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Summary

Delayed separation in survival curves has been observed in immuno-oncology clini-
cal trials. Under this situation, the classic log-rank test may confront high power loss.
In this paper, we consider aZmax test, which is the maximum of the log-rank test and
a Fleming-Harrington test. Simulation study indicates that theZmax test controls the
Type I error rate and maintains good power under all kinds of delayed effect mod-
els. The properties of theZmax test are also proven in theory, which further supports
its robustness. We apply the Zmax test to two data sets reported in recent immuno-
oncology clinical trials, in which Zmax has exhibited remarkable improvement over
the conventional log-rank test.
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1 INTRODUCTION

Cancer immunotherapy is currently boosting and dominating drug development in the oncology field. It has achieved unprece-
dented clinical benefits in treating life-threatening cancers such as melanoma and non-small cell lung cancer. These innovative
therapies work by stimulating the immune system thereby imparting substantial benefits in tumor response and long-term sur-
vival (Hoos, 2012). However, the special mechanism results in a lag in the translation of immune and anti-tumor response into
a survival benefit (Hoos, 2012). Consequently, the randomized clinical trials show delayed separation of the Kaplan-Meier sur-
vival curves (Chen, 2013). For example, the overall survival curves from CheckMate 141 trial targeting recurrent squamous-cell
carcinoma of the head and neck demonstrate delayed separation around 4 months (Ferris et al., 2016).
The issue of delayed separation of the Kaplan-Meier survival curves presents unique challenges in using the standard log-

rank test statistic for trial analysis. The conventional way to use log-rank test statistic to analyze time- to-event endpoints in
randomized oncology clinical trials assumes proportional hazards between the two arms (Lachin and Foulkes, 1986). The log-
rank test statistic is the most powerful test under proportional hazards model (Peto and Peto, 1972). However, proportional
hazards assumption often does not hold and thus the log-rank test may not be as powerful when there is delayed effect. The use
of log-rank test under delayed separation can cause power loss and increase the risk of trial failures.
There is a rich development in the literature to address design and analysis issues related to delayed treatment benefit in

immune-oncology clinical trials. A common approach is to use weighted log-rank test statistic with appropriately pre-specified
weights or weight function to allocate more weight to late events to maximize power under the alternative of delayed separation.
For example, Self et al. (1988) pre-specified linear weight using weighted log-rank test statistics to incorporate increasing risk of
breast cancer for a health trial. The more general G family with weights of the formGr1,r2 =

{

Ŝ (t−)
}r1 {1 − Ŝ (t−)

}r2 specifies
the parameters, i.e. r1 = 0 and r2 > 0, to have the test more sensitive to delayed separation (Fleming and Harrington, 1991;
Hasegawa, 2014). Unfortunately, mis-specifiedweights or weight function can lead to decreased sensitivity to the actual observed

0Abbreviations: LR: the log-rank test; FH: the Fleming-Harrington test with weight 1 − Ŝ (t); WLR: the weighted log-rank test; PH: proportional hazard
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treatment effect. Xu et al. (2017) proposed a piecewise weighted log-rank test with weights proportional to log hazard ratio of
treatment versus control to optimize power if time point for separation can be pre-specified correctly. Hence mis-specifying time
point for change can result in less-than-optimal power. Another approach is to consider combinations of weighted log-rank tests.
For example, Zucker and Lakatos (1990) proposed to use a linear combination of weighted log-rank tests or a combination of
maximun efficiency to account for a broad range of lags time functions. A similar idea of taking the maximum of a collection of
weighted log-rank tests was considered by Fleming and Harrington (1991), Lee (1996), Lee (2007), and Karrison (2016) for a
selection of alternatives of interest. The most recent FDA workshop on non-proportional hazards (2018) considers a maximum
test of G0,0, G0,1, G1,0, and G1,1 and finds around 3 − 4% power loss compared with the optimal test under proportional hazards
model and survival models with diminishing effects. A recent idea was proposed by Sit et al. (2016) to use an intersection-
union test to handle delayed effect with a non-inferiority log-rank test for the period prior to the pre-specified lag time � and a
superiority log-rank test for the period after the lag time �. This method is sensitive to the choices of the non-inferiority margin
and the time change point.
Even though delayed separation in survival curves commonly exists in the immuno-oncology clinical trials, some survival

curves do not show delayed separation. For example, the overall survival curves from Checkmate 025 trial targeting pre-treated
renal-cell carcinoma did not show delayed separation (Motzer et al., 2015). Using weighted log-rank test with mis-specified
weight function to allocate more weight on late events under the alternative of no delayed separation could lead to power loss
as well. A robust test statistic is needed to account for both alternatives of no delayed separation and delayed separation.
This article considers a combination test Zmax to handle both alternatives of no delayed separation and delayed separation.

This combination test Zmax takes the maximum of the standard log-rank test and the weighted log-rank test of weight function
1−Ŝ (t−). It favors the standard log-rank test under the alternative of no delayed separation and favors the weighted log-rank test
under the alternative of delayed separation. Therefore, this Zmax test is robust to provide satisfying power under the alternative
of proportional hazards and the alternative of delayed separation. Theoretical work proves power gain for the Zmax test within
the framework of local asymptotics, assuming logarithm of hazard ratio decreases with sample size at the rate of n−1∕2: (1)Zmax
test is more powerful than the log-rank test under delayed separation; (2)Zmax test is more powerful than the weighted log-rank
test under proportional hazards; (3) Power gaining of the Zmax test versus the log-rank test under delayed separation decreases
when sample size increases. Simulation studies were performed to show that power loss for Zmax is small compared with the
log-rank test under proportional hazards or compared with the weighted log-rank test under delayed separation. The asymptotic
distribution of theZmax test was derived based on Theorem 7.5.1 of Fleming and Harrington (1991). Hence, we can conveniently
use Zmax for clinical trial design and analysis. A computational R package was developed as well to determine the sample size
and power for clinical trial design.
This paper is constructed as follows. Section 2 describes the Zmax test and derives its theoretical properties. Performance of

Zmax is illustrated in Section 3 via simulation studies in terms of type I error, power, sample size, and follow-up time. Section
4 shows the results of applying the Zmax test to two real examples. Section 5 describes estimation in a delayed effect model.
Section 6 concludes the paper with discussions.

2 METHODS

2.1 Preliminaries
Let the data be generated from the standard two-sample random censoring model with a total of n individuals randomly allocated
to either the control or the treatment group. Denote the survival functions for the control and treatment groups as S0 (t) and S1 (t)
respectively. In this paper, we are interested in comparing the survival curves between the two groups and testing the hypotheses
that

H0 ∶ S0 (t) = S1 (t) for all t versusHa ∶ S0 (t) ≠ S1 (t) for some t.
Let

{

Ti, �i, Xi
}n
i=1 be an independent sample of right-censored survival data from two groups, where Ti is a possibly right

censored event time; �i is the censoring indicator with �i = 1 if Ti is an event time, and � = 0 if Ti is censored; and Xi is the
group indicator that takes value 1 if the individual belongs to the treatment group, and 0 otherwise. The numbers of individuals
in the control and treatment groups are denoted as n0 and n1 respectively with

∑n
i=1Xi = n1. In addition, let Dn be the event

set which contains the indices of individuals in the pooled sample who have had an event, and tj denotes the observed event
time of individual j in Dn. For a given time t, let nk (t) be the number of individuals in the risk set of group k (k = 0, 1) and
p (t) = n1 (t)∕

{

n1 (t) + n0 (t)
}

be the fraction of individuals from the treatment group.
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For the above hypothesis testing problem, a family of weighted log-rank tests (WLR) has been proposed

