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Abstract

In this paper we develop a sublinear-time compressive sensing algorithm for ap-
proximating functions of many variables which are compressible in a given Bounded
Orthonormal Product Basis (BOPB). The resulting algorithm is shown to both have
an associated best s-term recovery guarantee in the given BOPB, and also to work
well numerically for solving sparse approximation problems involving functions con-
tained in the span of fairly general sets of as many as ~ 1023 orthonormal basis
functions. All code is made publicly available.

As part of the proof of the main recovery guarantee new variants of the well known
CoSaMP algorithm are proposed which can utilize any sufficiently accurate support
identification procedure satisfying a Support Identification Property (SIP) in order to
obtain strong sparse approximation guarantees. These new CoSaMP variants are then
proven to have both runtime and recovery error behavior which are largely determined
by the associated runtime and error behavior of the chosen support identification
method. The main theoretical results of the paper are then shown by developing a
sublinear-time support identification algorithm for general BOPB sets which is robust
to arbitrary additive errors. Using this new support identification method to create a
new CoSaMP variant then results in a new robust sublinear-time compressive sensing
algorithm for BOPB-compressible functions of many variables.
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1 Introduction

In this paper we focus on rapidly computing best s-term approximations in the sense of
compressive sensing [13, 17] for functions of many variables f : D C R” — C. More specif-
ically, we develop a numerical method that aims to very quickly approximate any given
function f using a near optimal s-sparse linear combination of N’ fixed basis functions
B = {by,...,bn/} chosen in advance. The developed method has two basic components:
(1) a low-cardinality grid of evaluation points, G C D, and (ii) a fast deterministic algo-
rithm A : C9 — span(B) which takes f evaluated on G, f(G) € Cl9!, as input, and then
outputs an accurate s-sparse approximation to f of the form Z;:l ag;by; € span(B). In
particular, we require that H can approximate all functions f near-optimally based only
on the evaluations of f on G so that

Nl

If=HUEGI s C inf f=)_zb; (1.1)
zECN’7 ||z||()§8 g I

holds with respect to suitable norms for all functions f : D — C in a sufficiently general

function class.

Note that we are requiring several strong properties of both G and H above. First,
we want the approximation algorithm  to succeed for all functions f in a suitably large
class when only given access to function evaluations of each f on the same fixed and
nonadaptive grid G. Second, we require that H is fast, which will mean in this paper
that we require it to use a total number of scalar arithmetic and read/write operations
that scales sublinearly with respect to the basis size N’ (e.g., herein we will focus on
methods with runtimes that scale like O(log®(N’)) for all sufficiently small sparsities s).
This second requirement has several other beneficial repercussions beyond computational
speed. Principally among them is the fact that the deterministic procedure H can use at
most o(NN') function evaluations since its fast runtime constrains the number of function
evaluations H can use. This effectively constrains the size of the nonadaptive grid G C D
that it makes sense to use in the first place. Similarly, any such H must also have low
o(N') memory requirements given that it only has time to perform o(N’)-total scalar
operations involving memory accesses.

The first work on sublinear-time algorithms # of this kind focused almost exclusively
on the one-dimensional Fourier basis where, e.g., B = {e*™* | w € ([N'/2], [N'/2]]NZ}.
The first of these [30, 21, 19, 22] were randomized algorithms which used grids G that
varied from function to function and that failed with some nonzero probability for each
given f. All of these methods have runtimes that scale like O(slog® N’) and achieve
approximation errors along the lines of (1.1) with high probability (w.h.p.) for each given
f:[0,1] — C. Later on, entirely deterministic and explicit O(s%log® N’)-time methods



‘H were then devised which use one fixed and nonadaptive grid G in order to guarantee
approximation errors of the form (1.1) for all sufficiently smooth and periodic functions
f:[0,1] — C (see [24, 25, 3, 39]). These deterministic methods were then randomized
in [31] to achieve highly efficient O(slog® N’)-time randomized discrete Fourier transform
methods (generally known as “sparse Fourier transforms”) with high probability best
s-term approximation guarantees (1.1) along the lines of the first methods mentioned
above, as well as sped up to produce entirely deterministic methods that are significantly
faster than the generic O(s%log® N')-time deterministic algorithms for periodic functions
f :]0,1] — C which exhibit structured sparsity in the Fourier domain [5]. Code for many
of these methods is publicly available!, and a nice survey article covering the standard
techniques used to construct many of these first sublinear-time Fourier methods appeared
in 2014 [20].

As sublinear-time methods for the one-dimensional Fourier basis started to mature,
similar algorithms began to be developed for other one-dimensional bases B as well,
including for the cosine, Chebyshev, and Legendre polynomial bases [23, 4] (see also
[37] for traditional compressive sensing methods which focus on the Legendre polyno-
mial basis). Recently these ideas have been extended yet further to produce sublinear-
time algorithms with reconstruction guarantees for restricted classes of signals exhibit-
ing approximate sparsity in any given one-dimensional Jacobi polynomial basis [18].
Another direction of research has focused on extending the types of sparse approxi-
mation algorithms discussed above to higher dimensional settings in order to approxi-
mate, e.g., functions f : [0,1]” — C with respect to either multidimensional Fourier
[36, 26, 34, 10, 28, 32, 27, 11, 29] or Chebyshev [35] bases B of cardinality N’ = NP.
In these cases achieving fast algorithms H that run in o(NN’)-time becomes increasing
important as D grows.

As in the one-dimensional setting, sublinear-time methods #H for approximating func-
tions of D variables are most well developed in the case of the multidimensional Fourier
basis where, e.g., B = {e*™“* | w € ([N'/2], |N'/2]]” N ZP}. For example, see Theorem
8 in [26] and Theorems 10 and 12 in [32] for explicit and deterministic O(s%log®(N’))-time
methods that use function evaluations on a single fixed and nonadaptive grid G c [0,1]”
in order to guarantee approximation errors of the form (1.1) for all sufficiently smooth
and periodic functions f : [0,1]” — €. When it comes to approximating functions of
many variables with respect to non-Fourier bases B in o(N')-time, however, very little is
currently known. The first result in this direction [12] provided sublinear-time recovery
guarantees for all functions that are exactly s-sparse? in any tensor product basis B of one-

'The code for an implementation of [31] is available at https://sourceforge.net/projects/
aafftannarborfa/. The code for an implementation of [5] is available at https://www.math.msu.edu/
~markiwen/Code/FAST_block_sparse.zip.

2A function is exactly s-sparse in B if it is a linear combination of < s unknown elements of B.



dimensional bounded orthonormal bases. The aim of this paper is to augment this first
general result with best s-term approximation guarantees along the lines of (1.1) while
maintaining its fast runtime and small fixed and nonadaptive grid size. In doing so the
authors aim to complement existing compressive sensing approaches for uncertainty quan-
tification and function approximation [38, 9, 1, 7, 2] with a new class of methods whose
runtimes scale sublinearly in the basis size used for approximation. These new meth-
ods will then hopefully allow for the extension of such techniques to, e.g., functions of
hundreds or even thousands of variables in a more computationally feasible fashion.

1.1 Setup and Main Results

Let L?(D, u) for D := X ;e Pj C RP denote all functions f : D — C that are square-
integrable with respect to a given product of probability measures u := X jcpjp; over D,
and suppose that you are given a countable orthonormal (with respect to p) basis,

B :={T,:D—C|neN’}, (1.2)

of L?(D, 1) so that

(T T = /D T @) Ti @) du(€) = oy = {1 ik =

Furthermore, suppose that B’ is a tensor product basis so that

Tn(E) = H Tj;w(ij) (1.3)

JE[D]

holds for all n € NP and & € D, where each set B;» = {ijj :D; = C | n; € ]N} with
j €[D]:=H{0,...,D—1} is itself an orthonormal (with respect to the probability measure
p; over D; C R) basis of L?(Dj, ;). We will call any such basis B’ an Orthonormal
Product Basis (OPB) with respect to p.

Our objective in this paper is to approximate smooth functions f € L?(D, u1) as rapidly
as possible using just a few point evaluations. Toward this end we will take the tradi-
tional approach of considering only a finite subset By 4 of B’, and then approximating
f by approximating its projection f onto the span of Bn,q (consider, e.g., hyperbolic
cross/sparse grid methods for approximating functions of several variables [40, 16, 8]).
The potential improvement that the sublinear-time methods considered herein will then
potentially provide over such standard methods in some cases will come from the fact
that the finite basis By ¢ can be chosen to be extremely large herein (e.g., experiments
were performed for Section 5 on a standard workstation using bases of cardinality 2001%°).



More specifically, herein we will consider two different types of bases B, each of which will
allow us to demonstrate that the finite basis By 4 C B’ we select below for approximation
purposes also promote computational efficiency.

We will characterize B’ below based on the behavior of its lowest order elements
By :={Tn | nllcc <N} CHB

which we will assume throughout this paper is a finite Bounded Orthonormal System
(BOS) with respect to the probability measure p over D with a finite BOS constant
K':= max ||T ‘= max su T, € |1, 00).
ma [Tl = max supeep [Ta(€)] € [L.o0)
Note that this implies that each set Bjn = {Tjn, : Dj — C | n; € [N]} C B; with
J € [D] is itself also a BOS with respect to the probability measure p; over D; C R with
BOS constant
K;:= T |loo € [1,00). 1.4
j = e [Tl € [1,20) (1.4)

Finally, we will further define K]Q to be
1< K= [Tyl < K (15)

for each j € [D]. Note that K]Q is strictly smaller than K; for many BOSs of interest
(e.g., the cosine and Chebyshev polynomial bases as B;- both have KJQ =1<K; = V2).
From these two definitions we can also see, e.g., that Hje[D} K]Q <K = Hje[D} K; always
holds. Due to the boundedness of K’ assumed throughout the remainder of this paper

we will always refer to By (as well as B’ with slight abuse) as a Bounded Orthonormal
Product Basis (BOPB) going forward.

~ We will approximate any given smooth f € L?(D, 1) by approximating its projection
f onto the span of the finite BOS set

By = {Tn | n € [N]” and ||n|o < d} C By C B (1.6)

for some d € [D + 1], where d is used to the help constrain the BOS constant. The
BOS constant K < K’ of By will be referred to as the effective BOS constant below.
As is usually the case in compressive sensing scenarios involving BOSs, its size will be
a significant consideration with respect to sampling and computational efficiency. In
order to limit K’s size we will concentrate on the following two types of BOPBs going
forward:

e BOPBs of TYPE I: We will say a BOPB is of type I if the BOS constants Kj
are 1 for all but at most d € Z N [0, D] BOS basis sets Bj,n. In this case we let




Ko = max;e(p] K; and note that 1 < K < K < Kgo so that K will scale sub-
exponentially in D when d < D independently of our choice of d in (1.6). We note
that this type of BOPB includes several interesting examples of bases including the
multidimensional Fourier basis (for which d = 0), and mixed BOPBs B’ that have
one-dimensional Fourier bases used for all but d of their B;- component bases.

e BOPBs of TYPE II: We will say a BOPB is of type Il if Ko := max;¢[p; K]Q =1
This type of BOPB includes many bases where having a small number of inter-
acting dimensions, d, helps to limit the effective BOS constant K involved in the
underlying sparse approximation problem. Examples include the multivariate co-
sine, Chebyschev, and Legendre polynomial bases, as well as mixed polynomial bases
where each one-dimensional component basis B;» is, e.g., a potentially different Ja-
cobi polynomial basis.

In either case above one can see that K < KgoKéj —4 will always hold. In particular,
K = 29/2 always holds if B’ is either the multivariate cosine or Chebyshev basis in the type
II case. In the type I case we note that 1 < K < Korgm(d’d)Kg_mm(d’d) < Kgo WillNalways
hold so that d can be set to D without causing K to become too large if, e.g., d < D.

This is certainly the case if B’ is the multidimensional Fourier basis where d = 0.

Let f € L*(D,u) be smooth enough?® that there exists a sequence {en}nenp such
that

&) =" cnTnl(é) (1.7)

neND
holds pointwise for all £ € D. Given such an f : D — C, we will denote its orthogonal
projection onto the span of By 4 by f: D — C. Let

Ing:={ne€[N]” ||n|o<d< D} CN”

be the set of indices corresponding to the basis elements in By 4. We then have that

&)= > &Tn(®) (1.8)

TLGIN,d

for all £ € D, where & will be considered to be a vector in CZ.dl indexed by Inq. Note
further that the entries of ¢ will satisfy ¢, = ¢, for all n € Iy 4.

As mentioned above, we will ultimately approximate f by producing a sparse approxi-
mation in By 4 to f. The best possible s-term approximation to f in By ¢ will be denoted

3Given that we will be recovering f based on point samples we will require at least enough smoothness
to guarantee that any particular point sample we might possibly utilize actually contains information
about the given function’s basis coefficients {Cn}nEIND' Of course, the details regarding this smoothness
requirement will vary with the choice of basis B'.



by Nf? P' . D — €, and will be defined as follows: Order the basis coefficients é € C/Zn.dl
of f by their magnitudes so that

)

o] = [ns| = 1oa] = -0 > [

where ties are broken lexicographically using the entries’ indices in Zy 4. Then foP' will
be defined to be

FPUE) = n,Tn, ()
j=1

for all £ € D, and its (potentially) nonzero coefficients’ indices will be denoted by

Qj;pst = {nl, e ,ns} C IN,d'
Note that fsP" will indeed have the property that

|7 - o]

= inf fN— Z znTh

L2(Dopr) zeCN.dl | |lz]lo<s neln.g L2(D,p)
’ 7“

Furthermore, if we let Cqopt € ClEv.dl denote the By ,q basis coefficients of ff Pt then we

can see that both ||€opt|| < s and ||€— €qopt = H f— Fovt will hold. As a
7 7 2
fisllo fis g D,p)
result, norms involving the vector € — €opt € ClTv.dl can be interpreted as best s-term
fos

approximation errors of f in a natural way.

Finally, to prove our main result below we will effectively be considering the point
samples we take from f to instead be point samples taken from f that are contaminated

with evaluation errors of size ( f—f > (&) at each evaluation point & € G. To bound all of

these errors in a uniform fashion we will define
vim 1= | = sween| (£ F) @) (1.9)

The following theorem is proven in Section 3.

Theorem 1. (Main Result). Let n € (0,00) and s,d,N € N\ {1} with d < D and
s < |Inal/2. There exists a finite set of grid points G C D, an algorithm H : CI9 —
(Zna x ©)°, and an absolute universal constant C' € R™ such that the functiona : D — C

defined by a(§) == 3_ 4 0, )em(7(g)) WnIn(§) satisfies

/
L2(D,p) e <\/§

+
2

1 f—allp2(p,u) < Hf - f‘ +7\/§> +n (1.10)

E - EQo_pt

E - E opt
s 2fs

1



forall f =3 cno cnTn € L2(D, ) with v = Hf — f”oo = SUPgep ‘ (f — f) (E)‘ < o0,
where f: D — C is the finite dimensional approzimation to f defined as per (1.8).

_ If the BOPB By 4 is of type I so that the BOS constants K; are 1 for all but at most
d € ZN[0,D] BOS basis sets Bj,n, then

7 DN
G| =0 <33DK§gd4 -log! <7> log?(s) 10g2(D)> ,
and the algorithm H will have runtime complexity

é opt
2

7 DN
O <(35 + 5°N) D2K24q* log* <7> log?(s) log?(D) log <

)

If the BOPB By q is of type II so that Ko =1, then
DN
G| =0 <33DK§gd4 -log* <7> log?(s) logz(D)> )

and the algorithm H will have runtime complexity

O <(35 + 5°N) D2K244t - log? <%> log?(s) log?(D) log <

é opt
O

)

Here we have assumed that any desired basis function Ty, € By q can be evaluated at any
desired point in D in O(ND)-time (which will be the case, e.qg., for polynomial product
bases of degree < ND ).

Proof. This is a restatement of Corollary 1. O

Looking at Theorem 1 we can see that it effectively subsumes the theoretical recovery

results of [12]. Consider, for example, the case where f = f = f&* (so that f is exactly s-
sparse in By ). In this setting we will have both ‘f — f”LZ(D : =7 =0and ¢—Cqort =0
K fis

hold true so that (1.10) implies that f is recovered exactly (up to any chosen tolerance
7). Unlike the results in [12], however, Theorem 1 also guarantees that the method H will
work well for functions f which have || f — fo| 2(p,py) relatively small, but nonzero.

