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ABSTRACT. Schur modules give the irreducible polynomial representations of
the general linear group GL;. Viewing the symmetric group &; as a subgroup
of GL¢, we may restrict Schur modules to &; and decompose the result into a
direct sum of Specht modules, the irreducible representations of &;. We give an
equivariant Md&bius inversion formula that we use to invert this expansion in the
representation ring for & for ¢ large. In addition to explicit formulas in terms
of plethysms, we show the coefficients that appear alternate in sign by degree.
In particular, this allows us to define a new basis of symmetric functions whose
structure constants are stable Kronecker coefficients and which expand with
signs alternating by degree into the Schur basis.

1. OVERVIEW OF MAIN RESULTS

This paper concerns the relation between the representation theories of the gen-
eral linear group GL; and the symmetric group &, over C. To fix notation, for A an
integer partition, let £(\) denote the length of A (number of nonzero parts), and let
|A| denote the size of A (sum of the parts). Let Sy denote the Schur functor, so
that the irreducible polynomial representations of GL; are Sy(C") where £()\) < t.
For v an integer partition, let Sp, be the Specht module over C, so that the
irreducible representations of &, are Sp,, for |v| =¢.

Since &; c GL;, we can restrict the GL; representation Sy(C?) to &; and de-

compose the result into Specht modules. For a partition v = (v, vs,...,1,.), and
t> vy +|v|, we define v® to be the partition (t - |v|,v1,vs,...,v,) of t. Using this
notation, we can write the aforementioned restriction as
GL Y ~ ®aj ()
(1.1) Resg,*Sx(C") :EBSszj ,
v

where aX(t) are, by definition, the non-negative multiplicities that arise. In other
words, in the representation ring Rep(&;) of &;, we have

(1.2) [Sx(C)] =3 aX()[Sp,].

A classical result of Littlewood [5] states that a¥(¢) is independent of ¢ for ¢
sufficiently large. Therefore we may define coeflicients a5 by

(1.3) ay = tllglo ak (t).
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For A, v partitions with |\ < |v|, Littlewood showed a¥ = 0y ,. In particular, we
may regard a) as entries of an infinite upper uni-triangular matrix with rows and
columns indexed by partitions. It is natural to invert this matrix to define coeffi-
cients by by

v vi-1
(1.4) (0X] =[aX] -
While the a¥ are non-negative, the b5 are, a priori, merely integers. Our main
result is the following.

Theorem 1.1. With the above notation, we have (~1)Mp% > 0.

As we explain in Section 1.2, the b5 have recently become of interest as part of a
strategy for computing stable Kronecker coefficients, so this basic result concerning
their signs seems of importance.

1.1. Plethystic formulas. We can give a precise formula for b5 using the language
of plethysm. If ¢ : GL,, - GL,, has character g and ¢ : GL,, - GL,, has character
f, then ¢ o) : GL,, - GL, has character f[g], the plethysm of f and g. In terms
of symmetric polynomials, if g = ¥, goz® is the monomial expansion, then f[g] is
f(y1,...,y), where the y; are defined by the identity

[TA+wg) =] +z%)%.

In other words, if the g, are non-negative, then x® occurs g, times in the multiset
(y1,-..,y:). For more details on plethysm, see [8] and [9, (I.8)].

Littlewood [6] gave a formula for restriction from GL: to &; as the following
plethysm

(15) aK(t): <S/\7Sl,(t)|:1+h1+h2+~~~:|>,

where s)(z1,...,7;) = char(Sy(C")) is the Schur polynomial corresponding to
the irreducible character for GL¢, hy, = s(5,) is the complete homogeneous symmetric
polynomial, and the inner product for characters, corresponding to the Hall inner
product on symmetric polynomials, is determined by (sx,s,) = 0x -

Define the Lyndon symmetric function L,, by

1 m/d
(1.6) Lo ==Y u(d)py’,

n dlm
The Lyndon symmetric function is the character of the GL; action on the degree
m part of the free Lie algebra on C* and is the Frobenius character of Indg™ e?7/™

where C,, is the cyclic subgroup of G,, generated by the m-cycle (12-~m)n.1 Using
Ly, we can give an explicit formula for 0§ as follows.

