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Abstract. Schur modules give the irreducible polynomial representations of

the general linear group GLt. Viewing the symmetric group St as a subgroup

of GLt, we may restrict Schur modules to St and decompose the result into a
direct sum of Specht modules, the irreducible representations of St. We give an

equivariant Möbius inversion formula that we use to invert this expansion in the
representation ring for St for t large. In addition to explicit formulas in terms

of plethysms, we show the coefficients that appear alternate in sign by degree.

In particular, this allows us to define a new basis of symmetric functions whose
structure constants are stable Kronecker coefficients and which expand with

signs alternating by degree into the Schur basis.

1. Overview of main results

This paper concerns the relation between the representation theories of the gen-
eral linear group GLt and the symmetric group St over C. To fix notation, for λ an
integer partition, let `(λ) denote the length of λ (number of nonzero parts), and let
∣λ∣ denote the size of λ (sum of the parts). Let Sλ denote the Schur functor , so
that the irreducible polynomial representations of GLt are Sλ(Ct) where `(λ) ≤ t.
For ν an integer partition, let Spν be the Specht module over C, so that the
irreducible representations of St are Spν for ∣ν∣ =t.

Since St ⊂ GLt, we can restrict the GLt representation Sλ(Ct) to St and de-
compose the result into Specht modules. For a partition ν =(ν1, ν2, . . . , νr), and

t ≥ ν1 + ∣ν∣, we define ν(t) to be the partition (t − ∣ν∣, ν1, ν2, . . . , νr) of t. Using this
notation, we can write the aforementioned restriction as

(1.1) ResGLt
St

Sλ(Ct) ≅⊕
ν

Sp
⊕aνλ(t)
ν(t)

,

where aνλ(t) are, by definition, the non-negative multiplicities that arise. In other
words, in the representation ring Rep(St) of St, we have

(1.2) [Sλ(Ct)] =∑
ν

aνλ(t)[Spν(t)].

A classical result of Littlewood [5] states that aνλ(t) is independent of t for t
sufficiently large. Therefore we may define coefficients aνλ by

(1.3) aνλ =lim
t→∞

aνλ(t).
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For λ, ν partitions with ∣λ∣ ≤ ∣ν∣, Littlewood showed aνλ =δλ,ν . In particular, we
may regard aνλ as entries of an infinite upper uni-triangular matrix with rows and
columns indexed by partitions. It is natural to invert this matrix to define coeffi-
cients bνλ by

(1.4) [bνλ] =[aνλ]
−1
.

While the aνλ are non-negative, the bνλ are, a priori, merely integers. Our main
result is the following.

Theorem 1.1. With the above notation, we have (−1)∣λ∣−∣ν∣bνλ ≥ 0.

As we explain in Section 1.2, the bνλ have recently become of interest as part of a
strategy for computing stable Kronecker coefficients, so this basic result concerning
their signs seems of importance.

1.1. Plethystic formulas. We can give a precise formula for bνλ using the language
of plethysm. If ψ ∶ GLm →GLn has character g and φ ∶ GLn →GLp has character
f , then φ ○ψ ∶ GLm→GLp has character f[g], the plethysm of f and g. In terms
of symmetric polynomials, if g =∑α gαx

α is the monomial expansion, then f[g] is
f(y1, . . . , yt), where the yi are defined by the identity

∏(1 + yiq) =∏
α

(1 + xαq)
gα .

In other words, if the gα are non-negative, then xα occurs gα times in the multiset
(y1, . . . , yt). For more details on plethysm, see [8] and [9, (I.8)].

Littlewood [6] gave a formula for restriction from GLt to St as the following
plethysm

(1.5) aνλ(t) =⟨sλ, sν(t)[1 + h1 + h2 + ⋯]⟩,

where sλ(x1, . . . , xt) =char(Sλ(Ct)) is the Schur polynomial corresponding to
the irreducible character for GLt, hn =s(n) is the complete homogeneous symmetric
polynomial, and the inner product for characters, corresponding to the Hall inner
product on symmetric polynomials, is determined by ⟨sλ, sµ⟩ =δλ,µ.

Define the Lyndon symmetric function Lm by

(1.6) Lm =
1

n
∑
d∣m

µ(d)p
m/d
d ,

The Lyndon symmetric function is the character of the GLt action on the degree
m part of the free Lie algebra on Ct and is the Frobenius character of IndSm

Cm
e2πi/m

where Cm is the cyclic subgroup of Sm generated by the m-cycle (12⋯m). Using
Lm, we can give an explicit formula for bνλ as follows.

Theorem 1.2. For λ and ν partitions, we have

(1.7) bνλ = ∑
ν/µ vert. strip

(−1)∣ν∣−∣λ∣⟨sµT , sλT[L1 +L2 +L3 + ⋯]⟩,

where λT denotes the transpose of the partition λ.

We remark that L1 +L2 +L3 + ⋯ can be viewed as the GLt character of the free
Lie algebra on Ct. See [17] for a representation theoretic interpretation of this fact.

Our proofs involve an intermediate St-representation M t
µ defined by

(1.8) M t
µ =IndSt

S∣µ∣×St−∣µ∣Spµ ⊠ 1t−∣µ∣
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where 1k is the trivial representation of Sk.
Since M t

µ is an St representation, it is a positive combination of the Specht

modules Spνt . We will show that, in turn, Sλ(Ct) is positive in the M t
µ. We derive

our result (1.7) by composing a formula for Spνt in terms of the M t
µ and a formula

for M t
µ in terms of Sλ(Ct). The following theorem gives plethystic formulas for

transitioning between each of these bases.