The authors would also like to emphasize the generality of Theorem 1, which is unique
to the best of their knowledge in the literature related to sublinear-time sparse approx-
imation methods. If, for example, one chooses By 4 to be the multidimensional Fourier
basis with d = D and d = 0 then one immediately obtains a new sparse Fourier transform
result for functions of many variables whose sampling and runtime requirements scale only



polylogarithmically in the total basis size |By 4| = NP. Though this new Fourier result
does not compare favorably to the best deterministic multidimensional Fourier results of
this kind [26, 32] with respect to achievable runtimes or error guarantees, it also does not
use any of the specific algebraic structure of the Fourier basis. This allows Theorem 1
to be significantly more flexible than these older Fourier results in that it can apply to
situations which they don’t cover. For example, it can generate entirely discrete Fourier
results where G C {% | j € [N]}® (unlike [26]) by using a discrete and finite multidimen-
sional Fourier BOBP with f = f which will work for any choice of N (unlike [32], which
requires N to be prime).

Finally, the astute reader has likely noticed that Theorem 1 is phrased in the form
of an existence result, which may be troubling to the practical numerical analyst who
actually wants to know how to compute an accurate solution. Let us allay any anxieties
that this choice of theoretical statement may have birthed — the algorithm 7 referred to
above is a modified version of the well known CoSaMP algorithm [33] (see Algorithm 1
in Section 3). It has been implemented and evaluated in Section 5, and the code made
publicly available.* In short, the result is entirely explicit and constructive with respect to
the algorithm H. The grid G C D, which ultimately responsible for the form of Theorem 1
as an existence result, on the other hand, is a bit more nuanced with respect to its practical
construction.

As we shall see below, the grid G C D is constructed by randomly selecting points from
D according to several prescribed probability distributions that are ultimately derived
from the orthogonality measure u (see Theorems 3 and 6 and their proofs for details). It is
then proven that this randomly constructed grid will allow H to satisfy the error guarantee
(1.10) for all functions f as per (1.7) with high probability while simultaneously satisfying
the stated upper bounds on its cardinality. The runtime complexity of H follows from the
boundedness of |G|. Hence, the existence result is proven by randomly constructing a grid
G which is guaranteed to satisfy the conclusions of Theorem 1 with high probability.

In fact, this is completely analogous to the role of random sampling matrices in stan-
dard compressive sensing results involving the Restricted Isometry Property (RIP). Many
compressive sensing methods are guaranteed to be accurate if they are used in combination
with a random sampling matrix that has the RIP, a condition which can only be achieved
near-optimally with high probability. Herein, the conclusions of Theorem 1 will hold for
any grid G that can be used to form two associated random sampling matrices: one with
the RIP, and another with a property known as the Support Identification Property (SIP)
which will be defined in Section 1.3. The conclusions of Theorem 1 will hold whenever
these two conditions are satisfied by G, and it will be shown that a randomly constructed

1See “SHT II: Best s-Term Approximation Guarantees for Bounded Orthonormal Product Bases in
Sublinear-Time” on Mark Iwen’s code page https://www.math.msu.edu/~markiwen/Code.html.



grid G will satisfy both conditions with high probability.

1.2 An Outline of the Paper and of the Proof of Theorem 1

After reviewing some relevant compressive sensing results and establishing necessary no-
tation in Section 2, we will begin proving Theorem 1 in Section 3. The first step in that
process will be to prove a compressive sensing recovery guarantee for a generalized version
of the well known CoSaMP method [33]. This new theorem, Theorem 3, will establish
a best s-term recovery guarantee for the CoSaMP algorithm where the support identi-
fication step is performed by any algorithm A and grid G pair which has the SIP (see
Section 1.3 below for details on the SIP). With Theorem 3 in hand we will then turn our
attention to constructing a sublinear-time algorithm A and grid G pair that have the SIP,
an effort whose results are summarized by Theorem 4 (see also Proposition 1). Combining
Theorems 3 and 4 then quickly establishes our main result above which appears in the
form of Theorem 5 and Corollary 1 in Section 3.

The vast majority of the effort in the paper will be focussed on proving Theorem 4 in
Section 4. That is, to demonstrate that Algorithm 2 therein can be used together with a
randomly constructed grid G in order to effectively achieve the SIP with high probability.
This is done by Theorem 6 (a specialized version of Theorem 9 in Section 4.1) which
formalizes the random sampling strategy one must use in order to construct G so that the
SIP is achieved with high probability, and by Theorem 7 which translates the conclusions
of Theorem 6 into a SIP-type statement. Theorem 9, in turn, follows from Theorem 8
which is proven in Section 4.2.

Finally, the authors would like to note that the reader who is interested in seeing the
proof of Theorem 1 unfold from basic compressive sensing principals in a more direct
fashion (though without the benefit of waypoints explaining the relevance of each result
to the final goal) might consider the following alternate reading order for the sections
below: Such readers can begin with Section 4.2 after reviewing Section 2, followed by the
first 4 paragraphs of Section 4, then Section 4.1, and finally the remainder of Section 4
after which Theorem 4 will have been proven. Reading Section 4 in this bottom up fashion
first will then allow Section 3 to be read without having to temporarily take any of the
theoretical statements therein for granted along the way. For readers who are mostly
interested in the numerical ramifications of the methods developed herein, we suggest
skipping down to conduct a careful review of Algorithms 1 and 2 (together with the
equations referred to therein) after reading Section 2, after which the careful numerical
evaluation conducted in Section 5 should be understandable.

Before moving on to establish some additional required notation, however, we will

10



first discuss the SIP in the next subsection. This is crucial as the notion of the SIP
will allow for easier sublinear-time methods to be developed in the future. To emphasize
this last point: Any basis for which the SIP can be established via a sublinear-time
algorithm can be combined with Theorem 3 below in order to produce a new sublinear-
time compressive sensing method for that basis. We expect that this new pathway for
developing future sublinear-time algorithms will help to stimulate the further improvement
and generalization of sparse Fourier transform techniques to other bases of interest going
forward.

1.3 The Support Identification Property (SIP)

As above, let [N] := {0,...,N — 1} for all N € N and further define P([N]) to be the
power set of any such set [N]. In Section 3 we will prove that CoSaMP will still produce
accurate sparse approximations as long as its support identification step employs a triple
with the support identification property.

Definition 1 (The Support Identification Property (SIP)). Let s € [N], 5 € (0,1),
ecC™N A:C™— P([N]), and T : C™ — [0,00) with T'(0) = 0. The triple (®, A,T)
is said to have the Support Identification Property (SIP) of order (s, [3) if

v A@vrer|l, < Bllvllz

holds for all e € C™ and v € CV with ||v||o < s that also satisfy ||v]2 > T'(e).

Note that many triples with the SIP exist. One completely trivial example is the triple
consisting of the N x N identify matrix I, the function A which always outputs [N],
and the zero function I'. Of course this example is extremely unsatisfying — generally
for compressive sensing applications we prefer that the any SIP triple (® € C™*N A :
C™ — P([N]),T') has m < N and an efficient computational complexity for A (preferably
sublinear-in-N herein). Thankfully these types of SIP triples also exist — in fact it is easy
to see that any fast and error-robust compressive sensing algorithm A must in fact be a
member of such a triple.

Lemma 1. Let IV : C™ — R* be such that I'(0) = 0, and let A : C™ — CV be a
compressive sensing algorithm with an associated measurement matriz ® € C™N that
satisfies

lz — A(®z +e) 2 <T'(e)

for all e € C™ and & € CN with ||x|o < s. Furthermore, let supp : CV — P([N])
output the indices of the monzero entries of any given input vector. Then, the triple
(®,supp o A, (1/8)T) will have the SIP of order (s, ') for all ' < 1.

11



Proof. Let e € C™ and note that

stupp(fl(@wﬂ))c ;

2
< [[Tsuppa@ate)” ‘

2
2 + H (m —-A ((I)w + e))supp(A(CI)m-l-e))

— |z—A@z+e)|} < (I'(e)’.

, <8 ((1/8)(e) < Hllalo. O

2

Thus, if ”wHQ > (1/,8/)F/(6) then stupp(A(q)m—l—e))c

Lemma 1 demonstrates that many nontrivial SIP triples of the type we are interested
in exist. Of course, using a compressive sensing method in order to create a SIP triple
seems slightly nonsensical given that one would generally want to create a SIP triple in
order to develop a new compressive sensing method in the first place. This immediately
raises the question of whether nontrivial SIP triples exist which do not in themselves
already effectively serve as a compressive sensing method. The answer to that question
is “yes”, and the easiest example is the SIP triple which the original CoSaMP method is
itself already implicitly utilizes. Given € CV and s € [N] let w‘s € C" be the vector
obtained from x by setting all but its s-largest magnitude entries to 0. The following
lemma explicitly demonstrates the SIP triple on which the original CoSaMP algorithm
[33] is implicitly based.

Lemma 2 (The CoSaMP SIP Triple). Let ® € C™N have the RIP of order (2s,0.1)
(so that its Restricted Isometry Constants (RIC)s satisfy 0s < dos < 0.1), s € [N],
B €(0.2223,1), and define A: C™ — P(IN]) by A(y) := supp ((®*y)|, ), and I': C™ —

[0,00) by ['(e) := <%> llellz. Then, the triple (®,A,T') has the SIP of order (s, [3).

Proof. Lemma 4.2 of [33] implies that |2 4(@g-re) , < 0.2223||z(|2 + 2.34e]|2 holds for
all e € C™ and € CV with ||z]|o < s. Suppose, furthermore, that ||z|2 > T'(e) =

(5235 ) llella. Then,

—0.2223
Jeaarerl, < 022230l + 231lel < 0222300l + 234 (22222
= Bllala
holds. Also, I'(0) = 0. O

In Section 3 we will demonstrate that the original SIP triple implicitly used by the
CoSaMP algorithm can be replaced with any other SIP triple of similar quality without
substantively changing the performance of the resulting CoSaMP variant as a compres-
sive sensing algorithm. Before we can do this, however, we will require some additional
notation and preliminary infrastructural results.

12



2 Notation and Preliminaries

Recall that D € N is the number of variables in the function of interest f : X ;¢ pD; — C
(where D; C R for all j € [D], and D := X j¢[p)D;). Vectors n € [N]¥ with [n|o <d < D
will always index a basis function in

B:=Byag={Tn:D— C|ne[N with ||nl, <d}, (2.1)

where we have suppressed the basis subscripts for ease of discussion. In addition, we fur-
ther assume that the BOS B is a product basis so that T}, (&) satisfies (1.3) as above.

2.1 Restrictions and Partial Evaluations

The following notation will be utilized heavily during the analysis of the proposed support
identification procedure. Let S C [D], w € X jesD; with w; € D;, and n € [N]P. The
function T's.p, : X jesDj — C is defined to be

Tsim(w) = [ Tjim, (wy)- (2.2)
JjES
Then, the set
Bs = {Tsm | m € [N]” with |n[lo < d} (2:3)

is a BOS with respect to the probability measure s := ®jespj over Ds := X jesD; C RIS
with BOS constant Ks < min {Hjes Kj,KgoKénaXﬂS'_d’o}}. For any set E, let P(E)
denote the power set of F containing all possible subsets of E. Given any vector v € CP
and T C [p] we will let v € CP have entries

(’U)— V; ifjeT
T o itjeT

For t € [p], we let v; € CP a vector restricting v to its ¢ largest-magnitude entries. Let
S§¢:=[D]\ S for all S C [D]. We will then construct fs., : Dse = C from f: D — C by
defining

fsaw(2) = f(§)

where &€ € D C RP is the unique vector with £5 = w and £€g. = z. In this context, we
define the permutation function gs: Dg X Dge — D given by

os(w, z) = & such that £ = w and €gc = z. (2.4)

13



This yields the alternative characterization fs.,(z) = f (0s(w, z)).

The restricted vectors of the input vector £ such as 5 and &g have the reduced dimen-
sions. However, the coefficient vectors such as ¢ and 7 will maintain the full dimension
even though they are restricted to some subset of indices.

If n,m € Iyq and S C [D] then we will define (n,m)s € Zyq to be the vector
ns + mge. Furthermore, for a given v € C¥V.dl n € Ty 4, and S C [D], we will let the
vector vs., € Clv.dl indexed by k € Iy 4 have entries given by

vE, ifks=mng
VS:n), = . 2.5
(vs: )k {0 otherwise (25)

Note that vs., € ClTv.dl will only have at most NIS°I nonzero entries corresponding to
the entries of v € CZval v, € €, whose indices m match those of n on S (i.e., so that
ms =mng).

The following calculation will be repeated sufficiently often that it merits being referred
to as a lemma. It concerns the partial sum approximation to f from (1.7) in B given by
(1.8). Recall that ¢ contains only the entries of the sequence ¢ corresponding to the indices
in IN,d-

Moreover, the next lemma also demonstrates the usage of the newly introduced nota-
tion. Its statement will be used later in the proofs of Lemmas 10 and 11.
Lemma 3. Let S C [D], w € Ds = XcsD; with w; € Dj, and n € Iy 4. Then

<f$;w7TSc;n> - < éSC;nycl)S;n;'w >
(Dse,pse)

where f is as in (1.8), and Ps.p.w € ClIn.dl 4s q vector indexed by k € In,q with entries

Tg-k(’w) ’if k:Sc = Ngec
DPsnw) = ' . 2.6
(Psim: )k {0 otherwise (26)

Proof. Computing the inner product one quickly sees that

<f8;wyTSc;n> = JES;w(Z) TSC;n(z) d/‘SC(Z)

(DSC#SC) Dge

= / > ek Tsg(w) Tsen(2) | Tsem(2) duse(z)
Dse kGIN’d

14



= Z (ESC;n)k TS;k(w)'

kEZN,d

The stated result follows. O

Let m € N and n € Zyg4. For any matrix A € C™*/Inal we define (A),, be the
column of A corresponding to the index m. Also, we can choose multiple columns, e.g.,
for n1,m2 € In g, (A){n, n,} refers the columns of A corresponding to the indices n; and

ny. More generally, for any S C Iy 4 the matrix (A)s = Ag € C™*I5| will consist of the
columns of A indexed by S.

2.2 Sampling Matrices associated to a BOS and Restricted Isometry
Constants

Given a BOS as in (2.1), let {£;}sem) C D be sampling points drawn independently at
random according to u with corresponding samples {§, := f (&0)}eepm) from f in (1.8).

The random sampling matriz ® € C™*In.al associated with the points {& Z}ge[m} and the
BOS has entries given by

Dy = Tn(&)) (2.7)

with indices ¢ € [m] and n € Zy4. One can see that, e.g., § = ®¢ will hold in this
case. Furthermore, results from the compressive sensing literature guarantee that \/—lm<b

will also have well-behaved restricted isometry constants as soon as m is sufficiently large.

Definition 2 (See Definition 6.1 in [17]). The s-th restricted isometry constant 05 of a
matriz A € C™N s the smallest § > 0 such that

(1= 8)ll3 < | A=||3 < (1 + 8)|||3

holds for all s-sparse vectors © € CN. The matriz A is said to satisfy the restricted
isometry property (RIP) of order (s,0) if 1 > > 65 > 0.

Theorem 2 (See Theorem 12.32 and Remark 12.33 in [17]). Let ® € Cm< vl pe the
random sampling matriz associated to a BOS with constant K > 1 for m,|Inq|,s €

Z+\{1}. If, for 6,p € (0,1),
m > aK?6%s - max {In*(s) In (|Zn,q|) In(m), In(p~ ")},

then with probability at least 1 — p the restricted isometry constant 65 of \/—lm<b satisfies
ds < & so that ® has the RIP of order (s,d). Here the constant a € R is universal.
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In addition, one can also, e.g., bound the ¢ operator norm of the random sampling
matrix ¢ in the event that it has the RIP. We have the following consequence of Theorem 2.

Lemma 4 (See Proposition 3.5 in [33]). Suppose A € C™* |Zv.a| has the restricted isometry
property (RIP) of order (s,d). Then,

Xr
Azl < 1+5(”¢!1 ; H-’L’Hz>

holds for all x € Clval,

We are now prepared to develop the new CoSaMP variants on which our new sublinear-
time algorithms will be based.