Theorem 1.2. For \ and v partitions, we have

(1.7) by = Z (_1)|V|_|A|<SMT,S>\T [L1+ Lo+ L3 +-+]),

v/p vert. strip

where \T denotes the transpose of the partition \.

We remark that L; + Lo + L3 + -+ can be viewed as the GL; character of the free
Lie algebra on C'. See [17] for a representation theoretic interpretation of this fact.
Our proofs involve an intermediate G;-representation M, fL defined by

t Sy
(18) M/L = IndGWIXGt—WISp“ ]].t_‘m
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where 1j is the trivial representation of G&y.

Since Mﬁ is an &; representation, it is a positive combination of the Specht
modules Sp,.. We will show that, in turn, Sx(C') is positive in the M. We derive
our result (1.7) by composing a formula for Sp,,: in terms of the M /‘i and a formula
for M}, in terms of Sy(C*). The following theorem gives plethystic formulas for
transitioning between each of these bases.

Theorem 1.3. In the representation ring Rep(S;), we have:

(1.9 [Mp] = Ysv,sull+ma])[Spy]= > [Sp,o]-

pl/v horiz. strip

(syr,s,r[-1+h])[M]] = > (—1)"’"'“‘[Mﬁ].

v/p vert. strip

(5A75/L[h1 + hg + h3 + ])[M;]

(1.10) [Sp,»] =
(L1D)[SA(C)]

(~1)M sz syr [ Ly + Lo + Ly + - ])[SA(CH)].

> =™ =M =

(112)  [M)] =

The representation M;i arises naturally in studying representations of the cat-
egory of finite sets. A representation of the category of finite sets consists of a
sequence of vector spaces Vo, Vi, Vo, ...and, for each map ¢ : {1,2,...,t} —
{1,2,...,u} of finite sets, a map @, : V; > V,, obeying the obvious functoriality. In
particular, each V; is a representation of the symmetric group &;. The category
of such representations is an abelian category in an obvious manner. The simple
objects in this category are explicitly described by Rains [15] and are implicitly
described in the work of Putcha [14]; see also Wiltshire-Gordon [22]. These simple
objects W, are indexed by partitions and, except when p is of the form 1%, we
have (W)= M ﬁ as an G;-representation. Wiltshire-Gordon also showed that the
Sx(C?) are projective objects in this category. Thus, the problem of expanding
Sx(C") positively in M} is the problem of finding the Jordan-Holder constituents
of these projectives, and the problem of writing M fL as an alternating combina-
tion of the Sy(C") is a combinatorial shadow of the problem of finding projective
resolutions of these simples.

We generally prefer proofs which provide representation theoretic interpretations
of formulas to proofs by pure combinatorial manipulation. An exception is the proof
of Eq. (1.12); see the discussion preceding Theorem 6.3.

1.2. Stable Kronecker coefficients. The authors’ original motivation for study-
ing this problem came from a desire to understand tensor product multiplicities.
The Kronecker coefficients, denoted by g. g, indexed by a triple of partitions
of the same size, give the Specht module decomposition of a tensor product of
Specht modules, namely

Sp, ® Sps = P SpEI.
¥
Letting x4 = char(Sp, ), we can express these coefficients symmetrically as

1
Japy = (XaXsXa) = 5 > Xa(w)xs(w)xy(w),
CweBSy
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where t denotes the common size of «, 3,~. It remains an important open problem
in combinatorial representation theory to give a manifestly positive combinatorial
formula for the Kronecker coefficients gq g -

For arbitrary partitions «, 3,7 (potentially of varying sizes), Murnaghan [10]
considered the coefficients g, g 4 and noticed that they stabilize for ¢ suffi-
ciently large. This stability was proved by Brion [2], and so we define the stable
Kronecker coefficients, denoted by gn 3., by

(1.13) Jo, By = flirglo [NOWORVOR

Giving a combinatorial rule for the stable Kronecker coefficients g, 3~ is a major
open problem in combinatorial representation theory.

