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Summary

Wearable device technology allows continuous monitoring of biological markers and thereby
enables study of time-dependent relationships. For example, in this paper, we are interested in the
impact of daily energy expenditure over a period of time on subsequent progression toward obesity
among children. Data from these devices appear as either sparsely or densely observed functional
data and methods of functional regression are often used for their statistical analyses. We study the
scalar-on-function regression model with imprecisely measured values of the predictor function. In
this setting, we have a scalar-valued response and a function-valued covariate that are both
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collected at a single time period. We propose a generalized method of moments-based approach
for estimation while an instrumental variable belonging in the same time space as the imprecisely
measured covariate is used for model identification. Additionally, no distributional assumptions
regarding the measurement errors are assumed, while complex covariance structures are allowed
for the measurement errors in the implementation of our proposed methods. We demonstrate that
our proposed estimator is L, consistent and enjoys the optimal rate of convergence for univariate
nonparametric functions. In a simulation study, we illustrate that ignoring measurement error leads
to biased estimations of the functional coefficient. The simulation studies also confirm our ability
to consistently estimate the function-valued coefficient when compared to approaches that ignore
potential measurement errors. Our proposed methods are applied to our motivating example to
assess the impact of baseline levels of energy expenditure on BMI among elementary school-aged
children.

Keywords

Accelerometers; Energy expenditure; Functional data; Generalized method of moments;
Measurement error

MOTIVATING EXAMPLE

It is estimated that about 20% of the U.S. child population suffer from obesity and the
percentage of childhood obesity has more than tripled in the last 40 years'. The
consequences of childhood obesity include reduced healthy physiological, behavioral and
psychological development during childhood. Obesity in children and adolescents also leads
to adverse health outcomes such as type 2 diabetes and cardiovascular diseases in adulthood.
To combat this epidemic, targeted environmental and behavioral school-based interventions
designed to increase physical activity among school-aged children have gained widespread
interest. Examples of these school-based interventions include activity permissive learning
environments and the use of stand-biased desks in classrooms2-+43.

In a recent study, stand-biased desks were introduced to a Texas school district as a means of
increasing school day physical activity. A research question of interest was to quantify the
association between daily energy expenditure and subsequent progression toward obesity
among children. The children were given accelerometer armbands to approximate their daily
energy expenditure. Since the levels of true daily energy expenditure is not directly
observable, it is calculated as a function of the observed physical activity behavior from the
devices. In this manuscript, we assume that the objective measures of energy expenditure
obtained from physical activity monitors are prone to measurement error and develop a
method of analysis that calibrates the measurement error and is easily applicable for
assessing the effects of daily energy expenditure on 18-month change in BMI.

Technological advances on wearable or implantable devices enable continuous monitoring

of biological markers resulting in complex data designed to answer scientific questions such

as questions related to energy expenditure levels obtained from activity monitors®:7-8:%:10.11,

The resulting data appear as either sparsely or densely observed functional data and

techniques for functional data analysis are often used for their statistical analyses!%13.
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1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Tekwe et al.

Page 3

Functional data analysis focuses on the analysis of infinite dimensional data that appear as
curves, trajectories, shapes or images!2-13. Methods developed for functional data analysis
are based on extensions of ideas from multivariate analysis, nonparametric regression,
functional analysis, dimension reduction techniques and square integrable processes!412.

In determining the role of energy expenditure in obesity development among children, we
consider the linear scalar-on-function regression model with a scalar-valued outcome Y and
an imprecisely observed function-valued covariate, X{(4). In this setting, X{(7) is a latent
function-valued covariate that is not directly observable. Instead, it is unbiasedly measured
by WA#) prone to some measurement error. Linear scalar-on-function regression models
extend classical regression methods to allow function-valued covariates with scalar-valued
outcomes in regression settings and many statistical methods have been proposed to estimate
the model!3-16:17:18.13.12.19.20 yhen the covariate is measured with negligible error.

When functional data are contaminated with errors, measurement errors were often treated
as additional error terms associated with the function-valued responses. For example,?!
considered nonparametric estimation of longitudinal data where the responses were
longitudinally observed and contaminated with errors. Under independence error structures
for the measurement errors, scatter plot smoothing methods were used to estimate the mean
and covariance functions of the response curves2!.22 provided methods for nonparametric
estimation of response curves contaminated by random noise. The mean functions were
estimated through the use of B-splines and functional principal component analysis. While%?
discussed the presence of measurement errors under independent realizations from a random
process, the measurement errors considered were associated with random response curves.?3
assumed uncorrelated error structures and provided Gaussian and generalized shrinkage
estimates for the functional principal components scores to improve the variance of the

24 considered

errors associated with the function-valued responses prone to errors.
measurement error in the functional smooth random-effects model where the responses were
curves with vector-valued covariates. The error process considered were random errors
associated with the response curves and the model was estimated through quasi-score
estimating equations2*.2> proposed a nonparametric approach for the analyses of sparsely
observed longitudinal data using functional principal component analyses in the presence of
measurement errors. However, the measurement errors considered were errors associated
with the observed responses?>.

Most work addressing measurement error in functional data have treated these errors as
additional error terms in the models as discussed above. To our knowledge, there is limited
research on functional regression models when the functional covariate is contaminated with
measurement error. A common practice in the literature is to pre-smooth each contaminated
functional covariate, then use the smoothed curves to build and estimate regression models.
However, our simulation studies show that the pre-smoothing step does not correct the
attenuation bias in regression coefficient estimation caused by measurement error and it has
similar numerical performances as the naive estimator which uses the contaminated
functional covariate directly without any pre-smoothing. Similar findings were also
discussed in?®. More recently, some authors have considered treating these error terms as

classical measurement errors. These recent developments27-26:28 extend methods for
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addressing measurement errors in linear regression models to functional regression settings.
Using the smoothing spline mixed model to estimate the measurement error variance,2’
developed a two-stage nonparametric regression calibration method for the partial functional
linear model. The method proposed in?” relies on the assumption that the measurement
errors are independent and identically distributed normal random variables. However, in
practice, the measurement errors from the same curve can be correlated and not necessarily
follow the normal distribution.2® provided a simulation-extrapolation approach for
addressing imprecisely observed function-valued covariates with scalar outcomes. The
authors allowed correlated measurement error structures, but required its covariance
structure to be of a pre-determined parametric form. We recently developed methods for
reducing measurement error biases associated with function-valued covariates prone to
measurement error in regression models involving multiple function-valued outcomes?3. We
estimated the model parameters using the EM algorithm, while functional principal
components were used to estimate the variance of the classical measurement error.