3 Robust Sublinear-Time Sparse Approximation via CoSaMP
with Fast Support Identification

Algorithm 1 CoSaMP with the new support identification
1: procedure CoSaMPnewSupportID B
2: Input: ygp = Psipxs + esp, Psip, A, Yyog = Popxs + eck, PcE, K, s, d, d
3: Output: s-sparse approximation a of x

4 a’=0 {Initial approximation}
5: VSID < YSsID

6: k<« 0

7. repeat

8: k+—k+1

9: Q « A(vsip) {9 < 2s, New support identification step (e.g., Algorithm 2)}
10: 0+« QU supp(aF—1) {Merge supports}
11: P \/%CECI)CE‘Q

12: blo (@')T% {approximated using 3 LS iterations (Richardson’s or CG)}
13: a® < (blg)s {Prune to obtain next approximation}
14: vsID + Ygip — Psipa” {Update current samples I}
15: VCEold ¢ UCE, VCE < Yo — Pcpa” {Update current samples II}
16:  until |[vcgl3 > |[vceodl3, or k> & {Halting criteria}

Xt

1 If |vcgl2 > |vcgodl3 then a < a*~ ! else a < a*
18: end procedure

In this section we analyze a generalized CoSaMP variant which uses any support iden-
tification method satisfying the SIP introduced in Definition 1 above (see Algorithm 1).
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In Theorem 3 we provide error guarantees as well as the general sampling and runtime
complexities that one can obtain for such CoSaMP variants with a particular choice of
halting criteria. Later, in Section 4, we then propose a new admissible support iden-
tification method which runs in sublinear time for BOPBs with sufficiently small BOS
constants (see Algorithm 2). This method is proven to satisfy the SIP as stated in Theo-
rem 4 of this section. Finally, combining Algorithms 1 and 2, we obtain Theorem 5 which
combines the error guarantees from Theorem 3 due to the SIP with the specific sampling
and runtime complexities of the support identification algorithm presented in Section 4
for BOPBs. We hasten to point out that the modularity of this proof approach makes
it easier to improve upon than prior works have been. If a better (e.g., faster) support
identification method satisfying the SIP is developed for a particular basis in the future it
can immediately replace the one from Section 4 and produce an improved CoSaMP type
algorithm with a better performance for that particular basis.

We assume herein that the function f in (1.7) can be written as
f=f+¢ (3.1)

where f : D — C is as per (1.8) with the coefficient vector & € CTV.4 in B, and where
¢/ : D — C is bounded so that ||¢/||cc <. Now, we rewrite f as

f=fad=Fre (F-frtte). (3.2)
—:',e_/

Our goal is to approximate the best s-term approximation €gopt of ¢, which is the coef-
f,s

ficient vector of f*'. Since CoSaMP from [33] approximates the best s-term of a given
vector efficiently while allowing mild noise on the samples, we modify the CoSaMP algo-
rithm in order to make it handle our high-dimensional problem more efficiently. Since the
analysis of our CoSaMP type algorithm will be based on [33], it is helpful to introduce
the connection between our notation and the notation from [33]. Toward that end, going
forward we will set x5 = EQO}JF, x = ¢, and ¢ = \/n}b—CE@CE in the notation of [33].

S

7,
The samples u = ®x + e in [33] can then be viewed as containing renormalized function
evaluations of f, and accordingly, e contains renormalized function evaluations of the e
defined in (3.2). In particular, e = —F<&

vVmcE "

In the pseudocode of Algorithm 1, most of the steps are identical to the original
CoSaMP except the “New support identification step”, “Update current samples I &
I1”, and “Halting criteria” lines. The inputs yqp € C™™® and yop € C"CE of Algo-
rithm 1 contain function evaluations of f which will be used for support identification and
coefficient estimation (i.e., via least squares), respectively. Accordingly, esip € C™S™® and
eceg € C™CE appearing in Theorem 3 contain the corresponding function evaluations of
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e from (3.2), and ®gip € CmsioXIndl and dop € CMeexInal have the function evalu-
ations of Ty, for n € Zy 4 at the corresponding evaluation points. Note that esip and
ecg, do not change over the iterations of Algorithm 1. We define €’s;p € C™s® and
e’cp € C™CE as the vectors whose entries are the function evaluations of €' from (3.1).
Each row number (mgp and mcg) is, therefore, the total number of function evaluations
used for support identification and the coefficient estimation, respectively. In the k-th
iteration, Algorithm 1 starts with an s-sparse approximation a*~! of @, and then tries
to approximate the at most 2s-sparse residual vector r*~1 := &, — a*~!. The support
identification procedure A in the “New support identification” step begms approximating

rk=1 by finding a support set Q C In,g of cardlnahty at most 2s which contains the
indices of the entries where most of the energy of 7*~! is located. As noted above, any
support identification method satisfying the SIP can substitute the “New support identi-
fication step” in Algorithm 1 in order to accomplish this task — the algorithm developed
and analyzed in Section 4 is a specific instance.

After the support identification, in the “Merge supports” step, a new support set € of
cardinality at most 3s is then formed from the union of 2 with the support of the current
approximation a*~1. At this stage Q should contain the overwhelming majority of the
important (i.e., energetic) index vectors for 7*~1. As a result, restricting the columns of
the sampling matrix ®cg to those in Q (or constructing them on the fly in a low memory
setting) in order to solve for bg := argmin, o \/m—CE [(®cE)qu — Ycgl, should yield
accurate estimates for the true coefficients of xs = CQt;_pt indexed by the elements of 2,

<éQ(}pt> 2 The vector (bg), then becomes the next approximation a* of x5 = éQ(}pt.
S Q S

Theorem 3 provides the error guarantees for ||Cnopt — a|| , as well as the runtime com-
f,s
plexity of Algorithm 1 in terms of the provided support identification algorithm’s runtime.

Theorem 3. LetT' > 0, 8 € (0,0.2228], kK € N and 6 € (0,0.025] be fived, and let K be the
BOS constant of (1.6). Suppose that ¢ := CQopt is s-sparse with Ygp = Psipxs+esp and

Ycp = Pepxs + ecy where the triple (tIDSID E CmSIDX‘I’Vd‘ A Cms0 — P([|Znql]), T
C™si> — [0,00)) has the SIP of order (2s,8) and T'(esip) < I, and —2—=®cp €

VMCE
CmeexIInal has RIP constant das < 6 and mcr = O(sK2?log*|Iyal). Suppose that
r¥ = x,—aF is a 2s-sparse vector such that vsip = Pgip (s —ak)—i—eSID = OgprF+egp.

Furthermore, suppose that the support identification procedure A’s output always has car-

5In practice, it suffices to approximate the least-squares solution bg by an iterative least-squares ap-
proach such as Richardson’s iteration or conjugate gradient [6, 14] since computing the exact least squares
solution can be expensive when s is large. The argument of [33] shows that it is enough to take three
iterations for Richardson’s iteration or conjugate gradient if the initial condition is set to a*~', and if ®cp
has an RIP constant d2s < 0.025. In fact, both of these methods have similar runtime performance.
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dinality at most 2s, that it runs in O(L4)-time, and that it uses mgip = O (L) function
evaluations. Then, for all k > 0, the signal approzimation a® in Algorithm 1 is s-sparse
and satisfies

2.124
okt <0.5‘ _ kH
‘ms a H2 < xs —a’| + m\leCEllm
as long as HrkH2 = Hms — akH2 > T. In particular, if mineg) Her2 > T then
_ 4.248
s — ¥, < 2l + Trcllectlz (33)

As a consequence, CoSaMP with any such support identification method A will produce
an s-sparse approrimation a that satisfies

lecnllz ~o-ryg 1y 4 a.316CEl: 8.625”60EH2}- (3.4)

VCE VmCE’ VMCE

The sampling complexity of Algorithm 1 will be msip +mcg = O (£:4 + sK?log? |IN,d|)-
The runtime complexity of Algorithm 1 will be (’)( (EA + s2K?Lg log? |Zn.a + s£¢mSID) .
/1) , where O (Lg) is the runtime complexity of computing any desired matriz entry (CI>CE)M,
or (tIDSID)M, for any valid choice of j, L.

lzs — all2 < max {1.03I‘ +2.03

Proof. When k <  and [[7*|l3 > T > I'(egp), we obtain

Haz - ak+1H2 < 9|jzs — bla (Lemma 4.5 in [33], a**! = (bla)s, b = blo)
< 2,224 | (@) ||y + 0.0044|r* |5 + 22 lecplla (Corollary 5.3 in [33])
VMCE
<2224 Hrg 0004|715 + 222 el (Lemma 4.3 in [33])
2 vV MCE
i L2124 ,
<2.224 - B[|r¥||2 + 0.0044]r"|[2 + llecell2  (The SIP assumption)
mce
< 0.50r]l2 4+~ ecs|
> U. 2 \/m—CE CE||2
2.124
:0.5‘:1: —akH + ecElls -
s \/m—CE H ||2

In order to obtain the bound in (3.3) we may now simply solve the recursion for the final
error after noting that

(1+054+025+---)-



If the last k& > & in Algorithm 1, and ||[7*| > T > T (egmp) for all k < &, then
4.248 lecs|
s CEll2-

On the other hand, if the last k >  in Algorithm 1, [[vcgll, < |lvcroall, for all & < &,
and ||r¥||y < T for some k < , then

&5 — alla < 27%||lzs[l2 +

1 1
— ®cpa”|y < —— H - (I)CEakH
/MCE ”yCE ”2 Naxs YcE 5

1 €CE
< dop(zs — a) + ———
HvﬂmE (®s ~a") VICE ||
1 k lecell2
< Pcp(rs —a
H\/mCE ( ° ) 2 mce
755 2. — ﬂ’+H&EM
McCE
= ecEll2
<I'vV1i+d+ ”7,
vaLern
and
" |lyoy — @cpa’l, > ——— ([@cp(e, — a)ll,  lecel)
v/ MCE E
lecEll2
>V1-90|xs —a”®|, — ——=.
= H S ”2 \/m—CE
By combining the upper and lower bounds, we obtain
K \/1‘1‘5— 2H6CE”2
zs — all2 < [|zs — a”[|, < L'+
v1—9 vmceev1—26
_ 2.0255
< 1.0254I" + ||eCEH2

Now assume that the first condition ||[vcg||3 > ||[vcred|/3 of the halting criteria in
line 16 of Algorithm 1 holds. There are two possible cases : (i) ||[r*7|ls < T and (ii)
|[r*~1||s > T'. The case (i) implies that ||; — alls < T'. For the case (ii), note first that

|zs — ak|la < 0.5]|xs — a* 1o + %HECEHQ. Also, from the halting criterion,

s e (2 — o) +ece, > # o (s —a* ") +ecs
MCE ’ ~ /mcE ° 2’
1 \€CEH k-1 lecell2
P (:cs —ak> + 2 > P (:cs —a > — ,
H vV MCE cr 2 vV MCE cF 2 VMCE
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e

2

leckll2 k-1 leckll2
N
MCE ° 2 MCE

o=, 2 15 o= 0, - i e
L= Vs 2 V110 yimce

By combining the upper and lower bounds of st

5> We obtain

HH < (2 124+ﬁ) lecs |
e (09

||60EH2
< 8.625——=
vV Mce

s~ all, = || ~ a
(3.5)

The support identification algorithm .4 is assumed to have O (£ 4) runtime complex-
ity in line 9. A conjugate gradient least square solver can approximate line 12 with
@ (32K 2 Jog? ]IN,d]) runtime complexity per iteration (see, e.g., Chapter 7 of [6], and
Section 3 of [23]). Furthermore, a constant number of iterations (e.g. three in [33]) suf-
fices. Lines 11, 14, and 15 require the generation of an mcg X O(s) or mgmp x O(s)
submatrix of either ®cg or ®gip, respectively. This will take O(sLemcy + sLamsip)
-time. Finally, the iteration number of the entire CoSaMP loop is bounded by &, so that
the overall runtime complexity is O ((EA + s2K?Lglog* |Zn.a + s£¢mSID) . n). With re-
spect to the sampling complexity, the support identification requires mgmp = O (£'4) func-
tion evaluations and the conjugate gradient method requires mcg = O (sK 2log? ]IN,d])
function evaluations [6, 23], and thus the overall sampling complexity is mgp + mcg =
O (L) + sK?log" |In.dl). O

Results concerning randomized constructions of RIP matrices \/7<I>CE e eIyl

for BOBPs with 0y, < ¢ and mcg = O(sK?log? |Zn.4|) are well known (see, e.g., Theo-
rem 2 and Chapter 12 of [17]). Our next result gives a qualitatively similar construction
of a triple (tIDSID, A, f) with what is essentially the SIP for BOPBs (see Proposition 1 for
an explicit SIP statement regarding this triple). More specifically, Theorem 4 constructs
a support identification procedure with the properties required by Theorem 3, and also
bounds its computational and sampling requirements. We remind the reader that the
error vector esp € C"SID appearing in both Theorems 3 and 4 does not change from
iteration to iteration in the analysis of Algorithm 1.

Theorem 4. (Sublinear-Time Support Identification for BOPBs). There exists an algo-

rithm A : C"S® — P (Iy 4) that always outputs a set of at most 2s index vectors € Iy 4,
and a sampling strateqy for randomly selecting a set of mgp grid points {Eg}ge[msm] C D,

21



such that the random sampling matriz ®sip € Cmsox[Ival gssociated with {&e}ecimesin]
as per (2.7) will have the following property with probability > 0.99:

A (<I>SID'rk + eSID) =6 A (<I>SID (E — ak) + e’SID) will output a set  C INa
such that

, < 0.2086“rk"2+2.4172 < 0.2203“#“”2 (3.6)

é - éQo}Jt

k
T~C
H Q fus

2
holds for any r* = x, — a* = Cyopt — a satisfying HrkHQ > T, where
fys

é - é opt
25

ro= (25\/@+ 1)

+18v23
2

é - é opt
25

+229v23s.  (3.7)
1

In order to achieve this property with probability > 0.99 it suffices that
’ 4d 3 74 1 ( DN 2 2
mgm = O (L)4) = O | DKSs’d” - log 4 log=(s) log=(D)

if the BOS constants K; are 1 for all but at most d € ZN10,D] BOS basis sets Bj, and
that

DN
msip = O (L) = O (DK§§33d4 -log? <7> log?(s) log2(D)>
if Ko = 1. In the first case the runtime complexity of A will be
5 3 4d 74 4 (DN 2 2
O(La) =0 (s*+s’N)DKid" - log 5 log“(s)log=(D) |,
and in the second case its runtime complexity will be
5. .3 4d 74 4 (DN 2 2
O(L4) =0 (s*+s’N) DKZd" - log 0 log“(s)log“(D)
when Ko = 1.
Proof. See Section 4. This is a slight restatement of Theorem 7. The algorithm A is
Algorithm 2, and the mgip points {&;}scimgp,] C P should be randomly selected as per

the first paragraph of Theorem 6. The runtime and sampling complexities then also follow
from Theorem 6.

SNote that A (CPSID'I’k + eSID) = A (CPSID (:1:S — ak) + 831]3) = A (CPSID <6Qo_pt — ak) + esm) =
fis

~ k ’ ’ R ~ ~
A (<IDSID (c —a ) +e SID) where e’sip := esip — Psip | € — Cgovt |-
fos
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The first inequality in (3.6) follows directly from Theorem 7. In order to see that the
second inequality

0.2086 |[#4]| +2.4172||G — Ggon | < 0.2203 v

fys

2

holds whenever HrkHz > T', we note that

HrkH2 >T= (25 235 + 1) ¢ — Cqort|| +18V23||€ — Eopt|| + 22vV/23s
Fisll2 fis i1
= (25 23s + 1) ¢— EQO_N + 18\/% c— EQO_pt
fis 2 f,s 2
> (4323 + 1) || — Ggn
s ll2

Thus, one can see that

24172
0.2086 ||| +2.4172 & — G| < (0.2086 + 77> Il
2 7o Il 1323+ 1 2

which yields the desired effective SIP constant 8 = 0.2203 € (0, 0.2228]. O

The following proposition is a variant of Theorem 4 that more formally establishes
exactly the type of SIP triple

(@50 € ©msX TNl A @510 5 P(| Ty ), T 5 ©™5 5 [0,00))

defined in Section 1. Its main contribution is to explicitly define a function I" : C™SID —
[0,00) as per Definition 1 which produces a SIP triple when combined with the algorithm
A and matrix ®gip from Theorem 4. We hasten to point out, however, that only a valid
upper bound I of I'(egip) as per (3.7) is actually necessary in order to apply Theorem 3
— one doesn’t actually have to know the exact form of the best achievable function T.
Nonetheless, for completeness we provide a function I' in the next proposition which al-
lows us to formally satisfy Definition 1 as stated in Section 1.