By contrast, the tensor product coefficients for representations of GL; are well
understood. For partitions A, u,v with |A| + |u| = |v|, define the Littlewood—
Richardson coefficients, denoted by cf ,, by

(1.14) SA(CYH) ®S,(Ch) = @S, (T

Taking characters, we may also define CK7M by taking the Schur expansion of a
product of Schur polynomials,

_ v
174

There are myriad combinatorial rules for ¢f , the first due to Littlewood and
Richardson [7] that was later proved by Schiitzenberger [18] based on ideas of
Robinson [16]. It is natural to try to exploit this understanding to study stable
Kronecker coefficients.

Indeed, based on the stable limit of (1.2), we may define an inhomogeneous basis
for symmetric polynomials, which we call stable Specht polynomials and denote
by s!, by the formula

(1.15) sy= Y. afsl.

Roughly, we are describing a map from the representation ring of &; to symmetric
functions sending Sy(C*) to sy and Sp,«) to si. (This statement is rough because
we have not explained how to take the limit as ¢ — oo of representation rings.) Note
this map is very different from the Frobenius characteristic sending Sp, to s,.
Since restriction from GL; to &; restricts with tensor product, the structure
constants of the stable Specht polynomials are stable Kronecker coefficients,

(1.16) SLS}; = Zga,msi.
¥

Therefore a direct combinatorial description of stable Specht polynomials might
well lead to a combinatorial rule for the stable Kronecker coefficients ga, g ~-

Schur polynomials are manifestly stable Specht-positive by (1.15). As one begins
computing the s polynomials, one immediately notices they appear to be Schur-
alternating. Theorem 1.1 proves this alternation.

Corollary 1.4. The stable Specht polynomials are alternatingly Schur positive.
Precisely, we have
817: = Z bKSM
X

where, in particular, (-1)MN-1pY > 0.
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Tables 1 and 2 at the end of this paper give the expansions between Schur
functions and stable Specht functions for degree up to 5.

This same basis of stable Specht polynomials has been discovered independently
by Orellana and Zabrocki [11, 12], who have been developing tools and techniques
that might yet yield new insights into the stable Kronecker coefficients.

2. TRANSITION BETWEEN SPECHT MODULES AND Mft

In this section, we carry out the relatively easy task of relating the classes of
Sp, and M/ in the representation ring Rep(&;).

Proposition 2.1. In the representation ring Rep(S&;), we have

(2.1) (M]] = >, [Sp.w]

u/v horiz strip

Z (_1)|V|—|u\[M;]_

v/p vert strip

(2.2) [Spyo]

Proof. By Pieri’s rule [13] for induction, from Eq. (1.8) we immediately have
(2.3) M;, @ Spy.-

[Al=t, A\/p horiz. strip

112

For a partition A with parts A; > Ay > --- > A, we let A be the partition (Ao, ..., \p),

so A =AM if t = |A|. We note that A/ is a horizontal strip if and only if A\; > i >

A2 2 ig > --. Holding A and p fixed, once t is sufficiently large, the condition that

A1 > pq is automatic, so A/u is a horizontal strip if and only if pq > Ag > pg > -+

the latter states that /) is a horizontal strip. So, for ¢ sufficiently large, we have
M ﬁ = @ Spj\(t) .

/X horiz. strip

Renaming the summation variable A as v, we have proved Eq. (2.1).

To arrive at the second formula, we must invert the infinite 0 — 1 matrix with
entries M, =1 if and only if p/v is a horizontal strip. By Pieri’s rule, h,s, is the
SUM 3,/ horiz. r-strip Su- L 1US, as an endomorphism of the completion of the ring of
symmetric functions, the matrix M corresponds to multiplication in the Schur basis
by 1+ hy +hg + hs---. The inverse operation is multiplication by (1+hy +ho+---)7! =

1-e1+ex—e3+--. By Pieri’s rule, e,s, is the sum ¥,/ vert. r-strip Sv- S0 the
inverse matrix has (M), equal to (-1)" if v/u is a vertical strip of size r, and 0
otherwise. Eq. (2.2) follows. O

In particular, notice that the transition coefficients between [M}] and [Sp,] are
independent of . Recalling that sx[1+h1]= Y5/, noriz. strip Su» We deduce:

Corollary 2.2. In the representation ring Rep(&;), we have

(24) [M;tt] = Z(SV?SM[l +h1])[spu(f)]7
(25) [Spy(t)] = Z(suTa SuT [_1 + h1]>[MZ]7

where \T denotes the transpose of .

