparse phase retrieval problem. In, e.g., [30] it was shown that sparse
vectors x € C¢ with ||x|lo < s can be recovered up to a global phase from only m = O(slog(d/s)) magnitude
measurements of the form {|<x, aj>|2};n:1. Thus, somewhat surprisingly, sparse phase retrieval problems
generally do not require significantly more measurements to solve than compressive sensing problems. One
may be able to generate new sparse phase retrieval methods for STFT magnitude measurements of the type
considered here by replacing the standard Fourier techniques used in the methods above with sparse Fourier
transform methods [8, 37, 43]. It has been shown that sparse phase retrieval problems can be solved in
sublinear-time [47]. The further development of sublinear-time methods for solving sparse phase retrieval
problems involving STFT magnitude measurements could prove valuable in the future for use in extremely
large imaging scenarios.
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APPENDIX
In this section, we will prove the lemmas from Section 2 as well as Propositions 1 and 2.

The Proof of Lemma 1. Let x € C¢, and let £,w € [d],

Part 1:
d—1 d—1d—1
- . _ 27ikw _ 2mink _ 2mikw
(F4X),= > Tpe ¢ = E E Tp@ 4 @ 4
k=0 k=0n=0
d—1d—1
2rik(n—w) ~
= T_p,& 4 =dx_, = dx,,.
k=0n=0
Part 2:
d—1 d— s
27ike 27rnku wik(w—
(Fd (ng))w = E (xke d ) E
k=0 k=0
= :/L'\ ¢ = (S zX)
Part 3:
d-1 2 (k:+£) 2 ( 0)
2rikw i w i w
(Fq (Sex)),, E Tpae® 4 = E Thyo®
2wilw
=e 1 z,=WX),.
Part 4:
 2mitw =
W_oFy | Sex =e d (Wix (by part 3)
w w
N d—1
= = 2rikw
= (x) = Tp®
Y k=0
d—1 d—1
~ 2rikw 2rikw =
= E € 4 = T_L€ = (X)
w
k=0 k=0
Part 5:
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Part 6:
d—1 d—1
(Fdx)w = Tre - ka 2mipe
k=0 k=0
d—1 _
= e T = (FX),.
k=0
Part 7:
d—1
~ Y 2rikw
(X) =X_u = Tpe 4
¥ k=0
d—1
=Y e T = (),
k=0

Part 8: For all x € C¢,
|Fux|® = (Fyx) o (Fyx)

= (Fyx)o (Fdi) (by Lemma 1, part 4, with £ = 0)
=Fy (x *q §) . (by Lemma 2)
U
The Proof of Lemma 2. For x,y € C%, k € [d)o,
d—1d—1 .
(Fa(x*ay))k = R
n=0 £=0
d—1 d—1
= Z oo~ Z Yn—t® S
=0 n=0
d—1 Cd-1 .
=N e T Z TH S
=0 m=0
= Tk Y-

Therefore, Fy(x%4y) = X oYy, so multiplying by F; ! proves the first claim. To verify the second claim, note
that by Lemma 1 part 1,

Fd(FdX *q de) = FdFdX o Fdde

=d’Xoy
=d*’xcy
=dFy (dFy(x0y)).
([
The Proof of Lemma 3. Let x € C%, and let o, w € [d],,. Observe that
1, _
(Fy(x08,X%)), = p (X *q Fq (5.X)),, (by Lemma 2)
1/ =
=7 (X *q (wa>) (by Lemma 1, part 3)
=
=3 Tn (Wwi) (by definition of x4)
n—0 a—n
1 2riw(a—n)
=7 TnTon® 4 (by definition of W,,)
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1 2riwa =X —2wiwn
= —¢ d E TnTp—q® 9

d

1 2miva ~ = —27iwn
= E(B d E TnTp—a® 4

= %QM (Fd (XOS O‘X))w‘

27

(by definition of ~)

(by Lemma 1, parts 6 and 7)

The Proof of Lemma 4. For any x,y € C? and any a € Z, it is straightforward to check that

Rx = E, S(xi = Saxa and R(X © y) = (RX) © (Ry)

Therefore,

Fy (Rx oS_ Rx)
F, (Rx oRS x)
Fi (R (x05,X))
R(Fy(x085,X)).