Proposition 1. Let A : C™™ — P(Iyg) and Psip € omsox|Zval pe
the algorithm and random sampling matriz referred to by Theorem 4, where

U {QSJ’ (wiv zllyg)} denotes the msp = m1m2(2D _ 1) random Samplmg
je[2D—1] te[ma] k€[me]
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points’ used to create ®gip. In addition, define

I'(esmp) ;:CL max He]éIDH ;

/mimg je[2D—1] 2

where C € R is an absolute constant < 29 fized belouf, and where eéID e Cmm2
corresponds to the portion of esip € C™SI0 formed by evaluating e in (3.2) at the

evaluation points {ng (wi,zi) for each j € [2D — 1]. Then, with

}fe[ml],ke[mz}

probability > 0.99 the triple (Pgip, A,T) formed using the random evaluation points
U {Qsj <'w§, sz)} will have both of the following properties:

j€[2D—1] fe[ml],ke[mz

(i) (®sip, A,T') will have the SIP of order (2s, = 0.2203), and

(ii) T :=T (E - 6Qo_pt,'y> in (3.7) will satisfy T > T'(esmp) for all inputs Pspr* +esp =
f,s

dgip (¢ — a®) + €’sip with ||€/sp | < 7-

Proof. The fact that ' in (3.7) satisfies I' > I'(egip) is ultimately a consequence of Lem-
mas 7 and 14. The SIP holding for (®gmp,.A,T") follows from the fact that Theorem 4
still holds if the condition HrkH2 > T is replaced by the condition HrkHQ > I'(egip). This
can be seen by tracing through Theorem 4’s proof beginning with the proof of Theorem 8
where one need not apply Lemma 14, and from which an alternate version of Theorem 9
with (4.9) involving I'(esip) instead of its current right-hand side trivially follows. With
such an alternate form of Theorem 9 in hand one can then immediately recover a similar
variant of Theorem 6 involving I'(egip) which, in turn, can then provide an alternate
(though less easily stated and interpretable) version of Theorem 4 involving the condition
H’l"kH2 > F(eSID). |

Finally, in Theorem 5, it is shown that Algorithm 2 can be utilized as the support iden-
tification algorithm A in a SIP triple (®gmp, A, I' : C™SI0 — [0,00)) for use in Theorem
3. The sublinear runtime and sampling complexities of Algorithm 2 listed in Theorem 4
then result in a new sublinear-time and memory efficient compressive sensing approach

"See the input of Algorithm 2 for a description of the sampling points and note that the 2D — 1 blocks
have been reindexed for ease of discussion, and that the index sets §; must therefore correspond to either
{j} or [j + 1] accordingly. For a description of how to generate the component points w? zi we refer the
reader to Theorem 6.

8See (4.20) in Theorem 10 for a definition of I with explicit constants, where we further point out that
« is fixed to be v/23 in Theorem 6. When looking at Theorem 10 one should keep in mind that the matrix
E% € ©™*™2 therein is nothing other than a matricized version of e}, with S = S; for any desired
choice of j € [2D —1].
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for BOPB-compressible functions f : D — C. We would like to remind the reader be-
fore stating this main result that x; = CQopt is s-sparse with yqmp = ®sipxs + esp and

Ycr = Popxs + ecr. Furthermore, the trlple (Psip, A, I') constructed from the support
identification procedure in Algorithm 2 with a := /23 satisfies the SIP of order (2s, 3)
with g € [0.2203,0.2228] with high probability (see Theorem 4 and Proposition 1), and
the matrix ﬁ@@; has a RIP constant dos < ¢ for ¢ € (0,0.025] with high probability

(see Theorem 2). Finally, A always outputs a set of cardinality at most 2s as noted in
Algorithm 1.

Theorem 5. (Sublinear-Time Compressive Sensing for BOPB-compressible Signals). Let
N,de N\ {1}, s < |Inal/2, 06 € (0,0.025], n € (0,00), kK = [logz < Ceyort /77>-‘, K the
fis |2

BOS constant of (1.6), ygip = @SIDéQC}p; +esmp, and Yog = CIDCEéqu; + ecr where we as-

sume that both €'sip = esmp — Psip <é — éQopt> and €' cg := ecg — Ocy (E — ég()_pﬁ)
Fs i
have ||€’'siplle < v and ||€'crllec < 7, respectively. Suppose further that the triple

(®sip, A, T') with T € RT such that T > TI'(esp) satzsﬁes the SIP of order (2s,3) with
B € 10.2203,0.2228] as per Theorem 4, and that \/7{>CE e ¢meex|Indl has a RIP con-

stant dos < § and mcg = O(sK?log* Iy q]) = O (sK?d* - log* (ZX)) (see (4.23)). Then,

for each k > 0 the signal approzimation a* in Algorithm 1 is s-sparse and satisfies

2.124
~ k+1 ~ k
Coopt — @ <0.5|Cqopt — @ + ecille, 3.8
as long as
G — aF|| > T = (25335 +1) & G |+ 18V23||& — G| +229V235.
fis 2 fis ]2 fis |1

As a consequence, Algorithm 1 produces an s-sparse approximation a that satisfies

leckll2

s el lecEll2 |!€CE|!2}
Coort — a|| < max< 1.030 +2.03°—, 277 ||Ggopt|| +5 ;9 3.9
o 9 { VMCE o, 9 VMcE VMcE (3:9)
S C <\/§ E - EQo_pt + E - EQo_pt + ’7\/5) + 77, (310)
VERID) s |1

where C € R* is an absolute universal constant.

In order to achieve (3.10) for all such possible inputs ygip and ycp with probability
> 0.99 it suffices that

7 DN
m := mgip + mcg = O <DK§g83d4 log* <7> log?(s) 10g2(D)>

25



if the BOS constants K are 1 for all but at most d € ZN[0, D] BOS basis sets B; (BOPB
of type 1), and that

DN
m=0 (DK;*gs?’d‘* ~log* <7> log®(s) 10g2(D)>

if Ko =1 (BOPB of type II).

In the BOPB of type I, the runtime complexity of the entire algorithm will be

)
)

Here we have assumed that the runtime complexity of computing any desired matrixz entry
(PcE)j g or (Psip); 4, for any valid choice of j, L is O (Le) = O(ND)-time.

o ((85 + 83N) D2K§§d4 -log? (%) log?(s) log®(D) log (

Ceyo
o7
and in the BOPB of type II, the runtime complexity will be

(@] ((85 + 83N) D2K24d* . log* (%) log?(s) log®(D) log (

E opt
25

Proof. The result follows by combining Theorems 3 and 4 which immediately yields (3.9),
as well as the stated runtime and sampling complexities. Note that Theorem 4 assumes
that we are sampling from a BOPB-sparse function with arbitrary additive noise ¢’ : D —
C that has ||¢/||cc < 7, which leads to the restriction on ||€’sip /oo and ||€’cgl/oo- To obtain
(3.10) one can simply substitute our choice of x into (3.9) and use Lemma 4 to see that

lecellz _ ‘ o g (é é >
— — op
V/MCE VMCE  /MCE AYAIR
E - EQo_pt
fisll1 ~ o~
< v+ V1496 ~+ ||€ — Copt
Vs @l

Finally, we note that the runtime and sampling complexity bounds have been simplified
by collecting and removing dominated terms along with the fact that K < K2 (BOPB
of type I) or K < K% (BOPB of type II) as discussed in Section 1.1. O

With Theorem 5 in hand we may now prove our main result concerning function ap-
proximation in a Hilbert space L?(D,u) spanned by a countable orthonormal product
basis {T,, | n € NP} D B.
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Corollary 1. (Main Result). Let n € (0,00) and s,d,N € N\ {1} with d < D and
s < |Inal/2. There exists a finite set of grid points G C D, an algorithm H : CI9 —
(Zna x ©)°, and an absolute universal constant C' € R™ such that the functiona : D — C

defined by a(§) == 3_ (5 o, )en(r(g)) nIn(§) satisfies

Hf—a”m(pu > Hf f‘ +

e <¢5

+’Yx/5> +17
1

é - éQcipt

é - é opt
QY
s |2 fis

L*(D,p)

forall f =%, cxp cnTn € L?(D, p) with v := || f — f”oo = SUPgep ‘ (f — f) (E)‘ < 00,
where f: D — C is the finite dimensional approzimation to f defined as per (1.8).

If the BOS constants K; are 1 for all but at most d € ZN[0, D] BOS basis sets Bj then

7 DN
G| =0 <DK§gs3d4 -log! <7> log?(s) 1og2(D)> :
and the algorithm H will have runtime complexity

7 DN
O <(35 + 5°N) D2K2q* log* <7> log?(s) log®(D) log <

)

é opt
25

If Ky =1 then
DN
Gl =0 <DK§gs3d4 -log? <7> log?(s) 1og2(D)> :
and the algorithm H will have runtime complexity

éQcipt

DN
O ((35 +5°N) D2K34d* - log* ( y >1og (s)log?(D) log<
fis

)

Here we have assumed that any desired basis function T, € B can be evaluated at any
desired point in D in O(N D)-time.

Proof. This follows from Theorem 5. The algorithm H : Cl9 — (Zy 4 x €)° is Algo-
rithm 1 using Algorithm 2 for line 9. The set of grid points G C D is the union of the
evaluation points used to create the random sampling matrices ®sip and ®cg from Theo-
rem 5 so that f(G) = (ygip, Ycg) € C™SIDTMCE And, the error bound follows from (3.10)
and the triangle inequality since

1f —allzzm,y < Hf—f‘
= [r-7]

#[F =]

L*(D,u) L2(D,u)

+é—all

L2(D,p
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g‘v f‘ E—Eoomt|| + ||Eort —a
o | PO A S
< If = Fllizpyy +(C+1) (f & | + &= e +wz) n
fis |2 sl
where the absolute constant C is from Theorem 5. O

Next, in Section 4, we will focus on developing Algorithm 2 and demonstrating that it
performs as desired. We hasten to note before beginning, however, that the development of
another support identification method satisfying the SIP with lower runtime or sampling
complexity could be used to create a new and potentially superior version of Theorem 5
in the future. We leave the development of such improved methods in the hands of the
sufficiently interested and clever reader.

4 Sublinear-Time Support Identification

We assume herein that the function h : D — C of D variables,
h:=h+¢, (4.1)

where h : D — C is as per (1.8) with coefficient vector # € €IV in the BOS B as
per (2.1),
hg) = > FnTn(8), (4.2)

?’LEZNYd
and where ¢’ : D — C is bounded so that supgeple’(§)] < 7. In terms of our problem
setting about f, the function h is each residual function f — a where a is the function
constructed from the approximation a* that Algorithm 1 produces in each iteration. In

order to escape exponential sampling dependence on the dimension D we will further
assume below the BOPB of type I or II (see Section 1.1). In addition, motivated by

Section 3, we will be most interested in the case where Hh hPt < ‘ hoP )
L2(D,p) L2(D,u)
In particular, we will almost exclusively represent h as h = hopt (h hopt > below

where we hope that ej, := =h— hopt

of hOPt.

+ €’ has a relatively small L?-norm compared to that

In order to approximate h we seek to find a near-optimal set of basis functions from B
on which to approximately project h. In particular, we would be quite pleased to identify
all of Qgp;s — that is, all the basis functions which compose h9P" — if possible given that

h ~ flggt. This appears a bit too ambitious goal in general, however. Instead, we will
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opt
iL,2s

a nontrivial amount of energy to the total L?-norm of ﬁg?t. We will represent (portions

of) these basis element indices via the following sets of (partial) energetic indices.

focus on the easier goal of identifying all the entries of 2" which individually contribute

Let S C [D], s' € N, a € (1,00) be a fixed constant to be determined later. We define
the set of energetic partial index vectors of hg?t in N° to be

F opt >
Q2
< h,s! Sin

ne IN,d} CIngC [N]P. Note in particular that NPl = In,q s0

'FQc_)pt
hos' |12 S

> a2 4o NS, 4.3

T aVs N (4:3)

a,s’

’I’LEINA& '

2

where NS := {ns

7
Qopt
h,s’
!/

that Qﬁ’;}/ contains all n € Q‘;Lp:, whose associated entry has |7 | > 2. Furthermore,

it is also important to note that Qﬁ’)‘?/ C Q(;Lpst, holds for all s' € [|Znq|] \ {0}. More

generally, Q2% C QY = {qs lqe szt} holds for all S C [D] and s € [[Zy.al] \
{0}.
Our next lemma shows that identifying a superset of Q‘[xbz]s is enough to ensure that

we will find a set of basis elements that can approximate h3>" (and therefore h) well. In

particular, we will find the support of the majority of the energy of h92", ‘ hPt

L*(D,u)

T ~opt
fL,2s

With respect to Section 3, the next lemma shows that any support set we

2
discover which contains Q‘[xbz]s will be sufficiently informative to guarantee that CoSaMP

will make progress during its current iteration.

Lemma 5. Let o > /23. If Q?b?s cQc IN.a then

'FQopt OQC S 02086 'FQopt
fL,2s 2 fz,2s 2
Proof. Setting 7/ := ¥opt , one can see that
h,2s
r2 12 H"“W% ||r,||%
Paclly = >0 Il < 25 52 <52

opt ~e
nEQB,ZSmQ
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since Q° N Qf‘bz}s = 0. O

a,2s

In light of Lemma 5 above we will now turn our attention to identifying Q[[’)}

computationally and sample efficient fashion. In particular, we seek to identify Q([lbjs as

quickly as possible while simultaneously using as few fixed and nonadaptive samples from
h= hgspt + ey, as possible. This is accomplished via Algorithm 2 below. Theorem 6 then
proves that it works as intended.

in a

Theorem 6. Let {wj}z ] C Dj be mq points drawn independently at random according
clmy
to pj, and {zi}k ima] C Dipp\yjy be ma points drawn independently at random according
€|m2
to pippgjy, for all j € [D]. Furthermore, let {wf_lﬂ} C Dijpq) be my points
Ze[ml]

drawn independently at random according to pij;iq), and {z,?_lﬂ}ke[ | C Dipp\[j+1 be
ma

my points drawn independently at random according to pypy\(j41], for all j € [D]\ {0}.
If my and mo are chosen to be sufficiently large for all j € [2D — 1] then the following
property will hold with probability > 0.99:
Algorithm 2 will output a set Q O Q‘[sz]s for all h = W + e), as per (4.1) with
coefficient vector ¥ € CIN.d in the BOS B satisfying

> 25V 23s + 18v'23

2 2

+ 22V 23s. (4.4)

1

'F - 'FQ?pt

’F - ’I:"Q?pt
h,2s

h,2s

'T'Q?pt
h,2s

In order to achieve this property with probability > 0.99 it suffices for Algorithm 2 to
utilize a total number of function evaluations from h that is of size

5 DN
msip = mimo(2D — 1) = 0O (DKggs?’d4 - log* <7> log?(s) logQ(D)>

if the BOS constants K; are 1 for all but at most d € ZN[0, D] BOS basis sets B; (BOPB
of type 1), and that is of size

DN
mgp = mima(2D —1) = O (D.F(gff(s?’cl4 -log* <7> log?(s) logQ(D)>

if Ko =1 (BOPB of type II).

In the BOPB of type I, the runtime complexity of Algorithm 2 will be
7 DN
(@) ((35 + s?’N) DK Jog? <7> log?(s) logQ(D)> ,
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Algorithm 2 Implemented Support Identification (Special Case of Algorithm 3)

1: procedure SupportID
2: Parameters: N € N, D € N, a > /23, sparsity s € N.
3: Input: wvgp € @m1m2(2D ) split into 2D — 1 blocks. The first D blocks ’USIDJ =

{h Q{J}(wé,zk }Ze ] ke lma] j € [D], belong to entry identification where w) €
D{]}, z{z € D[ DI\{j}s and 0{j} as per (2.4). The last D — 1 blocks vsip,p—14; =
{h O[j+1] 'wz —it sz lﬂ }ge[ml] ke[mo] , j € [D]\ {0}, belong to the pairing where
wP!
wy " € Dy and 2] € Dipy ).
4: Output: A set QD Q[O‘D2]S with ‘Q‘ < 2s.

