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Abstract

In this paper we present the first known deterministic algorithm for the construction of
multiple rank-1 lattices for the approximation of periodic functions of many variables. The
algorithm works by converting a potentially large reconstructing single rank-1 lattice for some
d-dimensional frequency set I c [N ]d into a collection of much smaller rank-1 lattices which
allow for accurate and efficient reconstruction of trigonometric polynomials with coefficients
in I (and, therefore, for the approximation of multivariate periodic functions). The total
number of sampling points in the resulting multiple rank-1 lattices is theoretically shown
to be less than O (|I|log®(N|I|)) with constants independent of d, and by performing one-
dimensional fast Fourier transforms on samples of trigonometric polynomials with Fourier
support in I at these points, we obtain exact reconstruction of all Fourier coefficients in fewer
than O (d|I|log*(N|I])) total operations.

Additionally, we present a second multiple rank-1 lattice construction algorithm which
constructs lattices with even fewer sampling points at the cost of only being able to recon-
struct exact trigonometric polynomials rather than having additional theoretical approxima-
tion guarantees. Both algorithms are tested numerically and surpass the theoretical bounds.
Notably, we observe that the oversampling factors #samples/|I| appear to grow only logarith-
mically in |I| for the first algorithm and appear near-optimally bounded by four in the second
algorithm.
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1 Introduction

In this paper we consider the efficient numerical approximation of the Fourier series coefficients
of a given function f : [0,1]¢ — C of d variables. More specifically, we seek cubature rules for
evaluating the integrals

B |,

for all indices k € I c Z¢, |I| < oo, which will be exact whenever f is itself a multivariate trigono-
metric polynomial of the form o
f(@) =Y fre®™h®, (1.2)
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Existing numerical methods based on rank-1 lattice rules [21, 12, 10, 15, 18] solve this problem by
finding a prime number M € Z and generating vector of integers z € Z¢ such that

fk——wag)e o Zf

M-1 - M-1 I
~ 1 1 (jz)mOdM)e 2rijk kel (1.3)

holds for all f as per (1.2), where x; are the nodes of the rank-1 lattice

Az, M) := {wj = (]z)#m:j=0,--.,ﬂ/f—l}-

One particularly attractive attribute of such cubature rules (1.3) is that they allow the full set
of Fourier series coeflicients {ﬁ kel } to be computed efficiently using a single one-dimensional
FFT whenever the modulus function mz p : I - [M] € Z given by m, pm(k) = k- z mod M
is injective, where [M] := {0,...,M - 1}. As a result, fast Component-By-Component (CBC)
methods have been developed for constructing z and M which guarantee that m ps is injective
for any given I c Z4, |I| < oo (see, e.g., [15]). Such CBC algorithms typically compute the
image of mz ar, mz m(I) € [M] c Z, as they run. The image can then be stored and used to
rapidly evaluate m;}M :mzm(I) - I on demand thereafter. Thus, rank-1 lattice approaches
provide relatively simple and efficient O(M log M )-time algorithms for high dimensional Fourier
approximation by effectively reducing d-dimensional Fourier transforms over arbitrary frequency
sets I to one-dimensional FFTs.

An added benefit of rank-1 lattice techniques is that they also trivialize the extension of
fast compressive sensing [3] and best k-term approximation [2] methods developed for Fourier-
sparse vector data [4, 16, 1, 5, 6, 20] to the setting of multivariate trigonometric approximation.
Suppose, for example, that the a priori unknown Fourier support set I’ := {k: € I:f;c * O} clof f
has cardinality k := |I'| < |I| =t s so that the function f in (1.2) is Fourier k-sparse in I. In this case
one can simply (i) use a rank-1 lattice approach to reduce the problem of recovering { fk}ke I

a one-dimensional sparse Fourier recovery problem aimed at finding the k-sparse vector f e CIMl
with entries given by

Ji=

0 else,

. {fm‘ o iflema (D),

then (i) compute a k-sparse approximation a € CM of f' using a one-dimensional Sparse Fourier
Transform (SFT) method (see e.g. [4] for a survey of such methods), and finally (iii) map the
recovered one-dimensional k-sparse approximation a of f back to an approximation a : [0, 1]d -C
of f by setting
. -1
a(m) = Z am;}M(l) e27r1(mz,M(l) . m)

lemy v (1)

Using the fastest available SF'T methods [16, 1] one can provably achieve best k-term approxi-
mation guarantees of periodic functions f in just O (k: . 1og5'5(M ))—time using the strategy above
provided that m;)lM has been efficiently encoded in advance for the index set I of interest. As a
result, such rank-1 lattice reduction approaches allow one to improve the polynomial dependence
of previously existing SFT methods for functions of many variables [6, 17] on the number of vari-
ables d when the index set I above is chosen to be, e.g., a hyperbolic cross as opposed to a full
integer cube.

1.1 Results and Motivation

Despite their many nice properties, rank-1 lattices suffer from the shortcoming that the prime M
above must generally scale like (|I |2) for an arbitrary index set I when the modulus function
m, y should be injective. Unfortunately, this limits the reduction in computational cost that one
can achieve by choosing index sets I c [N]%+h with |I| < N and a fixed arbitrary shift h € Z? in



all of the methods described above. In this paper we propose a deterministic algorithm to address
this issue by transforming a previously computed rank-1 lattice of size M = Q (|I |2) into a set of
L = O(log |I|) smaller rank-1 lattices each of size at most* O (|I| 1og2(N|I|)) which still collectively
allow for cubature rules that exactly integrate the Fourier series coefficients in (1.1) for all indices
kelc[N ]d + h and multivariate trigonometric polynomials f as per (1.2).

More specifically, we provide the first known deterministic algorithm for constructing multiple
rank-1 lattices [9] for any given index set I c [N]¢ + h. The proposed algorithm takes a given
rank-1 lattice generating vector z € [M]¢ for I as input and effectively uses it to generate new
cubature formulas satisfying

Py y-1 . 5 omijh
—~ 1 v(k) z) mod P, 2mijkz
e = 5 Z f (M)e Py (k) (1.4)
v(k) =0

Pk

for all k € I and f as per (1.2), where v : I — [L] is a function which determines which of
the L smaller lattices we provide below should be used to reconstruct each desired Fourier series
coefficient. Note that the same generating vector z is used for each smaller lattice in (1.4) despite
the fact that the lattice size Pu(k) varies with k, as well as that (1.4) can still be computed
using a one-dimensional FFT for each of the L = O(log|I|) smaller lattice sizes F,..., P ;.
Finally, it is important to emphasize that the total number of function evaluations required by
this modified cubature rule (1.4) is only’ O(|I|log?(N|I])) as opposed to the O(|I]?) function
evaluations generally required by a single rank-1 lattice approach (1.3).