Uw,n =

∑

j∈Dn
wn,j

{

Xj − p
(

tj
)}

√

∑

j∈Dn
w2
n,jp

(

tj
) {

1 − p
(

tj
)}

(1)

where wn,j is a predefined weight at time tj . Different choices of weights correspond to different test statistics. The well-known
test statistics, such as, log-rank (Mantel 1966; Cox 1972), Gehan-Breslow (Gehan 1965), Tarone-Ware (Tarone andWare 1977),
Peto-Peto (Peto and Peto 1972), and Fleming-Harrington tests (Fleming and Harrington 1982) all belong to this family. By
Proposition A.1 in the appendix, the test statistic Uw,n asymptotically follows a standard normal distribution under the null
hypothesis. Therefore one rejects the null hypothesis when |

|

Uw,n|| ≥ z�∕2, where z�∕2 is the (1 − �∕2)-th quantile of the standard
normal.
In this paper, we focus on two tests from this family. The first is the log-rank (LR) test withwn,j = 1 for all j, and the other one

is a Fleming-Harrington (FH) test with wn,j = 1 − Ŝ
(

tj−
)

, where Ŝ is the Kalplan-Meier estimator using the pooled sample.
We denote the LR test and the FH test asU1,n andUF ,n respectively. The LR test assigns the same weight to all time points, while
the FH test assigns more weight to later time points. Therefore, the FH test is more sensitive or powerful for late differences in
survival curves.
In the traditional design of a randomized two-arm clinical trial, proportional hazard (PH) is often assumed. However, delayed

separation of survival curves has been observed in many clinical trials of cancer immunotherapy. Therefore, for these trials,
it is important to investigate the properties of these test statistics under both the PH and delayed treatment effect alternatives.
Let �k (t) be the hazard function for group k, k = 0, 1. Then the PH alternative is of the form HPH

a ∶ �1 (t) ∕�0 (t) = e� for a
constant � ≠ 0. For the delayed alternative, HDelay

a ∶ �1 (t) ∕�0 (t) = 1 −
(

1 − e�
)

I(t≥t0), where I is the indicator function and
t0 is a pre-determined separation time. Examples of survival curves under the PH and delayed alternatives are given in Figure
1 . Under both alternatives, the control arm (solid lines in the figures) follows an Exponential distribution with rate 0.05. Under
the PH alternative with hazard ratio of 0.8, the survival curve from treatment arm is always higher than that from the control
arm; but for the delayed treatment model, the two survival curves are the same before the separation time t0 = 4months and the
treatment group has a higher survival probability than the control group after t0.
Insert Figure 1 here.
The theoretical properties of the weighted log-rank test given in Equation (1) have been well studied in the literature (Fleming

and Harrington, 1991). In particular, Proposition A.2 in the appendix shows that WLR tests given in Equation (1) are consistent.
That is, for any fixed alternative, the power of the WLR test go to one as n → ∞. Therefore, the limiting value of the power
function cannot serve as a criterion to compare tests. In this paper, we compare the behavior of the LR and FH tests under the
local asymptotics instead. Schoenfeld (1981) used the first-order approximation to study the power function of the WLR tests
derived under the local proportional hazards alternatives. Peto and Peto (1972) claimed that log-rank test has greater local power
than any other rank-invariant test procedure for detecting Lehmann-type differences between groups of independent observations
subject to possible right-censoring. Peto (1972) showed that the log-rank test is the locally most powerful rank-invariant test in
the absence of ties. Based on the score function statistics, Kalbfleisch (1978) showed the log-rank scores are the locally optimum
under proportional hazards. Gill (1980) discussed the Pitman efficiency of the WLR test statistics.
Section 7a.7 of Rao (2001) introduced four different criteria to measure asymptotic efficiency of a test, including the first and

second derivatives of the limiting power function. Different measures characterize different local behaviors of the power curve
near the null hypothesis in large samples. Let ΨUw,n (�) be the power function of a test Uw,n evaluated at parameter �. In this
paper, we consider e(Uw,n) = limn→∞ΨUw,n

(

�0 + �∕
√

n
)

to describe the local asymptotics for different tests, where �0 gives the
null hypothesized value of �, and � ≠ 0 is a given constant. If e(Uw1,n) > e(Uw2,n), then the power curve of Uw1,n is higher than
that of Uw2,n in a local neighborhood of �0, and we call Uw1,n locally more efficient than Uw2,n. In the following, we compare the
local asymptotic properties of the LR and FH tests under both proportional hazard and delayed treatment effect alternatives.
We note that we are not the first ones to develop the properties for the LR and FH tests. The (locally) most optimal property

of the log-rank test has been discussed before in Peto and Peto (1972), Peto (1972) and Kalbfleisch (1978). Related results
regarding the power of FH test can also be found in Zucker and Lakatos (1990), Fine (2007) and Zhang and Quan (2009). We
are summarizing the results and presenting them in a different way in Theorems 1 and 2.

Theorem 1. Suppose that the Assumption (A1) in the appendix holds. For testing H0 ∶ �1 (t) = �0 (t) versus HPH
a,n ∶

�1 (t)∕�0 (t) = e�n with �n = �∕
√

n and � < 0, the log-rank test is locally more efficient than the Fleming-Harrington test in the
neighborhood ofH0.
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Under the PH alternatives, the treatment effect is assumed to be a constant over time. Therefore, all events should be treated
evenly. The fact that LR test assigns the same weights to all time points makes it a more appropriate test to use under the PH
alternatives. Theorem 1 shows that under the local proportional hazards alternatives, the LR test is asymptotically more efficient
than the FH test in the neighbor of �0 = 0.

Theorem 2. Suppose that the Assumption (A1) in the appendix holds. Consider testing H0 ∶ �1 (t) = �0 (t) versus H
Delay
a,n ∶

�1 (t)∕�0 (t) = 1 −
(

1 − e�n
)

I(t≥t0),where �n = �∕
√

n and � < 0. When the separation time t0 is large enough, the Fleming-
Harrington test is locally more efficient than the log-rank test in the neighborhood ofH0.

Theorem 2 compares the efficiencies of the LR and FH tests under the local delayed treatment effect alternatives, in which
the treatment effect only exists after the separation time t0. Under local delayed alternatives, the magnitudes of e

(

U1,n
)

and
e
(

UF ,n
)

are uniquely determined by the asymptotic means of the LR and FH test statistics. In the proof of Theorem 2, we show
that the ratio of the asymptotic means of the LR and FH test statistics is a continuous and decreasing function of separation time
t0, under assumption (A1). In addition, when t0 goes to zero and the delayed alternative becomes the PH, the ratio of asymptotic
means of the LR and FH tests is greater than one as proven in Theorem 1. Consequently, the LR test is locally more efficient
than FH test when t0 is small. When t0 approaches the upper bound of the support of the survival time, the ratio gets smaller
than one. This means that the FH enjoys higher local efficiency than the LR test when t0 is large.
An example of how the powers of the LR and FH change with separation time t0 is given in Figure 2 . We select a sequence

of separation time t0 ranging from 0 to 4 months by 0.2 months. For a fixed t0, we use the same model in Section 3 to generate
10, 000 data sets to approximate the powers of the LR and FH tests. In particular, We set the number of events to be 100. In the
figure, the LR possesses higher power than the FH when t0 is small. The powers of both LR and FH decrease as t0 increases,
but the LR decreases faster than the FH. After a certain separation time point (around 2 months in the figure), the power curve
of the FH is higher than that of the LR, which is consistent with the results in Theorem 2.
Insert Figure 2 here.
This property makes it challenging to pick a better test between the LR and FH under delayed alternatives since the separa-

tion time is generally unknown in advance in practice. Therefore it is necessary to develop a test which is more robust to the
specification of the separation time of the delayed treatment effect, and has better overall performance under a wide range of
alternatives compared with the individual LR or FH test.