In this paper, we propose a different approach to incorporate measurement errors and allow
unspecified error structures. A function-valued instrumental variable belonging in the same
parameter space as X(#) is used for model identification, and the generalized method of
moments-based approach is proposed to consistently estimate the functional coefficient, 5(?),
in the presence of functional measurement errors. Our proposed method for functional
measurement errors do not treat the imprecisely observed function-valued covariate as
longitudinal or time series data. Rather, we consider the functional covariate as a single
function that is used to estimate a latent variable such as true energy expenditure. Under our
newly developed methods, estimation of the measurement error covariance is not required
for parameter estimation. To the best of our knowledge, the use of function-valued
instrumental variables in the functional linear regression model is novel. We illustrate the
impacts of measurement error and covariance structures on the estimated parameters through
simulation studies. With the increasing use of wearable or activity monitoring devices to
study biological phenomenon in biomedical research, it is critical that statistical methods
that allow their accurate and unbiased assessments be developed.

The rest of the paper is organized as follows. Our proposed methodology is introduced and
described in Section 2. We provide relevant asymptotic results in Section 3; while the
simulation results and the application to our motivating example are provided in Sections 4
and 5, respectively. Finally, discussions and concluding remarks are provided in Sections 5.2
and 6, respectively.

MODELS

Let (Y, X) be a pair of scalar-valued random variable and a random function assumed to be

square integrable and defined on [0, 1] such that X= {X(#§, £€ [0,1]}. The scalar-on-

I‘th

function regression model with a mis-measured functional covariate for the 7 subject is
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1
Y, = f BOX(Odt+e, (1)
0

W) =X0+U), ((2)

where A(#) is an unknown functional coefficient. The X9 is a function-valued covariate that
is not directly observable but measured by W(?). The W{(?)’s serve as unbiased measures for
X9 subjected to measurement errors U {) that are possibly correlated over time. For
notation simplicity, we leave out the intercept a in (2) and assume both response Y;and

functional covariate X;are centered with Y7 _ | ¥, =0and Y7 _ | X,(x) = 0 for £€ [0, 1].

K
We first approximate (4 in (1) using polynomial splines and write (1) ~ ¥, " 17560

K K
where {yk}k " | are unknown spline coefficients, while {bk(z)}k’; L area set of spline basis

functions on [0,1]. In this manuscript, B-spline basis functions are used due to their
flexibility and computational efficiency. These basis functions can be efficiently constructed
using the Cox-De Boor recursion formulaZ®. In the spline approximation provided above, the
number of basis, K, is allowed to increase with the sample size and the corresponding
spline functions provide better approximations for larger sample sizes. For large n, K}, is
often chosen to be large enough to reasonably approximate the patterns in (). In subsection
4.2, we propose a data driven method to automatically select K}, for finite samples.

Following the spline approximations, Model (1) becomes

1

K
Y, ~ Z 74 f X (b (Ddt + ;. (3)
k=1 0

1 1 1
Let X, = é X (Db (ndt, W, = g W (Db (t)dt, and U, = é U (Db, (r)dt. The measurement error
model in (2) becomes W= X+ Uy and the full model is re-written as

K
n

Yiz 2 }'kXik+£i 4)
k=1

Wy=Xp+Ugk=1,..K, (5
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where [U U are correlated errors. Under this representation, the proposed model

i iK
n

reduces to a variation of multivariable linear regression model with measurement errors.
However, the main difference is that the number of linear covariates in (4) and (5) is not
fixed, instead it increases with the sample size.

Instrumental variables

The presence of measurement errors in predictor variables of regression models renders the
model unidentifiable without additional information3. Such additional information can
come in the form of replicates of WAt), assumption of a known covariance function of the
measurement error 2y or the presence of instrumental variables for X{(#) in the data. An
instrumental variable is a variable that is correlated with X(#) but is, uncorrelated with {(?).
The presence of an instrumental variable for X(?) in the data allows for consistent estimation
of (9 when X(9 is subjected to error. While the use of instrumental variables has been well
studied in generalized linear regression models with measurement errors31-30.32,33.34,35,36,37,
use of instrumental variables in functional linear regression settings with measurement
errors are limited.3® considered the use of instrumental variables in scalar on function
regression when X(#) is endogenous (i.e. corr{ X(9), £} # 0). Using a function-valued
instrumental variable, the authors extended the generalized method of moments approach to
high dimensional settings to estimate the function-valued model parameter. While our
proposed models also consider scalar on function regression, the current application focuses
on the case where X{( /) is imprecisely observed, rather than it being an endogenous covariate.
26 estimated the covariance matrix of the measurement error in the scalar on function models
by treating the function-valued covariate as longitudinal data. In our proposed methods, we
do not consider X(#) longitudinal. Rather, it is considered a function obtained at one time
point to describe a latent variable or a true covariate. In this paper, an instrumental variable
approach is proposed for model identifiability while generalized method of moments is used
to consistently estimate f(9).