1.1.1 Main Result

We are now ready to begin constructing the promised spatial discretization of the trigonometric
polynomials in the polynomial space II := span{e*™*°:k € I}, determined by I c Z%, |I| = 5. The
crucial assumption we begin with below is that we already know a so-called reconstructing single
rank-1 lattice A(z, M, I) in advance, i.e., a rank-1 lattice which fulfills the reconstruction property
that the modulus function discussed above m, ar : I — [M] is injective on the frequency set I,
which in particular implies (1.3). See, e.g., [18, 15] for additional details and background about
such lattices.

With this setup in hand, Section 2 of this paper is devoted to proving this main theorem
concerning the proposed cubature rules on multiple rank-1 lattices.

Theorem 1.1. Let I ¢ Z% be some frequency set with cardinality |I| = s and expansion Np :=
max-1,... 4 (Maxges kj —minper hj). If A(z,M,I) is a reconstructing single rank-1 lattice, then
one can deterministically construct multiple rank-1 lattices A(z, By),...,A(z, Pr_1) such that the
Fourier coefficients {ﬁk € I} of any trigonometric polynomial f € Il; of the form (1.2) can be
exactly reconstructed using only samples of f on these lattices by the cubature rule (1.4). Moreover,
the total number of function evaluations on these lattice points is bounded by

. 2 for s=1,
* =165 log,(dN; M) In (3L 10g2(dN1M)) for s> 2.

log, s

t

L-1
The total computational complexity for the construction of these rank-1 lattices can be bounded by
O (s” logs logdNM + s (d+ (logdN;M)log(logdN;M))),

and the total computational complexity for reconstructing the Fourier coefficients can be bounded

by
o (s log s (d + (log s) (log dN7 M) (log® log,, dNIM))) .
IThese bounds are simplifications of those in Lemma 2.3 and Theorem 2.4 under the mild assumptions that the

dimension d and size of the original single rank-1 lattice M are bounded polynomially by max{|I|, N}. The latter
assumption holds for single rank-1 lattices constructed by CBC methods, cf. Section 2.1.




Proof. The bounds on the total number of samples from the rank-1 lattices follow from Theo-
rem 2.4. The computational complexity bound for lattice construction follows from Section 2.1,
and the bound for reconstructing Fourier coefficients follows from [11, Algorithm 1]. O

1.1.2 An Application to SFTs

One additional consequence of our deterministic multiple rank-1 lattice construction approach,
beyond reducing the number of function evaluations necessary in order to collectively achieve
exact cubature rules (1.4) for all trigonometric polynomials of type (1.2) in a deterministic way,
is the ability to trivially parallelize SE'T methods for the sparse Fourier approximation of periodic
functions of many variables in a modularized fashion. After deterministically transforming an
existing rank-1 lattice into multiple rank-1 lattices satisfying (1.4) for a large index set I of
interest, the SFT of one’s choice may then be applied on each of the resulting smaller rank-1
lattices in parallel in order to more rapidly and stably collectively discover a superset of the true
Fourier support of any function f with supp (ﬂ c I. Fast secondary Fourier coefficient estimation
methods (see, e.g., section 4 of [4]) can then be used to estimate the Fourier coefficients of the
discovered frequencies in order to eliminate false positives. As a result of such approaches, we
anticipate that the development of novel parallel SFT methods for the approximation of functions
of many variables which are both faster and more numerically stable than SF'T methods based on
a single rank-1 lattice will result from the new lattice constructions presented herein.

1.1.3 An Application to the Recovery of More General Functions

As previously mentioned, we construct a cubature rule (1.4) that exactly reconstructs all Fourier
coeflicients of multivariate trigonometric polynomials with frequencies in a specific frequency set I
which is assumed to be given. Of course, one can apply these cubature rules in order to com-
pute approximations of the Fourier coefficients of more general periodic functions. The resulting
trigonometric polynomial can be used as an approximant. For specific approximation settings, it
is clear that the worst case error of this approximation is almost as good as the approximation one
achieves when approximating the Fourier coefficients using the lattice rule that uses all samples of
the reconstructing single rank-1 lattice from which we start the construction of our cubature rules,
cf. [14] for details. From that point of view, the strategy we present in this paper even yields a
general approach for significantly reducing the number of sampling values used while only slightly
increasing approximation errors. We refer to Remark 2.7 for more details and to the numerical
example in section 3.2 that yields Figure 3.5 illustrating this assertion.

2 The Proof of Theorem 1.1

We denote the gth prime number by F,, g € N. For technical reasons, we define Fp := 1.

Lemma 2.1. Let J = {ky,...,ks} c [M], |J| = s, for s, M € N with M > s > 1. Moreover, we
determine q € N such that P;.1 < s < Py, and K := max(1,2(s -1) [—1 +logp, M]) Then, there

erist prime numbers Po, - ,PL_l ePs:={Ppl=q,...,q+ K-1}, L<logys+1 such that
L-1 .
J=J{keJ:k#h (mod P) for all he J~ {k}}
£=0

holds.

Proof. We assume s > 2 and M > P,, otherwise the statement is trivial.