F, (;( o S_a§>

The Proof of Lemma 5. Let x,y € C%, and let ¢,k € [d],. Then,

d—1

((x 0 S_py) *4 (§ o Sg?))k = Z (xo S—e}’)n (§O SZ?)]C

—n

d—1

= § xnynfé/-'fkfng(—i-k—n
n=0
d—1

= E xnfn—kgf—ngZ—n+k
n=0

= ((X 0 S_kX) *4 (§ o Sk;))z .

The Proof of Lemma 6. For x € C?, the Fourier inversion formula states that

d—
1,\ 1 2mikn
= (F'%), = 5 Z
k=0
d
Therefore, for all w € [g 07
4_1
X _ 27minw
(Fg (st)) =3 (Zx), e T
« n=0
d
41
_27minw
= E an(B d/s
n=0
-1 /41
1 X Z ~ 27ri(;cns 727ri:na‘
= — T (5]
d
n=0 \k=0
d—1  4-1

1 R 211'17;(/k—w)
= - Ty E e E
d

(6.1)

(by definition of R

)
(by Lemma 1, part 5)
)

(by Lemma 1, part 7)
]

(by definition of *,)
(by definition of o)

(by definition of ~)

(by definition of *,)

]
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O

The Proof of Proposition 1. Let m € C? be a bandlimited mask, whose Fourier transform may be written
as
. ; ; T
m = ((1003]190, cee ap_lewf’*l,o, cee O)
for some real numbers ao, . .., a,—1, which satisfy (4.1) and (4.2). Let 2 < k < p, and recall that ;1 is defined
by
p1 = min ’Fd (ﬁl o Spﬁ> q’ .
lp|<x—1
q€[d]0
For 0 <p <k —1, we have

(I/I\l ° SpE> _ anan+p®ﬁ(9n—9n+p)7 ifne [p _ p]O ’
n 0, otherwise,
and for —k+1<p <0,
i(0n—0,_ |, . -
(fﬁoSpE) _ an_‘p‘ane( \ \)7 1fn€{.|p|,|p\+1,...,p 1},
n 0, otherwise.

Therefore, for any ¢ € [d], and any |p| <k —1,

p—1-p
~ - o idn,p,
Fy (m o Spm)q = g AnQp|4n® P,
n=0

where ¢, , 4 is some real number depending on n,p, and ¢. Using the assumptions (4.1) and (4.2) we see
that

p—1—|p|
i
> anappa@ | < (p—1) |aa] |ary )| < laof |ajy| - (6.2)
n=1
With this,
p—1—|p|
~ = i
Fy (m o Spm) = g nA|p|+n® Pnpa
a n=0
p—1—|p|
= aoa‘p‘®ﬂ¢0,p,q + E ana‘p‘+neﬂ¢n,p,q
n=1
p—1—|p|
160,p,q | _ in,p,
> laoape®re| = | > anajp et
n=1
p—1—|p|
= ‘a a ‘— E ana @!Pnpa
04 |p| nip|+n
n=1
>0,

where the last inequality follows by 6.2. Therefore, Fy (r?l ) Spﬁ) is nonzero for all p and ¢ and so u; > 0.
q
O
The Proof of Proposition 2. Let

10 05 T
m = (aoe“ 0L a5—1@"° 1,0,...,0)
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be a compactly supported mask, where ag,...,as_1, are real numbers which satisfy (4.3) and (4.4). Let
1 <~ <2§—1, and recalll that ps is defined by

o = min |Fy (ffl o Spﬁ)
|p|<v—1
lg|<o-1

q

By Lemma 3, it suffices to show that

Fy(moS_jm) #0

forall [p|<vy—1landall |g|<d—1.1f =5 +1 < ¢ <0, then

anan+|q|®ﬁ(9"_9"+“”), ifo<n<d§—|q —1,

. )
0, otherwise

(m o S*qm)n =

and if 0 < ¢ < — 1, then

an_qancle‘.‘(on70"*‘1)7 ifg<n<d§—1,

" 0, otherwise

(mo S_,m)

Therefore, for all |[p| <v—1andall |¢g|] <§—1

d—1—|q|
= ign
Fy(moS_gm), = Y anajgne o,

n=0

where ¢, ,, is some real number depending on n,p, and g. By the same reasoning as in the proof of
Proposition 1, this combined with (4.3) and (4.4) implies that Fy (mo S_sm), # 0 for all [p| <~ —1 and
all | <0 —1.
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