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Summary
Wearable device technology allows continuous monitoring of biological markers and thereby 
enables study of time-dependent relationships. For example, in this paper, we are interested in the 
impact of daily energy expenditure over a period of time on subsequent progression toward obesity 
among children. Data from these devices appear as either sparsely or densely observed functional 
data and methods of functional regression are often used for their statistical analyses. We study the 
scalar-on-function regression model with imprecisely measured values of the predictor function. In 
this setting, we have a scalar-valued response and a function-valued covariate that are both 
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collected at a single time period. We propose a generalized method of moments-based approach 
for estimation while an instrumental variable belonging in the same time space as the imprecisely 
measured covariate is used for model identification. Additionally, no distributional assumptions 
regarding the measurement errors are assumed, while complex covariance structures are allowed 
for the measurement errors in the implementation of our proposed methods. We demonstrate that 
our proposed estimator is L2 consistent and enjoys the optimal rate of convergence for univariate 
nonparametric functions. In a simulation study, we illustrate that ignoring measurement error leads 
to biased estimations of the functional coefficient. The simulation studies also confirm our ability 
to consistently estimate the function-valued coefficient when compared to approaches that ignore 
potential measurement errors. Our proposed methods are applied to our motivating example to 
assess the impact of baseline levels of energy expenditure on BMI among elementary school-aged 
children.

Keywords
Accelerometers; Energy expenditure; Functional data; Generalized method of moments; 
Measurement error

1 | MOTIVATING EXAMPLE
It is estimated that about 20% of the U.S. child population suffer from obesity and the 
percentage of childhood obesity has more than tripled in the last 40 years1. The 
consequences of childhood obesity include reduced healthy physiological, behavioral and 
psychological development during childhood. Obesity in children and adolescents also leads 
to adverse health outcomes such as type 2 diabetes and cardiovascular diseases in adulthood. 
To combat this epidemic, targeted environmental and behavioral school-based interventions 
designed to increase physical activity among school-aged children have gained widespread 
interest. Examples of these school-based interventions include activity permissive learning 
environments and the use of stand-biased desks in classrooms2,3,4,5.

In a recent study, stand-biased desks were introduced to a Texas school district as a means of 
increasing school day physical activity. A research question of interest was to quantify the 
association between daily energy expenditure and subsequent progression toward obesity 
among children. The children were given accelerometer armbands to approximate their daily 
energy expenditure. Since the levels of true daily energy expenditure is not directly 
observable, it is calculated as a function of the observed physical activity behavior from the 
devices. In this manuscript, we assume that the objective measures of energy expenditure 
obtained from physical activity monitors are prone to measurement error and develop a 
method of analysis that calibrates the measurement error and is easily applicable for 
assessing the effects of daily energy expenditure on 18-month change in BMI.

Technological advances on wearable or implantable devices enable continuous monitoring 
of biological markers resulting in complex data designed to answer scientific questions such 
as questions related to energy expenditure levels obtained from activity monitors6,7,8,9,10,11. 
The resulting data appear as either sparsely or densely observed functional data and 
techniques for functional data analysis are often used for their statistical analyses12,13. 
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Functional data analysis focuses on the analysis of infinite dimensional data that appear as 
curves, trajectories, shapes or images12,13. Methods developed for functional data analysis 
are based on extensions of ideas from multivariate analysis, nonparametric regression, 
functional analysis, dimension reduction techniques and square integrable processes14,12.

In determining the role of energy expenditure in obesity development among children, we 
consider the linear scalar-on-function regression model with a scalar-valued outcome Y and 
an imprecisely observed function-valued covariate, X(t). In this setting, X(t) is a latent 
function-valued covariate that is not directly observable. Instead, it is unbiasedly measured 
by W(t) prone to some measurement error. Linear scalar-on-function regression models 
extend classical regression methods to allow function-valued covariates with scalar-valued 
outcomes in regression settings and many statistical methods have been proposed to estimate 
the model15,16,17,18,13,12,19,20 when the covariate is measured with negligible error.

When functional data are contaminated with errors, measurement errors were often treated 
as additional error terms associated with the function-valued responses. For example,21 

considered nonparametric estimation of longitudinal data where the responses were 
longitudinally observed and contaminated with errors. Under independence error structures 
for the measurement errors, scatter plot smoothing methods were used to estimate the mean 
and covariance functions of the response curves21.22 provided methods for nonparametric 
estimation of response curves contaminated by random noise. The mean functions were 
estimated through the use of B-splines and functional principal component analysis. While22 

discussed the presence of measurement errors under independent realizations from a random 
process, the measurement errors considered were associated with random response curves.23 

assumed uncorrelated error structures and provided Gaussian and generalized shrinkage 
estimates for the functional principal components scores to improve the variance of the 
errors associated with the function-valued responses prone to errors.24 considered 
measurement error in the functional smooth random-effects model where the responses were 
curves with vector-valued covariates. The error process considered were random errors 
associated with the response curves and the model was estimated through quasi-score 
estimating equations24.25 proposed a nonparametric approach for the analyses of sparsely 
observed longitudinal data using functional principal component analyses in the presence of 
measurement errors. However, the measurement errors considered were errors associated 
with the observed responses25.

Most work addressing measurement error in functional data have treated these errors as 
additional error terms in the models as discussed above. To our knowledge, there is limited 
research on functional regression models when the functional covariate is contaminated with 
measurement error. A common practice in the literature is to pre-smooth each contaminated 
functional covariate, then use the smoothed curves to build and estimate regression models. 
However, our simulation studies show that the pre-smoothing step does not correct the 
attenuation bias in regression coefficient estimation caused by measurement error and it has 
similar numerical performances as the naive estimator which uses the contaminated 
functional covariate directly without any pre-smoothing. Similar findings were also 
discussed in26. More recently, some authors have considered treating these error terms as 
classical measurement errors. These recent developments27,26,28 extend methods for 
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addressing measurement errors in linear regression models to functional regression settings. 
Using the smoothing spline mixed model to estimate the measurement error variance,27 

developed a two-stage nonparametric regression calibration method for the partial functional 
linear model. The method proposed in27 relies on the assumption that the measurement 
errors are independent and identically distributed normal random variables. However, in 
practice, the measurement errors from the same curve can be correlated and not necessarily 
follow the normal distribution.26 provided a simulation-extrapolation approach for 
addressing imprecisely observed function-valued covariates with scalar outcomes. The 
authors allowed correlated measurement error structures, but required its covariance 
structure to be of a pre-determined parametric form. We recently developed methods for 
reducing measurement error biases associated with function-valued covariates prone to 
measurement error in regression models involving multiple function-valued outcomes28. We 
estimated the model parameters using the EM algorithm, while functional principal 
components were used to estimate the variance of the classical measurement error.