2.2 Zmax Test
In Subsection 2.1, we compared the local efficiencies of the LR and FH tests under both the PH and delayed treatment effect
alternatives. The LR test was found to be locally more efficient under the PH alternative or when the separation time is close
to the time origin. On the other hand, the FH test is locally more efficient when the separation time is large enough. Therefore,
to combine the strength of both LR and FH tests, we consider a new test statistic Zmax = max

{

|

|

U1,n|| , ||UF ,n||
}

. A larger value
of |

|

U1,n|| or ||UF ,n|| indicates stronger evidence against the null hypothesis. The test statistic Zmax combines the evidence in both
the LR and PH test statistics and maintains the power of the better individual test of the two under both the PH and delayed
treatment effect alternatives. We shall reject the null hypothesis when Zmax is large. The critical value of Zmax can be obtained
using the following discussion.
By Theorem 7.5.1 in Fleming and Harrington (1991), under H0 ∶ �0 (t) = �1 (t), the LR and FH jointly follow a bivariate

normal distribution asymptotically with
(

U1,n
UF ,n

)

d
→ N

{(

0
0

)

,
(

1 �
� 1

)}

, (2)

where FZ1,Z2 is the joint distribution function of
(

Z1, Z2
)

. Therefore for a given �, we can use the quantile function for bivariate
normal distribution to find the critical value c�,�. On the other hand, for a given Zmax statistic, we can also use the distribution
Therefore, the test statistic Zmax asymptotically follows the same distribution as max

(

|

|

Z1|| , ||Z2||
)

, where
(

Z1, Z2
)⊤

is bivariate Normal with zero mean, unit variance and corr
(

Z1, Z2
)

= �. Let c�,� be a critical value such that
P
{

max
(

|

|

Z1|| , ||Z2||
)

≥ c�,�
}

= �. To obtain an asymptotically level � test, we reject the null hypothesis when Zmax ≥ c�,�.
According to the definition of c�,�, one has

1 − � = P
{

max
(

|

|

Z1|| , ||Z2||
)

< c�,�
}

= P
(

|

|

Z1|| < c�,�, ||Z2|| < c�,�
)

= FZ1,Z2
(

c�,�, c�,�
)

− FZ1,Z2
(

c�,�,−c�,�
)

− FZ1,Z2
(

−c�,�, c�,�
)

+ FZ1,Z2
(

−c�,�,−c�,�
)

,
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where FZ1,Z2 is the joint distribution function for
(

Z1, Z2
)

. Therefore we can use the quantile function for bivariate normal
distribution to calculate c�,�. On the other hand, for a given Zmax statistic, we can also use the distribution function of the
bivariate normal to compute the p-value.
An illustration of Zmax is given in Figure 3 . It displays the plot of the calculated values of LR test statistic against FH test

statistic using 500 data sets simulated from the same model as described in the simulation study in Section 3. In particular, the
number of events is set to be 200 and we evaluate the two test statistics under both null hypothesis and two different alternatives:
PH and delayed treatment effect with separation time t0 = 4. For each panel, the highlighted square denotes the acceptance
region of Zmax at level � = 0.05. In the first panel, most points are within the square, confirming low rejection rate of Zmax
under the null hypothesis. On the other hand, in the second and third panels, most points move out of the square, indicating
high rejection rate under either the PH or delayed alternatives. In addition, under the PH alternative, more points are above the
dotted line in panel 2, indicating that the LR test tends to have larger absolute value and is thus more powerful than the FH test.
In this figure, we also highlight the cases with the null hypothesis erroneously accepted by Zmax (points in the square) and the
FH tests (points shaped with “A”). It clearly shows that the FH has a much higher acceptance rate and is thus less powerful than
Zmax under the PH alternative. Similarly, under delayed treatment effect, the acceptance rate of the LR test is larger and thus it
is less powerful than Zmax.
Insert Figure 3 here.
The following theorems compare the local efficiency of the proposed Zmax test under both PH and delayed alternatives, The

detailed proofs are given in the appendix.

Theorem 3. Suppose the Assumptions (A1) and (A3) in the appendix hold. For testing H0 ∶ �1 (t) = �0 (t) versus HPH
a,n ∶

�1 (t) ∕�0 (t) = e�n , where �n = �∕
√

n and � < 0, the Zmax test is locally more efficient than the Fleming-Harrington test in the
neighborhood ofH0.

Theorem 3 shows under PH, the Zmax test is more efficient than the FH. In the second panel of Figure 3 , there are more
points in the rejection region of Zmax (points outside the square) than that of the FH (points labeled “R”), meaning that Zmax
has higher rejection rates than the FH, which confirms Theorem 3.

Theorem 4. Suppose the Assumptions (A1) and (A4) in the appendix hold. For testing H0 ∶ �1 (t) = �0 (t) versus H
Delay
a,n ∶

�1 (t) ∕�0 (t) = 1 −
(

1 − e�n
)

I(t≥t0) where �n = �∕
√

n and � < 0, when t0 is large enough, Zmax test is locally more efficient
than the log-rank test in the neighborhood ofH0.

Theorem 4 states Zmax is locally more efficient than that of LR under delayed treatment effect. The third panel of Figure 3
shows that Zmax rejects more often than the LR test under this scenario and further validates Theorem 4.

3 SIMULATION

In this section, different sets of simulation studies are performed to compare the performances of the Zmax test with the LR and
FH tests. We first check the Type I error for the three tests of interest, and then compare their powers under different alternatives.
We also compare the sample size or follow-up time required to achieve the same level of power for the three tests, as they are
also key factors for clinical practitioners.
Unless specified, data are generated according to the same mechanism for all simulations in this section. In particular, patients

are enrolled into the study with a constant rate of 30 subjects per month . In our simulation, the patients are subject to right
censoring due to either dropping out or the termination of the study. For each individual, the dropping out time follows an
Exponential distribution with rate 0.01 and is independent of the patient survival time. Follow-up time is either a pre-determined
value or chosen randomly to achieve a fixed censoring rate. In addition, we assume equal randomization and fix Type I error �
at 5%.
In Lee (2007) and Karrison (2016), the calculation of critical values for their maximum tests, such as Zmax, involves the

integration of multivariate normal distributions, which can be computationally slow. Yang et al. (2005) generated a table with
the calculated critical values for � = 0.05 with a sequence of �. Lee (2007) and Karrison (2016) applied the tables in Yang et al.
(2005) to approximate the critical values. New tables also need to be generated when one changes the level �. In our codes, we
write a function using the distribution function of bivariate normal distributions as described in Subsection 2.2. The function
can directly and quickly compute c�,� for every � and �.
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3.1 Type I Error
Three different distributions have been considered: Exponential with rate 0.05, piecewise Exponential with rate � (t) =
0.05I{t<4}+0.1I{t≥4}, andWeibull with rate 0.05 and shape 0.5. We consider different sample sizes with total number of patients
n = 84, 168, 334, 500, 668 or 834. For each run, the follow-up time is determined to have approximately 40% censoring, or
equivalently the number of events to be 50, 100, 200, 300, 400, 500 respectively. For each scenario, we simulate 10, 000 data
sets, and performed the three tests on each data set. Figure 4 summarized the empirical rejection rates for the three tests for
different survival distribution and sample size combinations.
Insert Figure 4 here.
Figure 4 shows that for all the scenarios we have considered, the three tests always have empirical rejection rate close to

� = 5%, with values between 4.5% and 5.5%. It shows that there is no Type I error inflation for any of the three tests under
consideration.