Fori= 1, ..., n,let {Mi(t)}’? | be a function-valued instrumental variable observed for the /#
1=

individual. Assume {M l.(t)}’? | are independent across subjects with {M(#)} independent of
1=

{M[(0)}, for 1 Z . Also, cov {M(1), U(s)} =0 and cov { M), ;4 =0 for any £ s € [0,1],
while {M/9} is correlated with {X(#)}. The independence assumption between M,(#) and
U{(s) is often referred to as instrument exogeneity across time. While a strong assumption,
this condition cannot be directly tested or assessed since U(#) is unobserved. Therefore,
theoretical considerations regarding the application are often used in the selection of an
instrumental variable in practice.

In addition to equations (1) and (2), we add the model equation for the instrumental variable
as M) = 6X(?) + w(?), for some constant § # 0and a mean zero error {w/)}, which is
uncorrelated with {X(9)}. While M) is correlated with X (), it is not necessarily an
unbiased measure for X(#). We reformulate our final model below with all the assumptions

Stat Med. Author manuscript; available in PMC 2019 September 10.
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1
Y, = / BOX(t)dt +¢, (6)
0

W =Xm0+U®, (7)

M (1) = 6X(1) + w ), (8)

where E(e) =0, E{U(H} =0 and E{w/dH} = 0. In addition, we assume cov{X[9), e;} =0,
cov {M{?),e;} =0, cov {M{[?), U(s)} =0, for t, s€ [0,1] and /=1, -, n. Our methodology
is described next.

2.2 | Proposed method for estimating the functional coefficient

T
LetM, = /(1) M ()b, (ndt, for k=1, ..., Kj, and M; = (Mil’ LM ) . Then one has

iK
n

cov (Yi’ Mi) X cov (Xi, Mi)y, 9

cov(Wi, Mi) = cov (Xi’ Mi)’ (10)

T
where y = (7’1’ Vg ) . Therefore,
n

cov (Wi, Mi)Tcov (Yi’ Mi) X cov (Wi, Ml.)Tcov (Wi’ Ml.)y (11)

Y=~ [ cov (Wi’ Ml.)Tcov (Wl., Ml.)]_lcov (Wi, Ml.)Tcov (Yl., Mi)’ (12)

and the unknown coefficients ¥ can be estimated by

~

T -1 7
7=(-QWM-QWM) Quuyy.  (13)

Stat Med. Author manuscript; available in PMC 2019 September 10.
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where Qparand Qv are sample estimates of coW, M) and coW Y, M) respectively,
defined as

IRNEv
QMY=ZZIM1.YI., (15)
1=

and ﬁi, ?i and Wi, are centered variables, each with a sample mean of zero. When M; and

W, are of the same dimension, and Q ,yis an invertible square matrix, then 7 is reduced to

7= (.QMW)_l.QMy. As aresult, for any ¢ € [0, 1], the estimator of the regression coefficient

function is defined as

K

By= Y 7. (16)
k=1

The proposed j(7) is a generalized method of moments based estimator. While no
distributional assumptions are required for Uf{), the estimation of £(7) depends on the
assumption that an instrument, M/ #), exists in the data. Additionally, estimation of the
covariance matrix for the measurement error is not required for the successful
implementation of our proposed methodology. Under current functional data methodology, a
naive estimator of B(¢) would be based on W(¢) and Y;with W{(# being treated as the true
value for X(#). Simulation studies in Section 4 show that failure to account for potential
measurement errors can substantially bias the results. The strength of our 4(r) is that while
X () might not be directly observed, estimation of its effect on the response is based on its
unbiased measure as well as additional information provided in the data in the form of M(?).

3| ASYMPTOTIC PROPERTIES

In this section, we establish the L, consistency of ﬁ(t). We summarize the needed
assumptions as follows:

1. We assume (Y}, X(9, W1, M9, t€ [0, 1]) for /=1, ..., nare independent with
the same distribution as (Y, X(9), W9, M(?), t€ [0, 1]).

2. The instrument variable M= {M({), t € [0, 1]} is uncorrelated with regression
error € and the measurement error U= {9, ¢ € [0, 1]} with cov{M(i), €} =0
and cov{M(¥), U(s)} =0 for any s, € [0, 1].

3. The latent functional covariate X= {X(¥), t€ [0, 1]} is independent of the
regression error € with cov{ X(¥), €} =0 for £ € [0, 1], but is correlated with

Stat Med. Author manuscript; available in PMC 2019 September 10.
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instrument variable M. Let Z x7 (¢, s) = cov{X (£), M (s)}. We assume that for
any positive functions Ay, /i, I3, s, there exist constants A, A,> 0 such that

. /.../hl(z)zXM(t, o ($hz(t)Z ) (1, 5 (s )dtdsdr' ds’ <,
1= /h1(t)hz(t)dt/h3(t’)h4(l’)dt’ =

4. Weassume sup;[E /M )/ + E /W (d/+ E JU(t)|] <+oo for some sufficiently

large /> 0.

5. The variance of the error term ag = [E(sz) 1s bounded.

6. We assume X xx (£ 8) = Cov {X (9, X(8)}, Zams (L 8) = Cov {M(§), M(s)}, Zyy

(t, 5)= Cov{U(9, U(s)} are all positive definite bivariate functions and there
exist positive constants A; and A, such that for any positive functions a; (4, a
(0 € [0, 1],

,11 / al(t)az(t)dt < /] al(t)ZMM(t, s)a2(s)dtds < /12 / al(t)a2(l)dt,
ﬂlfal(t)az(t)dt < /]al(t)ZUU(t, s)az(s)dtds §22/a1(1)a2(t)dt.

7. The coefficient function A(#) is (p + 1)-times continuously differentiable with (7

€ cro, 1].
8. The number of knots N, % n1/@P+3) and interior knots iy satisfy that
n

min lk . —k.
P 1
jelt N i1 y

max Ik . -k
P 1
jeft N 1T

for some constant ¢> 0.