Let Py = {Pp:f = q,...,q+ K — 1} be the set of the K smallest prime numbers not smaller
than P, and Y; j := {P € Ps:k; = k; (mod P)} a subset which collects all primes P in Py where
the frequencies k; € J and k; € J collide modulo P. Since |k; — k;| is divisible by each prime P in



Y j, the Chinese Remainder Theorem implies that []pey, , P divides [k; — k;| < M. Therefore, we

observe
V3,51 Y
Pl T P<M
PeY;

for all i # j e {1,...,s} = So, i.e., ki # k;, and this implies |Y; ;| < [-1+logp, M].
Moreover, we collect all primes for which k; collides with any other k; in the sets

Y;:={PePs:k;=k; (mod P) for at least one k; e JN{k;}} = | Y,
kjed~{ki}

The cardinality of each Y; is bounded by

Yil< X [iyl<(s—1)[-1+logp, M].
kjed<{ki}

Accordingly, we count
[P\ Yi| = [Po| = |Vi| 2 K = (s = 1) [-1+logp, M] 2 |Ps|/2.
We define the indicator variables

1 PgE,PS\}/i7
Ziy =
’ 0 PpeY;,

for all k; € J and P, € Ps. Summing up these indicator variables Z; o and using the estimates from
above yields

g+K-1
> 2 Zig= Y [PsNYil 2 |Sol[Psl/2 = s|Ps|/2. (2.1)
€Sy  L=q €S0

We will now show that ¥ ;.q, Z;¢ 2 s/2 holds for at least one P, € Ps by contradiction. To this
end, suppose that ;. Zi ¢ < s/2 for all Py € Ps. Accordingly, we estimate

g+K-1
> D Ziw <|Sol[Psl/2 = s|Ps| /2
l=q 1i€So

which is in contradiction to (2.1). Thus, there exists at least one prime Py, € P, such that

> Zigy = |{ki€J:ki#k; (mod Py,) for all kj € J~ {k;i}}|>s/2.

€S

=:J

We set Py := Py, and then apply the strategy iteratively. R
For r e N, r > 1, we define S, := {i € Sp_1:3k; € J~ {k;} with k; = k; (mod P,_1)} and obtain
sp = |Sy| £27"s. Obviously, we have

Jl={kpie Sy =~ U, (2.2)
t=1

which are the frequencies that collide modulo each of Py,...,P._1 to some other frequency in J.
We reconsider the variables defined above, but now we restrict the indices to i € S,.. For instance,
we observe {Py, ..., P_1} c Y] for all i € S,.. We estimate

g+K-1
o> Zig= ) [PsNYi| > s |Ps|/2.
€S, f=q €Sy



Using the same contradiction as above, we observe that for at least one P, € Ps \ {]50, ... ,Ij’r,l}
we have
> Zig, =|{ki€J:ki#k; (mod P,) for all kj e J~ {k;}}|>s,/2.

€S,

=Jry1

We now set P, := Py, and increase r up to the point where 0 = |[Sy41| = s,41 holds. In order to
estimate the largest possible step number rmax > 7, we require that s, +1 < 2~ (rmax+1) g < 1 This
is satisfied in particular when .y = |log,(s) |, and thus we bound the total number of primes as
L <rmax +1<logy(s) + 1. O

Remark 2.2. In the proof of Lemma 2.1 we determined that there exist primes in the candidate
set Ps fulfilling the assertion. This set contains the first K := max(l,—l +2(s-1) [logpq ]\7[])
prime numbers not smaller than Py, Py_1 < s < Py, which only depends on s. However, from a
theoretical point of view, any prime number P larger than [s/2] may fulfill |J1| > s/2. Thus, one
also could start the set of prime candidates at that point, which would result in a slightly increased
cardinality of the candidate set, due to the fact that K depends on the logarithm to the base of
the smallest prime in the candidate set. In spite of that increased cardinality, the mazimal prime
number in the candidate set Py, _1, which is estimated in the next lemma, may be decreased.
Analyzing this approach leads to similar statements as in the previous and the following lemmas
with slightly changed constants. In more detail, both constants C7 and Cy can be bounded less
than 3. However, the proof requires more effort and we could not bound the resulting constants
lower than those stated in Lemma 2.3.

Lemma 2.3. Assume s, M € N, s < M, P, is the smallest prime not smaller than s, and let
K :=max(1,2(s-1) [—1 +logp, M]) Then, we estimate

2 fors=1,

Pyig-1 < ~ -
it {Cls(logsM)ln(CgslogsM) for s>2,

with absolute constants C1 <2.3(1+ 673/2) <2.832 and Cy < 2.3.

Proof. For s =1, we observe Py, x_1 = P, =2.
When s >2 and P, > M we have K =1 and P, <2s as a result of Bertrand’s postulate.
We then consider s > 2 and P, < M which yields

q+K-1=q-1+2(s-1)[-1+logp M]<q-1+2(s-1)logp M.

We distinguish two cases, where the final constants from the lemma are determined by the
second case. In the first, we restrict to the finite range where 2 < s <8 with P, < M < Pq[lo/(s_l)],
and numerically check that the upper bound

Pyir-1<2.831s log, Mln (2.38 log, M)

is satisfied. In the second case, where 2 < s < 8 with M > Pq[lo/(sfl)] or s > 9, we have ¢—1+ K > 20.
We then estimate this quantity from above as

. -1 -1
q+K—1$q—1+2(s—1)10gsM:( 47° 9% )slogsM
slog, M S

-1 -1 - ~
g(q + 92 )slogsM§2.3slogsM
s s

where one achieves the last estimate by computing % + 2% for 2 < s < 66 and for s > 66, one

obtains [ 30
_ —1 [19, Eq.(3.6)] 1. .
q 1+2s 1 % 125506+2£125506+2<2'3'
s s Ins In 66




By the estimate

3/2 ~1/2

e Y2 (x) <t <(1+e¥?*)nz

N~

= In(e “zlnz) =In(z) +Inln (z) -

for > 1, an application of [19, Eq. (3.11)] gives

Ppk-1<(q+K-1)(In(g+ K -1)+Inln(g+ K -1) - 1/2)
<(1+e3?)(¢g+K-1)In(g+K -1)
<(1+e32)2.35(log, M)In (2.3 slog, M),

as desired. O

Lemma 2.1 ensures the existence of a set of primes Po, e ,PL_l such that each single element
of a given set of integers will not collide modulo at least one P, with any other of these integers.
We can now use these primes to convert the large reconstructing single rank-1 lattice A(z, M, T)
for some frequency set I into smaller rank-1 lattices which, based on their ability to avoid collisions
in the frequency domain, will provide a sampling set to exactly reconstruct the Fourier coefficients
of all multivariate trigonometric polynomials in II;.

Theorem 2.4. Let I c 7%, |I|=5>2, and a generating vector z € [M]? of a reconstructing single
rank-1 lattice A(z,M,I) be given. We determine M := max{k-z:k ¢ I} —min{k-z:k e I} + 1.