This proves the first two parts of Theorem 1.3.
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3. BACKGROUND ON WREATH PRODUCTS

We recall that, for two groups G and H, the wreath product G : H is the
semi-direct product ([T G) » H, where H acts by permuting the G-factors. The
wreath product &;:6&,, embeds in &;,, as the normalizer of the Young subgroup
&7, and we'll write Wr(j,m) for this subgroup of &,,.

For V a representation of &; and W a representation of &,,, we write V§W for
V®™ ® W as a representation of Wr(j,m) where Wr(j,m) acts in the obvious way
on V®™ and through the quotient &,, on W. We recall:

Theorem 3.1 ([19, Theorem A2.8]). With notation as above, we have

(3.1) ch (Ind%;zj’m)(V‘g‘W)) = ch(W)[ch(V)],

where ch denotes the Frobenius characteristic map.
As the special case where V' is the trivial representation, we have

Corollary 3.2. Let pu be a partition of m. Considering Sp,, as a representation of
Wr(j,m) through the quotient Wr(j,m) — &,,, we have

6j'm,
ch (Indg77; 18D, ) = 5, [hs].

We also want to embed the wreath product into &, x &,,. Let V(j,m) c
Wr(j,m) x &,,, be the graph of the map Wr(j,m) = G %Gy = Gy, 50 V(j,m)
is a subgroup of &, x &,, isomorphic to &;:&,,.

Lemma 3.3. We have the following equality in Rep(&m, x G,n):

Sim*xGm
[Indv(jm;; ]l] = ‘A‘E:?m(S)\,SH[th [Spy®Sp,,].
|ps[=m

Proof. We first compute the induction from V(j,m) to Wr(j,m) x &,,, and then

further induct to &j,, x G,,. Let W be the representation Ind\‘],v(rj(,%;)xemll. We
note that W factors through the quotient &,, x &,,, of Wr(j, m) x &,,. As such, we
have W =z C&,,, with the two actions of &,,, coming from the left and right actions
of &,, on itself. By the Peter-Weyl theorem (and using that all representations of
S, are self dual), we have

Wr(j,m)xSm 1
Ind 5 1z ‘ G|9 Sp, ®Sp,
pl=m

where the action of Wr(j,m) is through its quotient &,,,.
We now induce to &;y,:

SimxGm Wr(j,m)xGm _ Sim
IndyZe o o Indyy xSy - me\?m (127, .y 8P ) B 5D

The inner induction can be computed by Corollary 3.2:

Indejm Sp“ ~ @ Spf(skvsu[hjh'

Wr(j.m) e

Putting all of our formulas together, we deduce the result. ([
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4. EXPANSION OF S)(C') IN THE BAsIS M,

Our next task is to give a formula for the expansion of Sy(C") in terms of the
representation M, ﬁ This result is of some interest in itself, but is more important
as a preview of the methods we will use to express Ml‘i in terms of Sy (C?).

We write T'(1,t) for (C')®!, which is an &; x &; representation in the obvious
manner. The obvious basis for T'(,t) is e;, ® e;, ® - ® e;,, where i1ig---i; TUNS OVer
all length [ words in the alphabet {1,2,...,t}; we abbreviate this basis element
[i1i9-+0;]. We write D(l,t) for the subspace of T'(I,t) with basis those [i1ig--i;]
where i1i5--+1; are pairwise distinct; this is clearly a &; x &; sub-representation.