Assumptions (A1), (A4)-(AS) and (A7)-(A8) are standard in polynomial spline regression
literature. Similar assumptions were also used in3%40:#1 Assumption (A3) requires that
{X(9} and {M(?)} be correlated and {M(f)} contains information about {X(#)}. Assumption
(A3) fails if {X (9} and {M (¢)} are independent of each other with Zxp,(% s)=0 forall £ s
€ [0, 1]. This is required to guarantee the invertibility of the matrix in (13) and the proposed
generalized method of moments estimator to be well defined. Assumption (A6) implies that
the covariance functions of random processes {X(9)}, {M(?9)} and { W)} all are positive
definite.

Under assumptions (A1)-(A8), the coefficient function estimator 3(¢) in (16) is L,—consistent

Stat Med. Author manuscript; available in PMC 2019 September 10.
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R

15O = Ol = 0p—g 5
n

s

P

where |||, is the functional L, norm.

Theorem 1 establishes the Z, rate of consistency for 3(r) in the presence of measurement
errors. Our asymptotic result is comparable to the rate of convergence results given in*?
and*® when the functional covariates are measured without errors. Here we assume the
functional covariates are observed continuously. As argued in*3, the rate of convergence
obtained in Theorem 1 does not change when the functional covariates are observed
discretely at a sequence of grid points, provided that the maximum distance between any
neighboring grid points converges to zero sufficiently quickly. The proof of our asymptotic

results are provided in the Appendix.

4| SIMULATION

In this section, we discuss our simulation results and describe the tuning parameter selection.

41| Simulation Results

We now describe our simulation experiments and study the numerical performance of our
proposed methodology. All data in our simulations were independently generated from the
functional linear regression model

1
Y= / POX()dt + e,
0

where we consider two forms for B(#) with B; (9) = sin (27t#) and (9 = sin((8(#.5))/2)/
(1+(2(8(£.5))?)(sign(#.5)+1)), and sign(a) = 1 and sign(—a) = —1, for a> 0. We only
present the result for the case B;(#) and defer the simulation results for £,(#) in the
Supplementary Material. The regression errors, &, were simulated independently and follow
a N (0, o). While the observable functional covariate X (#) = sin (27t8) + ey (1), where ex(?)

denotes a mean zero Gaussian process with constant marginal variance ”?( and cor{ex(t)),
ex(h)} = pxfor any 4 # 6. We generated the observed functional covariate W () = X (H)+u
(?) and the instrumental variable M (#) = X ()+ w (¢ where errors 1 (#) and w () are also
mean zero Gaussian processes with constant marginal variances ai and ”3)’ and correlations
puand pyrrespectively. All the error terms were generated to be independent of each other.
In all our simulations, the number of replications considered were n,.= 1000. For the

methods described in this section, the number of knots were selected using a tailored cross-
validation approach as discussed in Section 4.2.

Stat Med. Author manuscript; available in PMC 2019 September 10.
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Since we only report the results for 5;(#), we will simply use S(¢) and drop the subscript. Let
~ - n ~ n_ .
B"(1) be the estimator of (¢ in */ replication and f(r) = nizl "B Let {tl}lg”d bea

r

sequence of equally spaced grid points on (0, 1) to evaluate the performance of proposed
estimator. We define the averaged squared bias of () as

9 - ngrid _ 5
ABias™(p) = -—— ¥ (1) - K(zy)}".
grid [ =1
the averaged sample variance as
. ngstd

1 1

Avar(/z’A) =5

> (7))

rrzlngridlzl

and averaged integrated mean square error as

AIMSE(B) = ABias>(B) + Avar(B).

We first generated data with o= 1, ox=4, 0,=4, 0,= 1, px= pu= pym= 0 and four
different sample sizes =100, 200, 500, 1000. We estimated the regression coefficient
function using the proposed methodology. However, the matrix inversion in the definition of
the proposed method of moments estimator can be unstable. Therefore, we adopted the small
sample modification®? to improve the finite sample performance of our proposed method. In
addition to our approach, four additional approaches were also considered for estimating

in the simulation studies. In the first scenario, we assumed X(7) was observed and j x was
estimated by regressing { Y;} on {Xj;} directly in Equation (4). The second estimator, ﬁw,

ignored the measurement error and estimated the spline coefficients by regressing { Y;} on
{ Wi} instead. The third estimator B whrs 18 @ variant of the second approach and obtained

using individually pre-smoothed Wl. based on polynomial splines regression. The fourth
estimator, ﬁws’ is obtained by pre-smoothing each W;using smoothing spline approach
instead. Note that 3 « Was not available in the real data analysis. However, it served as a

benchmark to assess the performance of our estimator in the simulation studies. The naive

estimators, j - B WRS® B ws» ignored the measurement error in the data. The estimator B v
was obtained using our proposed instrumental variable based method.
Table 1 reports the ABias2, Avar and AIMSE values for different estimators. For our

proposed instrumental variable based estimator, 3 v» We clearly see that ABias?, Avar and

AIMSE all decrease with increasing sample sizes, supporting our asymptotic convergence

result. Furthermore, the biases of 3 y and B ;v are similar and much smaller than the bias of

ﬁw. Furthermore, the bias of ﬂAW was non-ignorable even when the sample size was

Stat Med. Author manuscript; available in PMC 2019 September 10.
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increased to 1000. This suggests that failure to account for measurement error can lead to
biased estimation of the functional coefficient. In addition, similar to 3 w» both B wrs and

/?WS have non-ignorable bias, which indicates that pre-smoothing step does not take care the
attenuation bias. Comparing Avar, ﬁw had the smallest sample variance due to larger

variability in Wand the fact that the variance of regression coefficient is inversely related to

the variability in the covariates. Our proposed method of moment estimator 3 ;v had the

largest sample variance due to variability in both Wand M. However, for relatively large
sample sizes (n=500, or 1000), the proposed B ;v had better overall performance than all the

approaches based on Wwith smaller AIMSE values.