In this paper, we propose a different approach to incorporate measurement errors and allow 
unspecified error structures. A function-valued instrumental variable belonging in the same 
parameter space as X(t) is used for model identification, and the generalized method of 
moments-based approach is proposed to consistently estimate the functional coefficient, β(t), 
in the presence of functional measurement errors. Our proposed method for functional 
measurement errors do not treat the imprecisely observed function-valued covariate as 
longitudinal or time series data. Rather, we consider the functional covariate as a single 
function that is used to estimate a latent variable such as true energy expenditure. Under our 
newly developed methods, estimation of the measurement error covariance is not required 
for parameter estimation. To the best of our knowledge, the use of function-valued 
instrumental variables in the functional linear regression model is novel. We illustrate the 
impacts of measurement error and covariance structures on the estimated parameters through 
simulation studies. With the increasing use of wearable or activity monitoring devices to 
study biological phenomenon in biomedical research, it is critical that statistical methods 
that allow their accurate and unbiased assessments be developed.

The rest of the paper is organized as follows. Our proposed methodology is introduced and 
described in Section 2. We provide relevant asymptotic results in Section 3; while the 
simulation results and the application to our motivating example are provided in Sections 4 
and 5, respectively. Finally, discussions and concluding remarks are provided in Sections 5.2 
and 6, respectively.

2 | MODELS
Let (Y, X) be a pair of scalar-valued random variable and a random function assumed to be 
square integrable and defined on [0, 1] such that X = {X(t), t ∈ [0,1]}. The scalar-on-
function regression model with a mis-measured functional covariate for the ith subject is
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Y i = ∫
0

1

β(t)Xi(t)dt + εi, (1)

W i t = Xi t + Ui t , (2)

where β(t) is an unknown functional coefficient. The Xi(t) is a function-valued covariate that 
is not directly observable but measured by Wi(t). The Wi(t)’s serve as unbiased measures for 
Xi(t) subjected to measurement errors Ui(t) that are possibly correlated over time. For 
notation simplicity, we leave out the intercept α in (2) and assume both response Yi and 
functional covariate Xi are centered with ∑i = 1

n Y i = 0 and ∑i = 1
n Xi(t) = 0 for t ∈ [0, 1].

We first approximate β(t) in (1) using polynomial splines and write β(t) ≈ ∑k = 1
Kn γkbk(t)

where γk k = 1
Kn  are unknown spline coefficients, while bk(t) k = 1

Kn  are a set of spline basis 

functions on [0,1]. In this manuscript, B-spline basis functions are used due to their 
flexibility and computational efficiency. These basis functions can be efficiently constructed 
using the Cox-De Boor recursion formula29. In the spline approximation provided above, the 
number of basis, Kn, is allowed to increase with the sample size and the corresponding 
spline functions provide better approximations for larger sample sizes. For large n, Kn is 
often chosen to be large enough to reasonably approximate the patterns in β(t). In subsection 
4.2, we propose a data driven method to automatically select Kn for finite samples.

Following the spline approximations, Model (1) becomes

Y i ≈ ∑
k = 1

Kn
γk∫

0

1

Xi(t)bk(t)dt + εi . (3)

Let Xik = ∫
0

1
Xi(t)bk(t)dt,W ik = ∫

0

1
W i(t)bk(t)dt, and Uik = ∫

0

1
Ui(t)bk(t)dt. The measurement error 

model in (2) becomes Wik = Xik + Uik and the full model is re-written as

Y i ≈ ∑
k = 1

Kn
γkXik + εi (4)

W ik = Xik + Uik k = 1,…,Kn, (5)
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where Ui1,…,UiKn
 are correlated errors. Under this representation, the proposed model 

reduces to a variation of multivariable linear regression model with measurement errors. 
However, the main difference is that the number of linear covariates in (4) and (5) is not 
fixed, instead it increases with the sample size.

2.1 | Instrumental variables
The presence of measurement errors in predictor variables of regression models renders the 
model unidentifiable without additional information30. Such additional information can 
come in the form of replicates of W(t), assumption of a known covariance function of the 
measurement error ΣUU, or the presence of instrumental variables for X(t) in the data. An 
instrumental variable is a variable that is correlated with X(t) but is, uncorrelated with U(t). 
The presence of an instrumental variable for X(t) in the data allows for consistent estimation 
of β(t) when X(t) is subjected to error. While the use of instrumental variables has been well 
studied in generalized linear regression models with measurement errors31,30,32,33,34,35,36,37, 
use of instrumental variables in functional linear regression settings with measurement 
errors are limited.38 considered the use of instrumental variables in scalar on function 
regression when X(t) is endogenous (i.e. corr{X(t), ε} ≠ 0). Using a function-valued 
instrumental variable, the authors extended the generalized method of moments approach to 
high dimensional settings to estimate the function-valued model parameter. While our 
proposed models also consider scalar on function regression, the current application focuses 
on the case where X(t) is imprecisely observed, rather than it being an endogenous covariate.
26 estimated the covariance matrix of the measurement error in the scalar on function models 
by treating the function-valued covariate as longitudinal data. In our proposed methods, we 
do not consider X(t) longitudinal. Rather, it is considered a function obtained at one time 
point to describe a latent variable or a true covariate. In this paper, an instrumental variable 
approach is proposed for model identifiability while generalized method of moments is used 
to consistently estimate β(t).

For i = 1, …, n, let Mi(t) i = 1
n  be a function-valued instrumental variable observed for the ith 

individual. Assume Mi(t) i = 1
n  are independent across subjects with {Mi(t)} independent of 

{Mj(t)}, for i ≠ j. Also, cov {Mi(t), Ui(s)} = 0 and cov {Mi(t), εi} = 0 for any t, s ∈ [0,1], 
while {Mi(t)} is correlated with {Xi(t)}. The independence assumption between Mi(t) and 
Ui(s) is often referred to as instrument exogeneity across time. While a strong assumption, 
this condition cannot be directly tested or assessed since Ui(t) is unobserved. Therefore, 
theoretical considerations regarding the application are often used in the selection of an 
instrumental variable in practice.