Theorem 1.3. In the representation ring Rep(St), we have:

[M t
µ] = ∑

ν

⟨sν , sµ[1 + h1]⟩[Spνt] = ∑
µ/ν horiz. strip

[Spν(t)].(1.9)

[Spν(t)] = ∑
µ

⟨sµT , sνT[−1 + h1]⟩[M
t
µ] = ∑

ν/µ vert. strip

(−1)∣ν∣−∣µ∣[M t
µ].(1.10)

[Sλ(Ct)] = ∑
µ

⟨sλ, sµ[h1 + h2 + h3 + ⋯]⟩[M t
µ].(1.11)

[M t
µ] = ∑

λ

(−1)∣µ∣−∣λ∣⟨sµT , sλT[L1 +L2 +L3 + ⋯]⟩[Sλ(Ct)].(1.12)

The representation M t
µ arises naturally in studying representations of the cat-

egory of finite sets. A representation of the category of finite sets consists of a
sequence of vector spaces V0, V1, V2, . . . and, for each map φ ∶ {1,2, . . . , t} Ð→
{1,2, . . . , u} of finite sets, a map φ∗ ∶ Vt →Vu obeying the obvious functoriality. In
particular, each Vt is a representation of the symmetric group St. The category
of such representations is an abelian category in an obvious manner. The simple
objects in this category are explicitly described by Rains [15] and are implicitly
described in the work of Putcha [14]; see also Wiltshire-Gordon [22]. These simple
objects Wµ are indexed by partitions and, except when µ is of the form 1k, we
have (Wµ)t ≅M

t
µ as an St-representation. Wiltshire-Gordon also showed that the

Sλ(Ct) are projective objects in this category. Thus, the problem of expanding
Sλ(Ct) positively in M t

µ is the problem of finding the Jordan-Holder constituents

of these projectives, and the problem of writing M t
µ as an alternating combina-

tion of the Sλ(Ct) is a combinatorial shadow of the problem of finding projective
resolutions of these simples.

We generally prefer proofs which provide representation theoretic interpretations
of formulas to proofs by pure combinatorial manipulation. An exception is the proof
of Eq. (1.12); see the discussion preceding Theorem 6.3.

1.2. Stable Kronecker coefficients. The authors’ original motivation for study-
ing this problem came from a desire to understand tensor product multiplicities.
The Kronecker coefficients, denoted by gα,β,γ , indexed by a triple of partitions
of the same size, give the Specht module decomposition of a tensor product of
Specht modules, namely

Spα ⊗ Spβ ≅⊕
γ

Sp⊕gα,β,γγ .

Letting χα =char(Spα), we can express these coefficients symmetrically as

gα,β,γ =⟨χαχβ , χγ⟩ =
1

t!
∑
w∈St

χα(w)χβ(w)χγ(w),
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where t denotes the common size of α,β, γ. It remains an important open problem
in combinatorial representation theory to give a manifestly positive combinatorial
formula for the Kronecker coefficients gα,β,γ .

For arbitrary partitions α,β, γ (potentially of varying sizes), Murnaghan [10]
considered the coefficients gα(t),β(t),γ(t) and noticed that they stabilize for t suffi-
ciently large. This stability was proved by Brion [2], and so we define the stable
Kronecker coefficients, denoted by ḡα,β,γ , by

(1.13) ḡα,β,γ =lim
t→∞

gα(t),β(t),γ(t) .

Giving a combinatorial rule for the stable Kronecker coefficients ḡα,β,γ is a major
open problem in combinatorial representation theory.

By contrast, the tensor product coefficients for representations of GLt are well
understood. For partitions λ,µ, ν with ∣λ∣ + ∣µ∣ =∣ν∣, define the Littlewood–
Richardson coefficients, denoted by cνλ,µ, by

(1.14) Sλ(Ct) ⊗ Sµ(Ct) ≅⊕
ν

Sν(Ct)⊕c
ν
λ,µ .

Taking characters, we may also define cνλ,µ by taking the Schur expansion of a
product of Schur polynomials,

sλsµ =∑
ν

cνλ,µsν .

There are myriad combinatorial rules for cνλ,µ, the first due to Littlewood and

Richardson [7] that was later proved by Schützenberger [18] based on ideas of
Robinson [16]. It is natural to try to exploit this understanding to study stable
Kronecker coefficients.

Indeed, based on the stable limit of (1.2), we may define an inhomogeneous basis
for symmetric polynomials, which we call stable Specht polynomials and denote
by s†ν , by the formula

(1.15) sλ =∑
ν

aνλs
†
ν .

Roughly, we are describing a map from the representation ring of St to symmetric
functions sending Sλ(Ct) to sλ and Spν(t) to s†ν . (This statement is rough because
we have not explained how to take the limit as t→∞ of representation rings.) Note
this map is very different from the Frobenius characteristic sending Spν to sν .

Since restriction from GLt to St restricts with tensor product, the structure
constants of the stable Specht polynomials are stable Kronecker coefficients,

(1.16) s†αs
†
β =∑

γ

ḡα,β,γs
†
γ .

Therefore a direct combinatorial description of stable Specht polynomials might
well lead to a combinatorial rule for the stable Kronecker coefficients ḡα,β,γ .

Schur polynomials are manifestly stable Specht-positive by (1.15). As one begins
computing the s† polynomials, one immediately notices they appear to be Schur-
alternating. Theorem 1.1 proves this alternation.

Corollary 1.4. The stable Specht polynomials are alternatingly Schur positive.
Precisely, we have

s†ν =∑
λ

bνλsλ,

where, in particular, (−1)∣λ∣−∣ν∣bνλ ≥ 0.
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Tables 1 and 2 at the end of this paper give the expansions between Schur
functions and stable Specht functions for degree up to 5.

This same basis of stable Specht polynomials has been discovered independently
by Orellana and Zabrocki [11, 12], who have been developing tools and techniques
that might yet yield new insights into the stable Kronecker coefficients.