Then there exists a set of prime numbers Py,...,Pr_1, L< logy s+ 1, such that
-1 .
I=J{kel:k-z#h-z (mod F,) for allhe I~ {k}}, (2.3)
£=0

which means that the Fourier coefficients of a multivariate trigonometric polynomial in 11 can be
uniquely reconstructed from the sampling values of the rank-1 lattices A(z, Py), ..., A(z, Pr-1).
The number of sampling values used can be bounded by

L-1 _ - -
> Py <2C1s(logy M) In (Cy slog, M), (2.4)
=0

with constants Cy, Cy from Lemma 2.5.

Proof. We consider a multivariate trigonometric polynomial f € II; as per (1.2), I ¢ Z4, |[I| = s < oo,
and determine k* € I such that k* -z = min{k - z:k € I}, which is unique since A(z,M,I) is a
reconstructing single rank-1 lattice for I.

For the given vector z € Z%, we define the univariate trigonometric polynomial

fld(t) . e—27rik*~z tf(tz) _ Z ﬁe2wi(k-z—k*.z)t _ Z J?Eie%iz,e t,
kel kel

which is 1-periodic and represents the evaluation of the multivariate trigonometric polynomial f
along the direction given by the vector z times some frequency shift factor. The (one-dimensional)
frequency set of f'9 is then determined by I'd := {Iy := (k- k*)-z:k eI} c [M] and the mapping
k I, k € I, is injective, i.e., [I'9| = |I| = s, since A(z, M,T) is a reconstructing single rank-1
lattice. Applying Lemma 2.1 with J = I'? and M as above we find a set of prime numbers
{I:’O, ... ,PL,l} with Py < P, 1.k such that (2.3) holds. Thus, sampling at all nodes of the union
of L different equidistant sampling schemes

LJ{O 1 152—1}

3 e 5.
=0 Py Py




which contains at most 1-L+ 52—01 P, sampling nodes, will allow for the unique reconstruction of all
Fourier coefficients of f14, i.e., all Fourier coefficients of the multivariate trigonometric polynomial
f can be uniquely reconstructed using the sampling values of f at

L-1( P-1
X::U{O,Tz,..., o z}
£=0 Py P,

using the inversion of the injective mapping k ~ lg, k € I. Due to the periodicity of f, we have
{f(x)zeX}={f(z)ze Az, Py)u--U A(z,PL_l)}

which yields the first assertion.
Finally, we estimate

=L Lem. 2.3 - -
<Y Pr<(logys+1)Py1sx < 2C1s(logy M)In(Caslog, M).
=0

-1 ~
U Az, )
=0

O

Remark 2.5. In fact, the one-dimensional frequency shift in the proof of the last theorem can be
omitted. Then, for I, the collection of frequencies which do not collide modulo Py in 1, sampling
along the rank-1 lattice A(Z,Pg) results in an equispaced sampling of the multivariate trigono-
metric polynomial f along the generating vector z. Applying a one-dimensional DFT in order to
determine the Fourier coefficients from these samples yields

—A(z,P 1 Pyp-1 ; —2mijkz 7 kel
BRI f(ﬁ)e R E __ Jorkely (2.5)
P[ =0 Pg Z(k—h)-zzO (mod 152) fh fOT k el Ig.

Remark 2.6. We consider two crucial estimates on M in Theorem 2.4
~ d d d
M=1+ max {; klzl} + max {; —hizi} <1+ ; Zi (Igglx k; — 1’11161}1 hi) <dNiM (2.6)

d d
- b mi b < < .
M 1+r£131x{§klzz} I}I}gl{;hzzl} _2HZH°°IE§JX HkH1+1_2Mnlg§1X Ik (2.7)

where Ny :=max;-1,.. 4 (maxkes kj — minper h;) is the expansion of the frequency set I.

The estimate in (2.6) is a rough but universal upper bound on M that depends on the dimen-
sion d. The inequality in (2.7) provides a dimension independent upper bound on M in cases
where the frequency set I is contained in an £1-ball of a specific size R, i.e., I c {k € Z:|k|, < R},
which yields M <2MR. We refer to Section 2.1, where we present and analyze the computational
costs and discuss the advantages of the latter estimate.

Remark 2.7. By virtue of the Fourier coefficient reconstruction process (1.4) and the reconstruct-
ing property (2.3) of the considered multiple rank-1 lattices, theoretical guarantees for approxima-
tion with trigonometric polynomials are immediate, see also [14]. For example, defining the Wiener
algebra A(T?) = {f € L1(T?): 1f 1 aray = Zreze |fx| < 00}, for functions f € A(T)nC(T?), each of
the DFTs in (2.5) used to approzimate the Fourier coefficients { fx:k € I} can be shown to produce
aliasing errors comparable to the truncation error (see e.g., [14, Lemma 3.1]). Thus, if we define

the truncation Srf = Y per Tre?™k° and the approzimation using samples of f on the generated

—~A(z,P, .
multiple rank-1 lattices Sj\f = Yper fr = (’e))e%”k‘O

form

, we have approrimation guarantees of the

1f=S2fllowcraey < If = Siflpocray + 1S0f =St flowcray < (L+ L) f = Sr.f] acray-

Correspondingly, one can show similar results with respect to the La(T¢) norm, for example,
Hf - S?be(W) <L+ L) [f=Siflacray, and also error estimates with respect to Sobolev Hilbert

spaces of dominating mixzed smoothness, cf. [14] for more details.



As considered in [9, subsection 4.2] for randomized lattice constructions, we can take an alter-
native approach to Theorem 2.4 which requires fewer samples at the cost of having only theoretical
reconstruction guarantees for trigonometric polynomials (i.e., the results concerning approxima-
tion discussed in Remark 2.7 do not apply in a straightforward manner). Rather than require that
at each step of the lattice construction, a prime P is chosen so that a set of frequencies can be
obtained which do not collide with any other frequency in the original frequency set modulo P, we
instead recursively reduce the size of the set that the resulting rank-1 lattice has the reconstruction
property over without concern for other frequencies.