In addition to equations (1) and (2), we add the model equation for the instrumental variable 
as Mi(t) = δXi(t) + ωi(t), for some constant δ ≠ 0 and a mean zero error {ωi(t)}, which is 
uncorrelated with {Xi(t)}. While Mi(t) is correlated with Xi(t), it is not necessarily an 
unbiased measure for Xi(t). We reformulate our final model below with all the assumptions
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Y i = ∫
0

1

β(t)Xi(t)dt + εi (6)

W i t = Xi t + Ui t , (7)

Mi(t) = δXi(t) + ωi(t), (8)

where E(εi) = 0, E{Ui(t)} = 0 and E{ωi(t)} = 0. In addition, we assume cov{Xi(t), εi} = 0, 
cov {Mi(t),εi} = 0, cov {Mi(t), Ui(s)} = 0, for t, s ∈ [0,1] and i = 1, ⋯ , n. Our methodology 
is described next.

2.2 | Proposed method for estimating the functional coefficient

Let Mik = ∫ 0
1 Mi(t)bk(t)dt, for k = 1, …, Kn, and Mi = Mi1,…,MiKn

T
. Then one has

 cov  Y i,Mi ≈  cov  Xi,Mi γ, (9)

 cov Wi,Mi =  cov  Xi,Mi , (10)

where γ = γ1,…, γKn
T
. Therefore,

cov  Wi,Mi
Tcov  Y i,Mi ≈  cov  Wi,Mi

Tcov  Wi,Mi γ (11)

γ ≈  cov  Wi,Mi
Tcov  Wi,Mi

−1cov  Wi,Mi
Tcov  Y i,Mi , (12)

and the unknown coefficients γ can be estimated by

γ = ΩWM
T ΩWM

−1ΩWM
T ΩMY, (13)
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where ΩWM and ΩMY are sample estimates of cov(Wi, Mi) and cov(Yi, Mi) respectively, 
defined as

ΩWM = 1
n ∑i = 1

n
 WiMi

T, (14)

ΩMY = 1
n ∑i = 1

n
MiYi

T, (15)

and Mi, Yi and Wi, are centered variables, each with a sample mean of zero. When Mi and 

Wi, are of the same dimension, and ΩMW is an invertible square matrix, then γ  is reduced to 

γ = ΩMW
−1ΩMY. As a result, for any t ∈ [0, l], the estimator of the regression coefficient 

function is defined as

β(t) = ∑
k = 1

Kn
γ kbk(t) . (16)

The proposed β(t) is a generalized method of moments based estimator. While no 
distributional assumptions are required for Ui(t), the estimation of β(t) depends on the 
assumption that an instrument, Mi(t), exists in the data. Additionally, estimation of the 
covariance matrix for the measurement error is not required for the successful 
implementation of our proposed methodology. Under current functional data methodology, a 
naive estimator of β(t) would be based on Wi(t) and Yi with Wi(t) being treated as the true 
value for Xi(t). Simulation studies in Section 4 show that failure to account for potential 
measurement errors can substantially bias the results. The strength of our β(t) is that while 
Xi(t) might not be directly observed, estimation of its effect on the response is based on its 
unbiased measure as well as additional information provided in the data in the form of Mi(t).

3 | ASYMPTOTIC PROPERTIES
In this section, we establish the L2 consistency of β(t). We summarize the needed 
assumptions as follows:

1. We assume (Yi, Xi(t), Wi(t), Mi(t), t ∈ [0, l]) for i = 1, …, n are independent with 
the same distribution as (Y, X(t), W(t), M(t), t ∈ [0, l]).

2. The instrument variable M = {M(t), t ∈ [0, l]} is uncorrelated with regression 
error ϵ and the measurement error U = {U(t), t ∈ [0, l]} with cov{M(t), ϵ} = 0 
and cov{M(t), U(s)} = 0 for any s, t ∈ [0, l].

3. The latent functional covariate X = {X(t), t ∈ [0, 1]} is independent of the 
regression error ϵ with cov{X(t), ϵ} = 0 for t ∈ [0, l], but is correlated with 
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instrument variable M. Let ΣXM (t, s) = cov{X (t), M (s)}. We assume that for 
any positive functions h1, h2, h3, h4, there exist constants λ1, λ2 > 0 such that

λ1 ≤
∫ ⋯∫ h1(t)ΣXM(t, s)h2(s)h3 t′ ΣXM t′, s′ h4 s′ dtdsdt′ds′

∫ h1(t)h2(t)dt∫ h3 t′ h4 t′ dt′ ≤ λ2 .

4. We assume supt [E |M (t)|l + E |W (t)|l + E |U (t)|l] < +∞ for some sufficiently 
large l > 0.

5. The variance of the error term σε
2 = 𝔼 ε2  is bounded.

6. We assume ΣXX (t, s) = Cov {X (t), X (s)}, ΣMM (t, s) = Cov {M (t), M (s)}, ΣUU 
(t, s) = Cov {U (t), U (s)} are all positive definite bivariate functions and there 
exist positive constants λ1 and λ2 such that for any positive functions a1 (t), a2 
(t) ∈ L2[0, 1],

λ1∫ a1(t)a2(t)dt ≤∬ a1(t)ΣMM(t, s)a2(s)dtds ≤ λ2∫ a1(t)a2(t)dt,

λ1∫ a1(t)a2(t)dt ≤∬ a1(t)ΣUU(t, s)a2(s)dtds ≤ λ2∫ a1(t)a2(t)dt .

7. The coefficient function β(t) is (p + 1)-times continuously differentiable with β(t) 
∈ ℂp+1[0, 1].

8. The number of knots Nn ⩆ n1/(2p + 3) and interior knots k1,…, kNn
 satisfy that

min
j ∈ 1,…,Nn

|k j + 1 − k j|

max
j ∈ 1,…,Nn

|k j + 1 − k j|
> c

for some constant c > 0.