2. Transition between Specht modules and M t
µ

In this section, we carry out the relatively easy task of relating the classes of
Spν(t) and M t

µ in the representation ring Rep(St).

Proposition 2.1. In the representation ring Rep(St), we have

[M t
µ] = ∑

µ/ν horiz strip

[Spν(t)](2.1)

[Spν(t)] = ∑
ν/µ vert strip

(−1)∣ν∣−∣µ∣[M t
µ].(2.2)

Proof. By Pieri’s rule [13] for induction, from Eq. (1.8) we immediately have

(2.3) M t
µ ≅ ⊕

∣λ∣=t, λ/µ horiz. strip

Spλ.

For a partition λ with parts λ1 ≥ λ2 ≥ ⋯ ≥ λ`, we let λ̄ be the partition (λ2, . . . , λ`),

so λ =̄λ(t) if t=∣λ∣. We note that λ/µ is a horizontal strip if and only if λ1 ≥ µ1 ≥

λ2 ≥ µ2 ≥ ⋯. Holding λ̄ and µ fixed, once t is sufficiently large, the condition that
λ1 ≥ µ1 is automatic, so λ/µ is a horizontal strip if and only if µ1 ≥ λ2 ≥ µ2 ≥ ⋯;
the latter states that µ/λ̄ is a horizontal strip. So, for t sufficiently large, we have

M t
µ ≅ ⊕

µ/λ̄ horiz. strip

Spλ̄(t) .

Renaming the summation variable λ̄ as ν, we have proved Eq. (2.1).
To arrive at the second formula, we must invert the infinite 0 − 1 matrix with

entries Mµν =1 if and only if µ/ν is a horizontal strip. By Pieri’s rule, hrsν is the
sum ∑µ/ν horiz. r-strip sµ. Thus, as an endomorphism of the completion of the ring of
symmetric functions, the matrix M corresponds to multiplication in the Schur basis
by 1 +h1 +h2 +h3⋯. The inverse operation is multiplication by (1 +h1 +h2 + ⋯)−1 =

1 − e1 + e2 − e3 + ⋯. By Pieri’s rule, ersµ is the sum ∑ν/µ vert. r-strip sν . So the

inverse matrix has (M−1)µν equal to (−1)r if ν/µ is a vertical strip of size r, and 0
otherwise. Eq. (2.2) follows. �

In particular, notice that the transition coefficients between [M t
µ] and [Spλ] are

independent of t. Recalling that sλ[1 + h1] =∑λ/µ horiz. strip sµ, we deduce:

Corollary 2.2. In the representation ring Rep(St), we have

[M t
µ] = ∑

ν

⟨sν , sµ[1 + h1]⟩[Spν(t)],(2.4)

[Spν(t)] = ∑
µ

⟨sµT , sνT[−1 + h1]⟩[M
t
µ],(2.5)

where λT denotes the transpose of λ.

This proves the first two parts of Theorem 1.3.
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3. Background on wreath products

We recall that, for two groups G and H, the wreath product G ≀ H is the
semi-direct product (∏h∈H G) ⋊H, where H acts by permuting the G-factors. The
wreath product Sj ≀ Sm embeds in Sjm as the normalizer of the Young subgroup
S×m
j , and we’ll write Wr(j,m) for this subgroup of Sjm.
For V a representation of Sj and W a representation of Sm, we write V §W for

V ⊗m ⊗W as a representation of Wr(j,m) where Wr(j,m) acts in the obvious way
on V ⊗m and through the quotient Sm on W . We recall:

Theorem 3.1 ([19, Theorem A2.8]). With notation as above, we have

(3.1) ch (IndSab
Wr(j,m)(V §W )) =ch(W )[ch(V )],

where ch denotes the Frobenius characteristic map.

As the special case where V is the trivial representation, we have

Corollary 3.2. Let µ be a partition of m. Considering Spµ as a representation of
Wr(j,m) through the quotient Wr(j,m) →Sm, we have

ch (Ind
Sjm
Wr(j,m)Spµ) =sµ[hj].

We also want to embed the wreath product into Sjm × Sm. Let V (j,m) ⊂

Wr(j,m) × Sm be the graph of the map Wr(j,m) ≅ S×m
j ⋊ Sm →Sm, so V (j,m)

is a subgroup of Sjm × Sm isomorphic to Sj ≀ Sm.

Lemma 3.3. We have the following equality in Rep(Sjm × Sm):

[Ind
Sjm×Sm
V (j,m) 1] = ⊕

∣λ∣=jm
∣µ∣=m

⟨sλ, sµ[hj]⟩ [Spλ ⊠ Spµ] .

Proof. We first compute the induction from V (j,m) to Wr(j,m) × Sm, and then

further induct to Sjm × Sm. Let W be the representation Ind
Wr(j,m)×Sm
V (j,m) 1. We

note that W factors through the quotient Sm ×Sm of Wr(j,m)×Sm. As such, we
have W ≅ CSm with the two actions of Sm coming from the left and right actions
of Sm on itself. By the Peter-Weyl theorem (and using that all representations of
Sm are self dual), we have

Ind
Wr(j,m)×Sm
V (j,m) 1 ≅ ⊕

∣µ∣=m
Spµ ⊠ Spµ

where the action of Wr(j,m) is through its quotient Sm.
We now induce to Sjm:

Ind
Sjm×Sm
Wr(j,m)×SmInd

Wr(j,m)×Sm
V (j,m) 1=⊕

∣µ∣=m
(Ind

Sjm
Wr(j,m)Spµ) ⊠ Spµ.

The inner induction can be computed by Corollary 3.2:

Ind
Sjm
Wr(j,m)Spµ ≅ ⊕

∣λ∣=jm
Sp
⊕⟨sλ,sµ[hj]⟩
λ .