Theorem 2.8. Let [ c Z¢, [I[|=5>1,d>2, M = max{k- z:k €el}-min{k-z:kell}+1. Fora

reconstructing single rank-1 lattice A(z, M, I), there exist primes Py,...,Pr_1, L <log, s+1, with
Ol 2 =1
Z B < i i for s , (2.8)
= 8s(logo M)In(2logy M)  for s> 2,
such that for every f e€Ily, the formula
P, y—-1 . D —orijke
. 1 v(k) (,]z) mod Pl/ k 2mijk-z
Jr == Y fuey Rttt A T
P,y =0 P,
(2.9)

with fogey-1(x) = f(x) - D Fp e2mibe

he{l:v(l)<v(k)}

holds where v : I — [L] maps frequencies to the lattice used to reconstruct the corresponding
Fourier coefficient, i.e., we can uniquely reconstruct each multivariate trigonometric polynomial
with frequencies in I using samples along the rank-1 lattices A(z, Py),...,A(z, Pr-1).

Proof. The proof is simply a recursive application of part of the previously discussed approach,
so we only provide a sketch.

We use only the first prime Py from Lemma 2.1 to determine a set of frequencies I, c I such that
A(z, Py, Iy) is a reconstructing single rank-1 lattice with |Io| > s/2. Performing the reconstruction
process in Theorem 2.4 for only frequencies in Iy using samples from A(z,PO,IO) recovers the
corresponding Fourier coefficients exactly. This then defines the correspondence v(k) = 0 for all
k € Iy. Subtracting off the recovered polynomial terms and recursively repeating the process with
the frequency set I \ I gives (2.9).

The upper bound on the number of samples is a result of Lemma 2.3, noting that at each step,
the cardinality of the frequency set is reduced by half. Splitting the dependence on s and M in
the second logarithm using the inequality In(zy) < 2(Inz)(Iny) for z,y > e and estimating the
resulting geometric series gives (2.8). O

2.1 Analysis of lattice construction

The approach analyzed in Theorem 2.4 provides a completely constructive, deterministic method
for building reconstructing multiple rank-1 lattices from reconstructing single rank-1 lattices. Al-
gorithm 2.1 summarizes the suggested approach in detail. In the following, we analyze the runtime
complexity.

We start by analyzing Line 4 which is obviously in O (d|I|). The arithmetic complexity of
Lines 5 and 6 are dominated by determining the set of primes Pz, which can be done in linear
time with respect to Pyix-1 < C1|I|(logy, M)In (CalI]logy M) estimated in Lemma 2.3, therefore
requiring O (|I|(10g M) log(log M)) arithmetic operations.

Line 7 can be realized using two loops. In worst case, we have to determine the sets

{heJ :h=h" (mod P) for at least one h' € Jj~ {h}} (2.10)



Algorithm 2.1 Deterministic construction of multiple rank-1 lattice suitable for reconstruction
and approximation, according to Theorem 2.4 and Lemma 2.1
1: procedure DeterministicM R1L
2: Input: frequency set I ¢ Z4, generating vector z € N of a reconstructing single rank-1 lattice
for 1
Output: lattice sizes PO, e ,PL_l
Compute the set Jj:={k-z:kel}
Determine ¢ € N s.t. P;_1 <|I| < P,, where Py is the ¢th prime
List out Py := {Pg:é =q,...,q+max (0,2(|I| - 1) [—1 + logpq(M)] - 1)} with
M := maXgey; k —minpeys h+1
7: Determine primes Py, ..., Py € Py1y such that |J], | <[J]]/2 with
la={heJ:h=W (mod P,) for at least one A’ € J§ ~ {h}} /] cf. (2.2)
8: end procedure

Runtime Complexity: O (|I|* log|!| log M + |1 (d+ (log M) 1og(logM)))

for v € {0,...,|logy s]} and ¢ € {q,...,q + max(0,2(|]I| - 1) [—1 + logpq(M)] -1)}. For fixed r
and ¢, we can determine (2.10) in O (|I|log|I|), which yields a total arithmetic complexity of
@] (|I ? log|I|log M ) for Line 7. Altogether, we observe a runtime complexity as stated in Algo-
rithm 2.1.

In the following, we comment on practical issues of Algorithm 2.1. Line 4 might suffer from
overflowing integers which can be avoided by using higher precision integer representations. An
alternative is to skip this precomputation and instead compute the inner products modulo P, on
the fly in Line 7 which will increase the runtime complexity by a factor of d in the first summand.
Note also that one does not necessarily need to compute M in advance. For the checks in Line 7,
one might just start with the prime F, and increase the prime number using some nextprime
function, which would increase the second summand in the runtime complexity.

Finally, we discuss the range of the numbers M as well as the influence of the original single
rank-1 lattice on the estimates in this paper. In general, there are two different suitable approaches
for finding a reconstructing single rank-1 lattice for a given frequency index set I. A simple
approach is to just pick a rank-1 lattice A(z, M) that provides the reconstruction property from
a simple number-theoretic point of view. For instance one can choose generating vectors z and
lattice sizes M that fulfill

z1 €N, zi2(1+maxki_1—minhi_1)zi_1, i=2,...,d,
kel hel

M > (1 +maxkyq —minhg)zg.
kel hel

Clearly, even for extremely sparse frequency sets and moderate expansions of I this approach
will lead to exponentially increasing dth components zg > 2%7! and lattice sizes M > 2¢ even for
min}tl (maxger kj —minper hj) > 1.

As in Remark 2.6, this approach will lead to exponential increase in M and thus a linear
dependence of the dimension d from log M. From a theoretical point of view, this turns out
to be disadvantageous for higher dimensions d due to the fact that the runtime complexity of
Algorithm 2.1 as well as the estimates of the total number of sampling values in Theorems 2.4
and 2.8 will be affected by this factor.

A more costly way of determining reconstructing single rank-1 lattices is a suitable CBC
construction as suggested in [15], which requires a computational complexity in O (ds2). The ad-
ditional computational effort pays off when applying the theoretical bounds on the resulting lattice
size M to the estimates of this paper. In more detail, the CBC approach offers reconstructing
rank-1 lattices with prime lattice sizes M bounded from above by M < max(s® 2(Ny + 1)), ¢
8, 15]. As a consequence, the estimates in Remark 2.6 give M < CdN?7s? or even M < C,RN[S
for I a subset of an ¢;-ball of radius R. Thus, the estimates on the required number of sampling
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values for unique reconstruction of multivariate trigonometric polynomials in IIy, cf. (2.4), are
respectively only either logarithmically dependent on d or even independent of d.