Assumptions (A1), (A4)-(A5) and (A7)-(A8) are standard in polynomial spline regression 
literature. Similar assumptions were also used in39,40,41. Assumption (A3) requires that 
{X(t)} and {M(t)} be correlated and {M(t)} contains information about {X(t)}. Assumption 
(A3) fails if {X (t)} and {M (t)} are independent of each other with ΣXM (t, s) = 0 for all t, s 
∈ [0, 1]. This is required to guarantee the invertibility of the matrix in (13) and the proposed 
generalized method of moments estimator to be well defined. Assumption (A6) implies that 
the covariance functions of random processes {X(t)}, {M(t)} and {W(t)} all are positive 
definite.

Theorem 1.

Under assumptions (A1)-(A8), the coefficient function estimator β(t) in (16) is L2–consistent 
with
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‖β(t) − β(t)‖2 = Op
1

Nn
p + 1 +

Nn
n ,

where ||·||2 is the functional L2 norm.

Theorem 1 establishes the L2 rate of consistency for β(t) in the presence of measurement 
errors. Our asymptotic result is comparable to the rate of convergence results given in42 

and43 when the functional covariates are measured without errors. Here we assume the 
functional covariates are observed continuously. As argued in43, the rate of convergence 
obtained in Theorem 1 does not change when the functional covariates are observed 
discretely at a sequence of grid points, provided that the maximum distance between any 
neighboring grid points converges to zero sufficiently quickly. The proof of our asymptotic 
results are provided in the Appendix.

4 | SIMULATION
In this section, we discuss our simulation results and describe the tuning parameter selection.

4.1 | Simulation Results
We now describe our simulation experiments and study the numerical performance of our 
proposed methodology. All data in our simulations were independently generated from the 
functional linear regression model

Y = ∫
0

1
β(t)X(t)dt + ε,

where we consider two forms for β(t) with β1 (t) = sin (2πt) and β2(t) = sin(π(8(t−.5))/2)/
(1+(2(8(t−.5))2)(sign(t−.5)+1)), and sign(a) = 1 and sign(−a) = −1, for a > 0. We only 
present the result for the case β1(t) and defer the simulation results for β2(t) in the 
Supplementary Material. The regression errors, ε, were simulated independently and follow 
a N (0, σ2). While the observable functional covariate X (t) = sin (2πt) + εX (t), where εX(t) 
denotes a mean zero Gaussian process with constant marginal variance σX

2  and cor{εX(t1), 

εX(t2)} = ρX for any t1 ≠ t2. We generated the observed functional covariate W (t) = X (t)+u 
(t) and the instrumental variable M (t) = X (t)+ ω (t) where errors u (t) and ω (t) are also 
mean zero Gaussian processes with constant marginal variances σu

2 and σω
2 , and correlations 

ρu and ρM respectively. All the error terms were generated to be independent of each other. 
In all our simulations, the number of replications considered were nr = 1000. For the 
methods described in this section, the number of knots were selected using a tailored cross-
validation approach as discussed in Section 4.2.
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Since we only report the results for β1(t), we will simply use β(t) and drop the subscript. Let 

βr(t) be the estimator of β(t) in rth replication and β(t) = 1
nr
∑l = 1

nr βr(t). Let tl l

ngrid be a 

sequence of equally spaced grid points on (0, l) to evaluate the performance of proposed 
estimator. We define the averaged squared bias of β(t) as

ABias2(β) = 1
ngrid

∑
l = 1

ngrid
β tl − β tl

2,

the averaged sample variance as

Avar(β) = 1
nr

∑
r = 1

nr 1
ngrid

∑
l = 1

ngstd
βr tl − β tl

2,

and averaged integrated mean square error as

AIMSE(β) = ABias2(β) +  Avar(β) .

We first generated data with σ = 1, σX = 4, σu = 4, σω = 1, ρX = ρu = ρM = 0 and four 
different sample sizes n = l00, 200, 500, l000. We estimated the regression coefficient 
function using the proposed methodology. However, the matrix inversion in the definition of 
the proposed method of moments estimator can be unstable. Therefore, we adopted the small 
sample modification30 to improve the finite sample performance of our proposed method. In 
addition to our approach, four additional approaches were also considered for estimating β 
in the simulation studies. In the first scenario, we assumed X(t) was observed and βX was 

estimated by regressing {Yi} on {Xik} directly in Equation (4). The second estimator, βW, 

ignored the measurement error and estimated the spline coefficients by regressing {Yi} on 
{Wik} instead. The third estimator βWRS is a variant of the second approach and obtained 

using individually pre-smoothed W i based on polynomial splines regression. The fourth 

estimator, βWS, is obtained by pre-smoothing each Wi using smoothing spline approach 

instead. Note that βX was not available in the real data analysis. However, it served as a 

benchmark to assess the performance of our estimator in the simulation studies. The naive 
estimators, βW, βWRS, βWS, ignored the measurement error in the data. The estimator βIV
was obtained using our proposed instrumental variable based method.

Table 1 reports the ABias2, Avar and AIMSE values for different estimators. For our 
proposed instrumental variable based estimator, βIV, we clearly see that ABias2, Avar and 

AIMSE all decrease with increasing sample sizes, supporting our asymptotic convergence 
result. Furthermore, the biases of βX and βIV are similar and much smaller than the bias of 

βW. Furthermore, the bias of βW was non-ignorable even when the sample size was 
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increased to l000. This suggests that failure to account for measurement error can lead to 
biased estimation of the functional coefficient. In addition, similar to βW, both βWRS and 

βWS have non-ignorable bias, which indicates that pre-smoothing step does not take care the 

attenuation bias. Comparing Avar, βW had the smallest sample variance due to larger 

variability in W and the fact that the variance of regression coefficient is inversely related to 
the variability in the covariates. Our proposed method of moment estimator βIV had the 

largest sample variance due to variability in both W and M. However, for relatively large 
sample sizes (n=500, or 1000), the proposed βIV had better overall performance than all the 

approaches based on W with smaller AIMSE values.