Let TI; denote the lattice of set partitions of {1,2...,1} ordered by refinement,

with minimal element Fine; := {{1},{2},...,{l}} and maximal element Coarse; :=
{{1,2,...,1}}. For a set partition m = {my,7a,..., T}, we write Shape(w) for
the partition obtained by sorting (|m1|,|mal,...,|mm|) into order. We abbreviate

|[Shape(m)| and £(Shape(r)) to |« and £(7). In order to help the reader distinguish
integer partitions from set partitions, we will consistently denote the former by the
letters A, u, v and the latter by =, p, o.

Given a set partition 7 of {1,2...,1}, we write

T(m,1) {lirig--i1] € T'(L,t) | ip = iq if p,q € ;j for some j},
D(m,t) = A{[i1i2-i] € T(1,t) | ip = iq if and only if p,q € w; for some j} .

In particular, we have T'(Fine;, t) = T'(I,t) and D(Fine;,t) = D(l,t), and also
D(Coarse;, t) = T'(Coarse;, t) = C'. We may relate these two constructions by
(4.1) T(rt) = @Dp.b).

p=7

We will also consider representations indexed by integer partitions, rather than
by set partitions. For a partition v of [, we set

DSh(V,t) = @ D(ﬂ',t).

Shape(w)=v
We will now compute the character of Dgy(v,t).

Lemma 4.1. For v a partition of I with length m, and for t > m, in the represen-
tation ring for &; x G, we have

(42)  [Dsu@D]= 3 2 Chu@ynem S [ sam i) [Spa & M,],
[A=L |p(d)l=m; J
lul=m

where v = r™r--2M21™ and each u(j) is a partition of size m;.

Proof. Notice Dgp(v,t) is a permutation representation with basis {g - x, }¢es, 3,
where

vy v Um
——

— N —,—
x, = [11-+-1 222 ---mm---m] € Dgy (v, 1).

We first consider the case t =m. We have ¥, jm; =1 and }; m; = m, and so the
stabilizer of x,, in &; x &, is [TV (j,m;) S [1(Sjm,; x Gm;) € &; x &,,. Therefore

S xS m
Dgy(v,m) = IndE’V(j,mj)]l.
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We perform the induction in two steps. First, by Lemma 3.3, we have

(S m, Xbm])
[I ndp V(J] m;) ]1] H > (a5 [h5]) [Spag) ®SpLs)]
7 IAG)I=gm;
lu(G)I=m;
in Rep([1(&jm, x Gm;)). We emphasize that each of the A\(j) is a partition, they
are not the parts of a partition named A, and likewise for the u(j)’s. Interchanging
summation and product, we get

I—I(GJ’HL Xb?n )
[IndHV(Jm ) ]l] Z I_RS)\(J)7 M(])[ ]) [SPA(g) -Sp#(])]
M@ =im; I

l1()I=m;

6m+l

Inducing further, using the classical result Indg"s [Spy®Sp,] = ¥, <5, [Sp, ],

gives

S xG
(4.3) [I dHV(]m) ]
H(S)\(J)7 su(i)hi]) CA(l)A(Q) A C(1)u(2)p(r) [SpA = Sp,,] .-
[Al=L IA(G)I=imy I
lel=m |u(5)l=m;
To simplify this, note that for symmetric functions f, g homogeneous of degrees

a, b, respectively, we have (sx, f9) = ¥jaj=a,/8]b cg_ﬂ(sa, f)ss,9). Thus we may use
the coefficients ci(l))\@)w\(r) to reduce Eq. (4.3) to

S x6,,
(4.4) [Indnlv(] m,)]l] Yoo sa HS“(j)[hj]) (1) (2)pa(r) [Spr®Sp,].
|\>|\\=l l1(3)l=m; J
ul=m

Finally, inducing from &,, x &;_,, to &; gives Eq. (4.2). O
We now establish the third part of Theorem 1.3.

Proposition 4.2. In the representation ring Rep(S&;), we have

(4.5) [SA(C)] = X2 (sx, sl + ho + ha +--])[M]].