3 Numerical tests

In this section, we investigate the statements of Theorems 2.4 and 2.8 numerically?. We consider
different types of frequency sets I. In particular, we use symmetric hyperbolic cross type frequency
sets

I= H}dieven = {k = (k.. ka) € (22)%: T max(1,|k]) < R} (3.1)

with expansion parameter R € N, which results in N; < 2R, in up to d = 9 spatial dimensions.

These frequency sets H j‘%) oven N1ave the property that in each frequency component only even indices

occur. This matches the behavior of the Fourier support of the test function Gg introduced below
in Section 3.2 which we approximate using samples on multiple rank-1 lattices, see also [12, 14]
and [22, section 2.3.5].

In addition, we use random frequency sets I c¢ ([-R, R] nZ)?, which yield Ny < 2R, and we
consider these in up to d = 10000 spatial dimensions.

3.1 Deterministic multiple rank-1 lattices generated by Algorithm 2.1
suitable for reconstruction and approximation

3.1.1 Resulting numbers of samples and oversampling factors

In the beginning, we determine the overall number of samples when applying Algorithm 2.1.
Up to an additive term of 1 — L, this corresponds to ZZL:_Ol P, in Theorem 2.4, since the node 0
(point of origin) is contained in each of the resulting rank-1 lattices A(Z,Pg). We start with
symmetric hyperbolic cross sets I = H%,even as defined in (3.1) and consider three different types
of reconstructing single rank-1 lattices A(z, M, I) as input for Algorithm 2.1.

First, we use the rank-1 lattices from [12, Table 6.1], which were generated by the CBC method
[7, Algorithm 3.7], as input for Algorithm 2.1. We plot the results in Figure 3.1a for spatial
dimensions d € {2,3,...,9} and with various refinements R € N of I = H%,cvcn' The observed
numbers of samples seem to behave slightly worse than linear with respect to the cardinality
of the frequency set I. The corresponding theoretical upper bounds according to Theorem 2.4
using (2.7) for M are also shown as filled markers with dashed lines for spatial dimensions d € {2,9}
in Figure 3.1a. The plotted upper bounds are distinctly larger and their slopes seem to be slightly
higher than those observed by plotting the numerical tests.

Second, we consider reconstructing single rank-1 lattices A(z, M, I) with

z:=(1,Nr+1,(N;+1)2, ... (N + DTN and M := (N;+1)% = 2R+ 1), (3.2)

where Ny = 2R in our case, and we show the results in Figure 3.1b. We observe that the obtained
numbers of samples are similar to the ones in Figure 3.1a, and the theoretical upper bounds
according to Theorem 2.4 using (2.7) for M are slightly higher due to increased components of
the generating vector z of the reconstructing single rank-1 lattices.

Third, we apply Algorithm 2.1 to reconstructing single rank-1 lattices A(z, M, I) as considered
in [6, section 6]. In detail, we choose

M = H q and z == (M/q1,M/qa,...,M/qq)",
te{1,2,...,d} (3.3)
where ¢; :==dNj+d+1 and ¢¢41 := min{p € N:p > ¢; and p prime}.

Here, the observed numerical results yield plots that do not differ recognizably from Figure 3.1b,
and we therefore omit these plots. We would like to point out, that the theoretical upper bounds

2All code is available at https://www.math.msu.edu/~markiwven/Code.html
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(a) A(z, M, T) generated by [7, Algorithm 3.7] (b) z and M according to (3.2)

Figure 3.1: Overall #samples = 1 - L + ZEL;Ol Py for symmetric hyperbolic cross index sets I =
H%,cvcn' Filled markers with dashed lines represent theoretical upper bounds from Theorem 2.4
for d € {2,9} calculated using (2.7).

for that kind of reconstructing single rank-1 lattices are slightly worse than those plotted in
Figure 3.1b, cf. Remark 2.6.

Note that when running Algorithm 2.1 for single rank-1 lattices A(z,M,I) of type (3.2)
and (3.3) in practice, one may need to deal with limited numeric precision in the computer arith-
metic. For instance, for higher spatial dimensions, some components z; of the generating vector
z may become larger than 64-bit integers. This means that the sets J. may have to be computed
carefully and repeatedly modulo each considered prime P € Pir) when searching for the primes
Po, ... ,PL_l in Line 7 of Algorithm 2.1.

In order to have a closer look at the number of samples, we visualize the oversampling factor
#samples /|I| = (1 - L + Y72 P;)/|I] in Figure 3.2. For the considered test cases and the three
different types of lattices, we observe that the oversampling factors are below 1.71In |I]+3 for |I] > 1.
This is distinctly smaller than the theoretical upper bounds in Theorem 2.4 suggest, which have a
constant of » 5.7 and additional logarithmic factors depending on M. For instance in Figure 3.2a,
for I = H3sg oyen (cardinality |I] = 1264513 and #samples = 27025 383), the oversampling factor is
~ 21.37 whereas the corresponding upper bound for the oversampling factor is ~ 3069 according
to Theorem 2.4 using (2.7) for M. The plots for reconstructing single rank-1 lattices A(z, M, I)
according to (3.3) look similar to the ones according to (3.2), where the latter are shown in
Figure 3.2b. Moreover, we only observe a relatively small difference compared to Figure 3.2a.

Next, we change the setting and use frequency sets I drawn uniformly randomly from cubes
[-R, R]“nZ%. We generate reconstructing single rank-1 lattices A(z, M, I') using [7, Algorithm 3.7].
Then, we apply Algorithm 2.1 in order to deterministically generate reconstructing multiple rank-1
lattices. We repeat the test 10 times for each setting with newly randomly chosen frequency sets I
and determine the maximum number of samples over the 10 repetitions. For frequency set sizes
|I] € {10,100,1000,10000} in d € {2, 3,4,6,10,100,1000,10000} spatial dimensions and addition-
ally |I| = 100000 for some of the aforementioned spatial dimensions d, we visualize the resulting
oversampling factors in Figure 3.3 for expansion parameter R = 64 (N; < 128). Using different
reconstructing single rank-1 lattices A(z, M,T) as in Figure 3.2 changes the oversampling factors
only slightly, and the oversampling factors are still well below 1.71n|I| + 3, compare Figures 3.3a
and 3.3b. The plots for reconstructing single rank-1 lattices A(z, M,I) according to (3.3) are
omitted since they look very similar to Figure 3.3b. As mentioned before, we have to take care of
possible issues with numeric precision when running Algorithm 2.1 on reconstructing single rank-1
lattices of type (3.2) and (3.3) in practice.
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(a) A(z,M,I) generated by [7, Algorithm 3.7]

Figure 3.2: Oversampling factors for deterministic reconstructing multiple rank-1 lattices for sym-

metric hyperbolic cross index sets Hf%cvcn.