5 for j=0up to D —1do

1 1 :
EI
6: E;, <« p— Z - Z (vs,j)er Tim (w;)

2
for each n € [N], see

ke[mz} 1 Ze[ml] . '
also (4.16), with ('USID,j)&k = h(Q{J}('w%,zi))
7: N < {n € [N] | min(2s, N)-largest values Eﬂl}
8: end for
: TD — ./\/0.
10: forj=1uptoD—1do
11: l’)+j<—{n—|—m‘n€7b+j_1, mG./\/'j}ﬂIngN[j'i_l}.
2

1 1

12: Ein — — Z — Z (USID7D_1+j)£’k Tjt1)in <'w£D 1+]) for each n €
2 ke[ma] ! £€[m]

Th;» see also (4.16).

13: Totj {n € Tpy; | min (2s, ]Téﬂ])—largest values Ef,n}

14: end for~ .
15:  Return Q + Tap_1 (Note that it will always be true that ‘Q‘ < 2s.)

16: end procedure

and in the BOPB of type II, the runtime complexity will be

O <(35 + 5°N) DK d* - log* <¥> log?(s) logQ(D)> .

Proof. See Section 4.1. The desired result follows from a simplified version of Theorem 9
with a = v/23. O
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The index j in Theorem 6 belongs to three different sets, [D], [D] \ {0} and [2D — 1].
To explain, the set [2D — 1] comprehends all j’s belonging to the first two sets, [D] and

(D] {0}

Theorem 6 combined with Lemma 5 is enough to guarantee that Algorithm 2 can iden-
tify a support set {2 that contains the majority of the energy of the 2s-sparse vector 7 qopt .
h,2s

However, Theorem 3 in Section 3 requires that Hrﬁc should be relatively small, where

2

r € CTNd is the 2s-sparse vector T := xs — a¥ = Cyort — a® (r = r* in Section 3).9 As a
Fos

result we must now relate this 7 to the coefficients 7 := é — a* = & — a* of the function

hi=f— ZneIN,d ak T, whose noisy samples we are passing into Algorithm 2 in line 9 of

k

Algorithm 1. The following lemma can be used to relate |72 to

FQopt
1_1,23 2
Lemma 6. Let s € [|In.q /2], & a* € CTV.4 where HakHO < s, and recall that ¥ := é—a”,

E(E) = ZneIN,d T Tn(€), and f(E) = ZneIN,d enTn(€). One can see that

+
2

T ~opt
;L,QS

<
2

é - éQopt

72 = )
fis

éQopt - ak
fis

2

Proof. Let Q := (supp(ak) U Q‘}p;)ﬂ supp(7), and note that ‘Q‘;Lp;s‘ = min {2s, [supp(7)|} >

|Q|. As a result one can see that

~ k ~ R ~
CHopt — A = ||CHopt — @ +C k opt — C k opt
Qo , || supp(af)\22" ~ Csupp(@i N ||
= (é — ak) — é opt
- k
Qc}p;USupp(ak) supp(a )\ins
) 2
= (C_ ak) opt + Esupp(a’“)\QoPt
nys Usupp(ak) ) Fisllo
= lI7elly + Coupp(al\0 ||
< [I7ally +||€ = Eqort
Frs |2
S 'F opt + é— EQopt
fl,25 2 f,s 2

“Recall that & € CTN.4 is the coefficient vector of f as per (3.1), and that a® € ¢TV 4 is CoSaMP’s
s-sparse approximation to @ = & € CIN.4 in its k" -iteration.
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as we wished to show. O

The next lemma upper bounds the best 2s-term approximation error of # by the best
s-term approximation error of €. It will allow us to relate the condition (4.4) under which
Algorithm 2 succeeds to €.

Lemma 7. Let s € [|Inad|/2], éa* € CINa where HakHO <'s, and recall that ¥ =
¢ —ak, e = EneIN,d TnIn (&), and f(&) = ZneIN,d nTn(€). One can see that

T — 'FQ%pzc < |le— EQ;)_pt holds for all p > 1. As a consequence, it will always be the
,2s P ,8 P
case that
25V 23s ||T — Topt ||+ 18V23 ||F — Topt || + 227V 23s (4.5)
h,2s 2 h,2s 1
< 25v23s || — EQo_pt + 18v/23||¢ — EQo_pt + 22vv23s =: T.
R Fs il

Proof. A quick calculation reveals that

p p p
F—Foopt || < ||F — Foopt > Cn — a¥
Qﬁp25 = prs Usupp(ak) n n
P P nEIN,d\<Q‘}p;Usupp(ak)>
= § |5n|p
nEIN,d\@}":Usupp(ak))
P
S E - EQopt 3
Fallp
as we wished to show. O

We are now able to assert that our support identification algorithm will work for all

2s-sparse vectors T nopt Whose norms are sufficiently large with respect to the best s-term
h,2s

approximation error I' defined above in (4.5).
Lemma 8. Let the w% and z{z for j € 2D —1] in Algorithm 2 be chosen independently at

random as per Theorem 6 above. Then, the following property will hold with probability
> 0.99:
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Algorithm 2 will output a set Qc In,q with ‘Q‘ < 2s that will also have

(4.6)

"'Q?pt
h,2s

Taort AQe
h,2s

< 0.2086
2

2
for all h = h3P" + ey, as per (4.1) with coefficient vector # € CIN4 in the

BOS B satisfying ‘ > T, where T is defined in (4.5).
2

ch_)pt
h,2s

The runtime and sampling complexities of Algorithm 2 will remain as in Theorem 6 above.

Proof. By Lemma 7, ||Fgopt || > I implies that (4.4) holds. Thus, the result follows from
h,2s 2
Theorem 6 combined with Lemma 5. ]

The following theorem is the main theorem of this section. It proves that the support
set € found by Algorithm 2 will also contain the majority of the energy of the 2s-sparse

vector 7 := Cqopt — a® € CTv.a, as needed in Section 3.
Fos

Theorem 7. (Support Identification). Let s € [|Ina| /2], & a* € CTN.4 where HakHO <s,
and recall that ¥ := & — a®, h(€) := ZneIN,d TnTn (&), and f(€) = ZneZN,d nTn(8).
Suppose that the w% and zi in Algorithm 2 are chosen independently at random as per

Theorem 6 above. Then the following property will hold with probability > 0.99:

Algorithm 2 will output a set Qc In,q with

5 < 0.20867 (|2 +2.4172

é - é opt
O

Iree
2

for any r = Eqopt — a® satisfying 7]y > T, where
f,s

T (25\/@+ 1) +18v23

é - éQo_pt
VEERID)

é - é opt
2

+229v23s.  (4.7)
1

The runtime and sampling complexities of Algorithm 2 will remain as in Theorem 6 above.

Proof. Let v’ := Toopt . Note that 7 —r = € — €opt, and so
h,2s fis

HT/ - TH2 = HT, —T+T - ’"Hz
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< v’ =7, + 17 =l

— 7=+ +

é - é opt
5

<2 , (4.8)

2

E - E opt
25

where the last inequality holds by Lemma 7. Thus, we have that the following holds
whenever (4.6) does:

H”Qc HTQ — 7 g +17q
<||(r 2+Hr@c 2
< || , +0.2086 |||,

< 2||&— Eqopt || +0.2086 |7 —r 47|,
Fis |2

< 2{[& — Eqort|| +0.2086 (|| — ||, + lI7,)

fis |l2
S 2 E — EQO})C + 02086 <2 E — 6Q0~pt + ”TH2>
fis |2 VERID)
— 24172 ||& — Eqopt || + 0.2086 ||,
s |2

where the second inequality holds if (4.6) does, and the third and fifth inequalities hold
by (4.8).

To finish we note that (4.6) will indeed hold by Lemma 8 as long as ||[Fqopt || > 1T =
h,2s 2
I — |[& — Cqopt|| - And, ||Fgopt || > T —||¢ — €qopt|| will hold whenever |7, > T holds
fs 2 h,2s 2 f,s 2
by Lemma 6. O

We will now focus on proving Theorem 6.
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4.1 Proof of Theorem 6: Identifying Q?g]s for " Using Samples from
h = ingt + ey

a,2s
(D]

partial index vectors of flggt that correspond to, e.g., the disjoint subsets of indices

EIl _ g, : 10
S;" = {j} for all j € [D].

Our strategy for finding €2 will involve building it up from a sequence of energetic

Note that the energetic partial index vectors in this case will contain the entries of the

index vectors which have large associated values in 7opt . That is,
fL,2s

’F opt
Q_P
Q%2 = 0%2 5 { ne; | In € Q%' with || > 2212 whose j™* entry is n € [N
S;:I {]} - J ‘ h,2s | n| = o /_28 [ ] )

where e; € Iy 4 is the j™ standard basis vector. As a result, the set Qggf effectively
i

contains all the j"™-entries of the largest-magnitude coefficient vector indices in sz;.

Furthermore, it is trivial to find a reasonably small superset of Qggﬁ when, e.g., N is not
j

too large — one can simply use the set N1} = {ne; | n € [N]} > Qggf.
J

Of course, the sets Qg(’,;f, . ’Qggli are of limited utility in their own right when
[0‘5215. Our strategy will therefore be to use these sets to build
up a sequence of new energetic partial index sets Qg’;s, .. .,Qg’gil each of which cor-
responds to an increasingly large subset of indices S]P C [D]. In particular, if we define
SJP = ULOSEI = ULO{@} = [j+1] for all j € [D]\ {0} we will eventually obtain a super-

set of Qg’fs = Qﬁff (as desired) in a process that is analogous to the “Pairing” method
D—1

utilized in [12]. The following lemma is the basis for building up

it comes to finding (2

a,2
(D]

energetic partial index vectors of ﬁg?t that correspond to smaller index sets Sy, Se C [D]
in this fashion. Recall that P (N 5) denotes the power set of N for any given S C [D].

* by combining

Lemma 9. Let s € N, a € (1,00), and 81,82 C [D] be disjoint. If Ty € P (N‘Sl) and
T, eP (NS2) are such that Qg’lsl CTi and Qg’;l C Ta, then

ngus2 CTio:= {n+m | nev, me 7'2} NZng C NS1US2

%Here the “EI” in the superscript of SJEI stands for “Entry Identification” in the terminology of [12].
In fact many other valid choices for these sets also exist — please see Algorithm 3 for the general criteria
they must satisfy.
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Proof. Let v’ .= Tqopt , and note that for all n € Iy 4 it is the case that
h,2s

{meIyng|msus, =nsus,} C{meIng| ms =ns}n{melyg|ms,=ns,}

holds. As a consequence, for any n € Zy 4 it will be the case that both

2 2 2 2
|’T,51;n|’2 = Z |T;n > Z ‘Tfm| = HT/SlUsz;n”2
mely g s.t. melyg s.t.
ms, =mns; Ms1USy; =NS1USy
and ) )
2 2
||r,52;n||2 = Z |T;n 2 Z ‘dn‘ = ‘|r131U32;n||2
mely g s.t. meZlyg s.t.
Ms,="Ns, MsS1USy; =NS1USy

hold. These inequalities in turn imply that € := {ngl | n e leﬁ 82} - Qg’lsl C 71 and

a,s’

b= {n52 | ne QS;U&} C ng C 75. Finally, the fact that S; and Sy are disjoint now
implies that

03ls, C{ntm|net, mem}c{nim|neT, meT)

is true as desired. O

Let S(I]) = (‘)EI. Note that applying Lemma 9 repeatedly with, e.g., S; = S]P , Sy = S]Eil,

71 = Ti2 from the (j—1)% application of Lemma 9,!! and 75 = NS forj=0,1,...,D-2
will yield a superset of Q[a;]s on its (D — 1)%* application. However, the cardinality of the

resulting superset 772 of Qg’fj& will also ballon to |71| - |72| at each step, eventually

becoming exponentially large in D on the (D — 1)5t application of Lemma 9 in the worst
case. In order to prevent this worst case exponential growth in the size of the resulting
sets 712 we will interleave the applications of Lemma 9 with the use of an energetic-

index sieve function F§ g, : P (N'Y5?) — P (N1Y92) as in (4.19) which reduces the

cardinality of any 772 2 ngus& to 2s without loosing any of Qg’lzjsz These sieve functions

will allow Lemma 9 to be applied repeatedly as above while maintaining output sets of
small cardinality at all stages, which we can see how they work in lines 12 and 13 of
Algorithm 2.

The next theorem proves the existence of a set-valued function ]_—gs P (N S) - P (N S)
for any given S C [D] which, when given any subset 7 C N containing Qg’% as per (4.3)

Nwith, e.g., T1 = NS&' when ji=0
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as input, will output a smaller subset 7’ C T of cardinality at most 2s which still con-
tains Qg’%. Note that these set valued functions necessarily depend on the function AP

in question via the definition of Qg’zs. However, it is crucial to note that all the ]_-gs

considered herein only utilize a few point samples from h = flgft + e, (i.e., noisy point
samples from ﬁggt) on a fixed and nonadaptive grid. More specifically, the grid on which
each ]_—gs samples h depends only on 2s,S, and the BOPB B with respect to which h
is presumed to be approximately sparse, and not at all on the particular function A in

question.
Theorem 8 (Existence of Low-Complexity Energetic-Index Sieve Functions). Choose
t' € [2D] and any desired Sy,...,Sy C [D]. For all j € [t'] there exists an associated
energetic-index sieve function ]:gf : P (NSJ') - P (NSJ') for which both
a,2s 25 S;
1. Qg™ NT S F5(T) holds for all T € P (N%7), and
2. |F& (T)| < 25 holds for all T € P (N),

are true for all h : D — C as above (4.1) that satisfy

7 opt

‘ h2s

Furthermore, each ]:‘%JS :P (N Sﬂ') - P (N Sﬂ') is computed using evaluations of any given

> 25a4/s
2

+ 22ary4/5.12
1

+ 18«
2

’l: - ’l:" opt
L2(D,p) 2

'F - 7: opt
h,2s 2

'T'Qopt
h h,2s

h,2s

)

h = ﬁggt + ey, at m]lm% fized and nonadaptive grid points {(w%,zi) }g ; ;
€[m1],ke[my)

mjl,m% € N, where wz € Ds; and zi € Ds¢ for all j € [t'], ¢ € [mjl], and k € [m}).

If the BOS constants K are 1 for all but at most d € Z N [0, D] BOS basis sets B;,
then each such ]_—g]s 2P (NSJ’) —P (st) above requires only

o - DN
m; =miml =0 <K§gs3d4 -log® <7> log?(s) logz(D)>

evaluations of any given h = izgspt +ep, at mj fized and nonadaptive grid points C D.13 As
a result, .7-1%;" (T) can be computed in just O(m;|T|)-time for any given T € P (NSi) and
h in this case.*® If, on the other hand, Ko = 1 then each such ]_—g]s :P (NSJ’) - P (st)

12The constants here have been rounded up to the nearest integer from those implied by Theorem 10
and Lemma 14 after substituting s’ = 2s.

131t is important to emphasize here that the grid on which we must evaluate each function f is a fixed
grid which does not change depending on h.

“Herein we assume that h has been evaluated in advance on our non-adaptive grid so that its values
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requires only
o DN
m); = mim} = O <K§gs3d4 log* <7> log®(s) logQ(D)>

evaluations of any given h at m; fixed and nonadaptive grid points in D. As a result,
]:gf (T) can be computed in just O(m);|T|)-time for any given T € P (NS7) and h in this
case.

Proof. See Section 4.2 below. The proof follows by applying Theorem 10 with ej, = h —
o'+ (h—h) = h—h32" for each set Sy, ..., Sy. After recalling that supgcp ‘ (h — l~z> (E)‘ <
~ we can see that Lemma 14 will also apply in each case. Finally, the runtime and sampling
complexity bounds follow from Lemma 15 and Remark 3. O

Remark 1. It is important to note that Section 4.2 proves more than mere existence of
the collection of low-complexity energetic-index sieve functions promised in Theorem 8.
In fact it proves their existence by proving that one can generate such a collection with
high probability >, e.g., 0.99 by letting {wz}zam{] C Ds; be m9 sampling points drawn
independently at random according to ps;, and by letting {zi}ke[m%-] C Dg; be m% sampling
points drawn independently at random according to pse; for all j € [t']. This is done by
showing that randomly selecting the nonadaptive grid points in this fashion ultimately
guarantees that their related random sampling matrices in (4.10) and (4.13) have well

behaved restricted isometry constants. See Remark 8 for additional details and related
discussion.

With Lemma 9 and Theorem 8 in hand one can now see that Algorithm 3 will be

guaranteed to return a superset {2 of Q[O‘bz]s whose cardinality is at most 2s.