To investigate the performance of the proposed estimator when the response Y;follows a
non-normal distribution, we now allow the regression error e have a non-symmetric
distribution centered at 0. Namely, the regression errors are independently and identically
simulated from a Gamma(1.0, 1.5) and then shifted to have mean 0. We report the simulation
result in Table 2. Although, the approaches based on Wtend to have smaller AIMSEs for
smaller sample sizes, our approach tend to do comparably well for sample size 500 and
dominates for large sample size (1000) in term of AIMSE. Our approach (3 1) along with

B « also have have very low bias. Again, the naive approaches B we B wrs and B w preform

poorly and have non-diminishing biases.

We now assess how the size of error terms of u(7) and WA(#) affect the proposed estimation
method. For px=p,=pap=0, o0=1, ox=4, n=500, we consider different combinations
of (o, o) with potential values of o, o, ranging from 0.5, 1, 4 to 16. Thus, the signal to
noise ratio in the measurement error and instrumental variable equation were 8, 4, 1 or 0.25.
Table 3 summarizes our simulation results from the various set-ups. We found that
increasing the error sizes associated with either the measurement error or the instrumental
variable lead to larger AIMSEs. In addition, the error in the instrumental variable had a
larger effect on the accuracy of our estimated B(¢) when compared to the impact of the
measurement errors. We also note that the AIMSE:s for (o,,= 1, o, = 16) was more than four
times larger than those for (o, = 16, o, = 1). Although the naive and IV approaches tended
to perform comparably for smaller values of o, our IV approach dominates the naive
approaches for larger measurement error and S, has the worse performance. But changes in
the IV error variance have little effect on the AIMSE estimates for the naive approaches
since IVs are completely ignored in the naive estimation. Therefore, it is not surprising naive
approaches have smaller AIMSEs than our IV approach. We report the performance of the
naive estimator in Section S.2 of the supplementary Material.

We are also interested in investigating the impact of the correlation in the error terms affect
on our estimated coefficient. To do this, we simulated data with o= 1, ox=0,=4, 0,=1
and n= 500, under varying degrees of correlations in ex(#), u(f), and W(#) with px, p, P =
0, 0.25, 0.5 or 0.75, corresponding to none to strong correlation in the error terms. Table 4
indicates that larger correlation in ex(#) lead to larger AIMSEs and less accurate estimate of
the coefficient function, due to increased multi-collinearlity in predictor variables. However,
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correlations in the measurement error (f) and instrument error W(?) have less impact on the
coefficient function estimation. This is due to the fact that these errors are independent of
each other and of the covariate X(#). Similar to ﬁx, the degree of correlation in X(#) is more

relevant for the performance of our proposed estimator.

Tuning parameter selection

Our proposed method requires specification of the number of bases beforehand by the
practitioner. In non-parametric settings, selection of the number of basis functions amounts
to a model selection problem. Additionally, it is well known that model selection in
measurement error settings are complex*4. In this manuscript, we provide an approach based
on a 5-fold cross- validation for the selection of the number of basis functions. For each
choice of possible number of bases, the original data set is divided into 5 non-overlapping
subsets. The model parameters are then estimated repeatedly by excluding one of the subsets
of the original data under each estimation. The mean prediction error of the fitted model,
using WA¥) in lieu of X(9), is estimated based on each data subset withheld, averaging over
the 5 data subsets. Subsequently, the number of basis functions associated with the smallest
mean prediction error is selected as the number of bases. Plots of the estimated mean
prediction error for the function considered in our simulation studies were obtained. As an
example, we plotted the prediction errors for one simulation run with sample size n= 500.
Based on this plot, the number of bases selected was 5, see Figure 1.

5| APPLICATION

In this section, we describe the application of our methods to the motivating example.
Students enrolled in the study were followed over an eighteen month period. The study
design was a cluster randomized trial where teachers within three schools in the College
Station Independent School District were randomly assigned to receive either the treatment
(stand-biased desks) or control (traditional desks)>. The data contain measurements obtained
at baseline and at the beginning of each semester over two academic years. An objective of
the study was to investigate the relationship between energy expenditure behavior at baseline
and the 18-month change in body mass index (BMI) from baseline among the students.
Thus, an outcome of interest was the difference or change in BMI values from baseline to 18
months post follow up. The count of steps represents the number of steps taken over a given
period of time and is an indicator of a subject’s physical activity levels. Current guidelines
for recommended daily physical activity levels are based on the duration of time spent in
either moderate or vigorous intensity activity levels and number of steps per day’-43:46:47:48,
For example,*’ indicated that activity levels of 12,000 steps/day and 15,000 steps/day for
boys and girls, respectively were recommended for maintenance of healthy body
composition for children between the ages of 612 years. While daily energy expenditure is
defined as the total number of calories or energy used by the body to perform daily bodily
functions.

In our application, energy expenditure and step counts were both collected per minute from
the SenseWear Armband® (Body-Media, Pittsburgh, PA) among the 374 children enrolled in
the study who wore accelerometers while in school for one week at baseline. The children’s
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body weight, height, age, and sex were all collected at baseline, while their BMI’s were
calculated at the beginning of each semester over the study period. True daily energy
expenditure behavior, X(#), was considered the latent covariate. The surrogate measure for
X(# was the energy expenditure taken per hour obtained from the device, W(#). Step counts
measured by the device was treated as the instrumental variable in this application, M(?). We
assume that cov{ X(#), M(9)} # 0 and cov{M(#), UH} = 0. Justification of the use of
instrumental variables is challenging in practice. However, an instrumental variable may be
based on a separate independent measure of X(#). In our application, both M(?) and W9
were obtained from the same device. But their measured or calculated measures were
obtained separately. The SenseWear Armband® obtained the step count based on a 3-axis
accelerometer and pattern recognition. While the calculation of total energy expenditure was
based on heat flux, skin temperature, galvanic skin response, and anthropometrics*®. A
description of the final analytic sample is provided in Table 5.