To investigate the performance of the proposed estimator when the response Yi follows a 
non-normal distribution, we now allow the regression error ε have a non-symmetric 
distribution centered at 0. Namely, the regression errors are independently and identically 
simulated from a Gamma(1.0, l.5) and then shifted to have mean 0. We report the simulation 
result in Table 2. Although, the approaches based on W tend to have smaller AIMSEs for 
smaller sample sizes, our approach tend to do comparably well for sample size 500 and 
dominates for large sample size (1000) in term of AIMSE. Our approach (βIV) along with 

βX also have have very low bias. Again, the naive approaches βW, βWRS and βWS preform 

poorly and have non-diminishing biases.

We now assess how the size of error terms of u(t) and W(t) affect the proposed estimation 
method. For ρX = ρu = ρM = 0, σ = 1, σX = 4, n = 500, we consider different combinations 
of (σu, σω) with potential values of σu, σω ranging from 0.5, l, 4 to l6. Thus, the signal to 
noise ratio in the measurement error and instrumental variable equation were 8, 4, 1 or 0.25. 
Table 3 summarizes our simulation results from the various set-ups. We found that 
increasing the error sizes associated with either the measurement error or the instrumental 
variable lead to larger AIMSEs. In addition, the error in the instrumental variable had a 
larger effect on the accuracy of our estimated β(t) when compared to the impact of the 
measurement errors. We also note that the AIMSEs for (σu = 1, σω = 16) was more than four 
times larger than those for (σu = 16, σω = 1). Although the naive and IV approaches tended 
to perform comparably for smaller values of σu, our IV approach dominates the naive 
approaches for larger measurement error and βs has the worse performance. But changes in 
the IV error variance have little effect on the AIMSE estimates for the naive approaches 
since IVs are completely ignored in the naive estimation. Therefore, it is not surprising naive 
approaches have smaller AIMSEs than our IV approach. We report the performance of the 
naive estimator in Section S.2 of the supplementary Material.

We are also interested in investigating the impact of the correlation in the error terms affect 
on our estimated coefficient. To do this, we simulated data with σ = 1, σX = σu = 4, σω = 1 
and n = 500, under varying degrees of correlations in εX(t), u(t), and W(t) with ρX, ρu, ρω = 
0, 0.25, 0.5 or 0.75, corresponding to none to strong correlation in the error terms. Table 4 
indicates that larger correlation in εX(t) lead to larger AIMSEs and less accurate estimate of 
the coefficient function, due to increased multi-collinearlity in predictor variables. However, 
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correlations in the measurement error u(t) and instrument error W(t) have less impact on the 
coefficient function estimation. This is due to the fact that these errors are independent of 
each other and of the covariate X(t). Similar to βX, the degree of correlation in X(t) is more 

relevant for the performance of our proposed estimator.

4.2 | Tuning parameter selection
Our proposed method requires specification of the number of bases beforehand by the 
practitioner. In non-parametric settings, selection of the number of basis functions amounts 
to a model selection problem. Additionally, it is well known that model selection in 
measurement error settings are complex44. In this manuscript, we provide an approach based 
on a 5-fold cross- validation for the selection of the number of basis functions. For each 
choice of possible number of bases, the original data set is divided into 5 non-overlapping 
subsets. The model parameters are then estimated repeatedly by excluding one of the subsets 
of the original data under each estimation. The mean prediction error of the fitted model, 
using W(t) in lieu of X(t), is estimated based on each data subset withheld, averaging over 
the 5 data subsets. Subsequently, the number of basis functions associated with the smallest 
mean prediction error is selected as the number of bases. Plots of the estimated mean 
prediction error for the function considered in our simulation studies were obtained. As an 
example, we plotted the prediction errors for one simulation run with sample size n = 500. 
Based on this plot, the number of bases selected was 5, see Figure 1.

5 | APPLICATION
In this section, we describe the application of our methods to the motivating example. 
Students enrolled in the study were followed over an eighteen month period. The study 
design was a cluster randomized trial where teachers within three schools in the College 
Station Independent School District were randomly assigned to receive either the treatment 
(stand-biased desks) or control (traditional desks)5. The data contain measurements obtained 
at baseline and at the beginning of each semester over two academic years. An objective of 
the study was to investigate the relationship between energy expenditure behavior at baseline 
and the 18-month change in body mass index (BMI) from baseline among the students. 
Thus, an outcome of interest was the difference or change in BMI values from baseline to 18 
months post follow up. The count of steps represents the number of steps taken over a given 
period of time and is an indicator of a subject’s physical activity levels. Current guidelines 
for recommended daily physical activity levels are based on the duration of time spent in 
either moderate or vigorous intensity activity levels and number of steps per day7,45,46,47,48. 
For example,47 indicated that activity levels of 12,000 steps/day and 15,000 steps/day for 
boys and girls, respectively were recommended for maintenance of healthy body 
composition for children between the ages of 6–12 years. While daily energy expenditure is 
defined as the total number of calories or energy used by the body to perform daily bodily 
functions.

In our application, energy expenditure and step counts were both collected per minute from 
the SenseWear Armband® (Body-Media, Pittsburgh, PA) among the 374 children enrolled in 
the study who wore accelerometers while in school for one week at baseline. The children’s 
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body weight, height, age, and sex were all collected at baseline, while their BMI’s were 
calculated at the beginning of each semester over the study period. True daily energy 
expenditure behavior, X(t), was considered the latent covariate. The surrogate measure for 
X(t) was the energy expenditure taken per hour obtained from the device, W(t). Step counts 
measured by the device was treated as the instrumental variable in this application, M(t). We 
assume that cov{X(t), M(t)} ≠ 0 and cov{M(t), U(t)} = 0. Justification of the use of 
instrumental variables is challenging in practice. However, an instrumental variable may be 
based on a separate independent measure of X(t). In our application, both M(t) and W(t) 
were obtained from the same device. But their measured or calculated measures were 
obtained separately. The SenseWear Armband® obtained the step count based on a 3-axis 
accelerometer and pattern recognition. While the calculation of total energy expenditure was 
based on heat flux, skin temperature, galvanic skin response, and anthropometrics49. A 
description of the final analytic sample is provided in Table 5.