Putting all of our formulas together, we deduce the result. �
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4. Expansion of Sλ(Ct) in the basis M t
µ

Our next task is to give a formula for the expansion of Sλ(Ct) in terms of the
representation M t

µ. This result is of some interest in itself, but is more important

as a preview of the methods we will use to express M t
µ in terms of Sλ(Ct).

We write T (l, t) for (Ct)⊗l, which is an Sl × St representation in the obvious
manner. The obvious basis for T (l, t) is ei1 ⊗ ei2 ⊗ ⋯ ⊗ eil , where i1i2⋯il runs over
all length l words in the alphabet {1,2, . . . , t}; we abbreviate this basis element
[i1i2⋯il]. We write D(l, t) for the subspace of T (l, t) with basis those [i1i2⋯il]
where i1i2⋯il are pairwise distinct; this is clearly a Sl × St sub-representation.

Let Πl denote the lattice of set partitions of {1,2 . . . , l} ordered by refinement,
with minimal element Finel ∶={{1},{2}, . . . ,{l}} and maximal element Coarsel ∶=

{{1,2, . . . , l}}. For a set partition π ={π1, π2, . . . , πm}, we write Shape(π) for
the partition obtained by sorting (∣π1∣, ∣π2∣, . . . , ∣πm∣) into order. We abbreviate
∣Shape(π)∣ and `(Shape(π)) to ∣π∣ and `(π). In order to help the reader distinguish
integer partitions from set partitions, we will consistently denote the former by the
letters λ, µ, ν and the latter by π, ρ, σ.

Given a set partition π of {1,2 . . . , l}, we write

T (π, t) = {[i1i2⋯il] ∈ T (l, t) ∣ ip =iq if p, q ∈ πj for some j} ,
D(π, t) = {[i1i2⋯il] ∈ T (l, t) ∣ ip =iq if and only if p, q ∈ πj for some j} .

In particular, we have T (Finel, t) =T (l, t) and D(Finel, t) =D(l, t), and also
D(Coarsel, t) =T (Coarsel, t) ≅ Ct. We may relate these two constructions by

T (π, t) = ⊕
ρ⪰π

D(ρ, t).(4.1)

We will also consider representations indexed by integer partitions, rather than
by set partitions. For a partition ν of l, we set

DSh(ν, t) = ⊕
Shape(π)=ν

D(π, t).

We will now compute the character of DSh(ν, t).

Lemma 4.1. For ν a partition of l with length m, and for t ≥m, in the represen-
tation ring for Sl × St, we have

(4.2) [DSh(ν, t)] =∑
∣λ∣=l
∣µ∣=m

∑
∣µ(j)∣=mj

cµ
µ(1)µ(2)⋯µ(r)⟨sλ,∏

j

sµ(j)[hj]⟩ [Spλ ⊠M t
µ] ,

where ν =rmr⋯2m21m1 and each µ(j) is a partition of size mj.

Proof. Notice DSh(ν, t) is a permutation representation with basis {g ⋅xν}g∈Sl×St
where

xν =[

ν1
­
11⋯1

ν2
­
22⋯2 ⋯

νm
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
mm⋯m] ∈DSh(ν, t).

We first consider the case t=m. We have ∑j jmj =l and ∑jmj =m, and so the
stabilizer of xν in Sl × Sm is ∏V (j,mj) ⊆ ∏(Sjmj × Smj) ⊆Sl × Sm. Therefore

DSh(ν,m) =IndSl×Sm
∏V (j,mj)1.
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We perform the induction in two steps. First, by Lemma 3.3, we have

[Ind
∏(Sjmj×Smj )
∏V (j,mj) 1] =∏

j

∑
∣λ(j)∣=jmj
∣µ(j)∣=mj

⟨sλ(j), sµ(j)[hj]⟩ [Spλ(j) ⊠ Spµ(j)]

in Rep(∏(Sjmj × Smj)). We emphasize that each of the λ(j) is a partition, they
are not the parts of a partition named λ, and likewise for the µ(j)’s. Interchanging
summation and product, we get

[Ind
∏(Sjmj×Smj )
∏V (j,mj) 1] = ∑

∣λ(j)∣=jmj
∣µ(j)∣=mj

∏
j

⟨sλ(j), sµ(j)[hj]⟩ [Spλ(j) ⊠ Spµ(j)] .

Inducing further, using the classical result IndSm+l
Sl×Sm[Spλ ⊠ Spµ] =∑ν c

ν
λµ[Spν],

gives

(4.3) [IndSl×Sm
∏V (j,mj)1] =

∑
∣λ∣=l
∣µ∣=m

∑
∣λ(j)∣=jmj
∣µ(j)∣=mj

∏
j

⟨sλ(j), sµ(j)[hj]⟩ c
λ
λ(1)λ(2)⋯λ(r) c

µ
µ(1)µ(2)⋯µ(r) [Spλ ⊠ Spµ] .

To simplify this, note that for symmetric functions f, g homogeneous of degrees
a, b, respectively, we have ⟨sλ, fg⟩ =∑∣α∣=a,∣β∣=b c

λ
α,β⟨sα, f⟩⟨sβ , g⟩. Thus we may use

the coefficients cλλ(1)λ(2)⋯λ(r) to reduce Eq. (4.3) to

(4.4) [IndSl×Sm
∏V (j,mj)1] =∑

∣λ∣=l
∣µ∣=m

∑
∣µ(j)∣=mj

⟨sλ,∏
j

sµ(j)[hj]⟩ c
µ
µ(1)µ(2)⋯µ(r) [Spλ ⊠ Spµ] .

Finally, inducing from Sm × St−m to St gives Eq. (4.2). �

We now establish the third part of Theorem 1.3.