3.2 Power Comparison
Four types of alternatives are considered for power comparison: proportional hazards (PH) and three delayed treatment effect
with separation time t0 = 3, 4 or 5 months. Note that the PH alternative can also be viewed as a delayed treatment effect with
t0 = 0. For each separation time t0, we consider the hazard functions for the control arm to be �t00 (t) = 0.05I(t<t0)+0.1I{t≥t0}, and
for the treatment arm to be �t01 (t) = 0.05I(t<t0) +0.1e

�I{t≥t0} respectively. The four alternatives are denoted asH
0
a ,H

3
a ,H

4
a ,H

5
a

respectively. For all four scenarios, the hazard functions between the two arms are the same before the separation time t0, and
proportional with ratio e� after t0.
We consider a wide range of number of eventsD from 100 to 1, 000 by 10 events. For a givenD, we set the total sample size

n to be 2 ⌈D∕1.2⌉ , where ⌈x⌉ is the smallest integer greater than x. For each alternative H t0
a and event size D combination, a

hazard ratio e� is chosen such that the LR test has approximately 80% power. Then the empirical powers of the FH andZmax tests
are compared against this benchmark. In this simulation study, the follow-up time for each replication is individually determined
so that the censoring proportion is close to 40% for each replication. The LR, FH and Zmax tests are applied to each data set,
and their rejection rates out of 10, 000 replications (empirical powers) have been recorded.
We also add another test, named “Delay” in our simulation. The test belongs to the family given by Equation (1) and we

denote the test as Ut0,n. The weights of Ut0,n are set to be zero before time t0 and one afterwards. That is, in Equation (1),
wn,j = I(tj ≥ t0). According to Proposition A.3 in the appendix, Ut0,n is the locally most efficient test among the family given
by Equation (1) under delayed alternatives.
Figure 5 plots the empirical power against the number of events for four testing methods under the four different alternatives.

The first panel compares their performances under the PH alternative. It shows that the LR and Delay are identical and are the
most powerful one. But the performances ofZmax and LR are close, and both are more powerful than FH. For example, under the
PH alternative and the number of events D = 100, the empirical powers of Zmax and LR are 76.81% and 79.01% respectively,
which are much higher than the power of the FH (66.23%). The remaining three panels of Figure 5 show that under alternatives
of delayed effect, the LR is always the least powerful one, and the performance of Zmax is close to that of FH test. In addition,
larger power gain of Zmax and FH tests is observed for later separation time. Compared to the Delay, which is the optimal test,
the power loss of Zmax is around 5%. For example, when t0 = 5 months and D = 1, 000, The Delay test has 91.65% power, and
the FH test has the second highest empirical power of 87.30%, followed by Zmax with 86.07%, but the LR has the lowest power
of 79.87%. Although Zmax can not out-perform the FH test in each scenario, Figure 5 shows that the power loss of Zmax to the
FH test is quite small regardless of the number of events. These findings are consistent with our theoretical results in Section 2.
Insert Figure 5 here.

3.3 Sample Size
We perform the third simulation study to calculate the required sample size to achieve a power of 80% for different tests under
various alternatives. In this subsection, we fix the follow-up time to be 10 months. For each of the four alternatives, we consider
different hazard ratios e� in {0.55, 0.6, 0.65, 0.7, 0.75} The binary search algorithm in Yang et al. (2018+) is used to find the
required sample size.
Table 1 presents the sample size needed to achieve 80% power for different tests under various scenarios. The corresponding

empirical powers are also displayed in the parenthesis in Table 1 , which are all very close to the target power 80%.
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Table 1 here.
The first column of Table 1 shows under the PH alternative, the LR test always requires the smallest sample size, and a

slightly larger number is required for Zmax , but for the FH, a much greater number is needed to achieve the same power. For
the delayed treatment effect alternative, FH test always requires the smallest sample size , followed by Zmax , which is almost
the same as the FH when separation time t0 = 3, 4; the LR test requires much larger sample sizes than the other two.

3.4 Follow-up Time
In this subsection, we still consider four types of alternatives, but with the hazard ratios e� only being 0.65 or 0.7. For each
alternative and hazard ratio combination, we use the maximum sample size among the three tests presented in Table 1 to ensure
each test can achieve 80% power. The algorithm is similar to the sample size determination algorithm described in Yang at al.
(2018+).
Insert Table 2 here.
Table 2 show that with fixed sample size, the follow-up time for the Zmax test always is between that for the LR and FH,

and is longer than the LR under the PH alternative, shorter than the LR under delayed treatment effect. Therefore with the same
number of sample size, Zmax test always requires a reasonably efficient follow-up time among the three tests.

4 APPLICATION

In this section, we illustrate the application ofZmax test via two examples: Nivolumab CheckMate 025 trial and Pembrolizumab
Keynote 040 trial. The patient level data for the two trials are not original but reproduced based on the published survival curves
using the method of Guyot et al. (2012). As shown in Figure 6, the original survival curve and the reproduced survival curve
from digitized data are very similar.

4.1 Digitized Data Based on Nivolumab CheckMate 025 Trial
Nivolumab is a prominent cancer immunotherapy recently approved for multiple un-curable cancer indications including renal-
cell carcinoma, non-small cell lung cell, melanoma, etc. It is a programmed death 1 (PD-1) checkpoint inhibitor antibody
which selectively blocks the interaction between PD-1 on activated T cells and PD-1 ligand 1 (PD-L1) and 2 (PD-L2) on
immune cells and tumor cells to allow activated T cells to fight against the tumor cells (Motzer et al., 2015). The special mech-
anism of nivolumab to stimulate the immune system to attack cancer results in delayed clinical benefits (Hoos et al., 2010).
The progression-free survival (PFS) curves in clinical trials exhibit severely delayed separation, which can lead to statistically
insignificant results with the conventional log-rank test (Motzer et al., 2015, Ferris et al., 2016) although the treatment may pro-
vide significant clinical benefits. Therefore, PFS with the conventional log-rank test may not be an appropriate primary endpoint
for Nivolumab trials (Kaufman et al., 2017).
CheckMate 025 trial was a randomized phase 3 trial to enable registration of nivolumab in pre-treated renal-cell carcinoma

(Motzer et al., 2015). It compared nivolumab with everolimus in patients with renal-cell carcinoma who had received previous
treatments. Due to the mechanism of nivolumab, it was expected that PFS is not an optimal primary endpoint and therefore
overall survival (OS) was designated as the primary endpoint. Objective response rate (ORR) and PFS were two key secondary
endpoints. A sequential testing procedure was applied. The original order was to test OS first, then PFS if OS was statistically
significant, and finally ORR if PFS was statistically significant. Later the testing order was amended to test OS first, followed
by ORR, and then by PFS. This amendment of the testing order was likely due to the concern of the delayed PFS separation,
which may lead to a missed opportunity for ORR.
CheckMate 025 trial observed statistically significant OS results (p-value of 0.002), statistically significant ORR results (p-

value < 0.001), and statistically non-significant PFS results (hazard ratio of 0.88, a p-value of 0.11) (Motzer et al., 2015). The
PFS curves showed delayed separation around 7 months. We reproduced the PFS patient-level data by digitizing the published
PFS curve using the method of Guyot et al. (2012). Figure 6 is the PFS curves reconstructed from the digitized dataset, which
is almost identical to the original PFS curves. Applying the original log-rank test to the digitized dataset, we obtained hazard
ratio of 0.89 and p-value of 0.12, which were very close to the originally published results of 0.88 and 0.11, respectively. Next,
we applied Zmax test to the digitized dataset. The observed correlation between LR and FH was 0.85, and the p-value of the
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Zmax test was 0.001, which was highly statistically significant. Similarly we applyZmax test to the reconstructed OS dataset and
obtain a similar p-value of 0.002 as the p-value of 0.002 based on log-rank test.
Insert Figure 6 here.
Therefore, if Zmax had been used to test PFS, PFS would have been able to show significant treatment difference and thus

could successfully serve as the primary endpoint in CheckMate 025, which would have accelerated the approval considerably
to bring this critical treatment to patients much earlier.