To assess impacts of energy expenditure obtained at baseline on the difference in BMI
values among the enrolled students, we first assumed that both W and M were discretely
observed on a time interval [0, 7]. On average, the students wore the devices for six hours on
each school day during the week it was worn at baseline. Since the accelerometry data were
collected per minute, we combined all the data for the week the device was worn and
averaged all the minute-level data collected within the week to hourly-level data to reduce
any potential noise associated with the data collection. Figure 2 provides the plot of W(#)
and M((?) against time for all subjects included in the study. The grey lines illustrate the
individual trajectories while the blue solid line is the smoothed mean for the observed
energy expenditure and step counts among all the subjects.

Two sets of analyses were performed to illustrate our developed methods. We first assessed
the relationship between energy expenditure and BMI at baseline. The second analysis
involved investigating the impact of energy expenditure at baseline on changes in BMI
values at 18 months follow up. Due to loss of follow up or missing data, 255 and 156
students contributed to the baseline and the 18-month follow up analyses, respectively.

The average BMI values at baseline was 17.4 kg/m2(SD=2.98) and 17.6 kg/m%(SD=3.2)
during the spring semester of the second academic year. The mean step counts per hour at
baseline was 13.16 (SD= 11.5) and the mean energy expenditure at baseline was 1.21 kcal/
hour (SD= 0.41), while the average age of the children at baseline was 7.9 years (SD=
0.80). About n= 174(68.24%) were whites, blacks n=34(13.33%), Hispanics n=25(9.8%)
and others n=22(8.63%). See Table 5 for additional details.

Results

5.1.1| Impacts of error-free covariates on outcomes—The error free covariates
collected from the study include the student’s school, teacher, ethnicity, grade, age, gender
and treatment assignment group. To adjust for these error free covariates as well as the
cluster randomized setting of the study design, we first performed random effects analyses
of the error free covariates against the outcomes. A random intercept for the nested effects of
teachers nested within schools was included in the models. We also fitted a random effect
term for both schools and teachers nested within schools, however, the models failed to
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converge. The error free adjusted residuals were subsequently obtained from the regression
fits from the mixed effects model with the random intercept term for teacher within school.

Two sets of mixed effects analyses were performed. The first analysis focused on BMI at
baseline as the outcome. The second analysis focused on 18-month change in BMI from
baseline as the outcome. The results from the error free analyses of both the baseline and
follow up data are included in Table 6. Overall, we found that age had a significant impact
on the BMI values at both baseline and at 18 months post baseline (p < 0.0001 and p=
0.04). Additionally, there were statistically significant differences in the race effect when we
compared the differences in BMI between students from ethnically minority populations
(blacks and Hispanics) to the white students at both baseline and follow up (p < 0.0001).
Specifically, we found that after controlling for all other covariates included in the model,
the BMI values for the black and Hispanic students were 0.08 and 0.06 higher on average
than the BMI values for the white students at baseline. While at follow-up, we found the
BMI values for the black and Hispanic students to be 0.06 and 0.03 higher on average than
the BMI values for the study students after controlling for age, school, teacher, baseline
levels of BMI, and treatment assignment. No statistically significant difference was observed
between the other race category when compared to the white students included in the study
at baseline and follow up (p=0.15 and p = 0.07). There were also no differences in the
average BMI values between the schools, teachers, grades, and treatments at both baseline
and follow up (p> 0.05).

5.1.2| Impact of baseline levels of energy expenditure on BMI—Residuals
obtained from the mixed effects assessments of the impacts of the error free covariates on
the outcomes at were obtained from the baseline and follow up analyses the following model

_,T ,
£ ilorp| = 2+ oy +eacy

where i)~ N (0, ai}), bk(j) ~N (0, ‘7127) Yijk = (log(BMISpring16))’ Zjx =(log(BMl gy714)
ethnicity, grade, age, gender, treatment, teacher, school)T, /=1, ...,157 students, j=1, ...,3
schools, k=1, ...,8 teachers (nested within schools). These residuals were subsequently
used as the outcomes in our measurement error models. Thus, the outcome assessing the
effects of energy expenditure on BMI were the error free and cluster randomized design
adjusted residuals for the baseline measures of BMI for the first analyses and for the
difference between BMI obtained at baseline and the BMI obtained at end of the study for
the second analyses. Six knots were used in the application, while nonparametric bootstraps
were used for computing the 95% point-wise confidence intervals for B(r).

We provide the results from the baseline analyses and the follow up analyses in Figure 3.
Plots of the estimated functional coefficient and the estimated 95% point-wise confidence
intervals are provided in the figure. For assessments of the impact of energy expenditure on
BMI at baseline, the bootstrap confidence intervals did not contain the zero line completely,
indicating that the functional coefficient was not zero across the whole time space. Similarly,
in determining the impacts of baseline measures of energy expenditure on the 18-month
change in BMI over the study period, the estimated bootstrap confidence intervals did not
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contain the zero line completely. Because the function-valued coefficient was not completely
zero across time, there was some statistical evidence of a relationship between baseline
measures of energy expenditure and BMI values obtained at a future time, such as 18
months post baseline. Additionally, the relationship observed depended on both the level of
energy expenditure and time.

5.1.3| Impact of measurement error on the analyses—In addition to our method
of moments-based instrumental variable estimator, we also obtained naive estimators of the
effects of energy expenditure on BMI see Figure 3. As illustrated in both sets of analyses,
the approaches obtained without accounting for measurement error appeared notably
different from the estimators obtained from the instrumental variable based approaches.
Based on Figure 3, the impacts of measurement error on both sets of analyses depended on
time. While it is well known in simple linear regression models that the effects of
measurement on estimation is to attenuate its effects towards zero, its impact in this
functional linear regression setting is more complex. For both sets of analyses, we found that
the measurement error adjusted function-valued coefficients tended to be larger than the
naive coefficient. However, the naive estimate of £(¢) at baseline was found to be larger than
the measurement error adjusted at the beginning and the end of the observational period.