To assess impacts of energy expenditure obtained at baseline on the difference in BMI 
values among the enrolled students, we first assumed that both W and M were discretely 
observed on a time interval [0, T]. On average, the students wore the devices for six hours on 
each school day during the week it was worn at baseline. Since the accelerometry data were 
collected per minute, we combined all the data for the week the device was worn and 
averaged all the minute-level data collected within the week to hourly-level data to reduce 
any potential noise associated with the data collection. Figure 2 provides the plot of Wi(t) 
and Mi(t) against time for all subjects included in the study. The grey lines illustrate the 
individual trajectories while the blue solid line is the smoothed mean for the observed 
energy expenditure and step counts among all the subjects.

Two sets of analyses were performed to illustrate our developed methods. We first assessed 
the relationship between energy expenditure and BMI at baseline. The second analysis 
involved investigating the impact of energy expenditure at baseline on changes in BMI 
values at 18 months follow up. Due to loss of follow up or missing data, 255 and 156 
students contributed to the baseline and the 18-month follow up analyses, respectively.

The average BMI values at baseline was 17.4 kg/m2(SD = 2.98) and 17.6 kg/m2(SD = 3.2) 
during the spring semester of the second academic year. The mean step counts per hour at 
baseline was 13.16 (SD = 11.5) and the mean energy expenditure at baseline was 1.21 kcal/
hour (SD = 0.41), while the average age of the children at baseline was 7.9 years (SD = 
0.80). About n = 174(68.24%) were whites, blacks n = 34(13.33%), Hispanics n = 25(9.8%) 
and others n = 22(8.63%). See Table 5 for additional details.

5.1 | Results

5.1.1 | Impacts of error-free covariates on outcomes—The error free covariates 
collected from the study include the student’s school, teacher, ethnicity, grade, age, gender 
and treatment assignment group. To adjust for these error free covariates as well as the 
cluster randomized setting of the study design, we first performed random effects analyses 
of the error free covariates against the outcomes. A random intercept for the nested effects of 
teachers nested within schools was included in the models. We also fitted a random effect 
term for both schools and teachers nested within schools, however, the models failed to 
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converge. The error free adjusted residuals were subsequently obtained from the regression 
fits from the mixed effects model with the random intercept term for teacher within school.

Two sets of mixed effects analyses were performed. The first analysis focused on BMI at 
baseline as the outcome. The second analysis focused on 18-month change in BMI from 
baseline as the outcome. The results from the error free analyses of both the baseline and 
follow up data are included in Table 6. Overall, we found that age had a significant impact 
on the BMI values at both baseline and at 18 months post baseline (p < 0.0001 and p = 
0.04). Additionally, there were statistically significant differences in the race effect when we 
compared the differences in BMI between students from ethnically minority populations 
(blacks and Hispanics) to the white students at both baseline and follow up (p < 0.0001). 
Specifically, we found that after controlling for all other covariates included in the model, 
the BMI values for the black and Hispanic students were 0.08 and 0.06 higher on average 
than the BMI values for the white students at baseline. While at follow-up, we found the 
BMI values for the black and Hispanic students to be 0.06 and 0.03 higher on average than 
the BMI values for the study students after controlling for age, school, teacher, baseline 
levels of BMI, and treatment assignment. No statistically significant difference was observed 
between the other race category when compared to the white students included in the study 
at baseline and follow up (p = 0.15 and p = 0.07). There were also no differences in the 
average BMI values between the schools, teachers, grades, and treatments at both baseline 
and follow up (p > 0.05).

5.1.2 | Impact of baseline levels of energy expenditure on BMI—Residuals 
obtained from the mixed effects assessments of the impacts of the error free covariates on 
the outcomes at were obtained from the baseline and follow up analyses the following model

E Yi jk bk( j) = Zi jk
T βz + bk( j) + ϵik( j)

where ϵik( j)   𝒩 0, σw
2 , bk( j)   𝒩 0, σb

2  Y i jk  =   log BMISpring16 , Zijk =(log(BMIFall14) 

ethnicity, grade, age, gender, treatment, teacher, school)⊤, i = 1, …,157 students, j = 1, …,3 
schools, k = 1, …,8 teachers (nested within schools). These residuals were subsequently 
used as the outcomes in our measurement error models. Thus, the outcome assessing the 
effects of energy expenditure on BMI were the error free and cluster randomized design 
adjusted residuals for the baseline measures of BMI for the first analyses and for the 
difference between BMI obtained at baseline and the BMI obtained at end of the study for 
the second analyses. Six knots were used in the application, while nonparametric bootstraps 
were used for computing the 95% point-wise confidence intervals for β(t).

We provide the results from the baseline analyses and the follow up analyses in Figure 3. 
Plots of the estimated functional coefficient and the estimated 95% point-wise confidence 
intervals are provided in the figure. For assessments of the impact of energy expenditure on 
BMI at baseline, the bootstrap confidence intervals did not contain the zero line completely, 
indicating that the functional coefficient was not zero across the whole time space. Similarly, 
in determining the impacts of baseline measures of energy expenditure on the 18-month 
change in BMI over the study period, the estimated bootstrap confidence intervals did not 
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contain the zero line completely. Because the function-valued coefficient was not completely 
zero across time, there was some statistical evidence of a relationship between baseline 
measures of energy expenditure and BMI values obtained at a future time, such as 18 
months post baseline. Additionally, the relationship observed depended on both the level of 
energy expenditure and time.

5.1.3 | Impact of measurement error on the analyses—In addition to our method 
of moments-based instrumental variable estimator, we also obtained naive estimators of the 
effects of energy expenditure on BMI see Figure 3. As illustrated in both sets of analyses, 
the approaches obtained without accounting for measurement error appeared notably 
different from the estimators obtained from the instrumental variable based approaches. 
Based on Figure 3, the impacts of measurement error on both sets of analyses depended on 
time. While it is well known in simple linear regression models that the effects of 
measurement on estimation is to attenuate its effects towards zero, its impact in this 
functional linear regression setting is more complex. For both sets of analyses, we found that 
the measurement error adjusted function-valued coefficients tended to be larger than the 
naive coefficient. However, the naive estimate of β(t) at baseline was found to be larger than 
the measurement error adjusted at the beginning and the end of the observational period.

5.2 | Discussion
50 recently studied the relationship between baseline energy expenditure and the three-year 
change in BMI among 182 five to ten year old children with overweight and obesity health 
conditions in Australia. Using regression analysis and change in BMI Z-scores, the authors 
concluded that baseline measures of energy expenditure significantly impacted the three-
year change in BMI among the children. However, our current results indicated that baseline 
levels of energy expenditure did have some statistically significant relationships on the 
future body weights among children, however, these impacts depended on activity levels and 
the time of activity.