Theorem 9. Let S, ..., SF' C [D] form a partition of [D] for t € [D]\ {0} and set
SJP = ULOSEI C [D] for all j € [t + 1]\ {0} as per Algorithm 3. Let f;jm 2P (NSJEI) —

P (NSJEI) and ]:g% P <NSJP) - P <NSJP) be their associated energetic-indexr sieve
J

functions. When executed using these energetic-index sieve functions Algorithm 3 will

output a set Q with ‘Q‘ < 2s that will also have Qf‘bz}s C Q provided that h = hSP" + ey, has

7 opt

‘ h2s

at each grid point can be retrieved in O(1)-time. In addition, note that setting d = D above still leads to
sampling and runtime complexities for each sieve function that scale only polynomially in D. This is due
to d being independent of d.

> 254/
2

+ 18«
2

+22av+/s. (4.9)
1

'F - 'FQc_)pt
h,2s

TQc_)pt
h,2s

'F - 'FQc_)pt
h

L2(Dy) 2s
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Algorithm 3 Support Identification

1: procedure Generalized SupportID
2: Parameters: s € N, t € [D]\ {0}, A Partition of [D] into S',...,SF! C [D], and
the Associated Pairing Index Sets S]P = U)_ ST C [D] for all j € [t + 1]\ {0}.

3: Input: vSID € CXitomim; split  into 2t + 1  blocks
i jElt+1] i JERHIN[E+] )
{h (QS}EI (’lea Zk)) }Ze[m{},ke[mg] U {h (Qsj{t (’wE, zk)>}ée[m{},ke[m§] indexed by j

W/wgeD$HVjeﬁ+¢p&£emﬂszeDQQVje[%+H\ﬁ+ﬁl&f€[m{

zi € D(SJEI)C Vjelt+1ll &k e [méL & zi € D(S}it)c Vije2t+1)\[t+1] & k € [mg]
4 Output: A set Q D Q2

(D]
. . 25 SEI . V) .
5. Compute N .FSJEI (N j > using {h (QSJEI <wz’zk))}£e[m{],ke[mg] for each j €
[t +1]
Ti < No

for j =t+ 1 up to 2t do
P
7;/<_ {’I’L—l-m | n€7;—17 me-/\/’j_t}ﬁIngNijt

7 7% (77) wsine {0 (asp, (0 2))
10: end for

11:  Return Q « Ty
12: end procedure

The total number of function evaluations required ° by Algorithm 3 is
mgp = O (thfc‘?sgcl4 -log? <¥> log?(s) logz(D)>
if the BOS constants K; are 1 for all but at most deZn [0, D] BOS basis sets Bj, and is
mgp = O (th:gsgdA‘ -log! <%> log?(s) log2(D)>

if Ko = 1.

The runtime complezity of Algorithm 3 will be

ot (25w

1511 the bounds below ¢ may be upper bounded by D.

O <<85 + 5% max ‘N‘SJEI
jElt+1]
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if the BOS constants K; are 1 for all but at most deZn [0, D] BOS basis sets Bj, and

DN
> tKA gt 1ogt (7) log?(s) logz(D)>

O <<85 + 5% max ‘NSJEI
jElt+1]

if Ko = 1.

Proof. The proof follows directly from Lemma 9 and Theorem 8. O

Remark 2. Note that Algorithm 2 is a special case of Algorithm 3 with t = D — 1,
SJEI = {j} for all j € [D], S]P = U%ZOSZEI = U)_o{¢} C [D] for all j € [D]\ {0},

and where the sieve functions -7:;%1; .7-";‘; . have been written down explicitly using (4.16),
J J—

(4.18), and (4.19). Therein the ‘7:‘3%1 (NSJEI) are computed for all j € [t + 1] by lines 5
J

— 8 of Algorithm 2, and each ]-";:ﬁ-, (’7;’) in Algorithm 3 is computed by lines 12 — 13 of
Algorithm 2. ’

Though dedicated to proving Theorem 8, this next subsection will be initially focussed

on learning Qg’sl for arbitrary BOPB-sparse functions with h = h = ﬁ%p;, for which
r’ = Fopt . It will then be generalized to cover more general functions h of the type
h,s’

discussed above (4.1) toward its end as an extension of the noisy sparse case. A proof of
Theorem 8 may then be obtained by setting s’ = 2s.

4.2 Proof of Theorem 8: Generalized Entry Identification & Pairing

In the vast majority of this subsection we will be considering an arbitrary function

h: D — C of D variables as per (4.2) whose coefficient vector # € CZN.4 is only nonzero

for entries indexed by index vectors q € Iy 4. In particular, we will be focussing almost

exclusively on the development of efficient strategies for learning about the support of

the coefficient vector 7 of such h in the special case where 7 is s'-sparse so that h = ﬁg})t

and 7 = Topt . Our first lemma does this by telling us how to estimate the ?-norm of
h,s’

any r’ = <7:"Qgpt> = ’F{ cQopt
') Sim R

of the energy of all the coefficients of }N‘Lg})t whose index vectors q € Zy 4 match another
fixed index vector n € Ty 4 in all index positions S C [D]) by using just a few inner
products with “simpler” functions of only |S| < D variables. The idea is that these inner
products will be easy to approximate numerically for |S| small. As a result, one can hope
to learn about the index vectors of the nonzero entries of any such r”” by approximately
computing just a few inner products involving functions of just a few variables in order

} € €I~ in that case (i.e., how to estimate

gs=ns
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to, e.g., discover values of m for which [|7”|2 is large.

Lemma 10. Let § € (0,3/4], S C [D], and {z}repms) C Dse be ma sampling points
drawn independently at random according to usc in order to form a zero-padded random
sampling matric Pseo € Cm2x1Inal for the BOS Bse as in (2.3) with entries

(4.10)

(Dsei0), . 1= Tseq(zk) ifqs=0& g€ Ing
Tka 0 otherwise

indezed by k € [mg] and g € Iy 4. Suppose the nonzero columns of \/Lmj@‘gc;o have the

restricted isometry property (RIP) of order (s,d). Then, for allm € Iy g C [N]P, vectors
of additive evaluation errors e € C™2, and functions h as per (4.2) one will have

1 ‘< = opt h 2 7 2 " HehH2
S (B sz Tsm ) el = o] < S8l |12 + (4.11)
ke ™2 (Ds,us) 3 Vma
" .__ =
where v’ = r{qeﬁg‘f;/ qs=ns}'

Proof. Consider the zero-padded random sampling matrix ®ge.,, € C"2% Zx.al for the BOS
Bse as in (2.3) with entries

) (4.12)
0 otherwise

) Tscq(zg) ifgs=ns& qelyg

(<1>Sc;n)k,q =
indexed by k € [ms] and g € Iy 4. Note that gs =ns & ¢ € Ing = (q,0)sc € Ingq
for all d € [D + 1]\ {0},S8¢ C [D], and n,q € Iy 4. As a result, the nonzero columns of
®se.o will contain the nonzero columns of ®se., as a subset.'0 This further implies that

the matrix consisting of the nonzero columns of L@gc;n will also have the restricted

NG
isometry property (RIP) of order (s,d).

Applying Lemma 3 together with the definition of E?Pt we now have that

1
2

ke[ma]

2
7 opt h
<(h§}J )SC;Zk’TS;n>(D$7M8) + ek‘ = Z

ke[ma]

2
1 - Fo o 4 ez
T ~opt Scin; e —
A/ 19 QfL,s’ Sin ’ Ek A/ 19

6Note that the nonzero columns of ®se., will be indexed by different g in ®se;o. However, this
reindexing will ultimately just represent a permutation of the nonzero columns of ®sc,, as a submatrix
of ®sc;0. And, permuting the columns of a matrix does not change its restricted isometry constants.
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Noting now that each vector ®gse.n.», as per (2.6) can be replaced by an equivalent row
of ®se.p, in (4.12) we can further see that

2
1 < - oot Wl 1 N en
E — (hf )Sc;zvaS;n> tep| = E : (I)Sc;n(TQE’P“ )sin | +
ke ma] m2 (Ds.ps) ke[l mo h,s! PR VALLY:

L g (Pt s +
= c. T ~o .
g SIS
1 el
— @ .. 124
H my o +\/mz

Using that ®ge.p, has the restricted isometry property (RIP) of order (s, d) together with
the (reverse) triangle inequality on this last line we now can see that

2

2

" L/ ?
V1 —=4r"” e 2 < § ——‘<h%“ ez T > + el
|| ||2 \/TT? s Mo ( s )S 2y LSim (D pis) k

h

eH2
< 1+5r"2+ﬂ——.
VIF3r I+ =2

After subtracting ||r”||2 from the quantities in the inequality above, we finally use the

bounds (vI+3 — DV = 7y < § and (VI3 - D¥i=ps = o = 30 to
finish the proof. U

Lemma 10 yields an alternate entry identification technique to that provided in Sec-
tion 4.1 of [12]. In particular, if S¢ = [D] \ {j} for some j € [D] the inner prod-
ucts <(l~1§,p t)gc;zk,Tg;n> are just one-dimensional integrals that can be computed

(Ds,us)
to high accuracy for any desired n € Iygq using only O(N) function evaluations of

(izg,pt)sc;zk : Ds — C via, e.g., a quadrature rule whenever the the basis functions in
the j™-dimension, Bj = {Ts.n | n € In 4}, are polynomials of degree at most N. If B;
is either the Fourier or Chebyshev basis and N is very large then these one-dimensional
integrals can also be computed for all n € Zy 4 in sublinear-in-N time since (il(s),pt)gc;zk
will be Bj-sparse (see, e.g., [20, 21, 19, 24, 25, 3, 22, 26, 39, 31, 23, 5]).

When [§¢] < D — 1 the situation becomes more difficult. However, to efficiently

evaluate the higher-dimensional inner products <(l~1§,pt)gc; s Tg;n>(D : that arise in
SHHUS
these settings one can instead utilize non-adaptive random sampling techniques motivated

by compressive sensing theory. The following lemma does this by quantifying how well
the estimator

1 - -
. Z (hs’pt)sc%k(wé) TS;n(wZ)
1 pelm]
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based on the mj randomly chosen grid points {wf}ée[ml] C Dg approximates all such

B )se sz Tsim ) .

()sm Tom)

Lemma 11. Let 6 € (0,1), S C [D], and {we}iepm,) C Ds be ma sampling points drawn
independently at random according to us in order to form a zero-padded random sampling
matriz Ps.0 € ¢ XIInal for the BOS Bs in (2.3) with entries

_ {TS;q(wé) ifqse =0& q€Ing

(®50);q = (113

0 otherwise

indezed by £ € [m1] and q € Iy 4. Suppose the nonzero columns of \/Lm—l@g;o have the
restricted isometry property (RIP) of order (2,6), and let
1 - - -

ehim — > (W )seim (w0) Tsm(we) = ((hF)seszy Toim )

my

Zé[mﬂ (DSHLLS)

for any desired n € Iy q C NP, function h as per (4.2), and point zj, € Dgc. Then,

(e;;‘ < |7 e SH(%C;M)W (4.14)
h,s! 2 h,s’ 2
where Pse.o.z, is defined as in (2.6).
Proof. We begin by noting that
1 -y S _
— > (WP )sez (we) Tsm(we) = Y g Toeglzi) vs (q,m) (4.15)
1 Ze[ml} quZP:,
where
vs(g.m)i= Y ——Tig(w) ——=Tsn(w)
s(g,n) = ——Ts;q(wy) —Tsn(wy
Ze[ml] m ! m "

1 1
= <\/771 ((I)S;O)(q,O)s N (®S§O)(n,0)s> )

Appealing to standard results concerning coherence in, e.g., Chapter 6 of [17] one can see
that |vs (g,m) — 1| < ¢ holds if ng = gqg, and that |vs (g,n)| < 6 holds if ns # qg.

Let Q' := {q € Q%p; | g5 = ng} C Q%p;, and Q" := Q%p; \ . Using (4.15) one has

that ’ ’ ’
1 ~ —_— .

— Z (h(s)’pt)sc§zk (we) Tsm(we) — Z FqTlse;q(21)

m
1 Le[mi] qeY
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=Y FqTseq(z) (vs (qm) = 1) + Y FqTseiq(zk)vs (q,m)

qeqY qeY’

> [Tseq(zi) (s (@m) = VP + Y [Tseq(z) vs (g,n))°

2\ qer qeQ”

IN

"'Qopt

h,s!

where the last inequality follows from Cauchy-Schwarz. Continuing from this the last line
we can further see that

1 7 0p
e Z (h )Sc zk(’wg Tgn ’wg Z T‘ngc Zk
1 Le[ma] qesY
< ’f‘Qgpc Z |T3c Zk | + Z |T3c Zk
s qesY qe”’
= |[Tqoet || O H (Pse:0;2,, ) ot
h,s’ h,s’ 2

To finish we note that

~ ~ - . 7 opt
Z TqTSCﬂI(zk) = < <Tﬂ9pt,> ’ (I)Scm%Zk > - <<h8'p )Sc-z 7T5;n>
qeQ het/ Sin "k (Ds;us)

by Lemma 3. The desired result follows. O

Choose any n € Iy g and S C [D] you like. Using Lemma 11 to approximate the inner
product appearing in Lemma 10’s (4 11) then yields the following estimator for accurately
approximating the ¢>-norm of r” : {qe Qoptl qszns} € C™vd for the coefficient vector

7 of any function h as in (4.2). The estimator is defined for any function v : D — C,
S C [D], and n € Iy 4 to be

. | | _
B = — > p— > uses (we) T (wy) (4.16)
2 ke[ma] ! £€[m]

for fixed nodes {w¢}scm,] C Ds, and {2y }repm, C Dse. Note that (4.16) is essentially
identical to the pairing energy estimator defined in Section 4.2 of [12]. The following
lemma provides an error guarantee for this estimator that matches the quality of those in
[12] despite having a simpler proof (see Lemma 7 in [12]).
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Lemma 12. Let S C [D], § € (0,3/4], 6 € (0,1/5'], and m1, my € N. Furthermore, sup-
pose that {we}iepm,) C Ds, and {21} kemy) C Dse satisfy the RIP assumptions concerning
(4.13) and (4.10) in Lemmas 11 and 10, respectively. Then, for allm € Iy 4 C [N]P and
functions h as per (4.2) one will have

ot
‘\/Es,,, Ir1e| < 26187+ /13-

t
{qEQOP ,

TQopt

)

where '’ :

ds Zns} '
Proof. Applying Lemma 10 we can immediately see that

lle"ll2

i

hop* ” "
Egim = I7"2| < 5\\7‘ 2+ — (4.17)

where e € €™ has its entries given by

ez = Z hOpt )seiz, (We) Tsin(wy) — <(l~12¥’t)50;zkaTS;n>

Ze[ml] (Ds,1s)

Thus, it suffices to bound ||e€"||2 in order to obtain our final result.

Applying Lemma 11 we can see that

2 2
€13 < D ||[Fqom || 62 H(ésc;mzk)mm
]{,‘E[mg] ,s! 2 h,s! 2
2 2
’FQc_)pt 52 H(¢Sc;0)9c_)pt 5
h,s’ 2 h,s’ F

where we have used that (®se,0;z, ) gert are the rows of the submatrix (®se,0)qort € C™2 xs!
hs! hs!

of ®se,9 in (4.10). Using the RIP property of the nonzero columns of \/Lm—z(I)SC;O we can
now finish bounding ||€"||3 by noting that

2 2

0
2

= 7
etz < 628 -ma(1+96) < 12

'F opt
Q>
h,s’

F opt
Q;L,S, 2

where we have used that § € (0,3/4] and that & € (0,1/s']. Substituting this last bound
into (4.17) now finishes the proof. O
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Though useful, Lemma 12 presupposes that one has access to noiseless samples from
fLOpt. This will rarely be the case in practice. The next lemma bounds the error of the
estimator (4.16) in the setting where one instead has noisy samples from hopt Such noisy
samples will be represented with the help of an arbitrary additive n01se/error function,

ep : D — C, below.

Lemma 13. Let S C [D], § € (0,3/4], 6 € (0,1/5'], and m1, my € N. Furthermore, sup-
pose that {we}ie(m,) C Ds, and {2k} kejmy) C Dse satisfy the RIP assumptions concerning

(4.13) and (4.10) in Lemmas 11 and 10, respectively. Then, for alln € Iy 4 C [N]P, h
as per (4.2), and additive error functions e : D — C one will have

R e, " 2 " T+ |l \/§H$§HF
E < Z4|r \/ =0 || R
‘ Sin ~ 7l < 3 Iz + 4 th 9 * mims
where v’ F{quE’P‘ q$=ns} and 5§ € C™>*™M2 hgs entries (SQ)M = ep(os(wy, z))
h,s’

with the permutation function os: Ds X Dse — D defined in (2.4).