4.2 Digitized Data Based on Pembrolizumab Keynote 040 Trial
Pembrolizumab is another famous PD-1 inhibitor which was recently approved in multiple cancer indications including second-
line head and neck squamous cell carcinoma (HNSCC), refractory Hodgkin’s lymphoma, melanoma, etc. Due to a similar
mechanism to nivolumab, delayed clinical benefits were observed in pembrolizumab clinical trials as well. For example, PFS
curves and OS curves in pembrolizumab clinical trials showed delayed separation (Cohen et al., 2017, Herbst et al., 2016).
Keynote 040 trial is a randomized phase 3 confirmatory trial to compare pembrolizumab with a standard of care in patients

with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy in the US. The
primary endpoint of Keynote 040 trial was OS in the intent-to-treat (ITT) population. The pre-specified efficacy boundary on
OS in the ITT population was one-sided p-value of 0.0175 with log-rank test (Cohen et al., 2017).
The OS results in the ITT population from Keynote 040 trial has a hazard ratio of 0.81 and a one-sided p-value of 0.0204with

log-rank test (Cohen et al., 2017), which is statistically not significant at the pre-specified level of 0.0175. HenceKeynote 040 trial
failed to reach the primary endpoint of OS in the ITT population. The OS curves presented delayed separation around 5 months.
Similarly, we reconstructed the OS patient-level data by digitizing the published OS curves from a conference presentation
(Cohen et al., 2017). The OS curves generated from the digitized OS dataset (Figure 7 ) were almost identical to the original OS
curves. The OS hazard ratio from the digitized OS dataset was 0.81, and the one-sided p-value with log-rank test was 0.0208,
which were quite close to the original results with a hazard ratio of 0.81 and a p-value of 0.0204. When we apply the Zmax test
to the digitized data, the observed correlation between LR and FH was 0.86, and the p-value associated with the Zmax test was
0.0055, which was highly statistically significant. Similarly we applied Zmax test to the reconstructed PFS dataset and obtain
a statistically non-significant p-value of 0.0946, which is similar to the statistically non-significant p-value of 0.3037 with the
log-rank test.
Insert Figure 7 here.
Keynote 040 trial did not reach the primary endpoint of OS in the ITT population because the primary analysis was specified

to apply the standard log-rank test to analyze OS. IfZmax test had been specified to analyze OS as the primary analysis, the trial
would have been able to meet the primary endpoint.

5 ESTIMATION

In the previous sections, we have discussed different testing procedures (LR, FH and Zmax tests) and their power comparisons.
However, it is also of interest to estimate the treatment effect over the control. Under the proportional hazards assumption, the
constant hazard ratio over time is a genetic evaluation of the treatment effect. For example, a hazard ratio of 0.5 in a clinical
trial means the conditional hazard rate of the treatment arm is half that of the control arm. Under non-proportional hazard
assumptions, the hazard ratio is no longer a constant over time. Kalbfleisch and Prentice (1981) considered estimating the effect
by integrating the hazard ratio over time and defined it as the average hazard ratio. Schemper, Wakounig and Heinze (2009)
discussed the properties of several average hazard ratios under different situations. However, the meaning of average HR is
misleading. For example, two trials may end up having the same average HR but with different hazard ratio functions. Moreover,
the interpretation of average HR is challenging.
Under delayed treatment effect, it is more meaningful first to estimate the separation time t0 and then calculate the HR after

t0. We consider two different approaches to estimate the separation time. The first method is based on the difference between
the survival curves. We define t̂0 = maxt

{

Ŝ1 (t) ≤ Ŝ0 (t)
}

, where Ŝ1 (t) and Ŝ0 (t) are the Kaplan-Meier survival curves for the
treatment and control arms respectively. That is, the separation time is estimated to be the maximum time where treatment arm
has a survival rate no greater than the control. In the other method we apply the Bayesian information criterion (BIC). Given
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the separation time t, the BIC is defined as

BIC (t) = −2
{

l
(

�̂t
)

− l
(

�̂0
)}

+
(

pt − p0
)

log (n) , (3)

where l1
(

�̂t
)

, l0
(

�̂0
)

are the maximized log-likelihood under the delayed effect model with separation time t and a PH model,
respectively. Their corresponding numbers of parameters are pt, p0, and n is the sample size. The separation time is estimated
to be the time that minimizes the BIC in Equation (3). That is, t̃0 = mint {BIC (t)}. After the estimation of separation time t0
using either methods, we then fit a Cox model with the data after separation to estimate the corresponding HR.
We apply the methods as mentioned above to the two examples in Section 4. For the Nivolumab CheckMate 025 trial, if we

use the Kaplan-Meier approach, the separation time is 6.1 months, and the hazard ratio after 6.1 months is 0.587; with the BIC
method, the separation time is estimated to be 5.9 months, after which the HR is calculated to be 0.575. These two results are
not too different from each other. For the Pembrolizumab Keynote 040 trial, both methods estimate the separation time to be
4.7 months, and the HR after separation is 0.636. From the two real trials, the approaches using Kaplan-Meier curves and BIC
yield similar estimates.

6 DISCUSSION

Due to the mechanism of action of immuno-therapies, PFS or OS curves have demonstrated delayed separation in many clinical
trials. The conventional log-rank test assumes proportional hazard over time and often lacks power in these types of trials.
Weighted log-rank tests can be powerful if the extent of delay and corresponding weights can be reasonably accurately pre-
specified. However, based on what have been observed so far, the extent of delay in immune-oncology trials varies from endpoint
to endpoint, from indication to indication, and even from trial to trial with the same endpoints in the same indications. This
makes it difficult and even impractical to apply these weighted statistical tests that require pre-specification of time delays. It
may also pose major challenges in reaching agreement with regulatory agencies on what pre-specified weights should be used
in the statistical tests.
This paper demonstrated that the Zmax test, the maximum of log-rank test and FH test, possesses important properties and it

does not require accurate pre-specification of delay time. Under proportional hazard model, the Zmax test is almost as powerful
as the most powerful log-rank test and can be substantially more powerful than the FH test. On the other hand, under delayed
effect model, theZmax test is almost as powerful as the FH test while can be much more powerful than the conventional log-rank
test. In addition, Zmax is robust in terms of power across different delayed or non-delayed survival models. These properties
can make Zmax the most practical candidate for immune-oncology trials in which delayed effects may or may not exist and the
extent of delay is unknown in advance. Software will be made available for clinical trial design and analysis using Zmax.
When theZmax test is applied to digitized PFS data from Checkmate 025 trial, PFS becomes highly significant with p-value of

0.0014, which is close to the p-value of 0.0008 for the FH test, while the conventional log-rank test has a non-significant p-value
of 0.12. This means, ifZmax had been used to test PFS in Checkmate 025, PFSwould have been able to show significant treatment
difference and thus could successfully serve as the primary endpoint, which would have accelerated the approval considerably to
bring this critical treatment to patients months to years earlier. In the Keynote-040 trial, OS curves displayed delayed separation.
When the conventional log-rank test is used, the one-sided p-value was 0.0204, which is not statistically significant based on
pre-specified rule; while the p-value corresponding to the Zmax test was 0.0055, which would be statistically significant.
Under proportional hazard model, it is straightforward to estimate the constant hazard ratio (HR) over time and its meaning

is clear. The current convention in clinical trials is to provide one average treatment effect or one HR estimate. However, under
delayed effect model, one average HR estimate can be misleading. To better understand the magnitude of treatment effect under
delayed treatment effect model, it is more meaningful to provide an estimate for delay time, and an HR after delayed effect time
point. The delayed effect time point t̂0 can be estimated via either the KM curve difference or the BIC approach. The HR after
separation is estimated via a Cox model with the data after t̂0.
Zmax test has some weaknesses as well. It will lose power comparing to the weighted log-rank test if we can reasonably

accurately pre-specified the delay time and thus the corresponding weight. In addition, unlike log-rank test or weighted log-rank
test, there is no corresponding weight associated withZmax test and thus there is no treatment effect estimate directly connected
to the Zmax test. There is a gap between hypothesis testing and estimation, which may pose some regulatory and practical
challenges in drug development based on current convention.
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FIGURE 1 Examples of survival curves under the PH and delayed effect models. The solid and dashed lines correspond to the
survival curves of the control and treatment arms respectively.
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(a) Survival curves under a PH alternative
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(b) Survival curves under a delayed alternative