Discussion

30 recently studied the relationship between baseline energy expenditure and the three-year

change in BMI among 182 five to ten year old children with overweight and obesity health
conditions in Australia. Using regression analysis and change in BMI Z-scores, the authors
concluded that baseline measures of energy expenditure significantly impacted the three-
year change in BMI among the children. However, our current results indicated that baseline
levels of energy expenditure did have some statistically significant relationships on the
future body weights among children, however, these impacts depended on activity levels and
the time of activity.

In this manuscript, we developed an instrumental variable approach for addressing potential
measurement errors associated with function-valued covariates in scalar on function
regression models. The developed methods can be used for assessments of the impacts of
data collected on biological markers obtained repeatedly over a dense time space on health
outcomes. A limitation of our current approach is that the instrumental variable must be
collected on the same time period as the unbiased measure for the true covariate. Thus, the
developed methods are applicable for devices that collect data on multiple biological
markers over the same time period.

Our current approach does not allow inclusion of random effects of error-free covariates
directly into (1) to account for cluster randomized or impacts of demographics. Some future
work in this area include accounting for multi-level designs as well allowing the inclusion of
error free covariates. Finally, the current methods are based on assessing impacts of energy
expenditure on health outcomes using mean regression methods. It will be interesting to
discover how accounting for measurement errors associated with function-valued covariates
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work in model settings that permit robust modeling of BMI such as quantile regression or
other generalized robust model settings.

6| CONCLUSION

We studied the scalar on function regression model with measurement error. In this setting,
we considered a scalar valued outcome with a functional covariate that was corrupted by
measurement error. Most existing methods either implicitly assume the measurement errors
are independent over time, or the measurement error covariance is known or can be
estimated. However, the measurement errors are likely to be correlated over time. In
addition, the measurement error variances are never known and estimates are seldom
available. In this paper, we took advantage of the additional information provided in an
instrument variable and developed a generalized methods of moments-based approach to
identify and consistently estimate the functional regression coefficient. To our knowledge, it
is the first in the literature to use instrument variable approach to address the measurement
error problem in the scalar on function regression model. Using B-spline basis expansions,
we re-parameterized the functional linear regression model to a multiple linear regression
model with measurement error. The function-valued coefficient was estimated by first
identifying the model using a function-valued instrumental variable observed on the same
time space as the surrogate measure, while the generalized methods of moments approach
was used for estimation. The proposed methodology was motivated by a childhood obesity
study focused on assessing the relationship between energy expenditure and subsequent
progression to obesity among elementary school-aged children. We successfully applied our
proposed model to conclude that the estimated association between baseline measures of
energy expenditure and the 18-month change in BMI was sometimes significant. This
association indicated that school programs and policies that increase physical activity among
students might have some beneficial impact. In an effort to combat childhood obesity,
physical activity policies within school are implemented to encourage more physical activity
behavior among children. Our developed methods improves on the current statistical
approaches used to evaluate the effectiveness of such policies.

Finally, our simulation studies indicated the importance of accounting for measurement
errors when a function-valued covariate in functional linear regression model is suspected to
be imprecisely observed. Failure to account for the measurement errors can lead to severely
biased estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX
A SKETCH OF TECHNICAL ARGUMENTS

K
We denote the B-spline basis of degree pon [0, 1] as {bk(t)}k'i v For notational

convenience, we use a scaled B-spline basis in the proof, which is defined as B, (1) = /Nnbk(t)

for k=1, ...,K,. With some abuse of notation, we still denote
1 1 1
X, = é B ()X (ndt, W, = é B, (OW (t)dt, uy = é B, (u(1)dt for the scaled B-spline basis for

simplicity.
. . T . .
By??, there exists a set of coefficients y* = (;ﬁf TR ) and a spline function
n

K
pEn = Zk’; 7B such that suplp(z) — B0 < cN;(p *+1 for some constant ¢> 0. Let
t
0,1 = B(r) — BE@). Then one can write

1 1

Y= ag+ /ﬂ(t)X(t)dz te=ag+ / ﬂ*(t) + Q (t) X(tdt+ ¢
0 0

1
K
=ay+ Zk’; 1szk+/Qn(t)X(t)dt+e,
0

Therefore,

-1 7

WM WM) LwmPpy —7*

—(.QT Q )_IQT {(Q — QI+ R+ 0 ]—*
=\ wmcwm wMm\\*“wm ~ “um)t eM T om| Y

= (“Q-vl;/M'QWM)_ IQ-'VI/M(_“Q

7 -7t = (2,0

uM?* Loyt “QQM)’

_len  moT 1 1 _ .
whereQUM_;Zileth,QgM—;Z _lelMl .QQ ;Z 19,M; a dUi,ei,Qm. are

T
centered versions of U, = (“i P eees uiKn) ,epand Q. = é 0, (OX (n)dt respectively. Thus, by

Lemma 1 in supplementary materials included in the Web Appendix, there exists a constant
¢> 0, such that

2 2
<ellf =7¥I

” ZJ 0

”/f(t) pr@
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By Lemma 4 in the Web Appendix, there exist ¢,C> 0 such that
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By Lemmas 2,3,6 in the Web Appendix, one has
~ 2 — -
Hﬁ(t) - ﬂ,”;(r)” = Op(N,/n) + Op(N, /n) + Op(N; PP * D) = 0N im+ N P+ D),
Finally, an error decomposition gives that
~ 2 ~ 2 2
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FIGURE 1.