Proof. We begin with the decomposition
(4.6) T(L,t) = @ Dsu(w:t).
lv|=t
Both sides of this equation have compatible actions of G; x &;. On the left hand
side, Schur-Weyl duality tells us that
(4.7) T(1,t) = (C)® = @ Sp, wSA(CH).
IN=L

So we can compute Sy (C") as the Sp,-component of the right hand side of Eq. (4.6).
From Eq. (4.2), the coefficient of Spy in Dgy(v,t) is

mgm U@ {5 1:[ su(nhil) [M,]
1 ()lm;
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where v = r™r...2m21"™  Thus the coefficient of Sp, in T'(l,t) is obtained by
summing over v, which gives

Z (3/\7‘3,5(1);42)...”@) Hsu(j)[hj]) [M;tt] = Z <5/\75u[zhj]) [M;tt]’

lu|=m [ul=m
Zp(d)l=m

where we use the identity s,[f +g] = Xo gl s5a[f1s5[9] (see [9, 1(8.8)]). O
Combining Propositions 2.1 and 4.2, we recover Littlewood’s formula for af.

Corollary 4.3. In the representation ring Rep(S;), we have
[SA(Ct)] = Z(SM S,(t) [1 + h1 + hg + "']>|:Spl/(t)].

v

5. EQUIVARIANT MOBIUS INVERSION

Our proof of the third part of Theorem 1.3 began with the identity T'(I,t) =
@v|=t Dsn(v,t). To establish the fourth and most interesting part we must invert
this expression to write D(l,t) as a “linear combination” of the representations
T(w(v),t), where 7(v) is a set partition of shape v. We can use Mobius inversion on
the set partition lattice to compute the dimension of D(l,t) as a linear combination
of the dimensions of the representations 7'(m,t). In order to obtain not just the
dimension, but a formula for the class in Rep(&; x &;), we need an equivariant
version of Mobius inversion. We find it clearest to explain this result in the context
of a general poset with a group action. Because we want to reserve u for partitions,
we will denote the Mobius function of a poset by m.

Let P be a poset with unique minimal element 0, and let G be a group acting
on P. Let V be a G-representation with a direct sum decomposition V' = @,cp Up
such that g(U,) = Uy, for each g € G and pe P. For g€ P, put V, := ®,,,U,.

For pe P, let (0,p) = {ge P:0<q<p}. Let A(0,p) be the order complex of
(0,p) — the simplicial complex on the ground set (0, p) whose faces are the totally
ordered subsets of (0,p). A classical result of P. Hall states [4] that the Mobius
function m(p) is the reduced Euler characteristic Y(A(0,p)).

We will define an equivariant version of m. Namely, let G, be the stabilizer of p
and let Rep(G,) be its representation ring. We define

meq(p) = Y0 (-1)7* [H; (A0, p))]

where H ; is the reduced homology group. So, under the map Rep(G,) — Z sending
a representation to its dimension, meq(p) is sent to the Mébius function m(p).
Among group theorists, meq(p) is called the “Lefschetz element”.

Let G\P be a set of orbit representatives for the action of G on P. Our equi-
variant Mébius inversion formula is the following.

Theorem 5.1. With the above definitions, we have the equality

(5.1) [Us]= Y [Idg, (meq(p) @ V3)]
peG\P

in the representation ring Rep(G).

Proof. We begin by expanding the induction. For a simplicial complex X, let
C;(X) be the free vector space on the j-dimensional faces. Here we include the
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case j = -1, corresponding to the empty face. If a group H acts on X, we have
[Meq(X)] = X5 1(-1)7"'[C;(X)] in Rep(H), so the right hand side of (5.1) is

> (17 ¥ [ndg, ¢5(A0.p)) @V, ]
Jj=-1 peG\P
The induction can be expanded explicitly as
> [ @ awerern]
peG\P Lp’eGp

Summing over p € G\P and p’ € Gp is simply summing over p’ € P. So we want to
prove the equality

[Us]= > (—1)”1[@ V}a'®0j(A(0,p'))]= > (—1)j”[ P Vo

j=-1 p'eP j=>-1 f)<q0<q1<--»<qj<p’eP

in Rep(G). Inserting the definition of Vs, our goal is to show that

[Us]= > (1)

j>=1

@ Uq’

0<qo<q1<-=<q;<p'<q’

Here G acts by permuting the summation indices and by its action on V.