(b) z and M according to (3.2)
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(a) A(z,M,I) generated by [7, Algorithm 3.7] (b) z and M according to (3.2)

Figure 3.3: Oversampling factors for deterministic reconstructing multiple rank-1 lattices for ran-
dom frequency sets I c {~64,-63,...,64}9.

3.1.2 Improvement of numbers of samples compared to single rank-1 lattices con-
structed component-by-component

For the resulting deterministic reconstructing multiple rank-1 lattices generated by Algorithm 2.1
in the previous subsection, one aspect of particular interest is the total number of nodes com-
pared to the reconstructing single rank-1 lattices, which are given as an input to the algorithm.
We investigate this in more detail for the case of lattices generated component-by-component by
[7, Algorithm 3.7]. These reconstructing single rank-1 lattices A(z, M, T) are specifically tailored
to the structure of the corresponding frequency sets I. We do not consider the case when Al-
gorithm 2.1 is applied to single rank-1 lattices of type (3.2) or (3.3) as these ones are typically
extremely large compared to the cardinality |I| of the frequency sets I.

First, we start with symmetric hyperbolic cross index sets I = H j‘%@mn and reconstructing single
rank-1 lattices A(z, M, I) generated by [7, Algorithm 3.7]. In Figure 3.4a, the obtained #samples
from Figure 3.1a is divided by the size M of the single rank-1 lattice. We observe that for smaller
expansion parameters R and consequently smaller cardinalities |I], the generated multiple rank-1
lattices still consist of more nodes than the corresponding single rank-1 lattices and therefore
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the ratio is larger than one. One main reason for this behavior is that for the component-by-
component constructed single rank-1 lattices, the number of nodes is initially much less than the
worst case upper bounds of almost O(|I|?) suggest, cf. [7, section 3.8.2] for a detailed discussion.
Once a certain expansion N; and cardinality |I| have been reached, the multiple rank-1 lattices
outperform the single rank-1 lattices, yielding ratios around 0.1 in Figure 3.4a, i.e., Algorithm 2.1
reduces the number of sampling nodes by 9/10.

Second, we consider the randomly generated frequency sets from Figure 3.3a. In Figure 3.4b,
we visualize the ratios of the number of nodes of the deterministic reconstructing multiple rank-1
lattices generated by Algorithm 2.1 over the lattice sizes M of the reconstructing single rank-1
lattices generated by [7, Algorithm 3.7]. For the spatial dimensions d > 4 considered in Figure 3.3a,
the ratios decrease rapidly for increasing cardinality |I|, and we do not observe any noticeable
dependence on the spatial dimension d. Note that in the case d = 2, the ratios are close to or
above one since the cube {-64,-63,...,64}2 of possible frequencies only has cardinality 16641
and the single rank-1 lattices already have small oversampling factors M/|I| < 16. Similarly, in
the case d = 3 for cardinality |I| = 10°, the frequency set I fills approximately 1/20 of the cube
{-64,-63,...,64}3 and again the low oversampling factors M/|I| < 22 of the single rank-1 lattices
are hard to beat for multiple rank-1 lattices.
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(a) symmetric hyperbolic cross index sets I = H% even (b) Ic{-64,-63,... ,64}d random frequency sets

Figure 3.4: Ratio #samples for deterministic reconstructing multiple rank-1 lattices suitable for ap-
proximation over lattice size M of reconstructing single rank-1 lattice A(z, M, I), where A(z, M, T)
was generated by [7, Algorithm 3.7].

3.2 Comparison of reconstructing multiple and single rank-1 lattices for
function approximation

As mentioned in Remark 2.7, we can use the reconstruction process (1.4) to compute approx-
imations of functions based on samples along rank-1 lattices. We consider the tensor-product
test functions G&:T¢ - C from [12], G4(x) = [1%, g3(z,), where the one-dimensional function
g3:T — C is defined by

3T

=4/ —
9() 2077 — 256

(2 +sgn((zmod 1) - 1/2) sin(27rw)3)

and |G4]1,ray = 1. The function G§ lies in a so-called Sobolev space of dominating mixed

smoothness with smoothness almost 3.5 such that its Fourier coefficients (é\g)k decay fast with
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respect to hyperbolic cross structures. In addition, (C’%)k = 0 if at least one component of k
is odd. Therefore, we approximate the function Gg by multivariate trigonometric polynomials

S’?Gg = Y ke I(é\g)ﬁe%ik"’ with frequencies supported on modified hyperbolic cross index sets
I=H¢

R,even
and determine the relative Ly(T?) sampling errors |G - S*G4| 1, (vay/|G4] 1, (re), Where

(@), - (@),

We compare the numerical results from [14, Figure 4.3b], where reconstructing single rank-1 lattices
and reconstructing random multiple rank-1 lattices were used, with new results using deterministic
multiple rank-1 lattices returned by Algorithm 2.1.