Plots of the estimated mean prediction error for the function considered in our simulation
studies.
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FIGURE 2.

Plots of observed energy expenditure { W (#} and mean step counts {M ()} vs. time for all

subjects at baseline from our motivating example. The figure confirms that the relationship

between WA with time is nonlinear. In this setting W(#) is assumed to be an unbiased

measure of X{(#), while M(?) is an instrumental variable for X(?).
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Effects of energy expenditure on BMI at Baseline Effects of baseline energy expenditure on 18-month change in BMI
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FIGURE 3.

Plots of measurement error adjusted and naive estimates of (¢ at baseline and also at 18
months. In (a), we estimate the effects of energy expenditure on BMI at baseline and in (b)
we obtain plots of the effects of energy expenditure on 18-month change in BMI for the
students included in our motivating example. The shaded regions are the 95% point-wise
Bootstrap confidence intervals, the blue line represents measurement error adjusted
coefficients, while the pink line is the naive estimator that ignores potential measurement

€ITor.
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This table assesses the impact of sample sizes on the estimators. It reports the averaged squared bias (ABias?),

averaged sample variance (Avar) and averaged integrated mean squared error (AIMSE) for different sample

sizes n. The response error is assumed to follow Normal distribution. The true parameter function is 5;(¥).

Px
n ABias>  Avar  AIMSE
100 0.0017 0.1764 0.1781
200 0.0011 0.0864  0.0875
500 0.0001 0.0408  0.0408
1000 0.0000 0.0198  0.0199
Pw
n  ABias> Avar  AIMSE
100 0.0394 0.1121  0.1515
200 0.0400 0.0534  0.0934
500 0.0392 00246  0.0638
1000 0.0394 0.0121  0.0515
Pywrs
o ABias?  Avar  AIMSE
100 0.0393 0.1117 0.1510
200 0.0400 0.0538  0.0938
500 0.0392  0.0247  0.0638
1000 0.0393 0.0122  0.0515
Pws
n  ABias®> Avar  AIMSE
100 00145 03806 0.3951
200 00149 0.1676  0.1825
500 0.0144 0.0867 0.1011
1000 0.0147 0.0448  0.0595
Pry
n  ABias> Avar  AIMSE
100 00017 02144 02161
200 0.0011 0.1044  0.1055
500 0.0001 0.0497  0.0498
1000 0.0000 0.0244  0.0245
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This table assesses the impact of sample sizes on the estimators. It reports the averaged squared bias (ABias?),

averaged sample variance (Avar) and averaged integrated mean squared error (AIMSE) for different sample

sizes n. The response error is assumed to have a Gamma(1, 1.5) distribution, where Gamma(a, f) denotes a

distribution with mean a. The true parameter function is S (%).

Px
n  ABias®> Avar  AIMSE
100 0.0009 0.3963  0.3972
200  0.0014 0.1887  0.1901
500  0.0001 0.0895  0.0895
1000  0.0000  0.0438  0.0438
P
n  ABias’> Avar  AIMSE
100 0.0380 0.2301  0.2681
200  0.0395 0.1078  0.1474
500  0.0390 0.0519  0.0909
1000 0.0391  0.0252  0.0642
Pwes
n  ABias> Avar  AIMSE
100 0.0380 0.2306  0.2686
200  0.0395 0.1079  0.1474
500  0.0389 0.0520  0.0910
1000 0.0391 0.0254  0.0645
Pws
n  ABias?  Avar  AIMSE
100 0.0140 1.0100  1.0241
200 0.0145 0.3434  0.3579
500 0.0148 0.1974  0.2121
1000 0.0145 0.0941  0.1086
Prv
n  ABias®> Avar  AIMSE
100 0.0012  0.4335  0.4346
200  0.0013 0.2122  0.2135
500  0.0001 0.1012  0.1013
1000 0.0001  0.0496  0.0497
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Impacts of varying magnitudes of measurement error and instrumental variable variance on our proposed

estimator. The averaged squared bias (ABias?), averaged sample variance (Avar) and averaged integrated mean

squared error (AIMSE) of 4 for sample size = 500.

o,=1 o,=1
o, ABias> Avar AIMSE o0, ABias> Avar AIMSE
0.5 0.0001 0.0506 0.0507 0.50  0.0001 0.0488  0.0489
1 0.0001  0.0504  0.0505 1.00  0.0001 0.0504 0.0505
4 0.0001  0.0497  0.0498 4.00  0.0001 0.0794  0.0795
16 0.0028 0.1070  0.1097 16.00 0.0003 0.4784  0.4787
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TABLE 4

The impact of correlation structures on the parameter estimates. The averaged squared bias (ABias?), averaged
sample variance (Avar) and averaged integrated mean squared error (AIMSE) of /8 for sample size 2= 500.

Px Pu Pm

0 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

ABias?  0.0001  0.0001 0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Avar 0.0497  0.0540 0.0775 0.1521 0.0485 0.0483 0.0482 0.0552 0.0603 0.0652

AIMSE  0.0498 0.0541 0.0776  0.1524 0.0486 0.0484 0.0483 0.0553  0.0604 0.0653
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Descriptive statistics for the study sample at baseline (n=255). “Other”’=Asians/Native Americans, EE= energy

expenditure, s.d.=standard deviation.

Variable Mean(s.d.)/ N(%)
BMI at baseline (kg/n?) 17.40(2.98)
BMI in Spring Year 2 (kg/m?) 17.55(3.18)
Average Step Counts/hour 13.16(11.51)
Average EE (kcal/hour) 1.2(0.41)
Age (years) 8.79(0.76)
Whites 174(68.24 %)
Blacks 34(13.33 %)
Hispanics 25(9.80 %)
Other 22(8.63 %)
Boys 132(51.76 %)
Girls 123(48.24 %)
Treatment 148(58.04 %)
Control 107(41.96 %)
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