FIGURE 2 Example of power and separation time relationship. The solid and dashed lines display the empirical power curves
for the LR and FH tests with different separation time t0.
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FIGURE 3 Illustration of the Zmax test under the null and two alternatives: PH and delayed treatment effect with separation
time t0 = 4 months. The highlighted squares are the acceptance regions for Zmax test with � = 0.855. The shape of the points
specifies the testing results for the FH and LR in the second and third panels respectively. The symbols “A”, “R” correspond to
“fail to reject” , “reject”, respectively.
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FIGURE 4 Type I error for the LR, FH andZmax tests. The x-axis labels different tests and y-axis shows the empirical rejection
rates based on 10, 000 simulations. Each row represents a different distribution of survival time , and each column lists the
number of events.
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FIGURE 5 Power comparison of the LR, FH,Zmax and Delay tests under the PH and delayed treatment effect alternatives. The
x-axis is the number of events, and the y-axis shows the empirical power of different tests based on 10, 000 simulations. Each
panel corresponds the separation time (0,3,4,5 months), where 0 is the PH case.
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TABLE 1 Sample size required for different tests to achieve 80% power when the follow-up time is fixed at 10 months. Each
column corresponds to a separation time t0, and each row represents different hazard ratios e� after t0. The integer values
represent the sample sizes required and empirical powers are in parentheses.

e� Tests Separation time t0
0 3 4 5

0.55
LR
FH
Zmax

152 (0.7955)
204 (0.8084)
164 (0.7986)

256 (0.7963)
236 (0.8078)
236 (0.7982)

308 (0.7976)
254 (0.8005)
268 (0.8084)

366 (0.7974)
282 (0.8024)
298 (0.8012)

0.6
LR
FH
Zmax

200 (0.8000)
256 (0.7973)
210 (0.7921)

328 (0.7998)
302 (0.8095)
300 (0.8057)

382 (0.7977)
324 (0.7967)
330 (0.7957)

440 (0.7912)
352 (0.7976)
370 (0.7944)

0.65
LR
FH
Zmax

264 (0.8017)
344 (0.7919)
284 (0.8045)

418 (0.8033)
392 (0.8045)
388 (0.8014)

478 (0.7949)
424 (0.8081)
434 (0.8067)

556 (0.8014)
452 (0.7995)
468 (0.7964)

0.7
LR
FH
Zmax

366 (0.8064)
470 (0.7924)
382 (0.8030)

560 (0.8079)
530 (0.8032)
524 (0.7954)

626 (0.7963)
564 (0.7999)
568 (0.7976)

720 (0.7985)
594 (0.8024)
628 (0.8035)

0.75
LR
FH
Zmax

520 (0.7982)
690 (0.8064)
540 (0.7923)

766 (0.7963)
752 (0.7956)
734 (0.7984)

878 (0.7972)
784 (0.7973)
792 (0.7961)

984 (0.7900)
832 (0.7965)
864 (0.7972)

TABLE 2 Follow-up time required to achieve 80% power for different tests with the fixed sample size. Empirical power is
provided in parenthesis.

e� Tests Separation time t0
0 3 4 5

0.65
LR
FH
Zmax

3.5776 (0.7990)
9.2769 (0.7934)
4.5574 (0.7923)

10.2015 (0.8028)
8.2589 (0.8006)
8.2065 (0.8039)

10.2816 (0.7980)
6.8579 (0.8060)
7.4172 (0.8009)

9.8128 (0.7998)
5.3797 (0.7962)
6.4756 (0.8059)

0.7
LR
FH
Zmax

2.7208 (0.8004)
9.8497 (0.7964)
3.9541 (0.8023)

9.6226 (0.8064)
7.8271 (0.7960)
7.3868 (0.7974)

10.3569 (0.7983)
6.6402 (0.7973)
7.5533 (0.8095)

9.6786 (0.7907)
5.1048 (0.7924)
5.7801 (0.8009)
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FIGURE 6 The progression-free survival curves for Nivolumab CheckMate 025 trial. The solid and dashed lines correspond
to control and treatment arms, respectively.
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FIGURE 7 The overall survival curves for Pembrolizumab Keynote 040 trial. The solid and dashed lines correspond to control
and treatment arms, respectively.
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Appendix

A.1 PROPERTIES OF TEST STATISTIC UW ,N

In this section, we study the properties of the tests of the family given in Equation (1). For the jtℎ event in Dn, we denote

�j =
n1

(

tj
)

�1
(

tj
)

n1
(

tj
)

�1
(

tj
)

+ n0
(

tj
)

�0
(

tj
) . By Schoenfeld (1981),

Uw,n =

∑

j∈Dn
wn,j

(

Xj − �j
)

√

∑

j∈Dn
w2
n,j�j

(

1 − �j
)

+

∑

j∈Dn
wn,j log

{

�1
(

tj
)

∕�0
(

tj
)}

p
(

tj
) {

1 − p
(

tj
)}

√

∑

j∈Dn
w2
n,jp

(

tj
) {

1 − p
(

tj
)}

. (A.1)

The first term has a limiting standard normal distribution. Let

�w =
√

P0P1 ∫ w (t) log
{

�1 (t)
�0 (t)

}

V (t) dt
{

∫ w2 (t)V (t) dt
}−1∕2

,

where limn→∞wn,j = w
(

tj
)

, V (t) = P1S1 (t)G1 (t) + P0S0 (t)G0 (t) with Gk (t) being the survival of censoring in group
k, Fk (t) = 1 − Sk (t) , and Pk is the percentage of individuals allocated to Group k, k = 0, 1.We define the limit of the second
term as

√

n�w, which depends on w (t) , P0, V (t) and hazard ratios. Note that for the LR test, wn,j = 1, and w (t) = 1. For the
FH test, limn→∞wn,j = 1−S

(

tj
)

= F
(

tj
)

. Therefore in what follows, we use
√

n�1 and
√

n�F to denote the asymptotic means
of the LR and FH test statistics, respectively.
To develop the theoretical properties of the tests, we need the following assumptions:

(A1). The survival and censoring distributions are independent from each other, and both have finite supports.

(A2). The sequence of weights
{

wn,j
}

j∈Dn
is the realization of an adapted bounded nonnegative predictable process at event

times
{

tj
}

j∈Dn
.

Assumption (A1) are standard assumptions on the failure time and censoring distributions. Assumption (A2) adds constraints
on the weights in Equation (1) such that the test statistics are well defined. Same assumption can be found in Gill (1980) and
Fleming and Harrington (1991).
Under the null H0 ∶ �1 (t) ∕�0 (t) = 1,

√

n�w = 0. Therefore under H0, Uw,n
d
→ N (0, 1) .The asymptotical normality of the

test statistics in Equation (1) can trace back to Cox (1972). Similar conclusions can also be found in Gill (1980), Fleming and
Harrington (1991).

Proposition A.1. Suppose that the Assumptions (A1), (A2) hold. Under the null hypothesis H0 ∶ �1 (t) ∕�0 (t) = 1, the test
statistic in Equation (1) has an asymptotic normal distribution with mean zero and variance one.

Proposition A.1 establishes the asymptotic normality for test statistic Uw,n under H0. Therefore, we can apply it to find the
asymptotic rejection region for the tests in Equation (1).
On the other hand, for any fixed alternative Ha, for example, HPH

a ∶ �1 (t) ∕�0 (t) = e� or HDelay
a ∶ �1 (t) ∕�0 (t) = 1 −

(

1 − e�
)

I(t≥t0), one has limn→∞
√

n�w = ∞. Then the power of Uw,n goes to one for any test. That is, any test Uw,n in Equation
(1) is consistent.