Proposition 4.2. In the representation ring Rep(St), we have

(4.5) [Sλ(Ct)] =∑
µ

⟨sλ, sµ[h1 + h2 + h3 + ⋯]⟩[M t
µ].

Proof. We begin with the decomposition

(4.6) T (l, t) =⊕
∣ν∣=l

DSh(ν, t).

Both sides of this equation have compatible actions of Sl × St. On the left hand
side, Schur-Weyl duality tells us that

(4.7) T (l, t) =(Ct)⊗l ≅ ⊕
∣λ∣=l

Spλ ⊠ Sλ(Ct).

So we can compute Sλ(Ct) as the Spλ-component of the right hand side of Eq. (4.6).
From Eq. (4.2), the coefficient of Spλ in DSh(ν, t) is

∑
∣µ∣=m

∣µ(j)∣=mj

cµ
µ(1)µ(2)⋯µ(r)⟨sλ,∏

j

sµ(j)[hj]⟩ [M
t
µ]
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where ν =rmr⋯2m21m1 . Thus the coefficient of Spλ in T (l, t) is obtained by
summing over ν, which gives

∑
∣µ∣=m

∑∣µ(j)∣=m

⟨sλ, c
µ
µ(1)µ(2)⋯µ(r)∏

j

sµ(j)[hj]⟩ [M
t
µ] =∑

∣µ∣=m
⟨sλ, sµ[∑hj]⟩ [M

t
µ] ,

where we use the identity sµ[f + g] =∑α,β c
µ
α,βsα[f]sβ[g] (see [9, I(8.8)]). �

Combining Propositions 2.1 and 4.2, we recover Littlewood’s formula for aνλ.

Corollary 4.3. In the representation ring Rep(St), we have

[Sλ(Ct)] =∑
ν

⟨sλ, sν(t)[1 + h1 + h2 + ⋯]⟩[Spν(t)].

5. Equivariant Möbius inversion

Our proof of the third part of Theorem 1.3 began with the identity T (l, t) =

⊕∣ν∣=lDSh(ν, t). To establish the fourth and most interesting part we must invert
this expression to write D(l, t) as a “linear combination” of the representations
T (π(ν), t), where π(ν) is a set partition of shape ν. We can use Möbius inversion on
the set partition lattice to compute the dimension of D(l, t) as a linear combination
of the dimensions of the representations T (π, t). In order to obtain not just the
dimension, but a formula for the class in Rep(Sl × St), we need an equivariant
version of Möbius inversion. We find it clearest to explain this result in the context
of a general poset with a group action. Because we want to reserve µ for partitions,
we will denote the Möbius function of a poset by m.

Let P be a poset with unique minimal element 0̂, and let G be a group acting
on P . Let V be a G-representation with a direct sum decomposition V =⊕p∈P Up
such that g(Up) =Ugp for each g ∈ G and p ∈ P . For q ∈ P , put Vq ∶=⊕r⪰q Ur.

For p ∈ P , let (0̂, p) ={q ∈ P ∶ 0̂ ≺ q ≺ p}. Let ∆(0̂, p) be the order complex of

(0̂, p) – the simplicial complex on the ground set (0̂, p) whose faces are the totally

ordered subsets of (0̂, p). A classical result of P. Hall states [4] that the Möbius

function m(p) is the reduced Euler characteristic χ̃(∆(0̂, p)).
We will define an equivariant version of m. Namely, let Gp be the stabilizer of p

and let Rep(Gp) be its representation ring. We define

meq(p) =∑
j

(−1)j+1 [H̃j(∆(0̂, p))]

where H̃j is the reduced homology group. So, under the map Rep(Gp) →Z sending
a representation to its dimension, meq(p) is sent to the Möbius function m(p).
Among group theorists, meq(p) is called the “Lefschetz element”.

Let G/P be a set of orbit representatives for the action of G on P . Our equi-
variant Möbius inversion formula is the following.

Theorem 5.1. With the above definitions, we have the equality

(5.1) [U0̂] = ∑
p∈G/P

[IndGGp (meq(p) ⊗ Vp)]

in the representation ring Rep(G).

Proof. We begin by expanding the induction. For a simplicial complex X, let
Cj(X) be the free vector space on the j-dimensional faces. Here we include the
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case j =−1, corresponding to the empty face. If a group H acts on X, we have
[meq(X)] =∑j≥−1(−1)j+1[Cj(X)] in Rep(H), so the right hand side of (5.1) is

∑
j≥−1

(−1)j+1
∑

p∈G/P
[IndGGp Cj(∆(0̂, p)) ⊗ Vp] .

The induction can be expanded explicitly as

∑
p∈G/P

⎡
⎢
⎢
⎢
⎣
⊕
p′∈Gp

Cj(∆(0̂, p′)) ⊗ Vp′
⎤
⎥
⎥
⎥
⎦
.

Summing over p ∈ G/P and p′ ∈ Gp is simply summing over p′ ∈ P . So we want to
prove the equality

[U0̂] =∑
j≥−1

(−1)j+1
⎡
⎢
⎢
⎢
⎣
⊕
p′∈P

Vp′ ⊗Cj(∆(0̂, p′))
⎤
⎥
⎥
⎥
⎦
=∑
j≥−1

(−1)j+1

⎡
⎢
⎢
⎢
⎢
⎣

⊕
0̂≺q0≺q1≺⋯≺qj≺p′∈P

Vp′

⎤
⎥
⎥
⎥
⎥
⎦

in Rep(G). Inserting the definition of Vp′ , our goal is to show that

[U0̂] =∑
j≥−1

(−1)j+1

⎡
⎢
⎢
⎢
⎢
⎣

⊕
0̂≺q0≺q1≺⋯≺qj≺p′⪯q′

Uq′

⎤
⎥
⎥
⎥
⎥
⎦

.