In order to show equality in Rep(G), we simply need to compute characters of
both sides. Fix g € G; for any vector space W on which ¢ acts, write Try(W) for
the trace of g on W. Since the action of g on P is order preserving, if g maps
a j-cell (go,q1,...,q;) of A(0,p) to itself, it does so while preserving the order of
(g0, q1,---,4;). So the only terms that contribute to the trace are those where each
of the summation variables qo, ¢1, - .., ¢;, p’ and ¢’ are individually fixed by g. We
obtain that the trace of g on the right hand side is

Z (_1)]+1 Z Try(Uy) = Z Trg(Uq’)( Z Z (_1)j+1)-
j>-1 f]07Q1a“'7Qjap’aq,€Pg q'eP9 jZ—lA q0,q1,---,95€P?
0<qo=<q1<-<q;<p'=q 0<qo<q1<-<q;<p'<q’
The quantity in parentheses in the reduced Euler characteristic of the order complex
A ({q eP9:0<qgx q’}). For ¢’ # 0, the point ¢’ is a cone point of the order complex,
so this Euler characteristic is 0. Thus, the sum simplifies to Try(Up), as desired. [

Our immediate purpose is to apply Theorem 5.1 to the partition lattice II,,,
ordered by refinement with minimal element Fine,, and ranked by m minus the
number of blocks of the set partition. The group &,, acts by permuting elements
within blocks. We can identify &,,\I1,, with the set of integer partitions of m: for
each integer partition v of m, choose a set partition 7(v) of that shape. We will
abbreviate the stabilizer G(,y to simply G\, and the equivariant Mébius function
Meq (7(v)) to simply meq (). We may extend this action to an &,, xS, action where
the second factor acts trivially, and in so doing the corresponding objects for the
action of G,, xS, become G, xS, and meq (V)R 1, respectively. Since D(Fine,,,t) =
D(m,t), applying Theorem 5.1 to the representation T'(w,t) = @,.. D(p,t) gives:

Corollary 5.2. In the representation ring Rep(S,, x &;), we have
(5.2) [D(m,t)] = Y [Idgre ((me(v)®1) @ T(n(v),1))]

v[=m

where w(v) is a set partition of shape v.
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6. EXPANSION OF MIZ IN THE BASIS Sy(C?)

We now prove the last part of Theorem 1.3. Following the proof paradigm for
the expansion of Sy (C?) in the basis M ;, we will express the G,,, x G, representation
D(m,t) in two ways. Recall that D(m,t) = D(Fine,,,t) = Dsn((1™),1).

Proposition 6.1. As an G, x &; representation, we have

(6.1) D(m,t)= @ Sp,=M,.

lul=m

Proof. For v =(1"), Lemma 4.1 gives
Da((@™)D]= ¥ 5 e lsnsun ) [Spam ML)

[Al=lul=m (1) ]=m

Using CA(1) O ury and s, y[h1] = s,(1) and (sx,s,) = 0x,, gives the result. O

In particular, Mfl can be identified with the Sp ,-isotypic component of D(m, t).
On the other hand, equivariant Md&bius inversion gives the following.

Lemma 6.2. In the representation ring Rep(S,, x &;), we have

(6.2) [D(m,t)] = HZ m;( )[ ndg™ (meq(v) ® Sp,) ®SA(CH].

where w(v) is a set partition of shape v.