PropositionA.2. Suppose that the Assumptions (A1), (A2) hold. Any test in Equation (1) is consistent. That is, under any fixed
alternativeHa, limn→∞ΨUw,n (�) = 1.

Proposition A.2 shows that each test by Equation (1) is consistent. Therefore it’s not helpful to compare different tests using
their limiting powers, which states the necessities of using local asymptotics.
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A.2 PROOF OF THEOREM 1

Under proportional hazards (PH) alternativeHPH
a,n ∶ �1 (t) ∕�0 (t) = e

�n . For �n = �∕
√

n with � < 0,

�w =
√

P0P1
�
√

n

∫ w (t)V (t) dt
√

∫ w2 (t)V (t) dt
< 0.

In addition, for any w, we have
√

n�w converges to a constant. Let �w = limn→∞
√

n�w. Furthermore by Cauchy-Schwartz
inequality,

�1
�F

=
∫ V (t) dt

√

∫ V (t) dt

√

∫ F 2 (t)V (t) dt

∫ F (t)V (t) dt
=

√

∫ V (t) dt ∫ F 2 (t)V (t) dt

∫ F (t)V (t) dt
≥ 1.

The equality holds if and only if V (t) = F 2 (t)V (t) . That is F (t) = 1. Therefore |
|

�1|| > |

|

�F ||. Thus �1 < �F < 0.
By applying Equation (7a.7.4) in Rao (2001) to measure the asymptotical efficiency of U1,n and UF ,n, we have

e
(

U1,n
)

= lim
n→∞

 U1,n
(

�n
)

= 1 − Φ
(

−�1 + z�∕2
)

+ Φ
(

−�1 − z�∕2
)

,

e
(

UF ,n
)

= lim
n→∞

 UF ,n
(

�n
)

= 1 − Φ
(

−�F + z�∕2
)

+ Φ
(

−�F − z�∕2
)

.

Note that 1 − Φ
(

−� + z�∕2
)

+Φ
(

−� − z�∕2
)

in an increasing function of � on (−∞, 0) . Therefore e
(

U1,n
)

> e
(

UF ,n
)

. Thus
under the PH alternative, the LR test is asymptotically more efficient than the FH test in the neighborhood ofH0.■

A.3 PROOF OF THEOREM 2

Under delayed treatment alternative, consider a simple case:HDelay
a,n ∶ �1 (t) ∕�0 (t) = 1 −

(

1 − e�n
)

I(t≥t0) with �n = �∕
√

n and
� < 0. Then underHDelay

a,n ,

�w = �w
(

t0
)

=
√

P0P1
�
√

n

∫ I{t≥t0}w (t)V (t) dt
√

∫ w2 (t)V (t) dt
< 0,

and let �w
(

t0
)

= limn→∞
√

n�w
(

t0
)

.We would like to compare the asymptotic means of the LR and FH tests

�21
(

t0
)

�2F
(

t0
) =

{

∫ I{t≥t0}V (t) dt
}2

∫ V (t) dt
∫ F 2 (t)V (t) dt

{

∫ I{t≥t0}F (t)V (t) dt
}2

=
∫ F 2 (t)V (t) dt

∫ V (t) dt
∕

{

∫ I{t≥t0}F (t)V (t) dt

∫ I{t≥t0}V (t) dt

}2

.

Notice that �21
(

t0
)

∕�2F
(

t0
)

is a continuous and differentiable function of t0. We denote tsup = supt {F (t) < 1} . Then one
observes that as t0 → 0, HDelay

a,n degenerates to HPH
a,n , �1 (0) ∕�F (0) > 1. In addition, as t0 → tsup, the limit of �21

(

t0
)

∕�2F
(

t0
)

only depends on the denominator,

lim
t0→tsup

∫ I{t≥t0}F (t)V (t) dt

∫ I{t≥t0}V (t) dt
= 1 − lim

t0→tsup

∫ I{t≥t0}S (t)V (t) dt

∫ I{t≥t0}V (t) dt
= 1 − lim

t0→tsup

S
(

t0
)

V
(

t0
)

V
(

t0
) = 1.

Therefore limt0→tsup
�21(t0)
�2F (t0)

= ∫ F 2(t)V (t)dt
∫ V (t)dt

< 1.
Moreover for any 0 < t0 < tsup,

)
)t0

{

∫ I{t≥t0}F (t)V (t) dt

∫ I{t≥t0}V (t) dt

}

=
−V

(

t0
)

F
(

t0
)

∫ ∞
t0
V (t) dt + V

(

t0
)

∫ ∞
t0
F (t)V (t) dt

{

∫ ∞
t0
V (t) dt

}2

=
V
(

t0
)

∫ ∞
t0

{

F (t) − F
(

t0
)}

V (t) dt
{

∫ ∞
t0
V (t) dt

}2
≥ 0.
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Therefore �21
(

t0
)

∕�2F
(

t0
)

is a decreasing function of t0 on
(

0, tsup
)

. Thus there exists t∗ ∈
(

0, tsup
)

, such that �21
(

t0
)

∕�2F
(

t0
)

=
1, where t∗ also depends on the survival and enrollment assumptions. Thus for t0 < t∗, �1

(

t0
)

∕�F
(

t0
)

> 1; for t∗ < t0 < tsup,
�1
(

t0
)

∕�F
(

t0
)

< 1.
Similar to the proof of Theorem 1, we have that the LR is asymptotically less efficient than the FH under delayed treatment

effect in the neighborhood ofH0 when separation time t0 is large enough.■

UnderHDelay
a,n , we let g0 (t) = I{t≥t0}. Then for any g,

|

|

|

|

|

�g0
(

t0
)

�g
(

t0
)

|

|

|

|

|

=
∫ I{t≥t0}V (t) dt

√

∫ I{t≥t0}V (t) dt

√

∫ g2 (t)V (t) dt

∫ g (t)V (t) dt

=

√

∫ I{t≥t0}V (t) dt ∫ g
2 (t)V (t) dt

∫ g (t)V (t) dt
≥ 1

by Cauchy-Schwartz inequality. The equality holds if and only if I{t≥t0}V (t) = g2 (t)V (t) . That is g (t) = g0 (t) . Therefore
|

|

|

�g0
(

t0
)

|

|

|

> |

|

|

�g
(

t0
)

|

|

|

for any g ≠ g0. This shows that in Equation (1), if we set the weight wn,j = Itj≥t0 and denote the new test
as Ut0,n, then

Proposition A.3. Suppose the Assumptions (A1) and (A3) in the appendix hold. For testing H0 ∶ �1 (t) = �0 (t) versus
HPH
a,n ∶ �1 (t) ∕�0 (t) = e�n , where �n = �∕

√

n and � < 0, Ut0,n test is the locally most efficient test in the family given by
Equation (1) in the neighborhood ofH0.

HPH
a,n ∶ �1 (t) ∕�0 (t) = e

�n is a special case of the lag model in Zucker and Lakatos (1990). Proposition A.3 can also be derived
from Zucker and Lakatos (1990). Although Ut0,n is the locally most efficient test under Ha,n, it is not feasible in applications
because the separation time is often unknown to us. It thus only serves as a reference line for other tests in theory.

A.4 PROOF OF THEOREMS 3 AND 4

The property ofZmax is based on the asymptotic joint distribution of
(

U1,n, UF ,n
)

in Equation (2). Note that according to Fleming
and Harrington (1991), the asymptotic correlation between the LR and FH is given as

� = �F =
∫ F (t)V (t) dt

√

∫ V (t) dt
√

∫ F 2 (t)V (t) dt
, (A.2)

which depends on the survival and censoring assumptions. By definition in Equation (A.2), � is always positive.We first introduce
a lemma for bivariate normal distributions.