In this manuscript, we developed an instrumental variable approach for addressing potential 
measurement errors associated with function-valued covariates in scalar on function 
regression models. The developed methods can be used for assessments of the impacts of 
data collected on biological markers obtained repeatedly over a dense time space on health 
outcomes. A limitation of our current approach is that the instrumental variable must be 
collected on the same time period as the unbiased measure for the true covariate. Thus, the 
developed methods are applicable for devices that collect data on multiple biological 
markers over the same time period.

Our current approach does not allow inclusion of random effects of error-free covariates 
directly into (1) to account for cluster randomized or impacts of demographics. Some future 
work in this area include accounting for multi-level designs as well allowing the inclusion of 
error free covariates. Finally, the current methods are based on assessing impacts of energy 
expenditure on health outcomes using mean regression methods. It will be interesting to 
discover how accounting for measurement errors associated with function-valued covariates 
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work in model settings that permit robust modeling of BMI such as quantile regression or 
other generalized robust model settings.

6 | CONCLUSION
We studied the scalar on function regression model with measurement error. In this setting, 
we considered a scalar valued outcome with a functional covariate that was corrupted by 
measurement error. Most existing methods either implicitly assume the measurement errors 
are independent over time, or the measurement error covariance is known or can be 
estimated. However, the measurement errors are likely to be correlated over time. In 
addition, the measurement error variances are never known and estimates are seldom 
available. In this paper, we took advantage of the additional information provided in an 
instrument variable and developed a generalized methods of moments-based approach to 
identify and consistently estimate the functional regression coefficient. To our knowledge, it 
is the first in the literature to use instrument variable approach to address the measurement 
error problem in the scalar on function regression model. Using B-spline basis expansions, 
we re-parameterized the functional linear regression model to a multiple linear regression 
model with measurement error. The function-valued coefficient was estimated by first 
identifying the model using a function-valued instrumental variable observed on the same 
time space as the surrogate measure, while the generalized methods of moments approach 
was used for estimation. The proposed methodology was motivated by a childhood obesity 
study focused on assessing the relationship between energy expenditure and subsequent 
progression to obesity among elementary school-aged children. We successfully applied our 
proposed model to conclude that the estimated association between baseline measures of 
energy expenditure and the 18-month change in BMI was sometimes significant. This 
association indicated that school programs and policies that increase physical activity among 
students might have some beneficial impact. In an effort to combat childhood obesity, 
physical activity policies within school are implemented to encourage more physical activity 
behavior among children. Our developed methods improves on the current statistical 
approaches used to evaluate the effectiveness of such policies.

Finally, our simulation studies indicated the importance of accounting for measurement 
errors when a function-valued covariate in functional linear regression model is suspected to 
be imprecisely observed. Failure to account for the measurement errors can lead to severely 
biased estimates.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A SKETCH OF TECHNICAL ARGUMENTS

We denote the B-spline basis of degree p on [0, 1] as bk(t) k = 1
Kn . For notational 

convenience, we use a scaled B-spline basis in the proof, which is defined as Bk(t) = Nnbk(t)

for k = 1, …,Kn. With some abuse of notation, we still denote 

Xik = ∫
0

1
Bk(t)Xi(t)dt,W ik = ∫

0

1
Bk(t)W i(t)dt, uik = ∫

0

1
Bk(t)ui(t)dt for the scaled B-spline basis for 

simplicity.

By29, there exists a set of coefficients γ* = γ1*,…, γKn
*

T
 and a spline function 

βn*(t) = ∑k = 1
Kn γk*Bk(t) such that sup

t
|β(t) − βn*(t)| ≤ cNn

−(p + 1) for some constant c > 0. Let 

Qn(t) = β(t) − βn*(t). Then one can write

Y = α0 +∫
0

1
β(t)X(t)dt + ε = α0 +∫

0

1
βn*(t) + Qn(t) X(t)dt + ε

= α0 +∑k = 1
Kn γk*Xk +∫

0

1
Qn(t)X(t)dt + ε .

Therefore,

γ − γ* = ΩWM
⊤ ΩWM

−1
ΩWM
⊤ ΩMY − γ*

= ΩWM
⊤ ΩWM

−1
ΩWM
⊤ ΩWM −ΩUM γ* +ΩεM + ΩQM − γ*

= ΩWM
⊤ ΩWM

−1
ΩWM
⊤ −ΩUMγ* +ΩεM +ΩQM ,

where ΩUM = 1
n∑i = 1

n UiMt
T,ΩεM = 1

n∑i = 1
n εiMi,ΩQM = 1

n∑i = 1
n QniMi and Ui, εi,Qni are 

centered versions of Ui = ui1,…, uiKn
T

, εi, and Qni = ∫
0

1
Qn(t)Xi(t)dt respectively. Thus, by 

Lemma 1 in supplementary materials included in the Web Appendix, there exists a constant 
c > 0, such that

β(t) − βn*(t)
2
= ∑ j = 1

Kn γ j − γ j* Bj(t)
2
≤ c‖γ − γ*‖2

= c ΩWM
⊤ ΩWM

−1
ΩWM
⊤ −ΩUMγ* +ΩεM + ΩQM

2

= c −ΩUMγ* +ΩεM +ΩOM
⊤ΩWM ΩWM

⊤ ΩWM
−2 ×ΩWM

⊤ −ΩUMγ* +ΩεM +ΩQM

By Lemma 4 in the Web Appendix, there exist c,C > 0 such that
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‖β(t) − βn*(t)‖
2 ≤ c −ΩUMγ* +ΩεM +ΩQM

⊤ −ΩUMγ* +ΩεM + ΩQM

≤ C γ * ⊤ΩUM
⊤ ΩUMγ* +ΩεM

⊤ ΩεM +ΩQM
⊤ ΩQM .

By Lemmas 2,3,6 in the Web Appendix, one has 

β(t) − βn*(t)
2 = OP Nn/n + OP Nn/n + OP Nn

−(2p + 1) = OP Nn/n + Nn
−(2p + 1) .