Proof. Note that

opt 7 opt
+5h h
E, s eh, l, s/ E, s/ E,
Sin \/ S n \/ Sin \/ Sn + Sin

by the (reverse) triangle inequality. As a result one can immediately see that

—|—6h h +6h opt

‘ \/ S n ”||2 ESSn \/ESSn
2 7~

< Bl + 30l + 4/ 70

where the bound on the second term above follows from Lemma 12. It remains to show
that /B, < YZsle
n = :

opt

Eg, - H'f”llz‘

F opt
Q;L,S, )

Vmim2

Define v € C™2 by v, = < SS ks (Ps. 0)(n 0)s > where ®s.0 is defined in

(4.13), and note that |vg| < . Furthermore,

e H2H¢— ®50)mons)

1
H ml(@SO n,0)s H\/— SO{(n0$7(n0$}|::|H \/E<\/1_|_7_<\/_
for any 1 # n. Thus, |vx| < 4/ mll H(E’Q)kHz As a result, |/ EJ, = ﬁ”ﬂb \/_rlrILEIiILIF
U
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For any given S C [D] we denote the power set of N° by P (N S ) In the final theorem
of this subsection we will prove that the energy estimator in (4.16) can be used for an
arbitrary s’-sparse function flg,pt to define a new set-valued function ]::;, P (N S) —
P (N S) for each S which, when given any subset 7 C N¢ containing the heavy set

Qg’slas per (4.3) as input, will output a smaller subset 7’ C 7 which still contains Qg’s/.
These set-valued functions were also called “energetic-index sieve function” in Section 4.1
and will then be used to iteratively build up subsets 7 of controlled cardinality for larger

and larger sets of indices S until we eventually have a set of full index vectors 7" C Zy 4
which contains all of Qf‘b‘?l. This set of full index vectors 7" will then be able to be used

as an accurate estimate of Q‘;Lpst,, the support of hg,pt.

Before we can state our final theorem we must define the ~set—valued functions ]-"gl :
P (NS) — P (NS) in question. For a given S C [D], T C N¥, h as per (4.2), and additive

error function ey, : D — C, let an ordering of the elements of T, ny,m2,--- ,n € T, be
defined by
hoP+ey, R tep, hoPtey, hoP tey,
ES?"l = ES;”LQ = ES;TLS Z e 2 Siny7 (418)

with ties broken lexicographically. We define F gl based on this ordering by
FE(T) = {n1,n2, -+, Punin(ery7 } C T (4.19)

The following theorem proves that Qg’s/ NT C F£(T) provided that the additive error ey,
is sufficiently mild.

Theorem 10 (Entry Identification and Pairing). Let S C [D] with [S| > 0, ¢ € (0,1/2],
0 € (0, m], and my,my € N. Furthermore, suppose that {w¢}icim, C Ds, and
{2k} kems) C Dse satisfy the RIP assumptions concerning (4.13) and (4.10) in Lemmas 11

and 10, respectively. Then, Qg’sl NnNT C .7:5,(7') for all §'-sparse h = ﬁg?t, T C N°, and
additive error functions ey, : D — C provided that

6a/s’
A/ 1119

holds, where E& € C™>™2 has entries (E8)or = en(os(wye, z;)) with the permutation
function gs: Ds X Dge — D defined in (2.4).

= - h
17l = [I7qoet 12 > 1€sle (4.20)

Proof. We will focus on the case where |T| > s’ since the result holds trivially when
T < s'. Suppose for the sake of contradiction that m € Qg NT, but that m ¢ F2 (T).

Bo};)t_"_ }”Lopt_i_ .
It must then be the case that Eg3 > Eg “ for some k € T with ks ¢ QP =

s/
m
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{as | a0} since Q% € QPG and |F(T)| = &' 2 [QP]. Thus, [Fsulls = 0. As a
result, Lemma 13 implies that

e \/_HgsHF VT IIFly |, v20Esle _
|| 7y + Jmimg 32 a\/_+ Vmima

(4.21)

h° y -
On the other hand, Lemma 13 also implies that \/Essmﬂ} > H'rg;m||2(1 —25) —e

Combining this with (4.21), we have 1—_262—5 > ||Fs;mll2. Since § < &, it must also be the
3

case that 5 B
b 2 172

> ||rs. .
> 173 2 Wsmle > 52

However, it is impossible that 4av/s’e > ||7||o since by assumption

e _ allll \f||g i3 VTl | V217 .
3&\/8_6—3(}\/_(32&\/3 S > 3\/_<32a\/3’ 6\/—2><H7°||2.

Hence, m € Qg’sl NT = me F(T). O

Theorem 10 forms the basis of our support identification strategy. As such, it behooves
us to investigate its associate resource demands and error performance more closely. We
do this in the next subsection.

4.2.1 Associated Runtime, Sampling, and Error Bounds

The following lemmas provide evaluation complexity, sampling, and error bounds for the
set valued functions F% : P (NS) = P (N®) defined in (4.18) — (4.19). We will begin by
providing more meaningful error bounds for the case where the function A in question is
not exactly BOPB-sparse.

Lemma 14. Let S C [D] with |S| > 0, § € (0,1/2], 6 € (0, 5z555=], 7 € RF, and
m1,mg € N. Furthermore, suppose that {w¢}ecim,) C Ds, and {2k} remy) C Dse satisfy
the RIP assumptions concerning (4.13) and (4.10) in Lemmas 11 and 10, respectively.
Finally, suppose also that e, = h — hopt + ¢ for an arbztmry function ¢ : D — C with
supgeple’(€)] <. Then, the additive samplmg error E& € C™>X™2 satisfies

[ 771
512

where EX has entries (Es)g,k =ep (gg(wg,zk)) as in Theorem 10.

||55||F 771
512

"'Qopt + ’Y

h,s!

1
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Proof. Note that

£ 2
€S0 h hoPt) (Qs(’we,zk))‘
m1m2
2
’“ ~ Tz q>fm>>
= d — T o 4.22
H O (T TQ pg > ) + v, ( )
where ® € C™™2X|[In.a| has entries given by @1y, = Tn(os(wy, z1)). Note also that

\/ml—m<1> consists of a subset of the columns of the Kronecker product <\/Lm—1<1>3;0) ®
(\/T—zq)gc;()) where ®s.0 € c™*[Tval is defined in (4.13), and Pgep € oMz [Inl g

defined in (4.10). Furthermore, Proposition 6.6 of [17] implies that the nonzero columns

of \/Lm—lq)s;o also has the RIP of order (¢, ﬁ) since it has the RIP of order (2, M)

, \/ﬁcﬁ has the RIP of order (s/, (1 + ﬁg) (1 + %) — 1) by Lemma 2 of [15], and

consequently of order (s’ , %) for a > 1. Returning to (4.22), we can now use Lemma 4

to see that
n [ 771
9 512s’

as desired. O

Hence

T — 'F opt
QfL,s’

e _ [T
mimeo 512

+7

rT—7
o,
1

The next lemma tells us how many evaluation points we need to randomly generate
in Lemmas 11 and 10 before we can be sure to have the RIP properties required by both
Theorem 10 and Lemma 14 above hold with high probability.

Lemma 15. Let S C [D], 6 € (0,1/2], and § = (0, 5 6a2s]' Furthermore, suppose that
my,ma,s',N,D € Z*\ {1}, d € ZN[1,D], and p € (0,1) satisfy

my > a1a4K§(s’)2 - max {dln < > In(my), 1)} ,
and
2 =2/ 20 DN -1
ma > as K50 °s" - max { dIn“(s") In 5 In(ma),In (p~') ¢,

where a1,as € RT are universal constants. Then, the samples {wg}ge[mﬂ C Ds and
{Zk}ke[mg} C Dse will both simultaneously satisfy their respective RIP assumptions con-
cerning (4.13) and (4.10) in Lemmas 11 and 10 above with probability at least 1 — p.
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Proof. The bounds on both mq and ms follow from applications of Theorem 2. To bound
my we note that the normalized nonzero columns of (4.13) need to have the RIP of order
(2,9), and have an associated BOS constant of K. Furthermore, there will never be more

than 4 4
D D DN
Zn.al = <d>Nd < (—ed > N? = (e y > (4.23)

nonzero columns of (4.13) for any choice of S C [D]. As a consequence we can see that it
suffices to have

> allKgg_z - max {dln (%) In(my),In (p_l)}

a0t K3 (s")? - max {dln (%) In(my), In (p‘l)}

&
v

v

in order to satisfy the required RIP conditions for (4.13) with probability at least 1 —p/2.

To bound mgy we note that the normalized nonzero columns of (4.10) need to have the
RIP of order (s',d), and have an associated BOS constant of Kge. As a result, (4.23)
together with Theorem 2 implies that it suffices to have

my > ag K202 - max {dlnz(s/) In (%) In(ms),In (p_l)}

in order to satisfy the required RIP conditions for (4.10) with probability at least 1 —p/2.
The final desired probability of success now results from the union bound. O

Remark 3. To simplify the appearance of our bounds from Lemma 15 we will make use
of the following additional facts and mild assumptions. First, we will assume hereafter
that both my and mq are less than |In q|. We consider this a reasonable assumption given
that the techniques presented herein should only be used in situations where this is the
case. Furthermore, we will use 6 = 1/2 above as this is its largest valid parameter setting,
and will also consider o to be a universal constant given that it is ultimately set to a fized
value. Finally, we will also replace our probability of failure parameter p by ¢/2D for some
small constant ¢ < 0.01 (for example) in anticipation of wanting to survive a union bound
involving 2D — 1 applications of Lemma 15 for 2D — 1 different sets of random samples.
This will allow us to assert that any at most 2D — 1 different set valued functions ]:g/
will all simultaneously satisfy both Theorem 10 and Lemma 14 with a “high probability”
of at least 0.99. Utilizing these simplifications we obtain the simplified sufficient sampling
conditions

= R (2 ) (D).
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mg > chK2es - d*In?(s") In? (%) In (D)

for new absolute constants ¢}, c, € RY.

Finally, and perhaps most controversially, we will make the additional assumption
above that either (i) the BOS constants K; are 1 for all but at most d € Z N [0, D] BOS
basis sets B; (note that d can be independent of d), or else that (ii) Ko = 1. In either
case we will have that both Ks and Kge will be bounded above by a constant that depends
on only d or d, respectively, for all S C [D]. In particular, in case (i) we will have that
Ks and Kge are both at most Kgo, and in case (ii) that Ks and Kge are both at most
K2 . Utilizing this final assumption now allows us to bound the total number of samples
we need in order to compute any 2D — 1 informative ]-"gl sets for any given 2D — 1 sets
S with high probability (w.h.p.) by either

mimsg > clKéf(s’)3d4 -In? <%> In?(s") In?(D)

in case (i) (note here that letting d = D still avoids exponential dependence on D in this
setting), and by

DN
mimg > ca K24(s')3d* - 1nt <7> In?(s") In?(D)

in case (i1), where c1,co € RT are absolute constants.

We are now ready to demonstrate the numerical performance of our proposed method.

5 Empirical Evaluation

In this section, Algorithm 1 in combination with Algorithm 2 is evaluated numerically
for the exactly sparse case with noisy measurements as well as the approximately sparse
case. The algorithms were implemented in MATLAB and are publicly available.!” For
the entry identification, we use the pairing approach. In addition to the stopping criterion
“lvcel? > l|lvcgodl3 or & > k7 in line 16 in Algorithm 1, we also stop Algorithm 1 if
supp(a®) = supp(af~!) = supp(af2), i.e., the identified index vectors are the same for
three consecutive iterations. All time measurements were performed on a computer with
2 x 6-core Intel Xeon CPU E5-2620 v3 (2.40GHz), 64 GB RAM, using 12 threads.

17See “SHT II: Best s-Term Approximation Guarantees for Bounded Orthonormal Product Bases in
Sublinear-Time” on Mark Iwen’s code page https://www.math.msu.edu/~markiwen/Code.html.
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5.1 Exactly sparse case and noisy measurements

We start with the exactly sparse case, and we consider tensor product basis functions with
different bases in d = D spatial dimensions, where we choose d up to 100. We set N = 200
and use Iy q = Tp00,4 as search space of possible basis indices, where e.g. |[Zag0,50| ~ 10110
and |Z200,100| =~ 10%%°. We set the maximum number of iterations & := 20, and we always
use mcg = 50 s samples for the coefficient estimation where s = |S|. For every data point
in every plot below, we use 100 different randomly generated trial signals

=) enTalé), (5.1)

nes

where we draw the function’s support set S C Iy 4 uniformly at random without repetition
and the coefficients ¢y, € {—1,1} uniformly at random.

Below, a trial will always refer to the execution of Algorithm 1 on a particular randomly
generated trial function f as defined in (5.1). A failed trial will refer to any trial where
Algorithm 1 failed to recover the correct support set S for f.

We assume that the function evaluations of f are contaminated with (white) Gaussian
noise, i.e., we provide Algorithm 1 with noisy samples

Yll2
y’=y+g’=y+aH

where y contains noiseless samples from f, g ~ N(0,1), and ¢ € R™ is used to control
the Signal to Noise Ratio (SNR) defined herein by

SNRgp, := 10 logy, <“||y,||||2> = —10 log;o(c?).
2

In the following subsections, we consider different types of basis functions. First,
in Section 5.1.1, we use mixed bases in up to 100 spatial dimensions, which consist of
Fourier, Chebyshev, and Legendre bases. Afterwards, we use bases which only consist
of Fourier type in Section 5.1.2, Chebyshev type in Section 5.1.3, and Legendre type in
Section 5.1.4.

5.1.1 Mixed bases

First, we consider basis functions 75, of mixed type: T, T o) and T;,, , are of Cheby-
shev type; T, , T ayay s and T),, , are of (preconditioned) Legendre type; and the re-

maining d — 6 basis functions T,,, j € [d] \ {0,1,[d/2] — 1,[d/2],d — 2,d — 1} are of
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Fourier type. Preconditioned Legendre type means that instead of using standard Leg-
endre polynomials L,(z) = (2n —1)/nax L,—1(z) — (n — 1)/n Ly,_o(x), L1 := x, Ly := 1,
with BOS constant K = v/2n + 1, we apply the preconditioning method from [37], i.e., we
use the preconditioned Legendre polynomials Q,(z) := +/7/2 (1 —2%)%/* L, (z) with BOS
constant K = v/3 and choose the sampling nodes randomly with respect to the Chebyshev

measure for the basis functions Ty, Ty, , , _,, and T5,, ,. Consequently, the overall BOS

constant is \/53 . \/33 .14-6 = \/63 independent of the spatial dimension d = D. For the
entry identification and pairing steps, we set the parameter mo = #z;, := 4 s for different
sparsities s = |S|. The parameter m; = #w, ¢ is chosen as cs, where the constant ¢ > 1
does not depend on the sparsity s, which is distinctly smaller than the theoretical results
of my ~ s2 in Theorem 6 and Lemma 15.
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10 | As=25---4.10% |4 5 As=25--- 0.045d> 126
E | | I I — . 0.1 — | I I — |
6 10 25 50 100 %’ 6 10 25 50 100
d d
(a) number of samples vs. spatial dimension d (b) average runtime vs. spatial dimension d
s ST T L [
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d d
(c) average iteration vs. spatial dimension d (d) success rate vs. spatial dimension d

Figure 1: Number of samples, runtime, number of iterations, success rates vs. spatial
dimension d = D € {6,10,25,50,100} for mixed bases (3 Chebyshev, 3 Legendre, d — 6
Fourier), N = 200, sparsity s € {10,25}, SNRqp, = 10, m1 = 8s, mg = 4s.