Proof. For v a partition of m with length ¢ and 7 a set partition of shape v, as
an &; module, T'(m,t) is (C')®*. By Schur-Weyl duality, as an &, x &; module,
this becomes @)|-¢ Sp, ® SAx(C"). Writing v = 1™12™2...0™"  with notation as in
Corollary 5.2, the stabilizer of v is G, = [TWr(j,m;) c ] Sjm,; € &, The group
G, acts on the set of blocks of 7(v), giving a map G, —» &,. Combining this with
the action of &, on Sp, turns Eq. (5.2) into Eq. (6.2), as desired. O

At this point, we can prove [M] is alternating in the [Sy(C")]. By (6.1),
Mﬁ can be identified with the Sp -isotypic component of D(m,t), where m = |u].
Combining this observation with (6.2), the coefficient of [Sy(C*)] in [M]] is the
coefficient of [Sp,] in ¥, Indg:" (meq(v) ® [Spy]). For A and p fixed, the only
terms that contribute to this coefficient are partitions v with |v| = || and £(v) = |A].
But |u| — |A| = [v| - £(v) is precisely the rank function that grades the lattice of set
partitions. So only terms at one fixed level of II,, will contribute. Since II,, is
Cohen-Macaulay [1], the terms meq(v) will all come with the same sign (-1)#/=1A|,
proving the multiplicity of [Sy(C*)] in [Mﬁ] has sign (-1)-M as promised.

Our final task is to establish Eq. (1.12), our plethystic formula for the coefficient
of [Sx(C")] in [M}] and thus in [Sp, ] in Rep(&;). So far, we have emphasized
representation theoretic methods that exhibit isomorphisms of vector spaces, ex-
plaining all equalities that we present. To prove Theorem 1.12 in this vein would
be to exhibit a resolution of the FinSet-module S)(C') by the FinSet-modules
M,,(C"). Such a resolution was found by Ryba [17], after we circulated this paper
as a preprint. Ryba’s result can be regarded as a categorification of our Eq. (1.12).

Without an explicit resolution, one can (as we did in arXiv:1809.10125v1) use
formulas of Sundaram and Welker [21] for the cohomology of A(Fine,,, ) as a
G, module, combined with equivariant Mobius inversion and plethystic manipula-
tions, to deduce (1.12). However, a referee has pointed out to us that Eq. (1.12)
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can be deduced from Eq. (1.11) purely by plethystic methods. While our our rep-
resentation theoretic proofs are simpler and more conceptual for all results prior to
this, including sign alternation, when it comes to deriving Eq. (1.12), the formal
plethystic method is briefer. Thus we present that approach instead.

Theorem 6.3. In the representation ring Rep(S;), we have

(6.3) [M]] = 2(-1)“"-“'(5% syr[Ly + Ly + Ly + 1) [Sx(CH].

Proof. Let A be the ring of symmetric functions and consider the linear map H :
f e f[h1+ho+-] from A to itself. Eq. (1.11) shows that the coefficients for the
[SA(CF)] in terms of the [M]] are the entries of the matrix of H, in the basis
of Schur polynomials. So the coefficients for the [M]] in terms of the [Sx(C7)]
must be entries for the matrix of H~! in the same basis. The inverse to H is
g glw(Ly - Lo+ L3 —-)]; see Cadogan [3] or Sundaram [20, Example 1.6]. So

[M,]= ZA:(SW sa[w(L1 = Lo+ Ly =) )[SA(CH)].

Applying the isometry w to each side, we have
<SM,S)\[LU(L1 — L2 + L3 - )]) = <SHT’ S/\T[Ll — L2 + L3 — ])

Moreover, we have

T
sxr[Li—La+Ls—-]= 3 Ay saw[Lilsaey[-Lalsas)[La]--
A(1)7>‘(2)""
= 3 (~1)A@A@+-
)‘(1)7)‘(2)7'"
Any term on the right hand side which contributes to the coefficient of s,r must
have 3 A7) = |ul, so [ul = Al = £;( = DIAG)] and thus (~1)PR@
(-1)AFIHl S0
(syr,syr[L1—Ly+Lg—--]) = (_1)|>\|_|H|<S,LLT7 syr[Li+ Lo+ Lg+--]).

Combining these equalities proves the result. (Il

T
A 3@ [Llsae[Lalsas) [Lal--

Thus we have proved the final part of Theorem 1.3. Combining the second and
fourth parts of Theorem 1.3 proves Theorem 1.2.
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