Finally, an error decomposition gives that

β(t) − β(t) 2 ≤ β(t) − β*(t) 2 + ‖β*(t) − β(t)‖2

= OP Nn/n + Nn
−(2p + 1) + OP Nn

−(2p + 2)

= OP Nn/n + Nn
−(2p + 1) □ .
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FIGURE 1. 
Plots of the estimated mean prediction error for the function considered in our simulation 
studies.
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FIGURE 2. 
Plots of observed energy expenditure {W (t)} and mean step counts {M (t)} vs. time for all 
subjects at baseline from our motivating example. The figure confirms that the relationship 
between W(t) with time is nonlinear. In this setting W(t) is assumed to be an unbiased 
measure of X(t), while M(t) is an instrumental variable for X(t).

Tekwe et al. Page 23

Stat Med. Author manuscript; available in PMC 2019 September 10.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



FIGURE 3. 
Plots of measurement error adjusted and naive estimates of β(t) at baseline and also at 18 
months. In (a), we estimate the effects of energy expenditure on BMI at baseline and in (b) 
we obtain plots of the effects of energy expenditure on 18-month change in BMI for the 
students included in our motivating example. The shaded regions are the 95% point-wise 
Bootstrap confidence intervals, the blue line represents measurement error adjusted 
coefficients, while the pink line is the naive estimator that ignores potential measurement 
error.
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TABLE 1

This table assesses the impact of sample sizes on the estimators. It reports the averaged squared bias (ABias2), 
averaged sample variance (Avar) and averaged integrated mean squared error (AIMSE) for different sample 
sizes n. The response error is assumed to follow Normal distribution. The true parameter function is β1(t).

βX

n ABias2 Avar AIMSE

100 0.0017 0.1764 0.1781

200 0.0011 0.0864 0.0875

500 0.0001 0.0408 0.0408

1000 0.0000 0.0198 0.0199

βW

n ABias2 Avar AIMSE

100 0.0394 0.1121 0.1515

200 0.0400 0.0534 0.0934

500 0.0392 0.0246 0.0638

1000 0.0394 0.0121 0.0515

βWRS

n ABias2 Avar AIMSE

100 0.0393 0.1117 0.1510

200 0.0400 0.0538 0.0938

500 0.0392 0.0247 0.0638

1000 0.0393 0.0122 0.0515

βWS

n ABias2 Avar AIMSE

100 0.0145 0.3806 0.3951

200 0.0149 0.1676 0.1825

500 0.0144 0.0867 0.1011

1000 0.0147 0.0448 0.0595

βIV

n ABias2 Avar AIMSE

100 0.0017 0.2144 0.2161

200 0.0011 0.1044 0.1055

500 0.0001 0.0497 0.0498

1000 0.0000 0.0244 0.0245
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TABLE 2

This table assesses the impact of sample sizes on the estimators. It reports the averaged squared bias (ABias2), 
averaged sample variance (Avar) and averaged integrated mean squared error (AIMSE) for different sample 
sizes n. The response error is assumed to have a Gamma(1, 1.5) distribution, where Gamma(α, β) denotes a 
distribution with mean αβ. The true parameter function is β1(t).

βX

n ABias2 Avar AIMSE

100 0.0009 0.3963 0.3972

200 0.0014 0.1887 0.1901

500 0.0001 0.0895 0.0895

1000 0.0000 0.0438 0.0438

βW

n ABias2 Avar AIMSE

100 0.0380 0.2301 0.2681

200 0.0395 0.1078 0.1474

500 0.0390 0.0519 0.0909

1000 0.0391 0.0252 0.0642

βWRS

n ABias2 Avar AIMSE

100 0.0380 0.2306 0.2686

200 0.0395 0.1079 0.1474

500 0.0389 0.0520 0.0910

1000 0.0391 0.0254 0.0645

βWS

n ABias2 Avar AIMSE

100 0.0140 1.0100 1.0241

200 0.0145 0.3434 0.3579

500 0.0148 0.1974 0.2121

1000 0.0145 0.0941 0.1086

βIV

n ABias2 Avar AIMSE

100 0.0012 0.4335 0.4346

200 0.0013 0.2122 0.2135

500 0.0001 0.1012 0.1013

1000 0.0001 0.0496 0.0497
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TABLE 3

Impacts of varying magnitudes of measurement error and instrumental variable variance on our proposed 
estimator. The averaged squared bias (ABias2), averaged sample variance (Avar) and averaged integrated mean 
squared error (AIMSE) of β for sample size n = 500.

σω = 1 σu = 1

σu ABias2 Avar AIMSE σω ABias2 Avar AIMSE

0.5 0.0001 0.0506 0.0507 0.50 0.0001 0.0488 0.0489

1 0.0001 0.0504 0.0505 1.00 0.0001 0.0504 0.0505

4 0.0001 0.0497 0.0498 4.00 0.0001 0.0794 0.0795

16 0.0028 0.1070 0.1097 16.00 0.0003 0.4784 0.4787
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TABLE 4

The impact of correlation structures on the parameter estimates. The averaged squared bias (ABias2), averaged 
sample variance (Avar) and averaged integrated mean squared error (AIMSE) of β for sample size n = 500.

ρX ρu ρM

0 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

ABias2 0.0001 0.0001 0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Avar 0.0497 0.0540 0.0775 0.1521 0.0485 0.0483 0.0482 0.0552 0.0603 0.0652

AIMSE 0.0498 0.0541 0.0776 0.1524 0.0486 0.0484 0.0483 0.0553 0.0604 0.0653
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TABLE 5

Descriptive statistics for the study sample at baseline (n=255). “Other”=Asians/Native Americans, EE= energy 
expenditure, s.d.=standard deviation.

Variable Mean(s.d.)/ N(%)

BMI at baseline (kg/m2) 17.40(2.98)

BMI in Spring Year 2 (kg/m2) 17.55(3.18)

Average Step Counts/hour 13.16(11.51)

Average EE (kcal/hour) 1.2(0.41)

Age (years) 8.79(0.76)

Whites 174(68.24 %)

Blacks 34(13.33 %)

Hispanics 25(9.80 %)

Other 22(8.63 %)

Boys 132(51.76 %)

Girls 123(48.24 %)

Treatment 148(58.04 %)

Control 107(41.96 %)
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