Here G acts by permuting the summation indices and by its action on V .
In order to show equality in Rep(G), we simply need to compute characters of

both sides. Fix g ∈ G; for any vector space W on which g acts, write Trg(W ) for
the trace of g on W . Since the action of g on P is order preserving, if g maps
a j-cell (q0, q1, . . . , qj) of ∆(0̂, p) to itself, it does so while preserving the order of
(q0, q1, . . . , qj). So the only terms that contribute to the trace are those where each
of the summation variables q0, q1, . . . , qj , p

′ and q′ are individually fixed by g. We
obtain that the trace of g on the right hand side is

∑
j≥−1

(−1)j+1
∑

q0,q1,...,qj ,p
′,q′∈P g

0̂≺q0≺q1≺⋯≺qj≺p′⪯q′

Trg(Uq′) =∑
q′∈P g

Trg(Uq′)( ∑
j≥−1

∑
q0,q1,...,qj∈P g

0̂≺q0≺q1≺⋯≺qj≺p′⪯q′

(−1)j+1).

The quantity in parentheses in the reduced Euler characteristic of the order complex
∆ ({q ∈ P g ∶ 0̂ ≺ q ⪯ q′}). For q′ ≠ 0̂, the point q′ is a cone point of the order complex,
so this Euler characteristic is 0. Thus, the sum simplifies to Trg(U0̂), as desired. �

Our immediate purpose is to apply Theorem 5.1 to the partition lattice Πm,
ordered by refinement with minimal element Finem and ranked by m minus the
number of blocks of the set partition. The group Sm acts by permuting elements
within blocks. We can identify Sm/Πm with the set of integer partitions of m: for
each integer partition ν of m, choose a set partition π(ν) of that shape. We will
abbreviate the stabilizer Gπ(ν) to simply Gν and the equivariant Möbius function
meq(π(ν)) to simply meq(ν). We may extend this action to an Sm×St action where
the second factor acts trivially, and in so doing the corresponding objects for the
action of Sm×St become Gν×St and meq(ν)⊠1, respectively. Since D(Finem, t) =
D(m, t), applying Theorem 5.1 to the representation T (π, t) =⊕ρ⪰πD(ρ, t) gives:

Corollary 5.2. In the representation ring Rep(Sm × St), we have

(5.2) [D(m, t)] =∑
∣ν∣=m

[IndSm×St
Gν×St ((meq(ν) ⊠ 1) ⊗ T (π(ν), t))]

where π(ν) is a set partition of shape ν.
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6. Expansion of M t
µ in the basis Sλ(Ct)

We now prove the last part of Theorem 1.3. Following the proof paradigm for
the expansion of Sλ(Ct) in the basis M t

µ, we will express the Sm×St representation
D(m, t) in two ways. Recall that D(m, t) =D(Finem, t) =DSh((1

m), t).

Proposition 6.1. As an Sm × St representation, we have

(6.1) D(m, t) ≅ ⊕
∣µ∣=m

Spµ ⊠M t
µ.

Proof. For ν =(1m), Lemma 4.1 gives

[DSh((1
m
), t)] = ∑

∣λ∣=∣µ∣=m
∑

∣µ(1)∣=m
cµ
µ(1)⟨sλ, sµ(1)[h1]⟩ [Spλ ⊠M t

µ] .

Using cµ
µ(1) =δµ,µ(1) and sµ(1)[h1] =sµ(1) and ⟨sλ, sµ⟩ =δλ,µ gives the result. �

In particular, M t
µ can be identified with the Spµ-isotypic component of D(m, t).

On the other hand, equivariant Möbius inversion gives the following.

Lemma 6.2. In the representation ring Rep(Sm × St), we have

(6.2) [D(m, t)] =∑
∣ν∣=m

∑
∣λ∣=̀(ν)

[IndSm
Gν

(meq(ν) ⊗ Spλ) ⊠ Sλ(Ct)] .

where π(ν) is a set partition of shape ν.

Proof. For ν a partition of m with length ` and π a set partition of shape ν, as
an St module, T (π, t) is (Ct)⊗`. By Schur-Weyl duality, as an S` × St module,
this becomes ⊕∣λ∣=̀ Spλ ⊠ Sλ(Ct). Writing ν =1m12m2⋯rmr , with notation as in
Corollary 5.2, the stabilizer of ν is Gν =∏Wr(j,mj) ⊂ ∏Sjmj ⊂ Sm. The group
Gν acts on the set of blocks of π(ν), giving a map Gν →S`. Combining this with
the action of S` on Spλ turns Eq. (5.2) into Eq. (6.2), as desired. �

At this point, we can prove [M t
µ] is alternating in the [Sλ(Ct)]. By (6.1),

M t
µ can be identified with the Spµ-isotypic component of D(m, t), where m =∣µ∣.

Combining this observation with (6.2), the coefficient of [Sλ(Ct)] in [M t
µ] is the

coefficient of [Spµ] in ∑ν IndSm
Gν

(meq(ν) ⊗ [Spλ]). For λ and µ fixed, the only

terms that contribute to this coefficient are partitions ν with ∣ν∣ =∣µ∣ and `(ν) =∣λ∣.
But ∣µ∣ − ∣λ∣ =∣ν∣ − `(ν) is precisely the rank function that grades the lattice of set
partitions. So only terms at one fixed level of Πm will contribute. Since Πm is
Cohen-Macaulay [1], the terms meq(ν) will all come with the same sign (−1)∣µ∣−∣λ∣,

proving the multiplicity of [Sλ(Ct)] in [M t
µ] has sign (−1)∣µ∣−∣λ∣, as promised.