Lemma A.1. Let
(

X1
X2

)

∼ N
{(

�1
�2

)

,
(

1 �
� 1

)}

with �1 < �2 < 0 and � > 0. For � ∈ (0, 1) , z�∕2 and c�,� satisfy

P
(

|

|

X1 − �1|| < z�∕2
)

= P
{

max
(

|

|

X1 − �1|| , ||X2 − �2||
)

< c�,�
}

= 1 − �∕2. Denote q1 = P
{

max
(

|

|

X1
|

|

, |
|

X2
|

|

)

< c�,�
}

, q2 =

P
(

|

|

X2
|

|

< z�∕2
)

. Then q1 < q2 if �1 < Δ� , where Δ� = −
(

4c2�,�−14c�,�z�∕2+10z
2
�∕2

)

�+
(

c2�,�+4c�,�z�∕2−5z
2
�∕2

)

(c�,�−3z�∕2)�+2z�∕2 .

Proof:AssumeZ1, Z2
iid∼ N (0, 1) , then we can writeX1 =

√

1 − �2Z1+�Z2+�1, X2 = Z2+�2. q1 and q2 can be written as

q1 = Φ
(

−�2 + z�∕2
)

− Φ
(

−�2 − z�∕2
)

,

q2 = P
(

−c�,� − �1 <
√

1 − �2Z1 + �Z2 < c�,� − �1,−c�,� − �2 < Z2 < c�,� − �2
)

.
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Furthermore q1 − q2 = (I + II) − (III + IV ) , where

I =

−�2+c�,�

∫
−�2+z�∕2

dz2 ∫
−c�,�−�1<

√

1−�2z1+�z2<c�,�−�1

�
(

z1
)

�
(

z2
)

dz1,

II =

−�2−z�∕2

∫
−�2−c�,�

dz2 ∫
−c�,�−�1<

√

1−�2z1+�z2<c�,�−�1

�
(

z1
)

�
(

z2
)

dz1,

III =

−�2+z�∕2

∫
−�2−z�∕2

dz2 ∫
√

1−�2z1+�z2<c�,�−�1

�
(

z1
)

�
(

z2
)

dz1,

IV =

−�2+z�∕2

∫
−�2−z�∕2

dz2 ∫
−c�,�−�1<

√

1−�2z1+�z2

�
(

z1
)

�
(

z2
)

dz1,

with � (⋅) the pdf of standard normal. Since I, II, III, IV can all be written as the form of ∫ ∫Ω �
(

z1
)

�
(

z2
)

dz1dz2, which
depends on how far the region Ω is away from the origin, we have

II ≤

−�1+c�,�−2z�∕2

∫
−�1−z�∕2

dz2 ∫
−c�,�−�2<

√

1−�2z1+�z2<c�,�−�2

�
(

z1
)

�
(

z2
)

dz1. (A.3)

We divide I into two parts I = I1 + I2 with

I1 =

−�2+c�,�

∫
−�2+z�∕2

dz2 ∫
−c�,�−�1<

√

1−�2z1+�z2<−c�,�−�1+�(3z�∕2−c�,�)

�
(

z1
)

�
(

z2
)

dz1,

I2 =

−�2+c�,�

∫
−�2+z�∕2

dz2 ∫
−c�,�−�1+�(3z�∕2−c�,�)<

√

1−�2z1+�z2<c�,�−�1

�
(

z1
)

�
(

z2
)

dz1.

It’s easy to see that

I1 ≤

−�2+z�∕2

∫
−�2+c�,�−2z�∕2

dz2 ∫
z�∕2−2c�,�−�1<

√

1−�2z1+�z2<−c�,�−�1

�
(

z1
)

�
(

z2
)

dz1. (A.4)

Denote A as the common point shared by the integration regions on the right hand sides in Equations (A.3), (A.4), and B as the
point closest to the origin in the integration region of I2. Denote ‖A‖ , ‖B‖ as the distances of A,B to the origin, respectively.
When ‖A‖ ≤ ‖B‖ , one can map the integration region of I2 to an area in that of III.We have

‖A‖2 − ‖B‖2 = 1
1 − �2

[

2
{(

c�,� − 3z�∕2
)

� + 2z�∕2
}

�1 + 2
(

−2z�∕2� − c�,� + 3z�∕2
)

�2

+
(

4c2�,� − 14c�,�z�∕2 + 10z
2
�∕2

)

� +
(

c2�,� + 4c�,�z�∕2 − 5z
2
�∕2

)]

.

Since �1 < �2 < 0, when �1 < Δ� , we have ‖A‖ ≤ ‖B‖ , and furthermore,

I2 ≤

−�2+2c�,�−3z�∕2

∫
−�2+c�,�−2z�∕2

dz2 ∫
√

1−�2z1+�z2<z�∕2−2c�,�−�1

�
(

z1
)

�
(

z2
)

dz1. (A.5)

Note that the right hand sides in Equations (A.3), (A.4), (A.5) all have their integration regions as a subset of III , and these
regions have no overlapping. Therefore we have I + II ≤ III. Thus q1 − q2 = (I + II) − (III + IV ) < 0.■
Based on the above lemma, we can compare the efficiency of Zmax with the LR and FH under different alternatives within

the framework of local asymptotics. The following assumptions are needed to develop the theoretical results.
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(A3). Assume �
√

P0P1
√

∫ V (t) dt < Δ� .

(A4). Assume �
√

P0P1 ∫ I{t≥t0}F (t)V (t) dt∕
√

∫ F 2 (t)V (t) dt < Δ� .

Assumptions (A3), (A4) add constraints on the asymptotical means of the LR and FH tests under the PH and delayed alter-
natives. They are basically assuming the distributions of the LR and FH tests under shrinking alternatives are not too close to
the null distributionN (0, 1), which means the limiting values of their power functions are not too small.

A.4.1 Proof of Theorem 3
Under the PH alternative HPH

a,n ∶ �1 (t) ∕�0 (t) = e
�n with �n = �∕

√

n and � < 0, we have already proven limn→∞
√

n�1
(

�n
)

=
�1 < limn→∞

√

n�F
(

�n
)

= �F < 0. Assumption (A3) ensures �1 < Δ� .
Note that 1 − limn→∞  Zmax

(

�n
)

= P
{

max
(

|

|

U1,n|| , ||UF ,n||
)

< c�,�
}

, 1 − limn→∞  UF ,n
(

�n
)

= P
(

|

|

UF ,n|| < z�∕2
)

.

Since
(

U1,n
UF ,n

)

d
→ N

{(

�1
�F

)

,
(

1 �
� 1

)}

, by the above Lemma A.1, combined with Assumption (A3): one has
{

1 − limn→∞  Zmax
(

�n
)}

−
{

1 − limn→∞  UF ,n
(

�n
)

}

< 0. That is, limn→∞  UF ,n
(

�n
)

< limn→∞  Zmax
(

�n
)

.Therefore Zmax is
asymptotically more efficient than the FH under the PH alternative in the neighborhood ofH0.■

A.4.2 Proof of Theorem 4
Under delayed treatment effectHDelay

a,n ∶ �1(t)
�0(t)

= 1 −
(

1 − e�n
)

I(t≥t0) with t0 large enough such that �F
(

t0
)

< �1
(

t0
)

. Similarly
under local asymptotics with �n = �∕

√

n and � < 0, Assumption (A4) ensures �F < Δ� .
Since 1 − limn→∞  Zmax

(

�n
)

= P
{

max
(

|

|

U1,n|| , ||UF ,n||
)

< c�,�
}

, 1 − limn→∞  U1,n
(

�n
)

= P
(

|

|

U1,n|| < z�∕2
)

, similar to
the proof of Theorem 3, one has

{

1 − limn→∞  Zmax
(

�n
)}

−
{

1 − limn→∞  U1,n
(

�n
)

}

< 0.That is, limn→∞  U1,n
(

�n
)

<
limn→∞  Zmax

(

�n
)

.Therefore Zmax is asymptotically more efficient than the LR in the neighborhood of H0 when separation
time is large enough.■
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