In Figure 1, we visualize the obtained results in dependence of the spatial dimensions
d =D €{6,10,25,50,100} for sparsity s € {10,25} and signal to noise ratio SNRq;, = 10.
In Figure la, we plot the number of samples with respect to the spatial dimension d.
We observe that the number of samples grows nearly linearly in d. Additionally, we plot
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the average runtime of the 100 test runs with respect to d in Figure 1b, and we observe
that it grows approximately like ~ d?>. When having a look at the average number of
iterations in Figure lc, we observe that 4.1 to 5.4 iterations were required for sparsity
s = 10 and around 4 iterations for sparsity s = 25. For the considered test setting, the
observed success rate was 100% for sparsity s = 25 and at least 99% for sparsity s = 10,
cf. Figure 1d.
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0L i | ‘ ] s [ | : |

3 4 5 6 8 10 3 4 5 6 8 10
mi/s = (#wje)/s mi/s = (#wj.e)/s
(c) SNRap = 6 (d) SNRap = 10

Figure 2: Success rate vs. mi/s for mixed bases, d = D = 50, N = 200, sparsity s €
{10,25,50}, mo = #z; 1 = 45, and SNRy;, € {0,3,6,10}.

For different choices of the parameter m; = #w,, € {2.5s,3s,3.5s,...,10s}, we inves-
tigate the success rate for spatial dimension d = D = 50 and sparsities s € {10,25,50} in
Figure 2, where we set the signal to noise ratio SNRyp, to 0, 3, 6, and 10 in Figure 2a, 2b,
2c¢, and 2d, respectively. We observe that the success rates increase for growing param-
eter my. Moreover, the transition between 0% success rate and 99%—-100% success rate
occurs relatively fast. Additionally, the value mj/s where the success rate reaches 99%
seems to decrease for increasing sparsity s and for increasing signal to noise ratio.

In Figure 3, we plot the used number of samples and average runtime as a function of
the sparsity s € {10,25,50} for spatial dimensoin d = D = 50 and for each signal to noise
ratio SNRgp, € {0,3,6,10}. We observe that the plots only differ slightly for the different
signal to noise ratios SNRqj, € {3,6,10}, i.e. the numbers of samples and runtimes seem
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Figure 3: Number of samples and average runtime vs. sparsity s for mixed bases, > 99%
success rate, d = D = 50, N = 200.

to depend only mildly on the signal to noise ratios for > 99% success rate. In the case
SNRgp = 0, i.e., when the energy of the signal and of the noise match, the runtimes for
sparsities s € {10,25} are similar to the ones of SNRqp € {3,6,10} and approximately
double for s = 50.

Additionally, we repeat the tests of Figure 2 for spatial dimension d = D = 100 and
sparsities s € {10,25}, and we visualize the corresponding results in Figure 4. We obtain
results analogously to the previous ones.
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Figure 4: Success rate vs. mi/s for mixed bases, d = D = 100, N = 200, sparsity
s € {10,25}, my = #z;, = 4s, and SNRq;, € {0,3,6,10}.

5.1.2 Fourier bases

As for the case of mixed bases in Section 5.1.1, we now perform the numerical tests for
tensor products of Fourier bases and show the results in Figure 5. Here, the overall BOS
constant K is 1 independent of the spatial dimension d. Due to the smaller BOS constant,
we can reduce the parameters mq to 5s and mso to s while still obtaining a success rate of
100%, cf. Figure 5d. As in Section 5.1.1, the numbers of samples in Figure 5a grow nearly
linearly in d and the average runtimes in Figure 5b approximately like ~ d?. The average
number of iterations in Figure 5c is between 3 and 4.

In Figure 6, we depict the success rate as a function of my/s € {1,1.5,2,2.5,3} for
sparsities s € {10, 25,50,100} and signal to noise ratio SNRqp, = 10 in spatial dimensions
d € {6,8,10,12}. We observe a very small dependence on the spatial dimension d. For
my = 3s, the success rate is 100% in each considered case. Furthermore, there is a rapid
transition between full and zero success rate, i.e., the success rate is 0% for m; = s each
time.
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Figure 5: Number of samples, runtime, number of iterations, success rate vs. spatial
dimension d = D € {6,10,25,50,100} for Fourier bases, N = 200, sparsity s € {10,25},
SNRgp, = 10, mq1 = 5s, mg = s.
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Figure 6: Success rate vs. my /s for Fourier bases, spatial dimension d = D € {6, 8,10, 12},
N = 200, sparsity s € {10,25,50,100}, SNRq, = 10, my = s.
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5.1.3 Chebyshev bases

Next, we consider the tensor products of Chebyshev basis functions. Here we expect larger
numbers of samples and runtimes compared to the Fourier case in Section 5.1.2 due to
the BOS constant K = \/§d for Chebyshev and K =1 for Fourier. In particular, for fixed
sparsity s and fixed success rate, the numbers of samples and runtimes might grow for
increasing spatial dimension d.
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Figure 7: Success rate vs. mi/s for Chebyshev bases, spatial dimension d = D €

{6,8,10,12}, N = 200, sparsity s € {10,25,50}, SNRqp, = 10, ms = 4s.

In Figure 7, we depict the success rate as a function of m;j/s for sparsities s €
{10,25,50} and signal to noise ratio SNRg, = 10 in spatial dimensions d € {6, 8, 10, 12}.
As predicted, we observe that we have to increase m; = #w; ¢ distinctly for growing spa-
tial dimension d and fixed sparsity s. For instance, for s = 25, we observe a 98% success
rate for mq = 4s and d = 6, but obtain a success rate of only 4% for d = 8. For d = 12,
we had to choose m; = 42s to achieve a success rate of 98%.

In Figure 8, we investigate the dependence of the spatial dimension d on the number
of samples and average runtime for the case of > 99% success rate in more detail. For
our test cases, we observe that the numbers of samples grow approximately like between
~ 20694 and ~ 20754 a5 well as the runtimes approximately like between ~ 20584 and
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Figure 8: Number of samples and average runtime vs. spatial dimension d € {6, 8,10, 12}
for Chebyshev bases, N = 200, sparsity s € {10,25,50}, SNRqp, = 10, mg = 4s, success
rate > 99%.

~ 20-80d_Tp each case, this is distinctly less than the worst case upper bounds in Theorem 5
suggest.

5.1.4 Preconditioned Legendre bases

Here, we consider the tensor products of preconditioned Legendre basis functions @),, with
BOS constant K = \/gd, cf. Section 5.1.1. In Figure 9, we show the success rates as a
function of mq /s for sparsities s € {10,25,50} and signal to noise ratio SNRg, = 10 in
spatial dimensions d € {6,8,10,12}. As in the case of Chebyshev bases, we observe that
we have to increase my distinctly for growing spatial dimension d and fixed sparsity s.
For instance, for s = 25, we observe a 97% success rate for m; = 4s and d = 6 as well as
100% for my = 4.5s and d = 6, but obtained a success rate of only 2% for m; = 4s and
d = 8. Moreover, we had to choose m; = 18s to have a success rate of 100% for d = 10
and m; = 56s for d = 12.

When comparing the obtained results with the ones for the Chebyshev bases, we do
not numerically observe the higher BOS constant K = \/gd here for d = 6,8,10. The plots
in Figure 9 look very similar to the ones in Figure 7. For d = 12, the values of m; where
a success rate of > 99% is reached are slightly larger than the ones in the Chebyshev
case.
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Figure 9: Success rate vs. my/s for preconditioned Legendre bases, spatial dimension
d=D €{6,8,10,12}, N = 200, sparsity s € {10,25,50}, SNRqg,, = 10, mg = 4s.

5.2 Approximately sparse case

After considering exactly sparse test functions f in Section 5.1, we continue with examples
for the approximately sparse case, i.e., our test functions under consideration will have
infinitely many non-zero basis coefficients cy,.

5.2.1 Fourier type with D =10

We use the 10-variate periodic test function f: T — R,
f© =TI ™M@+ [I M+ [ N, (5.2)

t€{0,2,7} te{1,4,5,9} te{3,6,8}

from [34, Section 3.3] and [27, Section 5.3] with infinitely many non-zero Fourier coef-
ficients ¢, where T ~ [0,1) is the torus and N,, : T — R is the B-Spline of order
m € N,

Nm(l') = Cm Z sinc (%n)m (_1)71 e27Tinx7
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with a constant Cy, > 0 such that [N |2y = 1. We remark that each B-Spline N,
of order m € N is a piece-wise polynomial of degree m — 1. We approximate the func-
tion f by multivariate trigonometric polynomials ¢ using Algorithm 1. The obtained
basis index sets O should “consist of” the union of three lower dimensional manifolds, a
three-dimensional hyperbolic cross in the dimensions 1, 3, 8; a four-dimensional hyperbolic
cross in the dimensions 2, 5, 6, 10; and a three-dimensional hyperbolic cross in the dimen-
sions 4,7,9. All tests are performed 10 times and the relative L?(T') approximation
error

1 = allzmoy 1 Bagio) = Lnea ol + Lo lan — Jul?
Ifll2eroy £l 22 (10

is computed each time, where the approximant a := " 5 an e2min-o,

We set the parameters N = 64, d = D = 10, mo = s, and we always use mcg := 50s
samples for the coefficient estimation where s = |S|. For our tests, we consider two differ-
ent parameter combinations: m; = 3s and k = 20, as well as m; = 8s and k = 10. The
obtained results, i.e., the numbers of samples, average runtimes, average iterations, and
relative L2(T!Y) errors are plotted as a function of the sparsity s € {100,200, 500, 1000}
in Figure 10. Due to the parameter choices for m; and mso, we observe that the numbers
of samples grow quadratically for increasing sparsity s. The average runtimes grow ap-
proximately like ~ s min{s, N} and this means ~ s> for fixed N. Moreover, the average
numbers of iterations are much smaller than its imposed maximum x in most cases. The
relative L2(T'0) errors decrease for increasing sparsity s having a value of approximately
10~2 for sparsity s = 1000. Again, we emphasize the extremely high power of Algorithm 1,
which is able to determine the s = 1000 approximately largest bases coefficients and the
corresponding indices for our test function out of |Zyq| = N 4 — 640 ~ 10'® allowed
indices.
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Figure 10: Number of samples, runtime, number of iterations, L?(T'?) error vs. sparsity
s € {100,200, 500, 1000} for Fourier basis and test function (5.2).

5.2.2 Chebyshev and Legendre type with D =7
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Figure 11: B-splines B3 and Bj considered in interval [—1,1].

Next, we apply Algorithm 1 on the 7-variate test function f: [-1,1]" — R,

f&= [ B+ I

te{1,3,4,6}
similar as in [35], where Bs: R — R is a shifted, scaled and dilated B-spline of order 3
and Bs: R — R is a shifted, scaled and dilated B-spline of order 5, see Figure 11 for

t€{0,2,5}

64

Bs(&1) (5:3)



illustration. We remark that the absolute values of the Chebyshev coefficients ¢,,, n € Ny,
of Bz and Bj decay like ~ n™3 and ~ n~5, respectively. The obtained basis index sets
Q should “consist of” the union of two lower dimensional manifolds, a three-dimensional
hyperbolic cross in the dimensions 0,2, 5; and a four-dimensional hyperbolic cross in the
dimensions 1,3,4,6. All tests are performed 10 times and the relative L?([—1,1]", uc)
approximation error ||f — allz2(—1,1)7 )/ I fll22([=1,1)7 ji) 1S computed each time, where
the approximant a := Znefl ap Tn, Ty is the Chebyshev product basis, and pc(€) :=
n—P [Tem(1 - 5]2-)_1/2 is the Chebyshev product measure.

We set the parameters N = 64, d = D = 7, my = 4s, and we always use mcg := 50s
samples for the coefficient estimation where s = |S|. We consider two different parameter
combinations: m; = 4s and kK = 20, as well as m; = 8s and x = 10. The obtained
results, i.e., the numbers of samples, average runtimes, average iterations, and relative
L?([-1,1]7, uc) errors are plotted as a function of the sparsity s € {25, 50,100, 200, 500}
in Figure 12. Due to the parameter choices for m; and mso, we observe that the numbers
of samples grow quadratically for increasing sparsity s. The average runtimes grow ap-
proximately like ~ s min{s, N} and this means ~ s3 for fixed N. Moreover, the average
numbers of iterations are well below its imposed maximum « for mq = 4s and k = 20 as
well as close to & for m; = 8s and x = 10. The relative L?([—1,1]7, uc) errors decrease
for increasing sparsity s having a value of approximately 2.3 - 10~ for sparsity s = 500.
We emphasize that Algorithm 1 is able to easily determine the s = 500 approximately
largest basis coefficients and the corresponding basis indices for our test function out of
1Znal = N% =647 ~ 4.4 - 1012 allowed indices.

In addition, we use the preconditioned Legendre polynomials @, from Section 5.1.1
as basis functions, i.e. T,, is now the Legendre product basis in the approximant a :=
> ned @n ITn. Besides that, we keep all parameters identical but determine the relative
L3([-1,1]7, u1) approximation error ||f — allr2(—1,17 )/ IIf Il 22((=1,1)7 us,)> Which corre-
sponds to the Legendre basis and uses the probability measure ur, = 27, The results are
shown in Figure 13. Here, we observe that the numbers of iterations are higher by up to
~ 50% compared to the Chebyshev case in Figure 12, and that they reach the imposed
maximum of x := 20 for m1; = 4s and x := 10 for mo = 8s in several cases. Correspond-
ingly, the runtimes are also higher by up to ~ 50%. The obtained relative L?([—1,1]", ur,)
errors are similar, but we also remark that we cannot compare these errors directly to
the relative L?([—1,1]7, uc) errors of the Chebyshev basis since they are measured with
respect to different probability measures, uc(€) := 7P ] i€l D](l - 5)2)—1/ 2 for Chebyshev
and pr, = 2P for Legendre.
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error vs. sparsity s € {25, 50, 100,200,500} for Chebyshev basis and test function (5.3).
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5.2.3 Mixed type with D =10

Finally, we combine parts of the test functions from the previous two subsections. We
consider the 10-variate test function f: D — R, D := [~1,1]x T x [-1,1]*> x T? x [-1, 1] x
T2,

f(&) = B3(£0)B3(§2)Na(€s) + Bs(&3) Bs(€4) N2(§1) N2(86) + B3(&7)Na(&5)N2(8o)  (5.4)

In spatial dimensions j = 0,2, 3,4, 7, we use Chebyshev basis functions as well as Fourier
basis functions in the remaining spatial dimensions j = 1,5,6,8,9. All tests are performed
10 times and the relative L?(D, ur ¢) approximation error || f — aHLQ(ﬁuF’C)/HfHLQ(QMRC)
is computed each time, where the approximant a := & an T,

Tn(§) := H cos(n; arccos &;) H e2min;&;

7€{0,2,3,4,7} j€{1,5,6,8,9}

is the mixed product basis, and ppc(§) = (%)5 [Tjcr02,347 (1 — 5]2-)_1/2 is the corre-
sponding probability measure.

Here we set the parameters N = 64, d = D = 10, mg = 4s, and we always use
mcg = 50s samples for the coefficient estimation where s = |S|. We consider two
different parameter combinations from the previous subsection: m; = 4s and x = 20, as
well as m1 = 8s and k = 10. The obtained results, i.e., the numbers of samples, average
runtimes, average iterations, and relative Lz(@,,uRC) errors are plotted as a function
of the sparsity s € {25,50,100,200} in Figure 14. As before, the numbers of samples
grow quadratically for increasing sparsity s. The average runtimes grow approximately
like ~ s3min{s, N} and this means ~ s for fixed N. Moreover, the average numbers of
iterations are well below its imposed maximum k. The relative L2(D, pr c) errors decrease
for increasing sparsity s having a value of approximately 4.9 - 1073 for sparsity s = 500.
We emphasize that Algorithm 1 is able to easily determine the s = 500 approximately
largest basis coefficients and the corresponding indices for our test function out of [Zy 4| =
N4 = 6419 ~ 10'8 possible indices.

Additionally, we use the preconditioned Legendre polynomials (), from Section 5.1.1
as basis functions in the spatial dimensions j = 0,2,3,4,7 instead of the Chebyshev
polynomials. Besides that, we keep all parameters identical but determine now the relative
Lz(f), pF.L) approximation error with respect to the probability measure pp (€) = 27°
which corresponds to the current choice of bases. The results are presented in Figure 15.
As before, we observe that the numbers of iterations are higher, now by up to ~ 100%
compared to using Chebyshev polynomials in Figure 15. Correspondingly, the runtimes
also double in some cases. The obtained relative errors are similar, but we again remark
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Figure 14: Number of samples, runtime, number of iterations, relative L?(D, up c) er-
ror vs. sparsity s € {25,50,100,200} for mixed Fourier+Chebyshev basis and test func-
tion (5.4).

that we cannot compare these errors directly since they are measured with respect to
different probability measures.
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