Our final task is to establish Eq. (1.12), our plethystic formula for the coefficient
of [Sλ(Ct)] in [M t

µ] and thus in [Spν(t)] in Rep(St). So far, we have emphasized
representation theoretic methods that exhibit isomorphisms of vector spaces, ex-
plaining all equalities that we present. To prove Theorem 1.12 in this vein would
be to exhibit a resolution of the FinSet-module Sλ(Ct) by the FinSet-modules
Mµ(Ct). Such a resolution was found by Ryba [17], after we circulated this paper
as a preprint. Ryba’s result can be regarded as a categorification of our Eq. (1.12).

Without an explicit resolution, one can (as we did in arXiv:1809.10125v1) use
formulas of Sundaram and Welker [21] for the cohomology of ∆(Finem, π) as a
Gν module, combined with equivariant Möbius inversion and plethystic manipula-
tions, to deduce (1.12). However, a referee has pointed out to us that Eq. (1.12)
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can be deduced from Eq. (1.11) purely by plethystic methods. While our our rep-
resentation theoretic proofs are simpler and more conceptual for all results prior to
this, including sign alternation, when it comes to deriving Eq. (1.12), the formal
plethystic method is briefer. Thus we present that approach instead.

Theorem 6.3. In the representation ring Rep(St), we have

(6.3) [M t
µ] =∑

λ

(−1)∣µ∣−∣λ∣⟨sµT , sλT[L1 +L2 +L3 + ⋯]⟩[Sλ(Ct)].

Proof. Let Λ be the ring of symmetric functions and consider the linear map H ∶

f ↦ f[h1 + h2 + ⋯] from Λ to itself. Eq. (1.11) shows that the coefficients for the
[Sλ(Cf)] in terms of the [M t

µ] are the entries of the matrix of H, in the basis

of Schur polynomials. So the coefficients for the [M t
µ] in terms of the [Sλ(Cf)]

must be entries for the matrix of H−1 in the same basis. The inverse to H is
g ↦ g[ω(L1 −L2 +L3 − ⋯)]; see Cadogan [3] or Sundaram [20, Example 1.6]. So

[M t
µ] =∑

λ

⟨sµ, sλ[ω(L1 −L2 +L3 − ⋯)]⟩[Sλ(Ct)].

Applying the isometry ω to each side, we have

⟨sµ, sλ[ω(L1 −L2 +L3 − ⋯)]⟩ =⟨sµT , sλT[L1 −L2 +L3 − ⋯]⟩.

Moreover, we have

sλT[L1 −L2 +L3 − ⋯] = ∑
λ(1),λ(2),⋯

cλ
T

λ(1)λ(2)⋯ sλ(1)[L1]sλ(2)[−L2]sλ(3)[L3]⋯

= ∑
λ(1),λ(2),⋯

(−1)∣λ(2)∣+∣λ(4)∣+⋯cλ
T

λ(1)λ(2)⋯ sλ(1)[L1]sλ(2)[L2]sλ(3)[L3]⋯.

Any term on the right hand side which contributes to the coefficient of sµT must

have ∑j j∣λ(j)∣ =∣µ∣, so ∣µ∣ − ∣λ∣ =∑j(j − 1)∣λ(j)∣ and thus (−1)∣λ(2)∣+∣λ(4)∣+⋯ =

(−1)∣λ∣−∣µ∣. So

⟨sµT , sλT[L1 −L2 +L3 − ⋯]⟩ =(−1)∣λ∣−∣µ∣⟨sµT , sλT[L1 +L2 +L3 + ⋯]⟩.

Combining these equalities proves the result. �

Thus we have proved the final part of Theorem 1.3. Combining the second and
fourth parts of Theorem 1.3 proves Theorem 1.2.
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3. C. C. Cadogan, The Möbius function and connected graphs, J. Combinatorial Theory Ser. B
11 (1971), 193–200.



SPECHTS ARE ALTERNATING IN SCHURS 13

s() = s†
()

s(1) = 1+s†
(1)

s(2) = 2+2s†
(1)
+s†

(2)

s(11) = s†
(1)
+s†

(11)

s(3) = 3+4s†
(1)
+2s†

(2)
+s†

(11)
+s†

(3)

s(21) = 1+3s†
(1)
+2s†

(2)
+2s†

(11)
+s†

(21)

s(111) = s†
(11)

+s†
(111)

s(4) = 5+7s†
(1)
+5s†

(2)
+2s†

(11)
+2s†

(3)
+s†

(21)
+s†

(4)

s(31) = 2+7s†
(1)
+5s†

(2)
+6s†

(11)
+2s†

(3)
+3s†

(21)
+s†

(111)
+s†

(31)

s(22) = 2+3s†
(1)
+4s†

(2)
+s†

(11)
+s†

(3)
+2s†

(21)
+s†

(22)

s(211) = s†
(1)
+s†

(2)
+3s†

(11)
+2s†

(21)
+2s†

(111)
+s†

(211)

s(1111) = s†
(111)

+s†
(1111)

s(5) = 7+12s†
(1)
+9s†

(2)
+5s†

(11)
+5s†

(3)
+3s†

(21)
+2s†

(4)
+s†

(31)
+s†

(5)

s(41) = 5+14s†
(1)
+13s†

(2)
+12s†

(11)
+6s†

(3)
+9s†

(21)
+3s†

(111)
+2s†

(4)
+3s†

(31)
+s†

(22)
+s†

(211)
+s†

(41)

s(32) = 4+10s†
(1)
+11s†

(2)
+8s†

(11)
+6s†

(3)
+8s†

(21)
+2s†

(111)
+s†

(4)
+3s†

(31)
+2s†

(22)
+s†

(211)
+s†

(32)

s(311) = 3s†
(1)
+4s†

(2)
+8s†

(11)
+s†

(3)
+7s†

(21)
+6s†

(111)
+2s†

(31)
+s†

(22)
+3s†

(211)
+s†

(1111)
+s†

(311)

s(221) = 1+3s†
(1)
+4s†

(2)
+3s†

(11)
+2s†

(3)
+5s†

(21)
+s†

(111)
+s†

(31)
+2s†

(22)
+2s†

(211)
+s†

(221)

s(2111) = s†
(11)

+s†
(21)

+3s†
(111)

+2s†
(211)

+2s†
(1111)

+s†
(2111)

s(11111) = s†
(1111)

+s†
(11111)

Table 1. Schur functions expanded into the stable Specht basis.