As input for Algorithm 2.1, we use reconstructing single rank-1 lattices A(z, M, I) with gen-

as defined in (3.1). We compute the Fourier coefficients (Cllg)ﬁ based on samples of G%

2

— 2
1GE - S2G8 orey = \j 16412, 0y~ 2| (G3). | + 3
kel kel

erating vectors chosen according to (3.2). Instead of computing the Fourier coefficients (G¢)4 of
the multivariate trigonometric polynomial S2GY by (1.4), we use [13, Algorithm 2], which aver-
ages over all single rank-1 lattices A(Z,Pg) that are able to reconstruct a Fourier coefficient ﬁ
of any multivariate trigonometric polynomial f as defined in (1.2) for a given frequency k € I,
whereas (1.4) uses only one single rank-1 lattice A(z, Py(k)). Note that both computation methods
are based on the same samples of Gg along the obtained deterministic multiple rank-1 lattices.
The resulting relative Ly(T%) sampling errors are visualized for spatial dimensions d € {2,3,5,8} in
Figure 3.5 as solid lines and filled markers. We observe that the errors decrease rapidly for increas-
ing expansion parameters R of the hyperbolic cross I = de%,even and correspondingly increasing
number of samples. In addition, we consider reconstructing single rank-1 lattices generated by [7,
Algorithm 3.7] as input for Algorithm 2.1 and obtain results which are very close and therefore
omit their plots.
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number of samples

Figure 3.5: Relative Lo(T¢) sampling errors for G¢ with respect to the number of samples for
reconstructing single rank-1 lattices (dashed lines, unfilled markers), reconstructing random mul-
tiple rank-1 lattices (dotted lines, filled markers), and reconstructing deterministic multiple rank-1
lattices (solid lines, filled markers), when using the frequency index sets I := H]%)even. Results for
single rank-1 lattices from [22, Figure 2.14] and for reconstructing random multiple rank-1 lattices
from [14, Figure 4.3].

Moreover, the relative errors from [14, Figure 4.3b] when using reconstructing random multiple
rank-1 lattices are shown in Figure 3.5 as dotted lines and filled markers. We observe that the
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obtained number of samples and errors are similar to the deterministic ones. The results for the
deterministic multiple rank-1 lattice seem to be slightly better for d € {3,5,8}. In addition, the
relative errors from [14, Figure 4.3b] when directly sampling along reconstructing single rank-1
lattices are drawn as dashed lines and unfilled markers. It has already been observed in [14] that
in the beginning for smaller expansion parameters R and consequently smaller number of samples,
the single rank-1 lattices perform better until a certain expansion parameter R has been reached.
Afterwards, the multiple rank-1 lattices clearly outperform the single ones.

3.3 Deterministic multiple rank-1 lattices with decreasing lattice size
for reconstruction of trigonometric polynomials

Besides generating deterministic multiple rank-1 lattices according to Theorem 2.4 and Algo-
rithm 2.1, we have also discussed the alternate approach of Theorem 2.8, where the theoretical
results for function approximation, as mentioned in Remark 2.7, cannot be applied directly, but
the number of required samples for the reconstruction of multivariate trigonometric polynomials
may be distinctly smaller.

We start with symmetric hyperbolic cross type index sets I = H j‘%)even and apply the generation
strategy of Theorem 2.8 on reconstructing single rank-1 lattices A(z, M, T) generated by [7, Algo-
rithm 3.7]. We visualize the resulting oversampling factors #samples /|I| = (1 - L+ Yt Py)/|I] in
Figure 3.6a for spatial dimensions d € {2,3,...,9} and various expansion parameters R. For the
considered test cases, we observe that the oversampling factors are well below 3. When starting
with single rank-1 lattices according to (3.2), the observed oversampling factors only differ slightly,
cf. Figure 3.6b.

The reason for these very low oversampling factors is that during the generation process ac-
cording to the proof of Theorem 2.8 the prime By is relatively close to |I|, the next prime Py is
relatively close to |I \ I, P, is relatively close to [T~ (Ip u )|, and so on, where I contains
the frequencies of I which can be reconstructed by the lattice A(z, Py) and where I; contains the
frequencies of I \ Iy which can be reconstructed by A(z,f’l). In particular, we do not have the
fixed lower bound s < P, for all £ as in Algorithm 2.1.

Next, we change the setting and use the frequency sets I drawn uniformly randomly from
cubes [—R,R]d nZ%, see Section 3.1. As before, we generate reconstructing single rank-1 lat-
tices A(z,M,I) using [7, Algorithm 3.7]. Then, we apply the strategy of Theorem 2.8 in or-
der to deterministically generate reconstructing multiple rank-1 lattices. We repeat the test 10
times for each setting with newly randomly chosen frequency sets I and determine the maxi-
mum number of samples over the 10 repetitions. For sparsities |I| € {10,100,1000,10000} in
de{2,3,4,6,10,100,1000,10 000} spatial dimensions, we visualize the resulting oversampling fac-
tors in Figure 3.6¢ for expansion parameter R = 64 (N < 128). Starting with reconstructing single
rank-1 lattices A(z, M,I) according to (3.2) as in Figure 3.3b changes the oversampling factors
only slightly, and the oversampling factors are still well below 4, cf. Figure 3.6d.

4 Conclusion

Given a known reconstructing single rank-1 lattice A(z, M, I') for some d-dimensional frequency set
I c Z%, we have presented two methods for deterministically transforming this lattice into smaller
multiple rank-1 lattices. By sampling on these lattices, any exact trigonometric polynomial with
Fourier support in I can be exactly recovered by performing O (log|I|) FFTs each of size bounded
linearly in |I] and logarithmically in M maxger [k[,; up to some loglog terms. Slightly restricting
the frequency set I to being a subset of the d-dimensional ¢;-ball of radius |I| and choosing
suitable CBC constructed reconstructing rank-1 lattices A(z,M,I) as input for Algorithm 2.1
actually leads to FFT sizes bounded in O (|I]log|I|).

Numerically, we have demonstrated that the deterministically generated multiple rank-1 lat-
tices stemming from three different original reconstructing single rank-1 lattice constructions are
competitive with single rank-1 lattices as well as randomly generated multiple rank-1 lattices in
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Figure 3.6: Oversampling factors for deterministic reconstructing multiple rank-1 lattices con-
structed according to Theorem 2.8.

terms of number of samples used and accuracy of approximations. These same results have addi-
tionally shown some gaps between the lattices generated in practice and the theoretical bounds,
most notably when considering the oversampling factors, where for both structured and random
frequency sets, these values were shown to grow only at most logarithmically in |I].

It is worth noting that though the construction of the multiple lattices happens sequentially (in
that each successive choice of lattice size depends on the previous choices) the generating vector z
is kept constant and not adapted to previously chosen lattices. Rather than remaining tied to the
original reconstructing single rank-1 lattice, related work could take the path of generating new
single rank-1 lattices which better serve the frequencies waiting to be handled after each step, so
long as the potential gains in an adapted lattice scheme are carefully balanced with the associated
computational cost.
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