4. Philip Hall, The collected works of Philip Hall, Oxford Science Publications, The Clarendon

Press, Oxford University Press, New York, 1988, Compiled and with a preface by K. W.
Gruenberg and J. E. Roseblade, With an obituary by Roseblade. MR 986732

5. D. E. Littlewood, Group Characters and the Structure of Groups, Proc. London Math. Soc.

(2) 39 (1935), no. 2, 150–199.
6. , Products and plethysms of characters with orthogonal, symplectic and symmetric

groups, Canad. J. Math. 10 (1958), 17–32.
7. D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy.

Soc. London. Ser. A. 233 (1934), 99–141.
8. Dudley E. Littlewood, The Theory of Group Characters and Matrix Representations of

Groups, Oxford University Press, New York, 1940.

9. I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathe-
matical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, With

contributions by A. Zelevinsky, Oxford Science Publications.
10. F. D. Murnaghan, The Analysis of the Kronecker Product of Irreducible Representations of

the Symmetric Group, Amer. J. Math. 60 (1938), no. 3, 761–784.

11. Rosa Orellana and Mike Zabrocki, Symmetric group characters as symmetric functions,
arXiv:1605.06672, 2016.

12. , Products of characters of the symmetric group, arXiv:1709.08098, 2017.

13. Mario Pieri, Sul problema degli spazi secanti, Rend. Ist. Lombardo (2) 26 (1893), 534–546.
14. Mohan S. Putcha, Complex representations of finite monoids, Proc. London Math. Soc. (3)

73 (1996), no. 3, 623–641.

15. Eric M. Rains, The action of Sn on the cohomology of M0,n(R), Selecta Math. (N.S.) 15
(2009), no. 1, 171–188.

16. G. de B. Robinson, On the Representations of the Symmetric Group, Amer. J. Math. 60
(1938), no. 3, 745–760.



14 S. H. ASSAF AND D. E. SPEYER

s†
()

= s()

s†
(1)

= s(1)−1

s†
(2)

= s(2)−2s(1)

s†
(11)

= s(11)−s(1)+1

s†
(3)

= s(3)−2s(2)−s(11)+s(1)

s†
(21)

= s(21)+3s(1)−2s(2)−2s(11)

s†
(111)

= s(111)−s(11)+s(1)−1

s†
(4)

= s(4)+s(2)−2s(3)−s(21)+2s(11)

s†
(31)

= s(31)−3s(1)+5s(2)+3s(11)−2s(3)−3s(21)−s(111)

s†
(22)

= s(22)−s(1)+2s(2)−s(3)−2s(21)+4s(11)

s†
(211)

= s(211)−4s(1)+3s(2)+3s(11)−2s(21)−2s(111)

s†
(1111)

= s(1111)−s(111)+s(11)−s(1)+1

s†
(5)

= s(5)+s(3)+2s(21)−s(11)−2s(4)−s(31)+s(111)

s†
(41)

= s(41)+2s(1)−5s(11)+5s(3)+6s(21)−2s(4)−3s(31)−s(22)−5s(2)−s(211)+2s(111)

s†
(32)

= s(32)+3s(1)−6s(2)−6s(11)+4s(3)+8s(21)+3s(111)−s(4)−3s(31)−2s(22)−s(211)

s†
(311)

= s(311)+5s(1)−7s(11)+4s(3)+7s(21)+3s(111)−2s(31)−s(22)−3s(211)−9s(2)−s(1111)

s†
(221)

= s(221)+3s(1)−7s(11)+6s(21)−5s(2)−s(31)−2s(22)+2s(3)−2s(211)+4s(111)

s†
(2111)

= s(2111)−4s(11)+5s(1)+3s(21)−4s(2)+3s(111)−2s(211)−2s(1111)

s†
(11111)

= s(11111)−s(1111)+s(111)−s(11)+s(1)−1

Table 2. Stable Specht functions expanded into the Schur basis.

17. Christopher Ryba, Resolving irreducible CSn-modules by modules restricted from GLn(C),
arXiv:1812.07212, 2018.

18. M.-P. Schützenberger, La correspondance de Robinson, Combinatoire et représentation du

groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg,
1976), Springer, Berlin, 1977, pp. 59–113. Lecture Notes in Math., Vol. 579.

19. Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced

Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by
Gian-Carlo Rota and appendix 1 by Sergey Fomin.

20. Sheila Sundaram, The homology representations of the symmetric group on Cohen-Macaulay

subposets of the partition lattice, Adv. Math. 104 (1994), no. 2, 225–296.
21. Sheila Sundaram and Volkmar Welker, Group representations on the homology of products of

posets, J. Combin. Theory Ser. A 73 (1996), no. 1, 174–180.
22. John D. Wiltshire-Gordon, Uniformly presented vector spaces, arXiv:1406.0786, 2014.

Department of Mathematics, University of Southern California, 3620 S. Vermont

Ave., Los Angeles, CA 90089-2532, U.S.A.
E-mail address: shassaf@usc.edu

Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor,

MI 28109-1043, U.S.A.
E-mail address: speyer@umich.edu


